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Harmony Everything!
Masked Autoencoders for Video Harmonization

Anonymous Authors

Composite Video Frames
 (Large-scale Foreground)

Ours Huang et al. CO2Net 

Figure 1: The harmonized results from our VHAME and other advanced video harmonization methods under the challenging
large-scale foreground setting on our RCVH dataset, demonstrate the effectiveness of our method in complex real scenarios.

ABSTRACT
Video harmonization aims to address the discrepancy in color and
lighting between foreground and background elements within video
compositions, thereby enhancing the innate coherence of com-
posite video content. Nevertheless, existing methods struggle to
effectively handle video composite tasks with excessively large-
scale foregrounds. In this paper, we propose Video Harmonization
Masked Autoencoders (VHMAE), a simple yet powerful end-to-
end video harmonization method designed to tackle this challenge
once and for all. Unlike other typically MAE-based methods em-
ploying random or tube masking strategies, we innovative treat
all foregrounds in each frame required for harmonization as pre-
diction regions, which are designated as masked tokens and fed
into our network to produce the final refinement video. To this
end, the network is optimized to prioritize the harmonization task,
proficiently reconstructing the masked region despite the limited
background information. Specifically, we introduce the Pattern
Alignment Module (PAM) to extract content information from the
extensive masked foreground region, aligning the latent semantic
features of the masked foreground content with the background
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context while disregarding the impact of various colors or illumi-
nation. Moreover, We propose the Patch Balancing Loss, which
effectively mitigates the undesirable grid-like artifacts commonly
observed in MAE-based approaches for image generation, thereby
ensuring consistency between the predicted foreground and the
visible background. Additionally, we introduce a real-composited
video harmonization dataset named RCVH, which serves as a valu-
able benchmark for assessing the efficacy of techniques aimed at
video harmonization across different real video sources. Compre-
hensive experiments demonstrate that our VHMAE outperforms
state-of-the-art techniques on both our RCVH and the publicly
available HYouTube dataset.

CCS CONCEPTS
• Computing methodologies → Appearance representations;
Video manipulation; Computer vision.

KEYWORDS
Video Harmonization, Video Composite, Masked Autoencoders,
Video Harmonization Dataset

1 INTRODUCTION
The prevalence of fast-paced multimedia platforms like Meta and
TikTok has sparked a significant focus on video editing[6], specifi-
cally in the fundamental task of video composition, intending to
integrate two unrelated videos seamlessly. This involves extracting
the content from one video and overlaying it onto another, resulting
in a new, cohesive video composition. However, variations in shoot-
ing environments or equipment can lead to discrepancies in color

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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and lighting between the two videos. Consequently, the resulting
composite may appear unrealistic when merging contents from
these videos. To address this issue, video harmonization was intro-
duced [14], which is to improve the appearance of the foreground
(i.e., the region to be harmonized) to seamlessly integrate it with
the background (i.e., the target region), achieving a more realistic
and delightful composition results.

The applications of video harmonization span various domains,
including computer vision tasks, film and television post-production,
etc., encompassing video editing [21, 38, 40, 47], video enhancement
[45, 46], and virtual production [22, 24]. Existing works on video
harmonization can be broadly classified into two categories: 1)
Mapping-based methods [32, 41] primarily employ deep neural net-
works to directly learn color and feature mappings between input
video frameswhile they often require large amounts of color-labeled
training data; 2) Temporal consistency-based methods [2, 14] lever-
age spatio-temporal features to maintain natural motion flow across
frames, enhancing the visual effects, albeit at the exponential in-
creased computational complexity. Meanwhile, as shown in Figure
1, these methods typically struggle to produce fine-grained videos
when the input video contains large-scale inharmonic foregrounds
with limited background information, leading to uneven colors
or inconsistent foreground details. To this end, our intuition is
to propose an end-to-end, simple yet efficient network capable of
performing large-scale foreground video harmonization.

In recent years, Mask Autoencoders (MAE) [12] have become
prominent in computer vision, particularly with the Masked Image
Modeling (MIM) framework, which randomly masks large portions
of image patches. MIM allows the encoder to derive latent represen-
tations, which are then combined with mask tokens to reconstruct
the original input image. Notably, through the masking strategy,
MAE operates on a small fraction (e.g., 25%) of the image, enhancing
the capacity of the model to learn effectively even from a limited vis-
ible area. In image harmonization, LEMaRT[28] introduced theMIM
framework to recover the input image, which is composited with
randomly masked foreground and ground truth background during
pretraining. In the inference stage, an additional fine-tuning pro-
cess is required to address irregular foregrounds commonly found
in real videos. Despite the need for pretraining, it has shown ro-
bust competitiveness and performance in the image harmonization
task, especially with its more efficient MAE-based model. For more
complicated video tasks, VideoMAE [35] explores video content un-
derstanding by effectively tackling temporal and spatial redundancy
using the masking strategy. However, few methods currently utilize
MAE to achieve satisfactory harmonized video results, especially
with large foreground areas and limited background information,
such a challenged open problem is under-explored in the video
harmonization task.

Motivated by the above analysis, we propose Video Harmoniza-
tion Mask Autoencoders (VHMAE), an end-to-end network com-
petent to large-scale foreground inputs. As shown in Figure 1, we
demonstrate the effectiveness of our performance in coping with
this large-scale foreground setting, delivering superior results with
more natural and realistic colors. In particular, we consider all fore-
ground contents in each frame as the masked area, leveraging both
semantic content (e.g., objects pattern) and photometric informa-
tion (e.g., color and light) to reconstruct harmonized videos. Thus,

Input Foreground Mask

Random Masking Strategy Foreground Masking Strategy (Ours)

\

Figure 2: Different masking strategies. Unlike the random or
block masking used in the MIM framework, our foreground
masking strategy covers all foreground regions. This not
only efficiently alleviates the boundary between foreground
and background but also allows our model to focus on har-
monization while preventing the erroneous acquisition of
mismatched color and lighting information, thereby achiev-
ing superior harmonization performance.

our VHMAE incorporates the MIM framework at very high mask
ratios (i.e., covering all foreground objects), enhancing model ef-
ficiency. Meanwhile, contrary to other MAE-based image/video
reconstruction approaches that utilize random or block masking
strategies, as illustrated in Figure 2, our method enables the model
to directly tackle disharmony areas, achieving refined results.

Our VHMAE consists of two key and novel modules. Firstly, to
avoid the model failing to access content information and to miti-
gate disharmony within the masked area, we introduce the Pattern
Alignment Module (PAM), designed to primarily focus on recov-
ering color and light attributes to facilitate harmonization. PAM
extracts the semantic information from the masked patches and
aligns it with the semantic content of visible patches in the feature
space, serving as initial mask tokens for the decoder. Our insight
is to enable the decoder to concentrate on recovering the input
photometric information, fostering a more coherent and harmo-
nious composition of the foreground (masked) and the background
(visible). Secondly, MAE-based methods often result in exhibiting
grid-like artifacts, where the output is arranged in a grid pattern
corresponding to the split patches, especially in the end-to-end
setting. To address this issue, we introduce the Patch Balancing
Loss which optimizes the output to minimize gradients in both
horizontal and vertical directions, thereby smoothing out the pro-
nounced demarcations in the results. In this manner, our VHMAE
excels in extracting vital semantic information from extensive fore-
ground areas requiring harmonization and merges it with the rich
photometric information present in the background, leading to
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a strong model capable of producing well-harmonized video out-
puts. Moreover, research in video harmonization is constrained by
having only one publicly available synthetic dataset, HYouTube
[32]. Given the limitations of synthetic datasets that may not fully
reproduce real-world scenarios, we introduce a new dataset for
real-composited video harmonization, named RCVH, crafted by
meticulously selecting and merging content from various videos,
with a deliberate focus on including larger foreground areas en-
riched with real-world elements. RCVH thus offers a more authentic
and demanding challenge for advancements in video harmonization
research. Our main contributions can be summarized as follows:

• We propose VHMAE to deal with video harmonization tasks
in the practical large-scale foreground setting, which, to the
best of our knowledge, is the first end-to-end MAE-based
model for video harmonization.

• We devise two key and innovative modules for VHMAE,
i.e., Pattern Alignment Module (PAM) for aligning seman-
tic information between foreground and background and
preventing disharmony, and Patch Balancing Loss reduces
grid-like artifacts in the output caused by split patches.

• We present a new and practical dataset of real-composited
video harmonization dataset called RCVH. Extensive experi-
ments on several benchmarks indicate the effectiveness and
superior performance of our VHMAE.

2 RELATEDWORK
2.1 Image Harmonization
The purpose of image harmonization is to modify the foreground
appearance of a composite image, including its lighting and color, to
match the background, thereby creating a visually cohesive scene.
Traditional methods [3, 20, 34, 44] typically adjust the foreground
color to match the background using low-level color features. Deep
learning based methods [1, 5, 9, 10, 15, 17, 31] have played an
important role in recent years. Tsai et al. [36] proposed the first
CNN network for image harmonization by combining semantic
segmentation to build a multi-branch network. Hao et al. [11] used
a self-attention mechanism [39] to propagate relevant features from
the background to the foreground. Some methods [4, 25, 43] also
focused on high-resolution image harmonization, resulting in better
efficiency and higher harmonization performance. Recently, there
has been a surge in Transformer-based [8] and diffusion model-
based [13] approaches in the field of image harmonization. Liu et
al. [28] introduced a MAE-based [12] network using the pretrain-
ing strategy. They enhanced the Swin Transformer [29] model by
integrating both local and global self-attention mechanisms. Such
image harmonization methods that are applied directly to video
data often produce deteriorated results (like flickering and artifacts)
because they fail to account for temporal information.

2.2 Video Harmonization
In the video domain, some video processing methods [19, 23] strive
to ensure consistency across video frames, but they often entail
longer processing times or necessitate additional training modules.
Huang et al. [14] employed a pixel-by-pixel incongruity discrimina-
tor to obtain more realistic harmonization results, and introduced
temporal loss to enhance consistency between frames. Ke et al.

[18] devised a Harmonizer to ensure smooth changes in predicted
filter parameters across different frames. Lu et al. [32] used color
mapping consistency to maintain temporal coherence. However,
these methods rely heavily on background information and weaken
when handling large foreground areas. In contrast, we propose an
innovative MAE-based framework that facilitates an end-to-end,
straightforward recovery of all areas requiring harmonization.

2.3 Masked Autoencoders
MaskedAutoencoders (MAE) [12] excels as a scalable self-supervised
learning model in computer vision. It benefits from its lightweight
network, which reconstructs the original image using embedded
patch features and masked tokens. Inspired by MAE, VideoMAE
[35] explores this approach by introducing a large-scale tube mask-
ing strategy, mitigating the risk of information leakage from static
or minimallymoving tokens during reconstruction, tightly tied with
temporal correlation. Following this, VideoMAE V2 [37] further
enhances performance by introducing a double masking scheme,
designed to decrease computational demands and resource con-
sumption. These methods achieve outstanding outcomes in various
vision tasks, such as object detection and segmentation, utilizing the
pretraining-finetuning framework. However, in the field of video
harmonization, to the best of our knowledge, there is currently no
established work, especially concerning end-to-end video recon-
struction models. Moreover, MAE-based methods often generate
grid-like artifacts when reconstructing images or videos directly,
making these results unsuitable for immediate use in multimedia
applications without additional processing.

3 METHODOLOGY
3.1 Revisiting Video Masked Autoencoders
MAE [12] utilizes an asymmetric encoder-decoder structure to per-
form masking and reconstruction tasks on images. VideoMAE [35]
extends its application to video, employing tube masking to capture
the temporal correlation among frames. Given a 𝑇 frames input
video 𝑉 ∈ R𝑇×𝐻×𝑊 ×3, it is initially split into regular and non-
overlapping patches 𝑃 = {𝑝𝑖 ∈ R

𝐻
𝑁
×𝑊

𝑁
×3}𝑇×𝑁 2

𝑖=1 (where 𝑁 is the
patch number per row/column in a frame, set to 16 by default), with
each patch embedded as tokens. Subsequently, most of these to-
kens are masked using various masking strategies. The MAE-based
methods aim to combine efficiency and high-quality representation
learning by reconstructing complete image/video with only the
visible tokens, significantly reducing computational demands while
capturing deep, semantically rich features. The result is optimized
by comparing the predicted masked tokens with the ground truth
ones using the Mean Square Error (MSE) loss:

L𝑟𝑒𝑐𝑜𝑛 =
1

𝑇 × 𝑁 2

∑︁
𝑝𝑖 ∈𝑃

| |𝑝𝑖 − 𝑝𝑖 | |2, (1)

where 𝑝𝑖 represents the reconstruct masked patches while 𝑝𝑖 is the
corresponding truth one.
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Figure 3: The architecture of our VHMAE. Given the current composite video frame𝑉𝑖 and its foreground mask𝑀𝑖 , our network
integrates temporal information from adjacent frames (i.e., from 𝑉𝑖−(𝑇 /2)+1 to 𝑉𝑖+(𝑇 /2) ). Firstly, we propose the foreground
masking strategy to split the input video frame into the inharmonic foreground and visible background, generating the
masked tokens and visible tokens respectively. The masked tokens are then processed by the Pattern Alignment Module (PAM)
which aligns their semantic features with those of the visible tokens obtained from the Transformer Encoders, providing the
initial masked token with foreground semantic information. This enables the Transformer Decoders to specifically focus
on harmonizing color and light, resulting in foreground-background consistency output. At last, we introduce the Patch
Balancing Loss ( 𝐿𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ) to mitigate grid-like artifacts typical of MAE-based methods, enhancing the final refinement result.
We incorporate Reconstruction Loss ( 𝐿𝑟𝑒𝑐𝑜𝑛), Pattern Alignment Loss (𝐿𝑎𝑙𝑖𝑔𝑛), and 𝐿𝑏𝑎𝑙𝑎𝑛𝑐𝑒 to optimize the harmonization
process simultaneously.

3.2 Problem Set: Harmonization for Large-scale
Foreground Video

In video harmonization, a significant and practical challenge is
managing large foreground areas, where the background offers
limited benefits to the model, making it difficult to achieve natural
and consistent color results.
Large-scale Foreground Harmonization. Existing video harmo-
nization methods [14, 18, 32] concentrate on extracting optimal
information from the background, However, they often fall short
under the large-scale foreground setting, struggling to extract real-
istic photometric details from the limited background areas. Con-
versely, our VHMAE leverages the MAE architecture to adeptly
reconstruct extensively masked content, seamlessly harmonizing
the foreground of each frame by treating it as the masked regions.
Our method is inherently well-suited for harmonizing large-scale
foreground, effectively extracting rich and meaningful representa-
tions, regardless of the large foreground size, even up to 70%.
Content Information Preservation. In the Masked Image Mod-
eling (MIM) framework, our setting raises a significant challenge
since we mask all foreground regions frame-by-frame, preventing
the network from accessing the original foreground data at any

time. Our insight is to encourage the network to concentrate on
reconstructing the photometric information (like color and light)
within tokens for harmonization, rather than being restricted to
the content (i.e., the object’s pattern) of the video. To alleviate this,
we propose the Pattern Alignment Module (PAM) to modify the
approach of using randomly initialized mask tokens by imbuing
them with preliminary essential semantic information.

3.3 VHMAE: Video Harmonization in Maksed
Autoencoders

To address the above problem of large-scale foreground for video
harmonization, we propose masked autoencoders in masked video
modeling, named VHMAE. As shown in Figure 3, we mask all fore-
ground regions in each frame and innovatively design the Pattern
Alignment Module (PAM) to steer the network’s attention toward
the video harmonization task. Additionally, we propose an effec-
tive Patch Balancing Loss to refine the MAE-based methodology,
targeting the elimination of gird-like artifacts.
Foreground Masking Strategy. Distinct from other MAE-based
approaches like VideoMAE [35] and MAE-ST [7], our method
uniquely leverages all foreground regions as masked targets, rather
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than traditional random or block masking strategies. This allows
our VHMAE to concentrate on the areas requiring harmonization
while preventing the erroneous acquisition of mismatched color
and lighting information, thereby achieving superior performance.
For the input video, we divide each frame into patches and designate
any patch with foreground elements as a masked token. Moreover,
this also effectively alleviates the boundary between foreground
and background, enhancing their seamless fusion.
Pattern Alignment Module. By dynamically masking the fore-
ground across each frame, the model is deprived of semantic in-
formation regarding the foreground. To compensate for this, we
meticulously devise the Pattern Alignment Module (PAM) to align
the pattern features of masked tokens with those derived from visi-
ble tokens in the feature space, thereby significantly diminishing the
photometric discrepancies between the foreground and background.
PAM consists of a sequence of Multi-Layer Perceptions (MLPs) that
directly process the foreground, extracting pattern information (e.g.,
object shape and texture) to form the foreground representation
feature F𝑓 𝑜𝑟𝑒 ∈ R𝑇×𝑁𝑚𝑎𝑠𝑘×𝐶 . For background visual tokens, their
latent features F𝑏𝑎𝑐𝑘 ∈ R𝑇×𝑁𝑣𝑖𝑠×𝐶 can be obtained through the
Transformer Encoders in the MAE network, where 𝑁𝑚𝑎𝑠𝑘 and 𝑁𝑣𝑖𝑠

are the number of masked and visible tokens respectively, and 𝐶
represents the embedded feature channel. To this end, we utilize
the Gram Matrix [16] to effectively capture and represent the inher-
ent patterns and styles of frames by quantifying the correlations
between different features within MLPs, allowing for deep insights
into the visual pattern of foreground and background tokens:

G =

𝑇∑︁
𝑡=0

F ′
𝑡 · F𝑡 , G ∈ R𝐶×𝐶 , (2)

where F ′
𝑡 represents the transpose of the feature matrix F𝑡 . There-

fore, we optimize the squared Frobenius Norm of the difference
between their corresponding Gram Matrices to align the embedded
pattern information:

L𝑎𝑙𝑖𝑔𝑛 =
1

𝑇 × 𝑁𝑚𝑎𝑠𝑘 × 𝑁𝑣𝑖𝑠
| |G𝑓 𝑜𝑟𝑒 − G𝑏𝑎𝑐𝑘 | |2𝐹 . (3)

Patch Balancing Loss.As depicted in Figure 4, a notable challenge
encountered in MAE-based image/video reconstruction is the grid-
like artifacts, which are characterized by conspicuous, regular grid
patterns that overlay the reconstructed image, thereby diminishing
its visual quality and fidelity of the output. Such occurrences can
be attributed to the reconstruction process, particularly when pre-
dicting patch-wise representations for masked regions which tend
to align with the grid pattern of the input patches. To mitigate this
impact, we propose the Patch Balancing Loss to optimize the pixel
gradients in both horizontal and vertical directions across patches,
i.e., we aim to minimize the variation between two adjacent pixels
in the same direction, effectively eliminating such gird-like disrup-
tive visual inconsistencies. To this end, the Patch Balancing Loss
can be depicted as:

L𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =
1
𝑇

𝑇∑︁
𝑡=0

| |∇𝑉𝑡 | | ∼
1
𝑇

𝐻,𝑊 ,𝑇∑︁
𝑥,𝑦,𝑡=0

√︃
(𝑉𝑡,𝑥 )2 + (𝑉𝑡,𝑦)2, (4)

Input Output
 (coarse--w/o              )

  Final Output 
  (refine--with               )

Figure 4: The grid-like artifacts in MAE-based reconstruction
results (middle). We propose the Patch Balancing Loss effec-
tively mitigates this issue, resulting in smoother and more
coherent harmonization (right).

where,

𝑉𝑡,𝑥 (𝑖, 𝑗) = 𝑉𝑡,𝑖, 𝑗 −𝑉𝑡,𝑖+1, 𝑗 ,

𝑉𝑡,𝑦 (𝑖, 𝑗) = 𝑉𝑡,𝑖, 𝑗 −𝑉𝑡,𝑖, 𝑗+1,
(5)

where, 𝑉𝑡,𝑖, 𝑗 represents the pixel value at the position (𝑖, 𝑗) in 𝑡

frame of the output video.
OptimizationTarget.Our VHMAE incorporates the Pattern Align-
ment Module (PAM) to facilitate the alignment of foreground and
background pattern features, and the Patch Balancing Loss to elim-
inate grid-like artifacts from the output, eventually resulting in
a delicately harmonized video output through the MAE decoder.
Consequently, the overall loss function for our optimization can be
expressed as:

L = L𝑟𝑒𝑐𝑜𝑛 + 𝛼 · L𝑎𝑙𝑖𝑔𝑛 + 𝛽 · L𝑏𝑎𝑙𝑎𝑛𝑐𝑒 , (6)

where 𝛼 and 𝛽 are weighting factors utilized to regulate the balance
between different components.

3.4 RCVH: Real-composited Dataset for Video
Harmonization

Real-composited video data, distinguished by its diversity and com-
plexity, poses significant challenges for collection in daily life, pri-
marily due to the absence of corresponding ground truths. Synthetic
datasets dominate the field of deep learning-based video harmo-
nization due to their availability through systematic modifications
of artificial color lighting. However, this reliance on synthetic data
undermines the accurate representation of real-world scenarios. Mo-
tivated by this, we meticulously collect a series of real-composited
videos, encompassing intricate real-world scenarios, to construct
our new dataset, RCVH. This dataset comprises more than 200 raw
videos, each spanning 2 − 4 seconds, sourced from a variety of
self-recorded clips and YouTube videos. In particular, we crafted a
selection of clear objects to serve as foreground content, segmenting
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them from their original videos, and re-integrating with other un-
related video backgrounds. In the end, our RCVH dataset produces
3148 high-quality real-composited video data. Each video presents
challenges associated with large foreground areas, underscoring
the complexity and diversity of our dataset.
Composited Data Generation. RCVH distinguishes from syn-
thetic datasets by eschewing the artificial manipulation of colors
and lighting in foreground objects. Instead, it preserves the in-
herent disparities in appearance between foreground and back-
ground elements, thereby ensuring authenticity and realism in the
dataset. The data generation consists of two key steps: 1) Fore-
ground segmentation. We utilize the RVM [26] to identify regions
within the video that qualify as potential foreground objects and
subsequently segment them to extract individual foreground object
frames. 2) Foreground-background compositing. The foreground
object frames, segmented as described earlier, are randomly com-
posited into the background frames of the remaining video, utilizing
manual compositing techniques in Adobe Premiere.
Comparison with Existing Dataset. Our RCVH significantly en-
riches the landscape of existing datasets through several distinctive
features: 1) Unlike conventional synthetic datasets [32] that artifi-
cially induce discrepancies between foreground and background el-
ements within the same video, every video in RCVH is crafted from
real data, with foreground and background elements sourced from
different original videos. This method fosters authentic variances
in appearance attributable to diverse shooting environments, equip-
ment, and other pertinent factors; 2) RCVH addresses a broader
spectrum of challenges not explored in [32], i.e., handling extensive
foreground regions in the real scenarios. 3) A meticulous manual
filtering process is employed to ensure that our dataset meets the
highest standards of quality and reliability, guaranteeing its utility
for rigorous academic research and practical applications.

4 EXPERIMENTS
4.1 Experiment Settings
We implement our method using PyTorch and conduct experiments
on two NVIDIA A40 GPUs. We set the training batch size to 32 and
all models are trained for 100 epochs. Following VideoMAE[35],
we employ the AdamW optimizer [30], with an initial learning
rate of 0.001, managed by a cosine learning rate scheduler with
a weight decay of 0.05. We resize composite frames to 256 × 256
during training and testing and apply the same data augmentation
(e.g., rotation and flipping), aligning with practices used in CO2Net
[32]. Each frame is split into 16 × 16 patches, and the weighting
factors 𝛼 and 𝛽 are set to 1.0 by default.

4.2 Datasets
We evaluate our method using two distinct datasets, comprising
both real and synthetic data.
HYouTube. To compare with existing state-of-the-art methods,
we use the currently widely used dataset HYouTube [32] on the
video harmonization task, which is derived from the large-scale
video object segmentation dataset YouTubeVOS [42]. HYouTube
comprises 3194 pairs of synthetic composite 20-frame video se-
quences along with their corresponding ground truths. It includes
2558 video samples for training and 636 samples for testing. Each

video may feature several distinct foreground objects, which are
processed independently. The foregrounds in the same video are
not allowed to appear in both the training set and the test set.
RCVH. In order to better reflect the practicality of the video compo-
sition scenario, we present the real-composite dataset, RCVH. This
dataset consists of samples derived from two distinct video sources,
and importantly, none of the samples have been artificially modi-
fied in any way, ensuring authenticity and realistic relevance. Our
RCVH dataset contains 3148 high-quality real composites. Since
real scenarios lack corresponding ground truths, we use all of our
data exclusively for testing. We assess the performance of vari-
ous methods, including our VHAME, through visual comparisons
and user studies, ensuring a thorough evaluation of each method’s
effectiveness in handling real-world data.

4.3 Evaluation Metrics
We evaluate our methods in comparison to others through both
qualitative visualization and quantitative numerical metrics. For
qualitative analysis, we conduct extensive experiments and select
several representative samples for visualization, as illustrated in
Figures 5 and 6. In terms of quantitative evaluation, we use metrics
including Mean Square Error (MSE), foreground MSE (fMSE), Peak
Signal Noise Ratio (PSNR), and foreground Structural Similarity
(fSSIM), consistent with CO2Net [32]. Here, fMSE and fSSIM are
specifically calculated for the foreground regions only, providing a
focused measure of performance where alterations are most critical.

4.4 Comparison on Synthetic Dataset
We compare our VHMAEwith two categories of advanced methods:
1) Image harmonization methods include iS2AM [33], RainNet [27],
DoveNet [5], and IIH [9]. we treat each video frame as an image and
process them separately through these models. 2) Video harmoniza-
tion methods contain Huang et al. [14], and CO2Net [32], which are
specifically designed to address video harmonization challenges.
Visual Results. Following CO2Net, we display two adjacent frames
from a sample to illustrate our results, as shown in Figure 5. Our
method achieves superior temporal consistency compared to the
image harmonization method iS2AM, resulting in smoother results
between sequential frames. Moreover, when compared to the video
harmonization methods, our results more closely align with the
ground truth and achieve better harmonized outcomes. This im-
provement is attributed to our novel foreground-covered masking
strategy, which emphasizes the adjacent regions between the fore-
ground and background. Additionally, our method excels in han-
dling large foreground objects (as depicted in the bottom group of
Figure 5), producing more realistic colors and lighting, owing to our
proposed Prototype Adaptation Module (PAM), which effectively
recovers photometric information in the foreground regions.
Quantitative Results. As depicted in Table 1, our VHMAE sur-
passes all current state-of-the-art image and video harmonization
methods. It can be found that methods based on color mapping,
such as Huang et al. and CO2Net, yield slightly inferior results.
In contrast, our method operates as an end-to-end model capa-
ble of directly predicting and harmonizing the foreground regions
through the network, seamlessly integrating the background, thus
delivering superior quantitative outcomes.
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Figure 5: Visual comparison on HYouTube between our network and other state-of-the-art methods.

Table 1: Quantitative comparison between state-of-the-art image and video harmonization methods on the HYouTube dataset.

Models Setting MSE ↓ fMSE ↓ PSNR ↑ fSSIM ↑
DoveNet [5] Image Harmonization 58.51 422.84 33.96 0.8238
IIH [9] Image Harmonization 47.30 368.92 34.25 0.8391
RainNet [27] Image Harmonization 49.05 374.06 34.61 0.8338
iS2AM [33] Image Harmonization 28.90 203.77 37.38 0.8817
Huang et al. (RainNet) [14] Video Harmonization 43.94 373.17 34.63 0.8319
Huang et al. (iS2AM) [14] Video Harmonization 27.89 199.89 37.44 0.8821
CO2Net (RainNet) [32] Video Harmonization 43.81 325.36 35.37 0.8534
CO2Net (iS2AM) [32] Video Harmonization 26.50 186.72 37.61 0.8827
Our VHMAE Video Harmonization 25.47 173.65 37.59 0.8832
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Figure 6: Visual comparison on RCVH between our network
and other state-of-the-art methods.

4.5 Comparison on Real-composited Dataset
We further demonstrate the comparative performance of our VH-
MAE alongside current advanced video harmonization methods on
our proposed real-composited dataset, RCVH. Both our method and
other approaches are trained on the synthetic dataset HYouTube
and directly tested on the real data from RCVH. This represents a
particularly challenging task as it not only evaluates the model’s
capabilities in video harmonization but also its ability to general-
ize across different data domains (i.e., synthetic-real). This cross-
domain evaluation showcases the robustness and adaptability of
the models to handle diverse and realistic video scenarios.
Visual Results.As shown in Figure 6, we enlarge the details within
the video frames. The results from Huang et al. and CO2Net display
uneven mottling, where only parts of the foreground blend with the
background, indicating color inconsistencies in their harmonization
process, whereas our method demonstrates superior harmonized
results across the board. We deduce this because their methods suf-
fer from inaccurate color mapping when dealing with new domain
data previously unseen by the model, leading to suboptimal results.
On the other hand, our end-to-end VHMAE directly avoids these
inaccuracies, resulting in natural and coherent frames.
User Study. Due to the real-composited data lack of the ground
truth, following CO2Net, we conduct a user study to verify the ef-
fectiveness of our method. We randomly select 20 real-composited
video samples from RCVH and harmonize them using four com-
pared methods (i.e., Huang et al. [14], iS2AM [33], CO2Net [32],
and ours). We invite 50 participants to attend this user study to
test the subjective preference of video harmonization methods. For
each video, we play for two seconds, the input data and the four
harmonized results will be shown to the participants at the same
time without indicating the methods’ name. We then ask the partici-
pants to rank the quality of the four outcomes from 1𝑠𝑡 (best) to 4𝑡ℎ
(worst) in terms of recovery of brightness, color, and the blend of
foreground and background. Figure 7 shows the rating distribution
of the user study. Our method receives more “best” ratings, which
indicates that our results are more preferred by human subjects.

4.6 Ablation Studies
Our method includes two key components: the Pattern Alignment
Module (PAM) and the Patch Balancing Loss, which are crucial for

Figure 7: Rating distribution of the user study.

achieving desired outcomes. We establish the ablation studies to
verify the importance and efficacy of these modules, underscoring
their vital contributions to the model’s overall performance. As
indicated in Table 2, our model performs optimally when two mod-
ules are utilized together. This superior performance is attributed
to PAM’s effective alignment of semantic information between the
foreground and background, which leads the model to focus on
restoring photometric details for harmonization. Additionally, the
Patch Balancing Loss contributes to further smoothing the results,
effectively preventing the appearance of grid-like artifacts.

Table 2: Ablation studies on the Pattern Alignment Module
(PAM) and the Patch Balancing Loss (PBL) of our VHAME.

Cases PAM PBL MSE ↓ fMSE ↓ PSNR ↑ fSSIM ↑
A 26.39 188.01 36.53 0.8821
B ✓ 25.62 179.44 36.98 0.8825
C ✓ 25.98 183.15 37.34 0.8830
D ✓ ✓ 25.47 173.65 37.59 0.8832

5 CONCLUSION
In this paper, we introduce the Video Harmonization Masked Au-
toencoders (VHMAE), a novel and effective approach that success-
fully addresses the longstanding challenges of large-scale color
and lighting discrepancies in video harmonization. By innovatively
treating all foreground regions as masked tokens, our method en-
hances the integration of foreground elements with their back-
grounds, leveraging the contextual information from nearby back-
ground regions. Our VHMAE contains two key modules: 1) the
Pattern Alignment Module (PAM), which aligns semantic features
across the foreground and background, ensuring a seamless blend
regardless of varying colors or lighting conditions. 2) The Patch
Balancing Loss, effectively eliminates common grid-like artifacts,
ensuring a visually consistent output. The performance of VHMAE
has been empirically validated through extensive testing on our
newly proposed RCVH dataset as well as the publicly accessible
HYouTube dataset, where it demonstrated superior performance
over existing state-of-the-art techniques.
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