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ABSTRACT

Concept bottleneck models (CBMs) are inherently interpretable and intervenable
neural network models, which explain their final class label prediction via interme-
diate predictions of high-level semantic concepts. However, they require target task
training to learn input-to-concept and concept-to-class mappings, which necessi-
tates collecting target datasets and significant training resources. In this paper, we
present zero-shot concept bottleneck models (Z-CBMs), which predict concepts and
labels in a fully zero-shot manner without additional training of neural networks.
Z-CBMs leverage a large-scale concept bank, comprising millions of vocabulary
extracted from the web, to describe diverse inputs across various domains. For
the input-to-concept mapping, we introduce concept retrieval, which dynamically
identifies input-related concepts through cross-modal search within the concept
bank. In the concept-to-class inference, we apply concept regression to select
essential concepts from the retrieved concepts by sparse linear regression. Through
extensive experiments, we demonstrate that our Z-CBMs provide interpretable and
intervenable concepts without any additional training.

1 INTRODUCTION

Developing human-interpretable models remains a primary interest within the deep learning research
community. Concept bottleneck model (CBM, |[Koh et al.| (2020)) is an inherently interpretable
neural network model, which aims to explain its final prediction via the intermediate concept
predictions. Typically, CBMs are trained end-to-end on a target task to learn the input-to-concept
and concept-to-class mappings. A concept consists of high-level semantic vocabulary for describing
objects of interest in input data. For instance, CBMs can predict the final label “apple” from the linear
combination of the concepts “red sphere,” ”green leaf,” and “glossy surface.” These intermediate
concept predictions not only provide interpretability but also intervenability in the final prediction
by editing the predicted concepts.

In original CBMs (Koh et al.,|2020), a concept set for each class label is defined by manual annotations,
incurring massive labeling costs greater than ones of the class labels. To reduce these costs, |Oikarinen
et al. (2023) and Yuksekgonul et al.| (2023) automatically generate the concept sets by large language
models (LLMs, e.g., GPT-3 (Brown et al., 2020a)) and use the multi-modal embedding space of
vision-language models (VLMs, e.g., CLIP (Radford et al., 2021)) to learn the input-to-concept
mapping through similarities in the multi-modal feature space. Although these modern CBMs are
free from manually pre-defined concepts, their practicality is still restricted by the requirements of
training input-to-concept and concept-to-class mappings on target datasets. This means that CBMs
have not been available without manually collecting target datasets and additional training of model
parameters on them so far. Furthermore, CBMs allow interventions only in static concepts that are
used in training, preventing human experts from flexible interactions with arbitrary concepts.

To overcome these limitations, this paper introduces a novel problem setting of CBMs in a zero-shot
manner for target tasks. In this setting, we can access pre-trained VLMs, but we cannot know the
concepts composing target data in advance. This setting necessitates a two-stage zero-shot inference
of input-to-concept and concept-to-class for unseen input samples. The zero-shot input-to-concept
inference can not be solved by a naive application of VLMs as the ordinary zero-shot classification
of input-to-label, because it requires identifying a subset of relevant concepts from the large set of all
concepts, rather than predicting a single label. Furthermore, the zero-shot concept-to-class inference
is difficult because how to obtain the concept-to-class mapping is not obvious without target data
and training, which are unavailable in this setting. Therefore, our primary research question is: How
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Figure 1: Zero-shot concept bottleneck models (Z-CBMs). (a) Z-CBMs predict concepts for input by
retrieving them from a large-scale concept bank. Then, Z-CBMs predict labels based on the weighted
sum of the retrieved concept vectors with importance weights yielded by sparse linear regression.
(b) Z-CBMs can be intervened through modifying retrieved concepts and adding arbitrary concepts,
whereas conventional CBMs allow only interventions in static concepts. The diverse and dynamic
concepts produce accurate predictions and flexible collaborations with human experts.

can we achieve interpretable and intervenable concept-based prediction through zero-shot input-to-
concept and concept-to-class inference without relying on target datasets and additional training?

We present a novel CBM class called zero-shot concept bottleneck models (Z-CBMs). Z-CBMs
are zero-shot interpretable models that employ off-the-shelf pre-trained VLMs with frozen weights
as the backbone (Fig.[I). Conceptually, Z-CBMs first perform concept retrieval to dynamically
identify input-related concepts from a broad concept bank and then concept regression predicts the
final label by simulating zero-shot classification capabilities of black-box VLMs via reconstructing
the original input embedding from the retrieved concept embeddings. Our primary contribution is
to achieve zero-shot input-to-concept and concept-to-class inference with this framework without
additional training. Furthermore, our Z-CBMs allow interventions by arbitrary concepts described
in natural language through the VLM feature spaces.

We implement the components of Z-CBMs with simple yet carefully designed and effective techniques.
For concept retrieval, Z-CBMs should cover broad domains to provide sufficient concepts for unseen
inputs. To cover broad concepts, we build a large-scale concept bank, which is composed of millions
of vocabulary extracted from large-scale text caption datasets such as YFCC (Thomee et al., [2016).
Given an input sample, Z-CBMs dynamically retrieve concept candidates from the concept bank with
an efficient and scalable cross-modal search algorithm. For concept regression, Z-CBMs estimate
the importance of concepts for the input feature and then predict labels by the importance-weighted
concept features. However, many of the retrieved concept candidates semantically overlap with each
other, and thus, the semantically duplicated concepts with high importance by a naive estimation
method can harm the interpretability and intervenability for humans. To overcome this challenge,
Z-CBMs find essential and mutually exclusive concepts for the final label prediction by leveraging
sparse linear regression (e.g., lasso) to reconstruct the input visual feature vector by a weighted
sum of the concept candidate vectors. Combining concept retrieval and concept regression enables
Z-CBMs to predict final class labels with interpretable concepts for various domain inputs without
any target training.

Our extensive experiments on 12 datasets demonstrate that Z-CBMs can provide interpretable and
intervenable concepts without any additional training. Specifically, we demonstrate that the sparse
concepts identified by Z-CBMs exhibit strong correlation with input images and cover the annotated
concepts in existing training-based CBMs. Furthermore, the Z-CBMs’ performance can be enhanced
by human intervention in the predicted concepts, emphasizing the reliability of the concept-based
prediction. We also show that Z-CBMs competitively perform with black box VLMs and existing
CBMs with training. These results suggest the practicality of Z-CBMs for various domains.

2 PRELIMINARIES

2.1 CONCEPT BOTTLENECK MODELS

A CBM (Koh et al., 2020) is a classifier composed of a concept predictor g : X — C¥ and a class
label predictor h : C®* — ), where X, C, Y are input, concept, and class label spaces, and K is
the number of concepts. The goal is to predict the final class label y € ) of input z € X based
on K interpretable concepts C = {c; € C}£ ,. To guarantee the interpretability and classification
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performance, g and h are jointly optimized on the following objective function Koh et al.| (2020):

K
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where D is a training dataset, « is a hyperparameter, and L is a supervised loss function such as
softmax cross-entropy loss. That is, CBMs’ interpretability is defined by their ability to detect
concepts in the input accurately, which is obtained through the training of input-to-concept and
concept-to-class predictions. In this sense, CBMs have the challenge of requiring human annotations
of concept labels, which are more difficult to obtain than target class labels. Another challenge
is potential performance degradation compared to backbone black-box models (Zarlenga et al.|
2022} Moayeri et al., 2023 | Xu et al. 2024) due to the difficulty of learning long-tailed concept
distributions (Ramaswamy et al., |[2023]).

2.2 CONCEPT BOTTLENECK MODELS BASED ON VISION-LANGUAGE MODELS

To address the challenges, recent works (Yuksekgonul et al.| 2023} |Oikarinen et al., 2023} |Yang
et al., 2023) have focused on leveraging the capabilities of vision-language models (VLMs, e.g.,
CLIP (Radford et al.,[2021)) and large language models (LLMs, e.g., GPT3 (Brown et al., [2020b))).
These works automatically generate C' in text for each (z,y) € D by prompting LLM, and then,
train g and h using multi-modal feature spaces with a vision encoder fy : X — R? and a text
encoder fr : 7 — RY provided by a VLM. We refer to such CBMs based on LLMs and VLMs
as VLM-based CBMs. As pioneering works, Post-hoc CBMs (Yuksekgonul et al., [2023)), Label-
free CBMs (Oikarinen et al., [2023)), and LaBo (Yang et al., 2023) firstly implemented this idea.
The successor works have assumed the use of LLMs or VLMs, further advancing VLM-based
CBMs (Panousis et al., 2023} Rao et al., [2024b; [Tan et al.|[2024; [Srivastava et al.| [2024). In particular,
Panousis et al.|(2023) and Rao et al.| (2024a) are related to our work in terms of using sparse modeling
to select concepts for input images. However, all of these existing VLM-based CBMs still require
training specialized neural networks on target datasets, incurring additional target data collection and
training resources.

Handling the bi-level prediction in a zero-shot manner for unseen input is challenging because it can
not be solved by naive application of the existing zero-shot classification methods, which depend on
limited vocabularies such as concepts related to ImageNet class names (Norouzi et al.,2014; Demirel
et al., |2017; Menon & Vondrickl, 2023)). Furthermore, current VLM-based CBMs and the recent
interpretable framework for CLIP (Bhalla et al., [2024) limit the number of concepts to a few thousand
due to training and computational constraints, restricting the generality.

In contrast to the previous VLM-based CBMs, the main purpose of this paper is to achieve fully
zero-shot CBMs, which perform inference for input images from various domains without any
additional training on target datasets.

3 ZERO-SHOT CONCEPT BOTTLENECK MODELS

In this section, we formalize the framework of Z-CBMs, which perform a zero-shot inference of input-
to-concept and concept-to-class without target datasets and additional training (Fig.[I). Z-CBMs are
composed of concept retrieval and concept regression. Concept retrieval finds a set of the most input-
related concept candidates from millions of concepts by querying an input image feature with a seman-
tic similarity search (Fig. 2a). Concept regression estimates the importance scores of the concept can-
didates by sparse linear regression to reconstruct the input feature (Fig. 2b). Finally, Z-CBMs provide
the final label predicted by the reconstructed vector and concept explanations with importance scores.

3.1 ZERO-SHOT INFERENCE ALGORITHM

Concept Retrieval. We first find the most semantically related concept candidates to input images
from the large spaces in a concept bank C (Fig. 2a). Given an input z, we retrieve the set of K
concept candidates C,, C C by using image and text encoders of pre-trained VLMs fy and fr as

Cy = Top(—:K Sim(fy(x), fr(c)), 2)
ce
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Figure 2: Concept retrieval and concept regression. (a) Concept retrieval searches concept candidates
close to an input image in the VLM feature space and returns the top- K concepts, enabling Z-CBMs
to use a large-scale concept bank for general input images. (b) Concept regression selects the
important concepts via sparse linear regression, which approximates the input feature vectors by
the weighted sum of concept candidate vectors with sparse coefficients. This is helpful in selecting
unique concepts.

Algorithm 1 Zero-shot Inference of Z-CBMs

Require: Input z, concept bank C, image encoder fv, text encoder fr
Ensure: Predicted label g, concepts C,, importance weight We,
# Retrieving top-K concepts from input

1:
2: Cy + Top-K Sim(fv(x), fr(c))
ceC
3: Fo, « [fr(e1), ..., fr(ex)]
4: # Predicting importance weights by sparse linear regression
50 We, « argming caxc || fv(z) — Fo, W3 + MW
6: # Predicting label by importance weighted sum concept vectors
7:

 + argmax, Sim(Fe, We,, fr(ty))

where Top-K is an operator yielding top-K concepts in C from a list sorted in descending order
according to a similarity metric Sim. Throughout this paper, we use cosine similarity as Sim with nor-
malized inputs by following|Conti et al.|(2023). Thanks to the scalability of the similarity search algo-
rithm (Johnson et al.,2019; Douze et al.,[2024), Eq. @) can efficiently find the concept candidates in an
arbitrary concept bank C, which contains millions of concepts to describe inputs in various domains.

Concept Regression. Given a concept candidate set C,, = {ci, ..., ¢k }, we predict the final label
3 by selecting essential concepts from C,. Conventional CBMs infer the C,-to-g mapping by
training neural regression parameters on target tasks, which incurs the requirements of target dataset
collections and additional training. Instead, we solve this task with a different approach, leveraging
the zero-shot performance of VLMs. As shown in the previous studies (Radford et al., 2021} Jia et al.,
2021), VLMs can be applied to zero-shot classification by inferring a label ¢ by matching input =
and a class name text ¢,, € 7 in the multi-modal feature spaces as follows.

g = argmax Sim(fy(z), fr(ty)). 3)
yeY

If the feature vector fy(x) can be approximated by C,,, we can achieve the zero-shot performance of
black-box features by interpretable concept features. Based on this idea, we approximate fy (x) by
the weighted sum of the concept features Fo, = [fr(c1), ..., fr(cx)] € R¥ X with an importance
weight W € R¥ (Fig. . To obtain W, we solve the linear regression problem defined by

min || fy () = Fo, W3 + AW |- @

Through this objective, we can achieve W not only for approximating image features but also for
effectively estimating the contribution of each concept to the label prediction owing to the sparse
regularization |W{|;. Since C,, is retrieved from a large-scale concept bank C, it often contains
noisy concepts that are similar to each other, undermining interpretability due to semantic duplication.
In this context, the sparse regularization enhances interpretability by penalizing and eliminating
unimportant concepts for the label prediction (Hastie et al., [2015).



Under review as a conference paper at ICLR 2026

Table 1: Concept Accuracy on Bird (Welinder et al.,|2010). Z-CBMs can infer large parts of ground-
truth concepts without additional training.

Model Accuracy
CBM (Koh et al.,|[2020) 71.61
CDM (Panousis et al.,[2023) 45.61
Z-CBM (Ours) 60.49

Final Label Prediction. Finally, we compute the output label with Fz, and IV in the same fashion
as the zero-shot classification by Eq. (3), i.e.,

g = argmax Sim(Fe, W, fr(ty)). ®)
yey

Algorithm|I]shows the overall protocol of the zero-shot inference of Z-CBM. This zero-shot inference
algorithm can be applied not only to pre-trained VLMs but also to their linear probing, i.e., fine-tuning
a linear head layer on the fixed feature extractor of VLMs for target tasks.

3.2 FEASIBILITY STUDY

We show a preliminary experiment evaluating how much Algorithm[T|can accurately infer the ground-
truth concepts, given the concept set from a fully annotated dataset as the concept bank C. To this
end, we tested CBM (Koh et al.| 2020), CDM (Panousis et al., 2023)) as a VLM-based CBM, and
Z-CBM on the Bird dataset (Welinder et al.,|2010), which has human-annotated concept labels. We
used CLIP ViT-B/32 (Radford et al.,[2021) as the backbone and the annotated 312 concepts as the
concept bank C for CDM and Z-CBM. More detailed protocols are described in Appendix [A] Table[T]
shows the concept accuracy. Z-CBM outperformed CDM, which requires additional training, and
achieved approximately 80% of the performance of CBM trained with the ground truth concepts.
This indicates that Z-CBMs can find valid concepts without additional training by concept retrieval
and regression. In practice, since full concept annotations are not generally given for unseen inputs,
Z-CBMs adopt a large-scale concept bank that covers broad concepts for various domains.

4 IMPLEMENTATION

In this section, we present the detailed implementations of Z-CBMs, including backbone VLMs,
concept bank construction, concept retrieval, and concept regression.

Vision-Language Models. Z-CBMs allow to leverage arbitrary pre-trained VLMs for fy and
fr. We basically use the official implementation of OpenAI CLIP (Radford et al.| 2021) and the
publicly available pre-trained weights Specifically, by default, we use ViT-B/32 as fv and the base
transformer with 63M parameters as fr by following the original CLIP. In Section[5.6.1] we show
that other VLM backbones (e.g., SigLIP (Zhai et al., 2023) and OpenCLIP (Cherti et al.,|[2023))) are
also available for Z-CBMs.

Concept Bank Construction. Here, we introduce the construction protocols of the concept bank
C of Z-CBMs. As Z-CBMs operate without prior knowledge of input concepts, the concept bank
must possess a sufficient vocabulary to describe the inputs from diverse domains. To this end, we
extract concepts from multiple image caption datasets and integrate them into a single concept
bank. Specifically, we automatically collect concepts as noun phrases by parsing each sentence
in the caption datasets including Flickr-30K (Young et al., 2014), CC-3M (Sharma et al.| [2018]),
CC-12M (Changpinyo et al.l [2021), and YFCC-15M (Thomee et al., [2016); we use the parser
implemented in n1tk (Bird, 2006). At this time, the concept set size is |C| ~ 20M. Then, we
filter the large base concept set to remove nonessential concepts, following policies of |Oikarinen
et al.| (2023); please see Appendix [B] Finally, after filtering concepts, we obtain the concept bank
containing |C| = 5M concepts. We also discuss the effect of varying caption datasets used for

collecting concepts in Sec.[5.5]and [5.6.2]

Similarity Search in Concept Retrieval. Concept retrieval searches the concept candidates from
input feature vectors. To this end, we implement the concept search component by the open source

"https://github.com/openai/CLIP
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Table 2: SigLIP-Score Table 3: Concept Recall (%)
Method Avg. of 12 datasets Method Avg. of 12 datasets
pavel-free CBM 0.5485 Z-CBM (Cosine Similarity) 58.51
aBo 0.5419 . .
CDM 0.5714 Z-CBM (Linear Regression) 76.87
Z-CBM (ALL) 0.6309 Z-CBM (Lasso) 85.27

library of Faiss (Johnson et al., 2019; Douze et al.,|[2024). First, we create a search index based on
the text feature vectors of all concepts in a concept bank C using fr. At inference time, we retrieve
the concept vectors via similarity search on the concept index by specifying the concept number
K. We set K = 2048 as the default value and empirically show the effect of K in Appendix

Sparse Linear Regression in Concept Regression. In concept regression, we can use arbitrary sparse
linear regression algorithms, including lasso (Tibshirani, [1996), elastic net (Zou & Hastie} [2005)),
and sparsity-constrained optimization like hard thresholding pursuit (Yuan et al.,[2014). The efficient
implementations of these algorithms are publicly available on the sklearn (Pedregosa et al.| 2011)
and skscope (Wang et al.,2024) libraries. The choice of sparse linear regression algorithm depends
on the use cases. For example, lasso is beneficial for naturally extracting important concepts from
a large number of candidate concepts; elastic net is effective for maximizing target performance; and
sparsity-constrained optimization allows for strict control over the number of concepts used in expla-
nations. We use lasso with A = 1.0 x 10~ as the default algorithm (see Appendix and, but we
confirm that arbitrary sparse linear regression algorithms are available for Z-CBMs in Appendix

5 EXPERIMENTS

We evaluate Z-CBMs on multiple visual classification datasets and pre-trained VLMs. We test two
scenarios: zero-shot, where pre-trained VLMs perform inference without training, and training head,
where only classification heads are trained.

5.1 SETTINGS

Datasets. We evaluated Z-CBMs on 12 diverse image classification datasets: Aircraft (Air) (Maji
et al., 2013), Bird (Welinder et al.,[2010), Caltech-101 (Cal) (Fei-Fei et al., |2004) Car (Krause et al.}
2013), DTD (Cimpoi et al., 2014), EuroSAT (Euro) (Helber et al., 2019), Flower (Flo) (Nilsback &
/Zisserman, 2008)), Food (Bossard et al.,|2014), ImageNet (IN) (Russakovsky et al.||2015)), Pet (Parkhi
et al., 2012), SUN397 (Xiao et al., 2010), and UCF-101 (Soomrol 2012). They are often used to
evaluate the zero-shot generalization performance of VLMs (Radford et al., 2021} |Zhou et al., 2022).
In the training head scenario, we randomly split a training dataset into 9 : 1 and used the former as
the training set and the latter as the validation set. For ImageNet, we set the split ratio 99 : 1.

Zero-shot Baselines. For the zero-shot baseline, our Z-CBMs with the zero-shot inference of a black-
box VLM and ConSe (Norouzi et al.,[2014)), which is a zero-shot classification method predicting a
class label with a weighted sum of ImageNet concept features (see Appendix [C)).

Training Head Baselines. To compare Z-CBMs with existing VLLM-based CBMs, we evaluated
models trained on target datasets. In this setting, Z-CBMs were applied to linear probing of VLMs,
i.e., fine-tuning only a linear head layer on the feature extractors of VLMs; we refer to this pattern
LP-Z-CBM. As the baselines, we used Lable-free CBM (Oikarinen et al.,[2023), LaBo (Yang et al.,
2023)), and CDM (Panousis et al., 2023)). We performed these methods based on their repositories.

Evaluation Metrics. To evaluate predicted concepts, we used the SigL.LIP-Score, the cosine
similarity between image and text embeddings on SigLIP (Zhai et al., |2023)) (higher is better).
This score indicates how well a predicted concept explains an image (Radford et al., 2021; Hessel
et al.,[2021)), serving as a quality indicator for input-to-concept inference. Specifically, we averaged
SigLIP-Scores between test images and their predicted concept texts for the top 10 concepts, ranked
by absolute importance scores. We also used concept recall to evaluate Z-CBM’s predicted concepts.
Top-K concept recall |C% N CR|/K measures the overlap between Z-CBM’s top-K concepts

0% = {c#}K | C C (with non-zero coefficients) and Ny reference concepts C® = {cR}\& < C
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from VLM-based CBMs requiring training. This metric assesses concept overlap between Z-CBMs
and a training-based CBM using the same concept bank C, indicating Z-CBM’s approximation of
a trained model’s concepts. Specifically, we averaged concept recall at K = 10 across test samples,
using the GPT-generated concept banks (Oikarinen et al.| [2023)), and reference concepts of Label-free
CBMs Following [Oikarinen et al.| (2023)), C®* comprised concepts with contribution scores > 0.05.
Finally, we report top-1 test accuracy for target classification performance.

5.2 QUANTITATIVE EVALUATION OF PREDICTED CONCEPTS

First, we quantitatively evaluate Z-CBM'’s predicted concepts for their factual representation of image
features. We measure average SigLIP scores and concept recall across 12 datasets.

Table [2| shows the SigL.IP-Score results. Across all datasets, our Z-CBM predicted concepts strongly
correlated with input images and largely outperformed the training-required VLM-based CBMs. This
can be caused by the concept bank choice. Existing VLM-based CBMs perform concept-to-class
inference with learnable parameters, making it difficult to handle millions of concepts simultaneously,
and thus, limiting their vocabularies to a few thousand for learnability. In contrast, our Z-CBMs
can manage millions of concepts without training by dynamically retrieving relevant concepts and
inferring essential ones with sparse linear regression. Paradoxically, Z-CBMs achieve accurate image
explanations via an abundant concept vocabulary by eliminating training.

Table 3] shows concept recall results using concepts predicted by Label-free CBMs as reference. It
also lists results for Z-CBMs using cosine similarity on CLIP and linear regression, instead of lasso,
to compute importance coefficients. Z-CBMs with lasso achieved the best concept recall (85.27%).
This demonstrates that Z-CBMs can predict most of the important concepts found by VLM-based
CBMs, and that sparse linear regression is a key factor for identifying these concepts without training.

5.3 EVALUATION OF HUMAN INTERVENTION

Human intervention in concepts is an essential feature shared by the CBM family for debugging
models and modifying the output to make the final prediction accurate. In addition to interventions in
existing concepts in the concept bank, Z-CBMs allows interventions in arbitrary concepts described
in natural language. We evaluate Z-CBMs via two types of intervention: (i) concept deletion and
(i1) concept insertion. In concept deletion, we confirm the dependence on the predicted concepts by
removing the concept with non-zero coefficients in ascending, descending, and random orders. Fig. 3]
shows the results on Bird by varying the deletion ratio. The accuracy of Z-CBMs largely dropped
with the smaller deletion ratio in the descent cases, indicating that Z-CBM selects the important
concepts via concept regression and relies on them for the final prediction. In the ascent cases, the
accuracy slowly and steadily decreases, suggesting that the Z-CBMs are not biased toward limited
concepts and that all of the selected concepts are essential.

In concept insertion, we first predict concepts by concept regression and add randomly selected
ground-truth concepts to the output non-zero concept set. Then, we re-run concept regression with
linear regression on this modified concept set and predict the final label prediction by Eq. (3). As
the ground truth concepts, we used the attribute labels of Bird (Welinder et al., 2010). Fig. E] shows
the top-1 accuracy of the intervened Z-CBMs. In addition to random selection, we performed a
sophisticated intervention method called ECTP (Shin et al.| 2023). The performance improved as the
number of inserted concepts per sample increased for both cases. This indicates that Z-CBMs can
correct the final output by modifying the concept of interest through intervention.
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Label-free CBM

Predicted: Pajamas

bath robe (3.62)
matching trouser (2.01)
apparel (0.69)

baby product (0.16)
sewing pattern (0.12)

GT: West Highland White Terrier

GT: Ox Predicted: Ox

cows (3.09)

a two wheeled carriage (1.33)
a mahout (0.98)

agriculture (0.70)
transportation (0.52)

Z-CBM (Linear Reg.)
Predicted: Sealyham Terrier

wheaten terrier mix (2.650)
white wheaten dog (2.474)
dog costume (2.174)

dog coat (2.027)

animal coat (2.024)

Predicted: Bullock Cart

pastoral labor (2.889)
popular rural mobile (2.579)
rural truck road (2.162)
wagon driver (2.149)
person in truck (2.006)

Z-CBM (Lasso)

Predicted: West Highland White Terrier

NOT maltese dog terrier (0.433)
beige blanket coat (0.412)
white wheaten dog (0.389)
modern sofa (0.269)

cosy doggy jumper (0.247)

Predicted: Bullock Cart

farmer transports (0.695)
popular rural mobile (0.549)
village traffic (0.433)

NOT india daily cattle (0.411)
agriculture (0.348)

Figure 5: Qualitative evaluation of predicted concepts on the ImageNet validation set. While Label-
free CBMs sometimes hallucinate invisible concepts or ignore important concepts, Z-CBMs with
lasso provide realistic and dominant concepts in inputs with diverse vocabulary. NOT prefix denotes
that the concept has negative coefficients similar to Oikarinen et al. (2023) and [Panousis et al.| (2023)).

5.4 QUALITATIVE EVALUATION OF PREDICTED CONCEPTS

We demonstrate the qualitative evaluation of predicted concepts by Label-free CBMs and Z-CBMs
when inputting the ImageNet validation examples in Fig.[5} we also show the results of Z-CBMs
using linear regression to compute the importance coefficients instead of lasso. Overall, Z-CBMs
tend to accurately predict realistic and dominant concepts that appear in input images, even though
they are not trained on target tasks. For instance, in the first row, Z-CBM predicts various concepts
related to dogs, clothes, and background, whereas Label-free CBM focuses on clothes and ignores
dogs and background. This difference may be caused by the fact that the image-to-concept mapping
of Z-CBMs is not biased toward the label information because it does not train on the target data.
Conversely, like the second row, Z-CBMs tend to concentrate on global regions and miss the concepts
in local regions; this can be alleviated by intervening in the concept prediction (see Sec. [5.3).

For the comparison of linear regression and lasso, Z-CBM (Linear Reg.) tends to produce
semantically overlapped concepts. In fact, quantitatively, we also found that the averaged inner
SigLIP-Scores among the top-10 concepts of lasso (0.5552) is significantly lower than that of linear
regression (0.7425). These results emphasize the advantage of using sparse modeling in concept
regression to select mutually exclusive concepts from the large concept bank.

5.5 ZERO-SHOT IMAGE CLASSIFICATION PERFORMANCE

Table ] shows averaged top-1 accuracy across the 12 datasets, including concept bank ablations (indi-
cated by brackets in Z-CBMs rows). In the zero-shot setting, Z-CBMs unexpectedly outperformed the
zero-shot CLIP baseline. This may be because Z-CBMs approximate image features with the weighted
sum of textual concept features, reducing the modality gap between the image and the class label text
(see Appendix[D.2)). For the concept bank ablation, larger concept banks yielded higher accuracy,
suggesting better image feature approximation with richer vocabularies (further explored Sec. [5.6.2).

In training head, LP-Z-CBMs matched linear probing accuracy and consistently outperformed existing
VLM-based CBMs requiring additional training. This implies that Z-CBM’s concept retrieval and
regression with original CLIP features suffice for effective input-to-concept and concept-to-class
inference regarding target task performance.

5.6 DETAILED ANALYSIS
5.6.1 EFFECTS OF BACKBONE VLMsS

We show the impacts on Z-CBMs when varying backbone VLMs using OpenCLIP (Cherti et al.}
2023) and DFN (Fang et al.|[2024). Table E] demonstrates the Z-CBMs’ compatibility with diverse
backbone VLMs. Z-CBM performance scaled with VLM zero-shot performance. Notably, improved
SigLIP-Scores with stronger VLMs indicate more accurate input-to-concept inference. The previously
noted outperformance of black-box baselines (Sec.[5.5) was more pronounced in smaller models with
weaker multi-modal alignment. These results suggest that Z-CBM is universally applicable across
VLM generations and that its practicality will improve as VLMs evolve in future work.
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Table 4: Top-1 accuracy on 12 classifica-

tion datasets with CLIP ViT-B/32. Com-

plete results appear in Appendix. Table 5: Performance of Z-CBMs varying backbone VLMs
on ImageNet.

Setting Method Avg. of 12 datasets
Zero-shot CLIP 3373 Top-1 Acc. Top-1Ace. SigLIP-Score
Cone 1082 Backbone VEM gk Box) (Z-CBM)  (Z-CBM)
Zero-Shot Z-CBM (Flickr30K) 52.62
%-ggﬁ 288241\/)[ ) gggg CLIP ViT-B/32 61.88 62.70 0.6498
Z-CBM (YFCC15M) 5304 CLIP ViT-L/ !4 72.87 73.19 0.6608
Z-CBM (ALL) 54.28 OpenCLIP ViT-H/14 77.20 77.81 0.6790
Linear Probe CLIP 78.98 OpenCLIP ViT-G/14 79.03 78.27 0.6810
» Label-free CBM 7487 DEN ViT-H/14 83.85 83.40 0.7038
Training Head LaBo 74.04
CDM 76.39
LP-Z-CBM (ALL) 78.31

Table 6: Performance of Z-CBMs varying concept banks on ImageNet with CLIP ViT-B/32.

Concept Bank Vocab. Size Top-1 Acc. SigLIP-Score
Zero-shot CLIP N/A 61.88 N/A
Label-free CBM w/ GPT-3 (ImageNet Class) 4K 58.00 0.5896
CDM w/ GPT-3 (ImageNet Class) 4K 62.52 0.6193
GPT-3 (ImageNet Class) 4K 59.18 0.5407
Noun Phrase (Flickr30K) 45K 61.52 0.5539
Noun Phrase (CC3M) 186K 62.38 0.5904
Noun Phrase (CC12M) 2.58M 62.42 0.6242
Noun Phrase (YFCC15M) 2.20M 62.45 0.6375
Noun Phrase (ALL) 5.12M 62.70 0.6498

5.6.2 EFFECTS OF CONCEPT BANK

As shown in Sec.[5.5]and Table[4] the choice of concept bank is crucial for the performance. Here, we
provide a more detailed analysis of the concept banks. Table [6] summarizes the results when varying
concept banks. For comparison, we added the concept bank generated by GPT-3 from ImageNet class
names in Label-free CBMs (Oikarinen et al., 2023). Z-CBMs with the GPT-3 concepts significantly
degraded the top-1 accuracy from Zero-shot CLIP, and the SigL.IP-Score was much lower than that
of our concept banks composed of noun phrases extracted from caption datasets. This indicates that
the concept bank used in the existing method is limited in its ability to represent image concepts.
Meanwhile, our concept bank scalably improved in accuracy and SigLIP-Score as its size increased,
and combining all of them achieved the best results. We also examine the relationship between the
concept bank and target datasets in Appendix

6 CONCLUSION

This paper introduced zero-shot concept bottleneck models (Z-CBMs), a novel framework for
predicting input-to-concept and concept-to-class mappings in a fully zero-shot manner. Z-CBMs first
search input-related concept candidates by concept retrieval, which leverages pre-trained VLMs and
a large-scale concept bank containing millions of concepts to explain outputs for unseen input images
in various domains. For the concept-to-class inference, concept regression estimates the importance
of concepts by solving the sparse linear regression, approximating the input image features with
linear combinations of selected concepts. Our extensive experiments show that Z-CBMs can provide
interpretable and intervenable concepts comparable to conventional CBMs that require training. Since
Z-CBMs can be built on any off-the-shelf VLMs, it will be a good baseline for zero-shot interpretable
models based on VLMs in future research. One limitation is the reliance on off-the-shelf VLMs and
pre-defined concept banks for explanations, which may struggle in domain-specific applications such
as medical imaging. While we can overcome this limitation by introducing domain-specific VLMs
and vocabulary (Wang et al.,[2022), developing an explainable model with the versatility to handle
any application without providing such prior knowledge is an open question.
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REPRODUCIBILITY STATEMENT

We describe the implementation details in Section[d]and Appendix and|[C} We also provide code
to reproduce experiments in the supplementary materials.
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Table 7: SigL.IP-Score on 12 classification datasets. We compute the averaged SigL.IP-Scores between
images and concepts with top-10 absolute coefficients.

Method Air Bird Cal Car DTD Euro Flo Food IN Pet SUN UCF Avg.

Label-free CBM  0.6824 0.7818 0.7023 0.7106 0.6552 0.6179 0.6988 0.6959 0.7202 0.7119 0.7327 0.6688 0.6982
LaBo 0.6980 0.7626 0.7211 0.7411 0.6299 0.6202 0.7138 0.7526 0.7272 0.7235 0.7060 0.6978 0.7078
CDM 0.6887 0.7655 0.7164 0.7221 0.7000 0.6584 0.7239 0.7151 0.7618 0.7257 0.7049 0.6870 0.7141

Z-CBM (ALL)  0.7811 0.8100 0.7748 0.7582 0.7661 0.7457 0.7767 0.7785 0.7766 0.7477 0.7925 0.7965 0.7754

A DETAILS OF FEASIBILITY STUDY IN SECTION

For all models, we used CLIP ViT-B/32 as the backbone. We implemented CBMs on top of the CLIP
visual feature extractor as two linear layer classifiers for input-to-concept and concept-to-class. We
trained the CBM by Eq. (1) for 100 epochs while freezing the CLIP feature extractor. We implemented
and trained the CDM by following the official implementation by [Panousis et al.|(2023). Note that
we used the concept bank C containing human-annotated ground-truth concepts of the training set
of Bird (Welinder et al., |2010) for all models. We evaluated concept accuracy on Bird using the
ground-truth concept labels on the test set. We measured the average precision of ground-truth
concepts, which were included among the top 10 important concepts.

B DETAILS OF CONCEPT FILTERING

We basically follow the policies introduced by (Oikarinen et al.| (2023)), which removes (i) too long
concepts, (ii) too similar concepts to each other, and (iii) too similar concepts to target class names
(optional). However, the second policy is computationally intractable because it requires the O(|C|?)
computation of the similarity matrix across all concepts. Thus, we approximate this using a similarity
search by Eq. (2) that yields the most similar concepts. We retrieve the top 64 concepts from a
concept and remove them according to the original policy.

C DETAILS OF SETTINGS

Zero-shot Baselines. For the black-box baseline, according to the previous work (Radford et al.,
2021), we construct a class name prompt ¢,, by the scheme of “a photo of [class name]”,
and make VLMs predict a target label ¢ by Eq. (3). ConSe is a zero-shot cross-modal classification
method that infers a target label from a semantic embedding composed of the weighted sum of
concepts of the single predicted ImageNet label. For Z-CBMs, we selected 1.0 x 1075 as A by
searching from {1.0x 1072,1.0x 1072, 1.0x 107%,1.0x 1075, 1.0 x 107¢,1.0x 1077, 1.0 x 10~ 8}
to choose the minimum value achieving over 10% non-zero concept ration when using K = 2048 on
the subset of ImageNet training set. We used the same A for all experiments.

Reproducibility Statement. As described in Sec. [ and [3], the implementation of the proposed
method uses a publicly available code base. For example, the VLMs backbones are publicly available
in the OpenAl CLIP|and Open CLIPE] GitHub repositories. All datasets are also available on the
web; see the references in Sec. for details. For the computation resources, we used a 24-core Intel
Xeon CPU with an NVIDIA A100 GPU with 80GB VRAM. More details of our implementation can
be found in the attached code in the supplementary materials and we will make the code available on
the public repository if the paper is accepted.

D ADDITIONAL EXPERIMENTS

D.1 DETAILED RESULTS FOR ALL DATASETS

Table and [9] shows all of the results on the 12 datasets omitted in Table and [ respectively.

2https://github.com/openai/CLIP
3https://github.com/mlfoundations/open _clip

14



Under review as a conference paper at ICLR 2026

Table 8: Concept Recall (%) of Z-CBMs on 12 classification datasets

Method Air Bird Cal Car DTD Euro Flo Food IN Pet SUN UCF Avg.

Z-CBM (Cosine Similarity)  66.83 41.42 37.13 6095 71.85 90.37 50.39 77.50 4880 90.07 29.76 37.04 5851
Z-CBM (Linear Regression) 96.45 81.98 51.82 58.06 91.40 9091 90.82 90.88 71.51 9537 40.84 6243 76.87

Z-CBM (Lasso) 98.95 86.01 69.97 9643 9426 9191 93.57 96.74 86.92 97.37 4286 68.20 8527
Table 9: Top-1 accuracy on 12 classification datasets with CLIP ViT-B/32.

Setting Method Air  Bird Cal Car DTD Euro Flo Food IN Pet SUN UCF Avg.

Zero-shot CLIP 1893 51.80 2450 60.38 4324 3554 6341 7861 61.88 8577 6121 5948 53.73

Z-CBM (Flickr30K) 1827 46.70 2426 5646 43.56 3432 59.80 78.17 6152 8546 6223 60.67 52.62

Zero-Shot Z-CBM (CC3M) 18.09 4853 2430 5558 4351 3509 6144 7889 62.68 8529 62.18 6045 5298

Z-CBM (CC12M) 18.66 51.03 2442 5922 4372 3673 6331 7926 6242 8598 62.11 6075 52.98

Z-CBM (YECCI5M) 18.81 51.87 2454 5872 4340 3596 6338 79.22 6242 8594 6207 6096 53.97

Z-CBM (ALL) 19.00 5175 2542 5887 43.86 36.12 63.78 8244 6270 8595 62.89 6149 54.28

Linear Probe CLIP  45.06 72.72 9570 79.75 74.84 9299 94.02 87.06 68.54 8872 6520 83.14 7898

Training Head  Label-free CBM 4272 6705 9412 71.81 7431 9130 9123 8191 58.00 8329 62.00 80.68 74.87

raining Head -y aBo 4343 6938 94.82 7778 73.59 88.17 91.67 8429 59.16 87.24 5770 8126 74.04

CDM 4458 6975 9578 7727 7480 9216 9299 81.85 62.52 8659 5648 81.93 76.39

LP-Z-CBM (ALL) 4480 71.67 9550 78.09 73.94 9122 9328 86.73 67.99 8858 65.53 8237 7831
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Figure 6: PCA feature visualization of Z-CBMs Figure 7: Effects of varying A in Eq. E'

D.2 ANALYSIS ON MODALITY GAP

In Section[5.5] Table @] shows that Z-CBMs improved the zero-shot CLIP baselines. We hypothesize
that the reason is reducing the modality gap (Liang et al.,|2022) between image and text features by
the weighted sum of concept features to approximate fy () by Eq.{} To confirm this, we conduct
a deeper analysis of the effects of Z-CBMs on the modality gap with quantitative and qualitative
evaluations. For quantitative evaluation, we measured the L2 distance between image-label features
and concept-label features as the modality gap by following (Liang et al.| 2022). The L2 distances
were 1.74 x 1073 in image-to-label and 0.86 x 10~ in concept-to-class, demonstrating that Z-CBMs
largely reduce the modality gap by concept regression. We also show the PCA feature visualizations
in Figure[6] indicating that the weighted sums of concepts (reconstructed concepts) bridge the image
and text modalities.

D.3 EFFECTS OF A

Here, we discuss the effects when changing A in Eq. . We varied A in {1.0 x 1072,1.0 x
1073,1.0 x 107%,1.0 x 1075,1.0 x 1075,1.0 x 1077,1.0 x 1078}. Figureplots the accuracy
and the sparsity of predicted concepts on ImageNet. Using different lambda varies the sparsity and
accuracy. Therefore, selecting appropriate A is important for achieving both high sparsity and high
accuracy.

D.4 EFFECTS OF CONCEPT REGRESSOR

Z-CBMs accommodate various sparse linear regression algorithms, as discussed in Sec. ] Here, we
compare the performance of Z-CBMs with multiple sparse linear regression algorithms: lasso (Tibshi+
rani, |1996), elastic net (Zou & Hastiel 2005)), and sparsity-constrained optimization with HTP (Yuan
et al., 2014). Further, we evaluate these sparse algorithms by comparing them with non-sparse
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K=2048
62.5 K=1024 [ ]
Table 10: Performance of Z-CBMs varying con- - K=512 ®
. . 3
cept regressor on ImageNet with CLIP ViT-B/32. 600
8 K=256
S ok
Concept Regressor Top-1 Acc. Sparsity  SigLIP-Score g ofe
CLIP Similarity 14.66 0.0000 0.5106 < - K=128
Linear Regression 52.88 0.0000 0.5563 %0 @
Lasso 62.70 0.8201 0.6498 10 20 30 10 50
ElasticNet 62.84 07311 0.6511 Inference Time (milliseconds/sample)
Sparsity-Constrained (HTP) 62.54 0.8750 0.6245

Figure 8: Accuracy vs. inference time by varying
retrieved concept number K.

algorithms to compute the importance of concepts: CLIP Similarity, which uses the cosine similarity
computed on CLIP as the importance, and linear regression. Table [10|shows the performance, where
sparsity is a ratio of zero importance coefficients to the total number of concept candidates. While the
sparse linear regression algorithms achieved top-1 accuracy scores at the same level, the non-sparse
algorithms failed to accurately predict labels from importance-weighted concepts. Additionally,
linear regression has unstable numerical computation due to the rank deficiency of the Gram matrix
of F, when the feature dimension d is smaller than the concept retrieval size K (Hastie, [2020).
In contrast, lasso can avoid this by sparse regularization. These results indicate that the concept
selection by sparse linear regression is crucial in Z-CBMs. In this sense, we can interpret our concept
regression as a re-ranking method of the CLIP similarity. Elastic net was the best in accuracy, but it
selected more concepts than the other sparse algorithms. This is because elastic net selects all highly
correlated concepts to derive a unique solution by combining ¢; and /5 regularization (Hastie et al.,
2015). HTP explicitly limits the selected concepts to 256, so while it achieves the highest sparsity, it
has the lowest accuracy of the sparse algorithms due to the shortage of concepts for explanation.

D.5 EFFECTS OF K IN CONCEPT RETRIEVAL

As discussed in Sec. ] the retrieved concept number K in concept retrieval controls the trade-
off between the accuracy and inference time. We assess the effects of K by varying it in
[128, 256, 512,1024, 2048] and measuring the top-1 accuracy and averaged inference time for pro-
cessing an image. Note that we set 2048 as the maximum value of K because it is the upper bound
in the GPU implementation of Faiss (Johnson et al., [2019). Figure [§|illustrates the relationship
between the accuracy and total inference time. As expected, the size of K produces a trade-off
between accuracy and inference time. Even so, the increase in inference time with increasing K
is not explosive and is sufficiently practical since the inferences can be completed in around 55
milliseconds per sample. The detailed breakdowns of total inference time when K = 2048 were 0.11
for extracting image features, 5.35 for concept retrieval, and 49.23 for concept regression, indicating
that the computation time of concept regression is dominant for the total. In future work, we explore
speeding up methods for Z-CBMs to be competitive with the existing CBMs baseline that require
training (e.g., Label-free CBMs, which infer a sample in 3.30 milliseconds).

D.6 EVALUATION ON OUT-OF-DOMAIN DATASETS

To check the generalization capability, we evaluate our Z-CBMs on the out-of-domain test datasets
for ImageNet, including ImageNet-V2 (Recht et al.| |2019)), ImageNet-A (Hendrycks et al., [2021b)),
ImageNet-R (Hendrycks et al.,2021a), and ImageNet-Sketch (Wang et al., [2019)).

Table |1 1{shows that Z-CBMs outperformed the zero-shot baseline and CDM (except on V2). This
suggests that Z-CBMs are robust to domain shifts, while training-based CBMs are susceptible to
overfitting.

D.7 ADDITIONAL QUALITATIVE EVALUATION
We show the additional concept visualization results in Figure 0] We can see the same tendency

discussed in Section [5.4] Here, the NOT-prefixed negative concepts represent related but subtly
different concepts, like “macro rope,” for the objects in the image, which is helpful for users.

16



Under review as a conference paper at ICLR 2026

Table 11: Top-1 Accuracy (%) on ImageNet OOD datasets.

ImageNet V2 A R S
Zero-shot CLIP 61.88 54.60 29.89 66.79 40.81
CDM 62.52 5593 2632 59.15 35.83
Z-CBM 62.70 54.82  30.27 67.56 40.94
Label-free CBM Z-CBM (Linear Reg.) Z-CBM (Lasso)
GT: Toy Store Predicted: Toy Store Predicted: Toy Store Predicted: Toy Store
a comic store (4.38) game collections(1.869) merchandise displays (0.538)
a variety of toys (3.74) game room (1.683) hobby store (0.531)
toys (0.04) comic book place (1.569) comic store (0.511)
retailer (0.04) comic room (1.490) displayed toys (0.396)
soft toys (0.01) NOT banner store (1.435) store view (0.363)
Predicted: Hook Predicted: Turnstile Predicted: Chain
locking shackle (1.35) NOT macro rope (2.408) pruned branch (0.441)
arod (1.33) NOT rope (2.117) rust steel (0.367)
hangs from a wire (0.97) macro rust (2.040) iron railing (0.343)
a handle for leverage (0.41) barded wire tree (1.933) NOT macro rope (0.332)
a loop for hanging (0.38) NOT sambucas stem (1.885) curly branch (0.327)

Figure 9: Qualitative evaluation of predicted concepts on the ImageNet validation set. While Label-
free CBMs sometimes hallucinate invisible concepts or ignore important concepts, Z-CBMs with
lasso consistently provide realistic and dominant concepts in input images with diverse vocabulary.
NOT prefix denotes that the concept has negative coefficients similar to |Oikarinen et al.[ (2023);
Panousis et al.|(2023)).

D.8 RELATION BETWEEN CONCEPT BANK AND TARGET DATASET

Here, we investigate how the performance of Z-CBMs depends on the relationship between the
concept bank and the target dataset. To evaluate this, we plotted the distribution discrepancy and
accuracy difference from black-box baselines for the 12 datasets. As a discrepancy metric, we
measured the 2-Wasserstein distance between 100,000 concepts in the bank and class name texts on
the CLIP text encoder. Figure [I0]shows that the larger the discrepancy, the worse the performance,
suggesting that performance may be degraded for domains not covered by the concept bank. In such
cases, Z-CBMs can recover performance without training by adding domain-specific vocabulary to
the concept bank, e.g., adding GPT-generated concepts for Car recovers the accuracy from 58.87 to
60.12 (Zero-shot CLIP achieves 60.38 as in Table[9).

E EXTENDED RELATED WORK

Cross-modal zero-shot classification. In zero-shot or supervised learning settings, several works
(Lampert et al., |2013; Norouzi et al.,[2014; Mensink et al.l 2014; |Jain et al.| 2015} |[Elhoseiny et al.|
2013) have explored cross-modal classification methodologies by using textual attributes/concepts
as a proxy of image features. ConSe (Norouzi et al.l [2014)) infers a target label from a semantic
embedding composed of a weighted sum of concepts of the single predicted ImageNet label with
word2vec embeddings in a fully zero-shot manner. While ConSe is conceptually similar to our
Z-CBMs, the zero-shot inference depends on the ImageNet label space, i.e., it cannot accurately
predict target labels if there are no target-related labels in ImageNet. In contrast, our Z-CBMs directly
decompose an input image feature into concepts via a concept bank, so they are not restricted to
any external fixed-label spaces. As a successor work of ConSe, A2C (Demirel et al., [2017)) learns
input-to-attribute and attribute-to-label mapping by using attributed image datasets for zero-shot
inference. While A2C succeeds in outperforming ConSe, the concepts to represent images are
restricted to the training datasets, whereas our Z-CBMs are available without additional training and
datasets. More recently, Menon & Vondrick! (2023)) proposed a zero-shot classification method based
on the correlation between the input features and the task-specialized texts generated by LLMs for
each target class. However, it requires generating the task-specialized texts with LLM and restricting
the inference algorithm to the CLIP style zero-shot classification. In contrast, Z-CBMs can be used
for arbitrary tasks without external LLMs and arbitrary inference algorithms (e.g., linear probing).
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Accuracy Diff vs Distribution Discrepancy
[ ]

Linear Regression
(r=-0.585)

Accuracy Diff

0.2 0.4 0.6 0.8
Distribution Discrepancy (2-Wasserstein Distance)

Figure 10: Accuracy difference from zero-shot baseline vs. distribution descrepancy between target
class name and concept bank

F BROADER IMPACT

This work on Zero-shot Concept Bottleneck Models (Z-CBMs) has the potential for several societal
impacts, both positive and negative.

As a positive perspective, by providing explanations for their predictions via human-understandable
concepts without requiring task-specific training, Z-CBMs can increase the trustworthiness and
transparency of Al systems. This is particularly crucial in high-stakes domains like healthcare (e.g.,
explaining medical image analysis) or finance (e.g., justifying loan application decisions), where
understanding the reasoning behind a decision is paramount. Furthermore, the “zero-shot” nature
of Z-CBMs, eliminating the need for extensive training resources and target-specific datasets, can
make interpretable Al more accessible to a wider range of researchers, developers, and organiza-
tions, including those with limited resources. This could foster innovation and broader adoption of
responsible Al practices.

As a negative perspective, the interpretability and intervenability of Z-CBMs could potentially be
exploited by malicious users. Understanding which concepts drive a model’s decision could make it
easier to craft more sophisticated adversarial attacks or to manipulate the model’s output by subtly
altering input features related to key concepts, perhaps in ways that are hard to detect. Addressing the
potential negative impact will require careful consideration during the development, deployment, and
regulation of Z-CBMs. This includes rigorously auditing concept banks for bias, developing methods
to detect and mitigate manipulation, promoting Al literacy to prevent over-reliance, and establishing
clear accountability frameworks.
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