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Multi-Guidance CNNs for Salient Object Detection
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Feature refinement and feature fusion are two key steps in convolutional neural networks–based salient object

detection (SOD). In this article, we investigate how to utilize multiple guidance mechanisms to better refine

and fuse extracted multi-level features and propose a novel multi-guidance SOD model dubbed as MGuid-Net.

Since boundary information is beneficial for locating and sharpening salient objects, edge features are utilized

in our network together with saliency features for SOD. Specifically, a self-guidance module is applied to

multi-level saliency features and edge features, respectively, which aims to gradually guide the refinement of

lower-level features by higher-level features. After that, a cross-guidance module is devised to mutually refine

saliency features and edge features via the complementarity between them. Moreover, to better integrate

refined multi-level features, we also present an accumulative guidance module, which exploits multiple high-

level features to guide the fusion of different features in a hierarchical manner. Finally, a pixelwise contrast

loss function is adopted as an implicit guidance to help our network retain more details in salient objects.

Extensive experiments on five benchmark datasets demonstrate our model can identify salient regions of an

image more effectively compared to most of state-of-the-art models.
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1 INTRODUCTION

As a preprocessing procedure of various computer vision tasks, salient object detection (SOD),

which aims to acquire the most visually prominent regions in images, has received increasing

attention in the past decades [4, 16, 32, 35, 36]. Benefiting from the ability of convolutional neural

networks (CNNs) to extract both the high-level semantic information and the low-level spatial

details, deep CNN-based SOD models have triggered a significant breakthrough [2, 14, 23, 58].

Two key issues of CNN-based SOD are how to acquire high-quality saliency features and how to

better integrate these features. To address the first issue, many feature refinement strategies were

constructed, such as embedding saliency prior knowledge [2, 38, 51], introducing edge detection

stream [12, 46, 56], using recurrent refinement modules [15, 30, 39], and so on. Among them, the

strategies based on edge detection stream have attracted more attention due to the complemen-

tarity between binary segmentation map and salient edge map. For example, in Reference [12]

the edge features produced by edge detection stream are aggregated into the saliency features of

corresponding level to refine the boundaries of salient objects. Unlike Reference [12], which only

utilizes a unidirectional refinement framework from edge features to saliency features, SCRN [46]

refines saliency features and edge features simultaneously through stacking multiple bidirectional

refinement modules. To handle the second issue, various fusion strategies were explored to fully

utilize each level feature [14, 22, 24, 25, 34, 43, 45, 53, 60]. A representative strategy is Amulet [53],

which integrates the extracted multi-level features into different resolutions and then adaptively

combines them for generating final saliency maps. Besides, another popular fusion strategy is

DSS [14]. It aggregates higher-level features into lower-level features by short connections, en-

abling each fused features with both the semantics and the spatial details.

Different from the aforementioned feature refinement and fusion methods, this article investi-

gates how to employ the internal relationships between different features to build various guidance

mechanisms, so as to better refine and aggregate extracted multi-level features. As boundary in-

formation can help to segment salient objects from background regions, two parallel decoders are

employed to generate multi-level saliency features and edge features simultaneously. To refine

these extracted features, a self-guidance module is devised and applied to multi-level saliency and

edge features, respectively. It is capable of focusing the information of foreground regions and

enhancing the adaptability of the network in different scenarios. Additionally, a cross-guidance

module is used between saliency features and edge features, taking full advantage of their comple-

mentarity. To integrate refined features better, an accumulative guidance module is constructed,

which can gradually aggregate multi-level features via hierarchical structure. And in this module,

a fusion-enhanced unit is designed to further enlarge the receptive field of network and alleviate

the aliasing effect of upsampling. In addition, a new pixelwise contrast loss function is adopted,

which acts as an implicit guidance, to help our network capture more precise saliency features.

To summarize, the contributions of this article are as follows:

• To better refine the extracted multi-level features, we build a self-guidance module and a

cross-guidance module. The former can highlight the salient regions in each level feature and

suppress the distractors in low-level features to some extent, while the latter can mutually

refine saliency features and edge features and make boundary information more accurate.

• To aggregate the refined features more fully, we construct an accumulative guidance module

that takes full advantage of the high-level semantic information and low-level spatial details.

Moreover, one fusion-enhanced unit is designed so that each spatial position in the fused

features can view the semantic information of different scale spaces.

• To enhance the robustness of our network and further improve the accuracy of salient ob-

jects, we also define a new pixelwise contrast loss function that can implicitly guide the

predicted saliency map to approach the ground truth map at pixel level.
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• Based on the aforementioned guidance mechanisms, a novel multi-guidance SOD model is

proposed, termed MGuid-Net.

In addition, we conduct extensive experiments on five benchmark datasets, and the results

demonstrate that the proposed MGuid-Net yields competitive performance compared with 10

state-of-the-art methods. At the same time, comprehensive ablation experiments are performed

to validate the effectiveness of each component in our model.

2 RELATED WORK

In this section, we briefly review some representative guidance strategies, multi-level feature re-

finement methods, and multi-level feature fusion methods used in deep SOD architectures. We

refer readers to the recent and comprehensive survey paper [40] for more details.

2.1 Guidance Strategy

Various guidance strategies have been presented to assist deep network in detecting salient objects

better within existing SOD models. In Reference [38], the hand-crafted prior knowledge (i.e., color

prior, intensity prior, orientation prior, and central prior) is encoded into the saliency prior map to

guide the training process of the whole network, which can make the network focus more on the

foreground regions of an image. Although such guidance strategy can boost the performance of

SOD to a certain extent, the calculation of prior knowledge greatly decreases the inference speed of

network. Therefore, some methods try to embed guidance mechanism into the network structure,

resulting in an end-to-end trainable model. For instance, a progressive attention guided network

was devised in Reference [54] to selectively aggregate contextual information from different level

features. It uses a guidance mechanism as a part of the network to connect the two attention fea-

tures of adjacent stages. At the same time, benefiting from the powerful feature extraction ability

of fully convolutional neural networks [29], an alternative guidance strategy between different fea-

tures was explored in Reference [56]. It utilizes salient edge features as a guidance to refine salient

object features at different scales, in which the edge features are generated by integrating global

location information and local boundary information. Unlike the above two methods, ASNet [42]

handles both salient object detection and human fixation prediction tasks simultaneously. As a

result, the saliency features are progressively optimized under the guidance of the fixation map in

a coarse-to-fine and top-down manner. Moreover, ASNet is equipped with several loss functions

derived from current widely adopted evaluation metrics for implicitly guiding the network to learn

more representative features.

Additionally, the guidance mechanisms also play an important role in weakly supervised SOD

and RGB-D SOD. Li et al. [20] established a guidance strategy directly on the attention maps to

force the weakly supervised inference network to focus more on the whole of salient objects. In

Reference [59] a pre-training model based on an RGB benchmark dataset was exploited to guide

the learning of RGB-D master network for addressing the lack of annotated RGB-D data.

2.2 Multi-level Feature Refinement

The methods of using refinement strategies to improve the quality of extracted multi-level fea-

tures have achieved great success in deep SOD. A typical strategy is employing edge features as

an auxiliary information to refine multi-level saliency features. In Reference [44], the saliency

and edge features are simultaneously refined by sharing feature between the mask and boundary

sub-networks. Besides, BCNet [7] first uses multiple consistency saliency maximization modules

to produce the global edge feature and then incorporates it into the saliency features of each level

to refine them. Since attention mechanisms are able to selectively retain effective information

through the change of weight, it is also widely used in feature refinement. AFNet [11] adopts a
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series of attentive feedback modules to indirectly refine the extracted features of each level by

controlling the message passing between encoders and decoders. In Reference [43], PAGE-Net

uses a stacked attention to refine multi-level saliency features. It can enhance the representation

ability of different network layers and further expand the receptive field of the network. Beyond

the methods above, various recurrent modules are used to refine the extracted features iteratively.

Kuen et al. [17] built a recurrent attentional network (RACDNN) that learns context informa-

tion from the previous timestep to refine each level feature in the next timestep. Different from

RACDNN, RADF [15] alternatively refines both the features of each layer and the multi-level inte-

grated features in a recurrent way. Note that the integrated features are generated by upsampling

and concatenating the features with different scales. In Reference [41], another general recurrent

model with deeper supervision strategy was proposed to gradually refine the extracted multi-level

features. It simulates the interactive processes of human perception and alternately deploys the

top-down and bottom-up saliency inference in an iterative and cooperative manner.

2.3 Multi-level Feature Fusion

Due to the use of downsampling and pooling operations in deep SOD models, the resolution of

extracted features is gradually reduced with the increase of network depth. Therefore, the deeper

layer features can generally capture more semantic information that contributes to locate the spe-

cific positions of salient objects, while abundant spatial details are retained in the shallower layer

features. To accurately obtain salient objects with sharp boundaries, it is necessary to integrate

multi-level features better.

The ELD-Net [18] directly aggregates both the high-level semantic feature and the encoded low-

level distance feature into a fully connected neural network classifier for evaluating the saliency of

each image region. However, in ELD-Net, the intermediate hierarchical features with rich informa-

tion are not taken into account. To this end, a hierarchical recurrent convolutional neural network

was built in Reference [26], which integrates each level feature into the high-level semantic feature

step by step in a top-down manner. It is worth noting that both recurrent convolutional and up-

sampling operations are used to process the fused feature in each step. Similarly, BDMPM [52] also

adopts a top-down fusion strategy, but the difference is that it employs a bidirectional framework

with gate function to selectively propagate information between multi-level features before fusing

them. Although the aforementioned two methods show their capability to enhance the quality of

saliency map, directly integrating low-level features into high-level features will introduce some

additional interference (i.e., the details in non-salient regions) into fused features. And the global

location information acquired from deeper layer features will be weakened during the progressive

fusion. To alleviate this problem, the PoolNet architecture [24] directly transfers high-level se-

mantic information to each lower-level features and employs a feature aggregation module in the

top-down fusion process. This makes PoolNet provide the location information of potential salient

objects for different level features as well as screen out some distractors in low-level features.

3 PROPOSED METHOD

3.1 Overall Architecture

The overall architecture of MGuid-Net is illustrated in Figure 1, which mainly contains the fol-

lowing components except backbone network (Resnet50 [13]): self-guidance module (SGM),

cross-guidance module (CGM), and accumulative guidance module (AGM). To be specific,

two SGMs are adopted to gradually deliver the high-level semantic information to low-level spa-

tial features via layerwise guidance. After that, a CGM is used to bidirectionally pass messages

between saliency features and edge features, which takes the outputs of SGMs as inputs. Finally,
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Fig. 1. The overall architecture of the proposed MGuid-Net. The parallelograms with solid and dotted borders

denote the saliency features (S) and edge features (E), respectively. Different level features are highlighted in

different colors. In cross-guidance module, the thick lines are used as pipelines to simultaneously transmit

multi-level features.

two AGMs are established to aggregate refined saliency features and edge features, respectively.

The final saliency map is generated by performing simple concatenation and convolution oper-

ations on the aggregated saliency feature and edge feature. In addition, MGuid-Net is equipped

with a novel pixelwise contrast loss (PCL) function except for the binary cross entropy loss to

enhance the robustness of our network. To facilitate description, the extracted saliency features

from low-level to high-level are denoted as S1, S2, S3, and S4, respectively. Similarly, the multi-level

edge features are represented as E1,E2,E3, and E4.

3.2 Self-Guidance Module

In the extracted multi-level features, high-level features with semantic information can coarsely

localize the foreground regions, while low-level features with rich details are utilized to sharpen

the boundary regions of salient objects. Therefore, to make our network pay more attention to

the foreground regions and enhance its adaptive ability in different scenarios, a SGM is built upon

multi-level saliency features and edge features, respectively. It can increase the weights of fore-

ground regions and reduce ones of background regions by progressively transferring high-level

semantic information to low-level features.

For saliency features, SGM starts from the high-level feature S4 to transfer semantics layer by

layer into lower-level features. As shown in Figure 1, S4 is first upsampled to the same size as S3,

and then S3 and S4 are concatenated to generate the refined saliency feature S
′
3 through a convo-

lution operation. With this, we use S
′
3 and S2 to produce S

′
2 by the concatenation and convolution

operations. Finally, the refined S
′
1 can be also obtained in the same way. Mathematically, the SGM

for saliency features can be formulated as

S
′
i =

⎧⎪⎨⎪⎩
Conv

(
Cat
(
Up (S

′
i+1), Si

))
, i = 1, 2, 3

Si , i = 4,
(1)
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where S
′
i is the refined saliency feature through SGM; Conv and Cat are convolution and con-

catenation operations, respectively; and Up represents upsampling operation with a factor of 2.

Similarly, the SGM for edge features can be given as

E
′
i =

⎧⎪⎨⎪⎩
Conv

(
Cat
(
Up (E

′
i+1),Ei

))
, i = 1, 2, 3

Ei , i = 4,
(2)

where E
′
i is the refined edge feature through SGM.

3.3 Cross-guidance Module

To take full advantage of edge information, we further explore the interrelations between saliency

features and edge features. For the SOD task, saliency features should emphasize the whole salient

objects, while edge features emphasize the boundary information of salient objects. Therefore, the

logical relationships between saliency and edge features in SOD can be represented as S ∩ E = E
and S ∪ E = S , where S and E denote saliency features and edge features, respectively. Based on

the logical relationships, a CGM is proposed, which can not only guide the refinement of saliency

features by edge features but also utilize saliency features to filter out the boundary information

of non-salient regions in edge features. Note that using lower-level features to guide higher-level

features will add more distractors, i.e., spatial details in background regions. Thus, when CGM

refines a certain level saliency feature, the lower level edge features will not be used. Similarly, such

operations also exist in the refinement process of edge features. For example, the saliency feature

S
′
2 is refined by edge features E

′
2,E

′
3,E

′
4 to generate a new saliency feature S∗2 , but the highest-

level saliency feature S
′
4 is only refined by the edge feature E

′
4. Technically speaking, since it is

challenging to directly apply intersection (∩) and union (∪) operations in feature level, we use

the multiplication and concatenation operators to approximate these two operations in logical

relationships, respectively. Thus, in CGM, the whole refinement process of saliency features can

be denoted as

S∗i = S
′
i +Conv

((
Cat4

j=i

(
Up (E

′
j ), S

′
i

)))
, i = 1, 2, 3, 4, (3)

and the refinement process of edge features is formulated as follows:

E∗i = E
′
i +Conv

��
�

4∏

j=i

(
Up (S

′
j ),E

′
i

)	

� , i = 1, 2, 3, 4, (4)

where S∗i and E∗i are saliency feature and edge feature refined by CGM, respectively;Up is upsam-

pling operation with scale-factor equal to 2j−i ; and
∏

means pixelwise multiplication.

It is worth noting that the concatenation and multiplication operators in Equations (3) and (4)

cannot be substituted for each other from a logical perspective. The reasons are twofold: First, in

the refinement process of edge features, if the multiplication operator is replaced by the concate-

nation one, the distractors in the non-salient regions cannot be filtered out, although the boundary

information of the salient regions can be emphasized to a certain extent. Second, when saliency fea-

tures are refined, the use of multiplication operator will lead to the loss of some information in the

salient regions, degrading the performance of SOD. Technically, although the modified formulas

can still work, their performance will be degraded. To verify the above analyses and demonstrate

the effectiveness of the strategy used in this article, we specially conduct four comparison exper-

iments on the DUTS benchmark dataset, and their quantitative results are shown in Table 1. We

can find that the strategy used in this article (i.e., No. 1) achieves the best performance. Although

the other three combinations also work, we believe that this is due to the residual connection in

Equations (3) and (4) rather than the correct use of concatenation and multiplication operators.
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Table 1. Quantitative Comparisons of Different Strategies Used

in Equations (3) and (4)

No.
Strategy DUTS-TE

Equation (3) Equation (4) MAE↓ maxF↑
1 concatenation multiplication 0.037 0.869

2 multiplication concatenation 0.047 0.848

3 concatenation concatenation 0.041 0.867

4 multiplication multiplication 0.040 0.866

No. 1 represents the strategy used in this article.

3.4 Accumulative Guidance Module

To better integrate the refined multi-level features from CGM, an AGM with hierarchical structure

is introduced into MGuid-Net. It makes full use of high-level semantics and low-level spatial details

through stacking and reusing each level feature in a hierarchical manner so that the fused features

contain more complete saliency information. Meanwhile, the fused high-level features can also

guide the refinement of low-level features more accurately, resulting in more precise salient object

boundaries. Besides, a fusion-enhanced unit (FEU) is embedded into AGM to further deal with

these features after fusion.

Figure 2 illustrates the detailed structure of AGM, which adopts a hierarchical structure with

four layers. The nth layer (n = 1, 2, 3, 4) contains (5 − n) different level features, and each level

feature is integrated with all higher-level features to generate one new feature for the next layer.

Take AGM for saliency features as an example, the inputs of first layer are the refined features

from CGM, i.e., S∗1 , S
∗
2 , S
∗
3 , S
∗
4 . Then S∗2 , S

∗
3 , and S∗4 are upsampled to the size of S∗1 and fed into the

FEU together with S∗1 to produce the lowest-level feature of second layer. Similarly, the mid-level

feature of the second layer can be obtained by performing FEU on both the S∗2 and upsampled

S∗3 , S
∗
4 . In this way, AGM can acquire each level feature in the second, third, and fourth layers.

Note that the upsampling operation based on bilinear interpolation can break the semantic in-

formation of high-level features and cause the aliasing effect of upsampling, when the upsampling

rate is too large (e.g., 8). To address this issue, we use the FEU to process fused features. As shown

in the top-right corner of Figure 2, a fused feature is first mapped to different scale spaces by

different pooling strides (1, 2, 4, 8) to independently extract features from each scale space. Af-

ter that, these extracted features are merged together and sent to a convolution layer to generate

the enhanced feature. Although the upsampling operation with a factor of 8 is also used in FEU,

other scale features extracted from the same fused feature can act as supplementary information

to gradually make up the missing semantic information and alleviate the aliasing effect of upsam-

pling. Moreover, FEU further expands the receptive field of our network and enables the enhanced

features contain the semantic information of different scales in each spatial location.

3.5 Pixelwise Contrast Loss

As pointed out in References [3, 9], the contrast between foreground and background regions and

the uniform distributions in these two regions are crucial for SOD. Intuitively, this prior informa-

tion can be effectively utilized by designing a specific loss function. Previous work [55] employs a

contrast loss (CL) to implicitly guide the contrast-enhanced net for improving the quality of depth

maps captured from state-of-the-art sensors, which proves that it is feasible to enhance the contrast

through a loss function. Specifically, the CL includes three items: the foreground object distribution

loss, the background distribution loss, and the whole depth image distribution loss. The first two

items aim to make the internal distributions of foreground and background regions more uniform.
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Fig. 2. Detailed structure of accumulative guidance module. The ×1,× 1
2 , . . . ,×4,×8 represent the change of

feature size in fusion-enhanced unit.

The third item can enhance the contrast between these two regions. Inspired by this, we design a

new PCL function, which can enlarge the contrast between foreground and background regions

while the internal distributions of these two regions become uniform. Unlike CL that contains three

hyper-parameters, our PCL has only one hyper-parameter (α defined in Equation (8)). Combining

the PCL with the binary cross entropy (BCE) loss function, a hybrid loss function is finally gener-

ated to assist our network in capturing more details of salient objects and enhancing its robustness.

Here, the key idea of PCL is to make the pixel values in predicted saliency maps close to their

ground truth as much as possible. Therefore, we define the dF and dB that respectively indicate the

average difference of pixels in foreground and background regions between the predicted saliency

maps and the ground truth maps. Besides, to reduce the amount of calculation, a sigmoid function

is employed to compress the input of PCL to [0,1]. In detail, the dF and dB are computed as follows:

dF =
∑

i ∈F

(Xi − 1)2

nF − 1
, (5)

dB =
∑

i ∈B

(Xi − 0)2

nB − 1
, (6)

where F and B represent the regions corresponding to foreground and background in the ground

truth map, respectively; X is the predicted saliency map; and nF and nB are the number of pixels

in F and B. Obviously, according to the above definition, it can be concluded that both the dF and

dB range from 0 to 1. Hence, to facilitate gradient descent, the loд function with good derivability

is utilized to expand the average difference (i.e., dF and dB ), which is formulated as

LF = −loд(1 − dF ), LB = −loд(1 − dB ). (7)

Then, our PCL can be represented as

lossPCL = LF + αLB , (8)

where α is a hyper-parameter to compromise the role of the two terms. And experimental results

show that our MGuid-Net is insensitive to the selection of hyper-parameter α , see Section 4.3 for

more details.

The BCE loss is a commonly used loss function in binary classification tasks. In deep SOD mod-

els, it usually measures the difference between predicted saliency maps and ground truth maps,
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which is given as

lossBCE (X ,G ) = −
w×h∑

i=1

[
Gi log (Xi ) + (1 −Gi ) log (1 − Xi )

]
, (9)

where G is the ground truth map and w and h denote the width and height of input image,

respectively.

Finally, the hybrid loss function for training our model is defined as follows:

loss = lossPCL + lossBCE . (10)

4 EXPERIMENTS

4.1 Implementation Details

Our MGuid-Net is implemented in Pytorch 1.8.1 with Python 3.6 and is run on a PC with 2.90-GHz

CPU, 32G memory, and RTX 3060 GPU. The weights of backbone network are initialized by the

pre-trained weights of Resnet50 on ImageNet [6]. And the parameters of other convolution layers

are randomly initialized. We utilize the stochastic gradient descent to train our network in an

end-to-end manner, in which momentum and weight decay are set as 0.9 and 0.0005, respectively.

Moreover, the input images (original images and ground truth maps) are resized to 352× 352. The

maximum iteration step is set to 40 with a batch size of 7. The learning rate is initialized to 0.001

and divided by 10 at 20 epochs.

4.2 Datasets and Evaluation Metrics

Extensive experiments are conducted on five benchmark datasets, including DUTS (DUTS-TR and

DUTS-TE) [37], DUT-OMRON [49], ECSSD [48], HKU-IS [19], and PASCAL-S [21]. Specifically, we

use the benchmark dataset DUTS-TR to train our network and use DUT-OMRON, ECSSD, HKU-IS,

PASCAL-S, and DUTS-TE for testing.

DUTS is a large-scale SOD benchmark dataset that contains 10,553 training images (DUTS-TR)

and 5,019 testing images (DUTS-TE). DUTS-TR is collected from the ImageNet DET training/val

sets [6], and DUTS-TE is gathered from both the ImageNet DET test set and the SUN dataset [47].

DUT-OMRON dataset with natural images consists of 5,168 images, and each image has at least

one salient object and relatively complex background. The 1,000 images in ECSSD dataset are

obtained from the internet, which are semantically meaningful and structurally complex. HKU-

IS dataset contains 4,447 images, most of which have multiple salient objects and low contrast

between salient object and backgrounds. PASCAL-S is currently a very challenging benchmark

dataset, which is built on PASCAL VOC 2010 segmentation dataset [8]. In the PASCAL-S, 850 nat-

ural images with complex scenario is included. Of course, all the images in the datasets mentioned

above have corresponding ground truth maps.

Four widely used metrics (i.e., mean absolute error (MAE) [5], precision–recall (PR) curve,

maximum F-measure (maxF) [1], and maximum E-measure (maxE) [10]) are adopted to

evaluate the performance of our MGuid-Net and other competing methods. The MAE is pixelwise

mean absolute error between predicted saliency map (X) and ground truth map (G), which can be

formulated as

MAE =
1

w × h

w×h∑

i=1

|Xi −Gi |, (11)

where w and h indicate the width and height of images and Xi and Gi refer to the pixel value of

predicted saliency map and ground truth map at the pixel i , respectively. The PR curve consists of

a series of value pairs of precision and recall, in which precision reflects the proportion of salient
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Table 2. Ablation Analyses of the MGuid-Net and Quantitative Comparison of Different Modules

No.
Network Visualization

SGM CGM AGM− AGM PCL
DUTS-TE

Architecture Results MAE↓ maxF↑
1 Res50 (baseline) Figure 3(j) 0.133 0.584

2 Res50+SGM Figure 3(i)
√

0.045 0.839

3 Res50+CGM Figure 3(f)
√

0.043 0.859

4 Res50+SGM+CGM Figure 3(e)
√ √

0.041 0.861

5 Res50+AGM− Figure 3(h)
√

0.046 0.842

6 Res50+AGM Figure 3(g)
√

0.044 0.853

7 MGuid-Net− Figure 3(d)
√ √ √

0.038 0.867

8 MGuid-Net Figure 3(c)
√ √ √ √

0.037 0.869

Resnet50 is employed as a baseline and denoted as Res50. AGM− and MGuid-Net− represent the AGM without FEU

and the MGuid-Net without PCL, respectively. In addition, to better display the compatibility between each module,

the results of Res50+SGM+CGM, MGuid-Net−, and MGuid-Net are marked in blue, green, and red, respectively.

pixels correctly detected in the predicted salient objects (XO ) while recall denotes the ratio of

correctly detected salient pixels to foreground regions (GO ) of ground truth. Mathematically, the

precision and recall can be computed as follows:

Precision =
|XO
⋂
GO |

|XO |
, Recall =

|XO
⋂
GO |

|GO |
, (12)

where | · | represents the number of pixel in one region. In contrast to PR curve, the F-measure

metric considers both precision and recall, which can more comprehensively illustrate the quality

of a saliency result. Its definition is as follows:

Fβ =
(1 + β2) Precision × Recall

β2 Precision + Recall
, (13)

where β2 is set to 0.3 [1]. Note that this article adopts the maxF that depicts the maximum value

of F-measure under different thresholds. Besides, the maxE is also widely used to measure the

quality of various SOD models [10, 31, 45], because it can simultaneously consider local and global

matching degree between X and G.

4.3 Ablation Experiments

To validate the effectiveness of each component in our model, extensive ablation experiments are

conducted on the DUTS benchmark dataset, and their quantitative and visual results are listed

in Table 2 and Figure 3, respectively. For fair comparison, the basic network architecture and the

settings of hyper-parameters are identical in all ablation experiments.

The effectiveness of SGM and CGM. To confirm the effectiveness of SGM and CGM in

MGuid-Net and evaluate their respective contributions, we conduct three ablation experiments,

i.e., Res50+SGM, Res50+CGM, and Res50+SGM+CGM. The experimental results in rows 1 and 2

of Table 2 show that the performance of Res50 (baseline) is greatly improved by introducing SGM.

The MAE score is declined from 0.133 to 0.045, and the maxF is promoted from 0.584 to 0.839. This

is because that SGM utilizes the different level features in the network compared with Res50 (base-

line) and refines these features by gradually transmitting semantic information from high level to

low level. Moreover, the introduction of CGM also improves the performance of baseline network

to a large extent (see rows 1 and 3). But unlike the behavior of SGM, CGM pays more attention to

edge information, which further refines saliency features and edge features through mutual
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Fig. 3. The visualization results of ablation analyses, in which (a) shows original images, (b) shows the

ground truth; and (c)–(j) correspond to the results of different network architectures: (c) MGuid-Net,

(d) MGuid-Net−, (e) Res50+SGM+CGM, (f) Res50+CGM, (g) Res50+AGM, (h) Res50+AGM−, (i) Res50+SGM,

and (j) Res50 (baseline).

guidance between them. Meanwhile, the Res50+SGM+CGM is designed to verify the compatibility

of SGM and CGM. As seen in rows 2–4 of Table 2, Res50+SGM+CGM outperforms Res50+SGM

and Res50+CGM by 9.8% and 4.9% in terms of MAE score, 2.6% and 0.2% in terms of maxF. This

means that SGM and CGM have good compatibility.

The visualization results in Figure 3(e), (f), (i), and (j) further validate our analyses above.

The saliency maps of Res50+SGM contain more complete salient objects compared with that of

Res50+CGM and Res50 (baseline), while more accurate salient object boundaries are presented in

the results of Res50+CGM. And the saliency maps of Res50+SGM+CGM are obviously superior to

the results of other three network architectures.

The effectiveness of AGM. The Res50+AGM− and Res50+AGM are performed to manifest

the effectiveness of both the fusion strategy and FEU proposed in AGM. From rows 1, 5, and 6

of Table 2, it can be observed that Res50+AGM− and Res50+AGM achieve superior performances

over the Res50 (baseline). Additionally, by comparing the results in rows 5 and 6, we can find that

the introduction of FEU can obtain a performance gain of 1.3% in terms of maxF and decline of

4.5% in terms of MAE score. The main reason is that FEU can compensate for the loss of semantic

information in the fused features caused by a too-large upsampling ratio. Meanwhile, the features

before and after the FEU enhancement are visualized in Figure 4 for presenting the effectiveness

of FEU more intuitively. Quite evidently, the features after enhancement (FEUafter) contain more

accurate semantic information and less noise compared to ones before enhancement (FEUbefore).

Besides, AGM is integrated into Res50+SGM+CGM to form the MGuid-Net− for proving the

compatibility of AGM, SGM, and CGM. As shown in rows 4 and 7 of Table 2, MGuid-Net− can

achieve significant performance gain, in contrast to Res50+SGM+CGM. The maxF is promoted

from 0.861 to 0.867 and the MAE score is decreased from 0.041 to 0.038. The above results again

indicate the effectiveness of AGM and its contribution to our network.

The effectiveness of PCL and the analysis of hyper-parameter α . In this part, we first

discuss the importance of PCL from the quantitative and visual perspectives and then analyze the

role of hyper-parameter α in PCL. MGuid-Net is slightly superior to MGuid-Net− (i.e., MGuid-Net

without PCL) with a 2.7% decline on MAE score and a 0.2% gain on maxF in overall performance,

see rows 7 and 8 of Table 2. In addition, Figure 5(c) and (d) display the visualization results of

MGuid-Net with and without PCL, respectively. It can be found that although both MGuid-Net

and MGuid-Net− have obtained good detection results, MGuid-Net− still exists some deficiencies

in details relative to MGuid-Net. Briefly, the PCL can help our network to retain more details in

predicted saliency maps and further boost the performance of MGuid-Net.
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Fig. 4. Visual comparisons of the fused features before and after the FEU enhancement. Here, for ease of

observation and comparison, ground truth (GT) and fused features are shown by color image. GTcolor denotes

the color image corresponding to GT, FEUbefore, and FEUafter represent the features before and after the FEU

enhancement, respectively.

Fig. 5. Visual comparisons of saliency maps with and without PCL in our model. MGuid-Net− represents

the results without PCL, and MGuid-Net shows the final results with PCL.

To analyze the impact of hyper-parameter α in PCL on model performance, the MGuid-Net are

trained on DUTS-TR with different values α = 0.5, 1, 1.5, . . . , 4, and tested on DUT-OMRON and

DUTS-TE. The change curves of MAE score and maxF for various α values are depicted in Figure 6.

From them, we can find that the MAE scores on both DUT-OMRON and DUTS-TE datasets reach
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Fig. 6. Effect of parameter α in PCL on model performance.

Table 3. The Quantitative Results (MAE, maxE, maxF, runtime, Params) of MGuid-Net and

10 Compared Models on Five Benchmark Datasets

Dataset Metric PAGR SCRN BASNet PiCANet-R Amulet EGNet AFNet GateNet DNA PSGLoss Ours

DUTS-TE

MAE↓ 0.055 0.040 0.048 0.040 0.085 0.039 0.046 0.040 0.039 0.038 0.037

maxE↑ 0.895 0.925 0.903 0.915 0.851 0.927 0.910 0.928 0.920 0.927 0.929

maxF↑ 0.817 0.864 0.838 0.840 0.750 0.866 0.839 0.869 0.856 0.868 0.869

DUT-OMRON

MAE↓ 0.071 0.056 0.056 0.054 0.098 0.053 0.057 0.055 0.056 0.053 0.055

maxE↑ 0.832 0.875 0.871 0.865 0.834 0.870 0.861 0.876 0.870 0.870 0.871

maxF↑ 0.707 0.772 0.779 0.767 0.715 0.778 0.759 0.781 0.774 0.775 0.779

ECSSD

MAE↓ 0.061 0.037 0.037 0.035 0.059 0.037 0.042 0.040 0.035 0.036 0.035

maxE↑ 0.928 0.956 0.951 0.953 0.932 0.955 0.947 0.952 0.952 0.955 0.956

maxF↑ 0.904 0.937 0.931 0.929 0.905 0.936 0.924 0.933 0.934 0.935 0.937

HKU-IS

MAE↓ 0.048 0.034 0.032 0.031 0.051 0.031 0.036 0.033 0.032 0.033 0.031

maxE↑ 0.940 0.956 0.951 0.951 0.933 0.958 0.949 0.955 0.957 0.957 0.960

maxF↑ 0.897 0.921 0.919 0.913 0.887 0.924 0.910 0.920 0.925 0.923 0.928

PASCAL-S

MAE↓ 0.089 0.063 0.076 0.064 0.100 0.074 0.072 0.067 0.074 0.061 0.061

maxE↑ 0.873 0.910 0.886 0.900 0.862 0.892 0.894 0.904 0.887 0.907 0.910

maxF↑ 0.814 0.856 0.835 0.838 0.805 0.841 0.839 0.848 0.836 0.856 0.857

runtime (s) — 0.447 2.152 0.752 0.647 2.042 0.726 1.039 0.596 0.566 0.628

Params. (M) — 25.23 87.06 37.02 33.15 111.64 35.75 128.63 29.31 27.85 27.36

Params (in millions) represents the parameter number of the model. Note that we calculate the runtime (in seconds) of

different models 10 times on 352 × 352 images and report the averaged runtime. Top three scores in each row are shown

in red, green, and blue, respectively.

the minimum value near α = 2 and then increase monotonically. Meanwhile, the spikes of maxF

on DUT-OMRON and DUTS-TE datasets can also be obtained when α = 2. Therefore, the value of

hyper-parameter α is fixed to 2 in our experiments.

4.4 Comparison with States of the Art

To verify the overall performance of our model, we compare the proposed MGuid-Net with 10

state-of-the-art deep SOD models, including PAGR [54], SCRN [46], BASNet [33], PiCANet-R [27],

Amulet [53], EGNet [56], AFNet [11], GateNet [57], DNA [28], and PSGLoss [50]. For fair compari-

son, the saliency maps of other competing models are directly provided by the authors or generated

by running the source codes.

Quantitative comparisons. To compare the above models more comprehensively, both accu-

racy (MAE, maxE, and maxF) and complexity (runtime, Params) are simultaneously considered in

this part. Table 3 lists the quantitative results of different models in the two aspects. For accuracy,

it can be found that our model consistently outperforms other compared methods in all metrics
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Fig. 7. The quantitative comparisons of 10 state-of-the-art methods and our MGuid-Net on five benchmark

datasets. Panels (a)–(c) display the PR curves, maxF curves, and MAE scores, respectively.

on the DUTS-TE, ECSSD, HKU-IS, and PASCAL-S datasets. More specifically, our MGuid-Net out-

performs the second best method (i.e., PSGLoss) by 2.9% on MAE score, 0.2% on maxE, and 0.2%

on maxF on average quantitative results of the four datasets. On the DUT-OMRON dataset, the

results of our model are very close to the best ones achieved by GateNet and are superior or com-

parable over the results of other methods. In terms of complexity, SCRN, PSGLoss, DNA, and our

MGuid-Net are significantly superior to other models. Concretely, the parameter number of our

model is the second lowest (27.36M), which is only slightly higher than that of the lowest SCRN

(25.23M). Although the proposed MGuid-Net is inferior to SCRN, DNA, and PSGLoss in runtime,

its detection performance significantly outperforms others. Note that the runtime of one model is
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Fig. 8. Visual comparisons of different models in some challenging scenes: cluttered background, small ob-

jects, large objects, easily misjudged objects and low contrast between foreground and background.

not only affected by the parameters but also related to the operations used. For example, the mul-

tiplication and addition operations with the same parameters consume different times. Moreover,

the PR curves, maxF curves, and MAE scores of various models on five public datasets are drawn in

Figure 7 to display the quantitative comparisons of these models more intuitively. We can see that

the PR curves and maxF curves of MGuid-Net are higher than other curves on all datasets except

DUT-OMRON, which also demonstrates that our MGuid-Net gains a competitive performance.

Visual comparisons. Figure 8 depicts the visual comparisons of the aforementioned models in

some challenging scenes, including images with a cluttered background (rows 4, 6, and 9), small

objects (rows 2, 9, and 11), large objects (rows 3, 6, 8, and 10), easily misjudged objects (rows 1, 2,

5, and 9), and low contrast between the foreground and background (rows 6, 7, 8, and 12). From

these results, we can observe that MGuid-Net can detect salient object in different scenes more

accurately compared with other algorithms. For the images with easily misjudged objects, our

model can correctly select the desired semantics and successfully distribute high saliency values

to the salient regions. A typical example is the image in row 9 that contains many houses and

a small billboard. Other competing models incorrectly highlight the houses in the background

regions, while our model accurately detects the small billboard. For the images with low color

contrast, our MGuid-Net can better separate foreground objects from background. As seen the

images in row 7, other compared methods either miss the wings of dragonfly or detect the branch
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Fig. 9. Several failure cases of our model.

in background regions as a foreground object. Our MGuid-Net can not only detect more complete

dragonfly, but also effectively suppress the background. In short, our model greatly improves the

performance of SOD and enhances its robustness by emphasizing semantic information and edge

information.

4.5 Failure Cases

Figure 9 displays several failure cases of our model. Similarly to other CNN-based SOD methods,

it is still challenging for the proposed MGuid-Net to process the scenario with occluded salient

objects. Taking the images in the first row as an example, although the predicted saliency map

contains the correct salient objects, the box in the background regions is also misjudged as a fore-

ground object. The main reason is that the semantic information of salient objects is destroyed

by the occlusion. A possible remedy is to introduce scene understandings and semantic scores to

enhance the ability of our network over semantic selection, which will be investigated in future

work.

5 CONCLUSION

In this article, we propose a multi-guidance CNN model for salient object detection called MGuid-

Net, which takes full advantage of different level features by various guidance mechanisms to

improve SOD performance. Specifically, the self-guidance module and cross-guidance module are

used in our model to better refine the extracted multi-level features. An accumulative guidance

module with a fusion-enhanced unit adopts a hierarchical structure to integrate refined features

more fully. Additionally, we devise a pixelwise contrast loss function that works as an implicit

guide to assist our MGuid-Net in capturing more details. Extensive experiments on several popular

benchmark datasets demonstrate that our model achieves very competitive performance compared

with some state-of-the-art models, and the ablation analyses on DUTS-TE dataset also report the

effectiveness of each component in our model.
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