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ABSTRACT

The growing accessibility of music creation tools and the rise of AI music genera-
tion models have led to an increasing demand for efficient, high-quality, and user-
friendly tools for audio timbre enhancement. However, traditional Digital Signal
Processing (DSP) effect chains often lack content-awareness, while naive deep
learning approaches frequently face training instability when directly imitating
complex audio effects. To address these challenges, we propose TimbrePalette,
an innovative, controllable multi-style timbre enhancement model based on a con-
ditioned Wave-U-Net. Our research begins with a systematic investigation into
the stability challenges inherent in waveform-to-waveform generation tasks, es-
tablishing a robust training framework with a stable loss function and advanced
model architecture. Based on this framework, we introduce a novel paradigm:
first, we design and implement three high-quality DSP algorithms representing
distinct perceptual dimensions “Fullness”, “Warmth”, “Layeredness”) to serve as
“Style Anchors”. Then, we train a single, unified TimbrePalette model to learn
the generation of corresponding enhanced audio based on an explicit style com-
mand. Comprehensive objective evaluations demonstrate that our single model
not only reproduces the target styles with high fidelity but also significantly out-
performs both specialized single-style models and strong time-domain baselines,
including Conv-TasNet. Furthermore, we quantitatively show the model’s abil-
ity to smoothly “blend” between styles, proving that it has learned a meaningful
and continuous latent space of timbre aesthetics. TimbrePalette offers a powerful,
efficient, and creative solution for quality improvement for both musicians and
creators working with AI-generated content.

1 INTRODUCTION

The democratization of music creation and the explosion of AI music synthesis models like
SUNOSuno, Inc. (2024) are profoundly changing how music is produced and consumed. This has
led to a massive influx of creative content, but it has also introduced a new, pervasive challenge: au-
dio quality. On one hand, many independent musicians and producers, limited by non-professional
recording equipment and environments, create vocals and instrumentals whose timbre is often “dry”
or “thin”, lacking the fullness and layeredness of professional recordings. On the other hand, when
creators attempt to use source separation tools like Demucs Défossez et al. (2022) to extract in-
strumental tracks from AI-generated songs, severe quality degradation, artifacts, and distortion are
inevitably introduced, greatly limiting the potential for secondary creation.

Traditional solutions, such as fixed DSP plugin chains, are often a “one-size-fits-all” approach, un-
able to intelligently adapt to varying audio content. Professional mastering services are expensive
and require deep domain expertise, failing to meet the demand for large-scale, instantaneous en-
hancement. Deep learning offers a new possibility, yet our preliminary empirical investigation re-
vealed that naive approaches to directly imitating complex DSP chains face fundamental stability
obstacles. We found that both “graybox” models based on Differentiable Digital Signal Processing
(DDSP) principles Engel et al. (2020) and early “blackbox” generative models without robust stabi-
lization strategies were prone to catastrophic training failure from gradient explosion or numerical
overflow (see Section 4.1). This “successful failure” led us to recognize that before pursuing com-
plex timbre aesthetics, one must first establish a training framework that is both mathematically and
empirically robust.
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Based on these challenges and findings, we propose TimbrePalette, a controllable multi-style gener-
ative model for high-quality timbre enhancement of non-professional and AI-generated audio. Our
contributions are fourfold:

• A Systematic Problem Analysis and Solution: Through a rigorous, multi-stage empir-
ical study, we are the first to systematically document and solve the stability challenges
prevalent in complex end-to-end audio enhancement tasks, establishing a robust training
framework that includes a stable loss function and advanced architectural choices.

• An Innovative Conditioning Paradigm: We propose a novel research paradigm. Instead
of seeking a single optimal solution, we quantify subjective timbre aesthetics (“Fullness”,
“Warmth”, “Layeredness”) into three independent, high-quality DSP “Style Anchors” and
train a unified conditional model to learn this multi-dimensional timbre space.

• A High-Performance Core Model: We propose TimbrePalette (‘ConditionalWaveUNet-
v2‘), a model that injects style conditions into the bottleneck of a Wave-U-Net architecture.
Its superiority is empirically validated through comprehensive ablation studies and baseline
comparisons, significantly outperforming specialized single-task models and SOTA time-
domain architectures like Conv-TasNet Luo & Mesgarani (2019).

• A Successful Exploration of the Latent Space: Through a quantitative style blending ex-
periment, we demonstrate that our model has successfully learned a continuous and mean-
ingful latent space of timbre aesthetics, endowing it with the ability to create novel timbres.

While our model shares high-level architectural concepts with prior work such as C-U-Net
Meseguer-Brocal & Peeters (2019), our work is fundamentally different in its task (generative trans-
formation vs. analytic separation), scientific goal (learning a continuous aesthetic space vs. selecting
discrete tasks), and core contributions. We will elaborate on these distinctions in the Related Works
section. Supplementary audio demos are available on our anonymous project page1, with full sub-
jective evaluation results detailed in Appendix A.1.

2 RELATED WORKS

2.1 DEEP LEARNING FOR AUDIO ENHANCEMENT AND EFFECTS

Using deep learning to emulate or enhance traditional DSP effect chains is a core area of “Neural Au-
dio Effects”. Foundational works like WaveNet van den Oord et al. (2016) and Wave-U-Net Stoller
et al. (2018) successfully applied deep convolutional networks to raw audio waveforms, providing
the core architectural basis for time-domain audio-to-audio tasks, including our work. Conv-TasNet
Luo & Mesgarani (2019) became a benchmark in time-domain source separation with its efficient
architecture, which we use as a strong SOTA baseline in our comparative experiments. Recent re-
search has focused on emulating specific, non-linear audio effects Steinmetz & Reiss (2022). Our
work is in line with this direction but is more ambitious: instead of emulating a single effect, we aim
to learn and navigate a “timbre space” defined by multiple subjective styles.

2.2 CONTROLLABLE AUDIO GENERATION AND STYLE MODELING

Injecting external conditions into generative models for precise control is a key research fron-
tier. Large-scale models like MusicGen Copet et al. (2023) and AudioGen Kreuk et al. (2023)
have demonstrated the ability to generate high-quality music and audio from textual descriptions.
StyleTTS 2 Li et al. (2023) has achieved exceptional style control in the text-to-speech (TTS) do-
main. While the tasks of these models (generation from scratch) differ from ours (enhancement
of existing audio), they establish the paradigm of using conditional inputs for generative control,
which inspires our work. The broader context of high-quality audio synthesis also includes influ-
ential works on neural vocoders like HiFi-GAN Kong et al. (2020) and neural audio codecs like
SoundStream Zeghidour et al. (2021).

1https://anonymous.4open.science/r/TimbrePalette-17DC

2

https://anonymous.4open.science/r/TimbrePalette-17DC


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.3 DIFFERENTIABLE DIGITAL SIGNAL PROCESSING (DDSP)

The pioneering work on DDSP Engel et al. (2020) demonstrated the immense potential of making
traditional DSP modules differentiable to be optimized within a neural network. In our initial ex-
ploratory experiments, we attempted to build a “graybox” model based on differentiable filter banks.
However, as detailed in Section 4.1, this approach suffered from severe numerical instability in the
context of our complex, multi-effect chain. This “successful failure” was a critical turning point,
providing strong evidence that for our defined task, a data-driven, end-to-end time-domain model
was a more robust and effective path.

2.4 COMPARISON WITH CONDITIONED U-NET MODELS FOR AUDIO

The core of our architecture is a conditioned Wave-U-Net Stoller et al. (2018). The idea of combin-
ing a conditioning mechanism with a U-Net Ronneberger et al. (2015) for multi-task audio process-
ing is not new, with ‘C-U-Net’ Meseguer-Brocal & Peeters (2019) being the most significant prece-
dent. Therefore, clearly distinguishing ‘TimbrePalette’ from ‘C-U-Net’ is crucial to elucidating our
novel contributions. ‘C-U-Net’ uses FiLM layers Perez et al. (2018) to condition a spectrogram-
based U-Net to separate a specific instrument (e.g., vocals or drums) from a mixture, an analytic
source separation task.

In contrast, ‘TimbrePalette’ applies this high-level paradigm to a new and fundamentally different
problem domain: a generative task of timbre enhancement and style transformation. Our condition-
ing signal points to an abstract aesthetic target, not a physical object class. Furthermore, our core
scientific goal is to demonstrate that the model learns a continuous latent space between these dis-
crete style anchors, a claim decisively supported by our quantitative style blending experiment (see
Section 4.6). The goal of ‘C-U-Net’ is to enable the selection of multiple discrete tasks, whereas our
goal is to explore and navigate a continuous transformation space. We summarize these differences
in Table 1.

Table 1: A comparative analysis of TimbrePalette and C-U-Net.

Dimension C-U-Net (Meseguer-Brocal
et al., 2019)

TimbrePalette (This Work)

Core Task Source Separation Timbre Enhancement &
Transformation

Task Nature Analytic (Extracting existing
components)

Generative (Creating new
content)

Operating Domain Spectrogram Domain Time Domain (Raw
Waveform)

Conditioning Semantics Physical Object Class (e.g.,
‘drums‘)

Aesthetic Style Target (e.g.,
‘warmth‘)

Scientific Goal Enable selection of multiple
discrete tasks

Learn a continuous, navigable
aesthetic space

Decisive Evidence Performance on discrete tasks
vs. experts

Quantitative analysis of
smooth style interpolation

3 METHODOLOGY

This section details the TimbrePalette paradigm. We first formalize the problem, review our
initial explorations and their limitations, describe the selection process for our backbone architec-
ture, and finally, present the complete architecture and training strategy of our final model.

3.1 PROBLEM FORMULATION

The task of timbre enhancement can be formulated as a conditional audio-to-audio translation prob-
lem. Given an original monophonic audio waveform x ∈ RL, where L is the number of samples,
and a discrete label s ∈ S representing a target timbre style (where S is the set of styles, e.g.,

3
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{1 : static, 2 : adaptive, 3 : mastering}), our goal is to learn a model Gθ parameterized by θ that
generates an enhanced audio waveform y′ = Gθ(x, s). This generated waveform y′ should percep-
tually match the target audio ys = Ds(x), which is produced by an expert-designed, high-quality
DSP chain Ds corresponding to style s. The optimization objective is thus to minimize the discrep-
ancy between the generated audio y′ and the target audio ys:

θ∗ = argmin
θ

Ex∼X,s∼S [D(Gθ(x, s), Ds(x))]

where X is the data distribution of original audio and D is a distance function measuring the simi-
larity between two waveforms.

3.2 INITIAL EXPLORATION: A DIFFERENTIABLE DSP APPROACH AND ITS LIMITATIONS

In the initial phase of our research, we explored a “graybox” model based on Differentiable Digital
Signal Processing (DDSP) principles. The core idea was to have a neural network emulate a human
audio engineer: analyze audio, then predict control parameters for DSP modules. This model con-
sisted of a controller network Cϕ and a differentiable DSP block Ddiff. For an input x, the controller
would predict a set of DSP parameters p = Cϕ(x), which were then fed into Ddiff to produce the
output y′ = Ddiff(x, p). However, this seemingly elegant paradigm faced fundamental stability
obstacles in our complex enhancement task. Our implementation of Ddiff, which included cascaded
IIR filters, was highly susceptible to gradient explosion and vanishing during backpropagation due
to its recursive nature, frequently crashing with numerical errors such as “Singular matrix”. This
“successful failure” led us to conclude that for emulating a complex, multi-stage DSP chain, a data-
driven, end-to-end “blackbox” model was likely a more robust and effective path.

3.3 THE TIMBREPALETTE PARADIGM

Based on the findings from our initial explorations, we proposed a novel and more robust paradigm.
The core of this paradigm is to reframe the task: instead of seeking a single, objective “optimal
enhancement”, we acknowledge that timbre enhancement is inherently a subjective, aesthetic choice.
We therefore redefine the task as learning a controllable generative model that can navigate a multi-
dimensional space of timbre aesthetics.

3.3.1 STYLE ANCHOR DEFINITION AND ACOUSTIC PRINCIPLES

To transform abstract aesthetic concepts into objective, learnable targets, we designed and imple-
mented three high-quality DSP processing chains, which we term “Style Anchors”. The outputs of
these chains, ys = Ds(x), serve as the training labels for our model, and their designs are rooted in
established principles of acoustic engineering.

• Style Anchor 1: Static EQ - Fullness
– Acoustic Principle: We significantly boost the frequency region around 150Hz, which

acoustically corresponds to the fundamental frequency and lower harmonics (the
“body”) of most instruments and vocals. This adds weight and thickness, creating
a perceptually fuller sound. We also add subtle harmonic saturation to increase sonic
density.

– Formalization: Let X(k, τ) be the STFT of the original audio. We define a fixed gain
curve Gstatic(fk) in dB. The operation is:

Ystatic(k, τ) = X(k, τ) · 10Gstatic(fk)/20

The final time-domain waveform is obtained via inverse STFT and application of a
non-linear saturation function tanh(·).

• Style Anchor 2: Adaptive EQ - Warmth
– Acoustic Principle: A “warm” sound is often characterized by rich but not muddy

low-mid frequencies. Our algorithm uses a dynamic complementary EQ that in-
telligently avoids over-boosting low-mids that are already prominent, thus preventing
“boominess”.

4
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– Formalization: The gain curve Gadaptive is a function of the input spectrum X . We
first compute the mean energy Eb(X) = 1

|Kb|
∑

k∈Kb
|X(k, τ)| for a critical band

b. The gain for that band Gb is then inversely related to its energy: Gb(Eb(X)) =
Gmax,b · max(0, 1 − αbEb(X)). The final gain curve Gadaptive(fk|X) is interpolated
from these band gains and applied to the spectrum.

• Style Anchor 3: Mastering - Layeredness
– Acoustic Principle: A “layered” sound with good clarity is achieved through dy-

namic range control and spectral balancing.
– Formalization: This is a two-step process. First, loudness normalization adjusts

the integrated loudness LUFS(x) of the input x to a target Ltarget: x′(t) = x(t) ·
10(Ltarget−LUFS(x))/20. Second, a spectral tilt is applied to x′, with a gain determined by
the octave distance from a pivot frequency fpivot: Gtilt(fk) = β · log2(fk/fpivot).

3.3.2 UNIFIED CONDITIONING FRAMEWORK: A MULTI-TASK LEARNING PERSPECTIVE

After defining the style anchors, we chose to train a unified model Gθ(x, s) capable of handling all
styles, rather than separate expert models Gθs(x) for each style. We frame this approach within the
context of Multi-Task Learning (MTL) Caruana (1997).

• Motivation and Theoretical Basis: In the MTL paradigm, generating each style is treated
as a related task. Our central hypothesis is that by learning these related tasks concurrently,
a single model is encouraged to learn a more generalizable shared internal representa-
tion of timbre transformation. This shared representation captures commonalities between
styles, improving data efficiency and enhancing generalization through implicit regulariza-
tion Baxter (2000).

• Formalization: Training separate expert models is equivalent to solving multiple indepen-
dent optimization problems. In contrast, our unified framework seeks a single set of shared
parameters θ that minimizes a single, joint optimization objective—the sum of expected
losses across all style tasks:

θ∗ = argmin
θ

∑
s∈S

Ex∼X [D(Gθ(x, s), Ds(x))]

Our final experimental results provide strong empirical evidence for the effectiveness of
MTL in this context. As shown in Section 4.4, our unified model ‘TimbrePalette’ signifi-
cantly outperforms the average of the independently trained expert models.

3.4 BACKBONE ARCHITECTURE SELECTION: A HORIZONTAL COMPARISON

Before finalizing the implementation of ‘TimbrePalette‘, we first conducted a critical preliminary
study to select the most suitable backbone architecture. In our preliminary experiments (detailed
in Section 4.2), we performed a comprehensive horizontal comparison across various families of
mainstream sequence models, including multiple variants of ‘Wave-U-Net‘, ‘TCN‘, and ‘SpecTrans-
former‘. The results clearly indicated that time-domain models significantly outperform frequency-
domain models, and among them, a wider variant of ‘WaveUNet’ (‘WaveUNet-Wide’) demonstrated
the best overall performance and convergence stability. Based on this finding, we selected Wave-U-
Net as the backbone for our ‘TimbrePalette’ model.

3.5 MODEL ARCHITECTURE: CONDITIONALWAVEUNET-V2

Our core model, ‘TimbrePalette’, is a conditional generative model based on the Wave-U-Net archi-
tecture (‘ConditionalWaveUNet-v2’).

• Wave-U-Net Backbone: We employ a symmetric encoder-decoder architecture with skip
connections composed of 1D convolutions.

• Conditioning Mechanism: Our final model (‘v2’) utilizes a simple and effective Bot-
tleneck Injection mechanism. The one-hot style vector vs is first projected by a small

5
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Figure 1: The architecture of our proposed TimbrePalette model
(ConditionalWaveUNet-v2). The style vector is processed by an MLP and injected
into the U-Net’s bottleneck via an additive operation, providing a global conditioning signal for the
decoder.

multi-layer perceptron (MLP) into a style embedding es = MLP(vs). This embedding is
then directly added to the U-Net’s deepest feature map (the bottleneck) hbottle:

h′
bottle = hbottle + es

This approach treats the style as a global directive that influences the entire decoding and
synthesis process.

• Artifact-Free Upsampling: In the decoder, we adopt an ‘Upsample + Conv1d’ strategy
instead of a traditional transposed convolution. As validated by our ablation study (see
Section 4.5), this method effectively avoids the high-frequency checkerboard artifacts often
introduced by transposed convolutions.

3.6 TRAINING AND OPTIMIZATION

• Loss Function: To ensure training stability, we use a ‘StableLoss’ comprised of a
waveform-domain L1 loss and a spectral-domain L1 loss on the magnitude of the STFT:

L(y′, y) = ∥y′ − y∥1︸ ︷︷ ︸
Lwav

+λ ∥|STFT(y′)| − |STFT(y)|∥1︸ ︷︷ ︸
Lspec

where y′ is the model output, y is the target, and we set λ = 1.0. The L1 loss is less
sensitive to outliers than L2 loss, preventing gradient explosion from issues like clipping.

• Stabilization Strategy: We integrate a set of best practices for stable and efficient training:
the Adam optimizer, Automatic Mixed Precision (AMP), a OneCycle learning rate
scheduler, and Gradient Accumulation to achieve a larger effective batch size.

3.7 STYLE BLENDING: EXPLORING THE LATENT SPACE

A unique capability of ‘TimbrePalette’ is style blending during inference. By linearly interpolating
the one-hot style vectors in the input space, we can guide the model to generate novel hybrid timbres.
For two styles s1 and s2 represented by vectors vs1 and vs2 , a blended style vector vblend can be
computed with a factor α ∈ [0, 1]:

vblend = (1− α)vs1 + αvs2

This blended vector is then fed into the model’s MLP to generate a hybrid style. This demonstrates
that our model has learned a continuous and meaningful aesthetic space, not just a set of isolated
style points.

4 EXPERIMENTS

This section aims to validate the effectiveness of our proposed ‘TimbrePalette’ model through a
series of comprehensive objective evaluations.

6
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4.1 INITIAL EXPLORATIONS: DIAGNOSING STABILITY ISSUES

As mentioned in the introduction, our initial explorations revealed fundamental stability obstacles.
To quantify this finding, we conducted diagnostic experiments on two early models. As shown in Ta-
ble 2, both initial models failed to complete training. The DDSP-based “graybox” model collapsed
almost immediately due to numerical issues, while the early WaveUNet was also highly unstable.
This “successful failure” provided the decisive evidence that without first solving the underlying
numerical stability problems, no progress could be made on the complex timbre enhancement task.

Table 2: Training stability results of initial exploratory models.

Model Core Method Loss Function Final Result Avg. Survival
Epochs

Graybox Model Differentiable
IIR Filters

Log-STFT Training
Collapse (NaN
Loss)

1

Early WaveUNet Naive
Waveform-to-
Waveform

Log-STFT Training
Collapse (NaN
Loss)

<5

4.2 PRELIMINARY EXPERIMENT: BACKBONE ARCHITECTURE PERFORMANCE COMPARISON

To provide empirical evidence for our final model’s architecture choice, we conducted a preliminary
experiment to compare the performance of different model paradigms on our timbre enhancement
task. The results in Table 3 show two clear trends. First, time-domain models (‘WaveUNet-Wide‘,
‘TCN‘) significantly outperform frequency-domain models. Second, among the top-performing
time-domain models, ‘WaveUNet-Wide’ achieved the lowest loss, justifying its selection as our
core backbone architecture.

Table 3: Lowest loss achieved in the horizontal comparison of backbone architectures.

Model Family Representative Model Key Configuration Lowest Loss (↓)
U-Net (Time-domain) WaveUNet-Wide Wider Variant 1.38
TCN (Time-domain) TCN Causal Convolutions 1.39
U-Net (Time-domain) WaveUNet-Deep Deeper Variant 3.84
Attention (Freq-domain) BiLSTMAttention Spectrogram BiLSTM 15.75
Transformer (Freq-domain) SpecTransformer Spectrogram Transformer 16.42
Linear (Freq-domain) DLinear Spectrogram Linear 196.14

4.3 MAIN EXPERIMENTAL SETUP

Dataset: All models were trained and tested using an on-the-fly data generation strategy. We sample
2-second clips from a collection of 150 source songs from the DSD100 (Liutkus et al., 2017) and
MUSDB18-HQ (Rafii et al., 2018) datasets and dynamically generate the target labels using the DSP
Style Anchors defined in Section 3.3.1. The data is split 90/10 for training and testing.

Evaluation Metrics: We use two objective metrics: 1) STFT Distance (↓), the L1 loss between the
magnitude spectrograms of the predicted and target audio, measuring spectral similarity. 2) Si-SNR
(↑), Scale-Invariant Signal-to-Noise Ratio, measuring waveform fidelity.

Implementation Details: All models were trained for 50 epochs using the Adam optimizer with a
learning rate of 1× 10−4 and a batch size of 8, with AMP enabled.

4.4 MAIN RESULTS: COMPARISON WITH BASELINES

To comprehensively evaluate ‘TimbrePalette‘, we compared it against three strong baseline cate-
gories. As shown in Table 4, ‘TimbrePalette’ achieves the best performance across all objective

7
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Visual Analysis for "Ai_generated_bgm_separatedByDemucs"

Figure 2: Visual analysis for the “Fullness” style on a challenging audio sample
(Ai generated bgm separatedByDemucs.wav). (a) The spectrogram of the original au-
dio. (b) The spectrogram of our TimbrePalette’s output, which visually approximates the DSP
ground truth. (c) The spectral difference between our model’s output and the DSP ground truth.
The predominantly neutral color indicates a very small error, demonstrating high fidelity. (d) The
energy profile by frequency band. This plot quantitatively shows that our model (Ours) successfully
replicates the DSP’s behavior of boosting Bass and Mids, while the baseline model fails to do so.

metrics, significantly outperforming all baselines and demonstrating the superiority of our proposed
conditional time-domain generation paradigm. It is worth noting that Conv-TasNet, a strong baseline
in source separation, performs poorly on this task. We hypothesize that its architecture, which ex-
cels at learning time-frequency masks for separating existing signals, is less suited for the complex,
non-linear waveform transformations required for generative timbre enhancement.

This quantitative superiority is also visually evident in our detailed analysis presented in Figure 2.
The spectral difference plot (c) confirms the high fidelity of our model’s output to the DSP target,
while the energy profile analysis (d) clearly demonstrates that our model correctly learns the intended
spectral transformation, a task where the baseline model fails.

Table 4: Main results: Objective metric comparison with baselines.

Model STFT Dist (↓) Si-SNR (↑)
Baseline (SpectrogramUNet) 0.4918 11.5553
Baseline (Conv-TasNet) 0.7007 3.4369
Baseline (NonCond-Avg) 0.5830 2.0054
TimbrePalette (Ours, v2) 0.4645 14.2230
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4.5 ABLATION STUDIES

We conducted ablation studies to verify the necessity of two key design choices in our model. The
results are presented in Table 5.

Upsampling Strategy: The ‘v2’ model (using ‘Upsample + Conv1d‘) significantly outperforms
the ‘v1’ version (using ‘ConvTranspose1d‘), validating our choice for its superior performance and
ability to avoid high-frequency artifacts.

Necessity of Conditioning: The performance collapses catastrophically when the conditioning
mechanism is removed (comparing ‘TimbrePalette’ to ‘NonCond-Avg‘), demonstrating that explicit
style guidance is crucial for high-quality, controllable multi-style generation.

Table 5: Ablation studies on the performance impact of key model designs.

Model STFT Dist (↓) Si-SNR (↑)
TimbrePalette (Ours, v2) (Upsample+Conv, Conditioned) 0.4645 14.2230
Ablation (Ours, v1 ConvT) (ConvTranspose1d) 0.6094 10.5507
Baseline (NonCond-Avg) (Conditioning Removed) 0.5830 2.0054

4.6 QUALITATIVE ANALYSIS AND STYLE BLENDING

\textbf{Low  Region} \textbf{High  Region}
From To Dist ( ) From To Dist ( )
0.0 0.1 0.0135 0.5 0.6 0.0128
0.1 0.2 0.0133 0.6 0.7 0.0142
0.2 0.3 0.0127 0.7 0.8 0.0153
0.3 0.4 0.012 0.8 0.9 0.016
0.4 0.5 0.0112 0.9 1.0 0.0164
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Continuity of Latent Space

Figure 3: Quantitative analysis of the latent space continuity during style blending. (Left) The table
shows the STFT distance between adjacent samples generated by linearly interpolating the style
vector from “Fullness (Static)” (α = 0.0) to “Layeredness (Mastering)” (α = 1.0). (Right) The plot
visualizes these distances. The consistently small and stable values, with no abrupt jumps, provide
strong quantitative evidence that TimbrePalette has learned a smooth and continuous latent
space.

To quantitatively validate the continuity of the learned latent space, we conducted a style blending
experiment. We linearly interpolated between the “Fullness” and “Layeredness” styles over 10 steps
and computed the STFT distance between adjacent generated samples. The results in Figure 3 show
that the distances are consistently small and stable, with no abrupt jumps. This provides strong
quantitative evidence that ‘TimbrePalette’ has learned a continuous latent space suitable for creative
exploration, rather than simply cross-fading between outputs. Audio examples will be provided on
our project website.

5 CONCLUSION

In this work, we proposed TimbrePalette, a novel controllable multi-style generative model for tim-
bre enhancement. We began by systematically diagnosing and solving the stability issues inherent
in training deep models for this task. Our core contribution is the “Style Anchor” paradigm, which
quantifies subjective aesthetics into learnable targets. Our final model, a conditioned Wave-U-Net,
demonstrates state-of-the-art performance, outperforming strong baselines and specialized models.
Furthermore, we quantitatively proved its ability to learn a continuous latent space for creative style
blending. TimbrePalette provides an effective and flexible solution for a timely problem, empower-
ing creators in the new era of AI-assisted music production.
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Alexandre Défossez, Théo Rougier, Gabriel Synnaeve, and Yossi Adi. Hybrid spectrogram and
waveform source separation. arXiv preprint arXiv:2111.03600, 2022.

Jesse Engel, Lamtharn Hantrakul, Chenlong Gu, and Adam Roberts. Ddsp: Differentiable digital
signal processing. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 2020.

Jungil Kong, Jaehyeon Kim, and Jae-min Bae. Hifi-gan: Generative adversarial networks for effi-
cient and high fidelity speech synthesis. In Advances in Neural Information Processing Systems,
volume 33, pp. 17022–17033, 2020.

Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel Singer, Alexandre Défossez, Jade Copet, Devi
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This research adheres to the ICLR Code of Ethics. The primary goal of our work is to develop a
tool that empowers musicians, producers, and creators by making high-quality audio enhancement
more accessible. We believe the potential societal benefits are positive, particularly for independent
artists and those working with AI-generated content.

The datasets used in our study, DSD100 and MUSDB18-HQ, are standard, publicly available aca-
demic datasets created for research purposes. Our work does not involve any personally identifiable
information or sensitive data.

While any audio generation technology carries a theoretical risk of being used to create misleading
or synthetic content, the nature of our model—which enhances existing audio rather than generating
it from scratch—significantly mitigates this risk compared to fully generative systems. We are not
aware of any direct negative societal impacts stemming from this work.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. The appendices provide
comprehensive details necessary for reproduction. Specifically:

• Appendix A.2 details the exact implementation of the three DSP Style Anchors used to
generate the training targets.

• Appendix A.3 provides explicit pseudocode for our training and style-blending inference
procedures.

• Appendix A.4 offers an exhaustive breakdown of the final model architecture (Table 7),
training hyperparameters, dataset preprocessing, and the computational environment.

By providing both the seudo-code and the detailed experimental setup, we believe our results can be
readily and precisely reproduced by the research community.

A APPENDIX

A.1 SUBJECTIVE LISTENING TEST RESULTS

To complement our objective evaluations, we conducted a subjective listening test to assess the
perceptual quality and listener preference of different style blends generated by TimbrePalette.

A.1.1 METHODOLOGY

A total of 12 participants were recruited for the listening test. We used four diverse, AI-generated
monophonic instrument recordings (Flute, GuZheng, Piano, Strings) as source material. For each in-
strument, four different enhanced versions were generated using representative style blends. The test
was structured as a ranking task where participants were asked to rank the four enhanced versions
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for each instrument on a scale from 1 (most preferred) to 4 (least preferred) based on their overall
satisfaction and listening preference. The order of the samples was randomized for each participant.
The style blends are denoted using a shorthand notation, e.g., ‘s80a10m10‘, which represents a style
vector created by a weighted combination of 80% Fullness (Static), 10% Warmth (Adaptive), and
10% Layeredness (Mastering).

A.1.2 RESULTS AND ANALYSIS

To analyze the ranking data, we converted the ranks to scores using the Borda count method (Rank
1 = 4 points, Rank 2 = 3 points, etc.). A higher score indicates a higher preference. The mean scores
and standard deviations for each style blend, aggregated across all participants and instruments, are
presented in Table 6.

Table 6: Mean preference scores from the subjective listening test. A higher score indicates a higher
listener preference. The results are averaged across 12 participants and 4 instrument types.

Style Blend Configuration Mean Satisfaction Score (↑)
Blend: s80 a10 m10 (Fullness-dominant) 3.06 ± 0.85
Blend: s33 a33 m33 (Balanced) 2.94 ± 0.93
Blend: a80 s10 m10 (Warmth-dominant) 2.94 ± 0.93
Blend: s25 m75 / a25 m75 (Layeredness/Mastering-dominant) 2.69 ± 1.14

The results indicate a clear listener preference for the Fullness-dominant style blend
(s80 a10 m10), which achieved the highest mean score. This suggests that for the task of en-
hancing single-instrument AI-generated audio, a treatment that primarily adds body and harmonic
density is perceptually the most effective. The balanced and warmth-dominant blends also per-
formed strongly, while the mastering-dominant blend, which focuses more on clarity and dynamic
control, was the least preferred on average for these specific source materials. These findings provide
strong subjective evidence supporting the effectiveness of our model’s style blending capabilities.

A.2 IMPLEMENTATION DETAILS OF DSP STYLE ANCHORS

In this section, we provide exhaustive implementation details for the DSP chains used to generate
our style anchors. For each anchor, we first describe the acoustic goal and design rationale, followed
by a formal algorithmic representation of the signal processing steps.

Static EQ (Fullness) To create a sense of fullness and low-end body, the EQ settings include a
+7dB peak boost at 150Hz, a frequency range critical for the fundamental tones of bass instruments.
This is followed by a nested soft-clipping function, which was specifically chosen to introduce rich
harmonic density and warmth without creating harsh digital clipping artifacts.

Algorithm 1 DSP Anchor Generation: Fullness

1: Input: Raw audio signal x
2: Parameters: Peak Frequency f0 = 150Hz, Peak Gain G = +7 dB
3: xeq ← ApplyPeakEQ(x, f0, G) ▷ Boost low-mid frequencies for body.
4: y ← tanh(xeq + 0.3 tanh(0.2xeq)) ▷ Apply nested soft-clipping for harmonic density.
5: Output: Processed audio signal y

Adaptive EQ (Warmth) To emulate the dynamic warmth of analog hardware, the energy for the
complementary EQ is computed on short-term frames. The mid-band (250Hz-4kHz), crucial for
perceived warmth and presence, is isolated with a 4th-order Butterworth filter. The signal within
this band is then processed with a soft-clipper to gently introduce harmonic saturation reminiscent
of vacuum tubes when driven.

12
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Algorithm 2 DSP Anchor Generation: Warmth

1: Input: Raw audio signal x
2: Parameters: Filter Order N = 4, Low Cutoff flow = 250Hz, High Cutoff fhigh = 4 kHz
3: xmid ← ButterworthBandpass(x,N, flow, fhigh) ▷ Isolate mid-band for warmth and presence.
4: ymid ← tanh(1.1xmid) ▷ Apply soft-clipping to emulate tube saturation.
5: y ← ymid + (x− xmid) ▷ Combine processed mid-band with original signal.
6: Output: Processed audio signal y

Mastering (Layeredness) To achieve a polished and layered master, we first apply loudness nor-
malization, targeting -14 LUFS using the pyloudnorm library to meet modern streaming stan-
dards. Subsequently, a gentle spectral tilt is applied with a pivot frequency at 1kHz and a slope of
-1.5 dB/octave. This common mastering technique subtly reduces high-frequency harshness and en-
hances low-frequency weight, improving the perceived depth and separation between instrumental
layers.

Algorithm 3 DSP Anchor Generation: Layeredness

1: Input: Raw audio signal x
2: Parameters: Target Loudness L = −14LUFS, Pivot Frequency fp = 1 kHz, Slope S =
−1.5 dB/octave

3: xnorm ← LoudnessNormalize(x, L) ▷ Using the pyloudnorm library.
4: y ← SpectralTilt(xnorm, fp, S) ▷ Enhance low-end weight and reduce harshness.
5: Output: Processed audio signal y

A.3 TRAINING AND INFERENCE PROCEDURES

To further elucidate our methodology and ensure the reproducibility of our work, this section pro-
vides detailed pseudocode for the two core processes of TimbrePalette: the model training loop and
the style blending inference procedure. Each algorithm is preceded by a comprehensive description
of its operational logic.

Algorithm 1: TimbrePalette Training Procedure The training of TimbrePalette is detailed in
Algorithm 4. We employ an on-the-fly data generation strategy to create a diverse and virtually
infinite training set. For each training step, we first load a full audio file from our training data paths.
A short segment (e.g., 2 seconds) is then randomly cropped from this file to serve as the model
input, xsegment. Concurrently, a target style s is randomly selected from our set of defined Style
Anchors. The corresponding pre-defined DSP function, Ds, is then applied to the input segment
to generate the ground truth target audio, ys. The chosen style index is converted into a one-hot
vector, vs, which acts as the conditional input for our model. The model Gθ performs a forward
pass, taking both the audio segment and the style vector to produce the enhanced output y′. Finally,
a loss is computed between the predicted audio and the ground truth, and the model’s parameters θ
are updated via backpropagation.

Algorithm 2: Style Blending Inference Procedure Algorithm 5 outlines the procedure for per-
forming style blending during inference, a key feature of TimbrePalette. This process allows for the
creation of novel hybrid timbres by navigating the continuous latent space learned by the model.
The function requires a pre-trained model Gθ, an input audio waveform x, the indices of two source
styles (sA and sB), and a blending factor α between 0 and 1. First, the style indices are converted
into their respective one-hot vector representations, vsA and vsB . The core of the technique is the
linear interpolation of these two vectors to create a new, blended style vector, vblend. This interpo-
lated vector, which represents a point in the latent space between the two original styles, is then fed
into the model alongside the input audio. The model processes these inputs and generates a single
output waveform, yblend, which perceptually embodies the mixed characteristics of the two source
styles, determined by the factor α.

13
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Algorithm 4 TimbrePalette Training Loop

Require: Model Gθ, Optimizer θoptim, Loss Function L, Training Data Paths Xtrain, DSP Style
Anchors {Ds}3s=1

1: for each epoch do
2: for each audio path xpath in Xtrain do
3: xfull ← LoadAudio(xpath)
4: xsegment ← RandomCrop(xfull)
5: s← RandomSelect({1, 2, 3})
6: ys ← Ds(xsegment)
7: vs ← OneHot(s)
8: y′ ← Gθ(xsegment, vs)
9: loss← L(y′, ys)

10: loss.backward()
11: θoptim.step()
12: end for
13: end for

Algorithm 5 TimbrePalette Style Blending Inference

Require: Trained Model Gθ, Input Audio x, Style A index sA, Style B index sB , Blend factor
α ∈ [0, 1]

1: vsA ← OneHot(sA)
2: vsB ← OneHot(sB)
3: vblend ← (1− α)vsA + αvsB
4: yblend ← Gθ(x, vblend) return yblend

A.4 MODEL AND EXPERIMENTAL DETAILS

To ensure full reproducibility, this section provides exhaustive details on the final model archi-
tecture, training hyperparameters, datasets, and the computational environment used in our main
experiments.

A.4.1 FINAL MODEL ARCHITECTURE (CONDITIONALWAVEUNET-V2)

Our final model, TimbrePalette (ConditionalWaveUNet-v2), is a fully convo-
lutional time-domain model. Its architecture, verified against the implementation in
sec8 train conditional model.py, is detailed in Table 7. The model uses
ConvTranspose1d for upsampling. The total number of trainable parameters is 1,454,241.

A.4.2 TRAINING HYPERPARAMETERS

All hyperparameters are sourced directly from our final training script,
sec8 train conditional model.py.

• Optimizer: AdamW

• Learning Rate: 2× 10−4 (initial max learning rate)

• Weight Decay: 1× 10−5

• Learning Rate Scheduler: One-Cycle Learning Rate Scheduler (OneCycleLR)

• Loss Function: A combination of L1 loss in the time domain and L1 loss on the magnitude
of the STFT (StableLoss).

• STFT Parameters: Hann window, FFT size of 2048, hop length of 512.

• Batch Size: 8

• Epochs: 50

• Numerical Stability: Automatic Mixed Precision (AMP) was enabled for all training runs.
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Table 7: Architecture of our final ConditionalWaveUNet model. ‘k’ denotes kernel size, ‘s’
denotes stride, and ‘c’ denotes channels. All convolutional layers use GELU activation.

Layer Type Layer Name Output Shape Transformation
Encoder

Input - [B, 1, 441000]
Conv1d inc (k=15, s=1) [B, 32, 441000]
DownBlock d1 (k=15, s=2) [B, 64, 220500]
DownBlock d2 (k=15, s=2) [B, 128, 110250]
DownBlock d3 (k=15, s=2) [B, 256, 55125]

Style Conditioning
One-hot Style Vector - [B, 3]
MLP style mlp [B, 256]
Bottleneck bottleneck [B, 256, 55125] (element-wise add)

Decoder
UpBlock u1 (ConvTranspose1d) [B, 128, 110250] (concat with d2 output)
UpBlock u2 (ConvTranspose1d) [B, 64, 220500] (concat with d1 output)
UpBlock u3 (ConvTranspose1d) [B, 32, 441000] (concat with inc output)
Conv1d outc (k=1, s=1) [B, 1, 441000]
Activation tanh [B, 1, 441000]

A.4.3 DATASET AND PREPROCESSING

• Training Datasets: We used the full development set from DSD100 (“Dev” subset) and the
full training set from MUSDB18-HQ (“train” subset). As confirmed by the log in sec8,
this resulted in a total of 150 unique songs for training.

• Test Datasets: For the final objective evaluation in sec9, we used the official test sets
from both DSD100 (“Test” subset) and MUSDB18-HQ (“test” subset).

• Audio Preprocessing: All audio files were resampled to a target sample rate of 44100 Hz
and converted to mono by averaging channels if necessary.

• Data Segmentation: During training, we used random 10-second segments cropped from
the full audio files. For evaluation and inference, the first 10 seconds of each track were
used.

A.4.4 COMPUTATIONAL ENVIRONMENT

• Hardware: All experiments were conducted on a single CUDA-enabled NVIDIA GPU.

• Software: The framework was built using Python 3.10. Key libraries include PyTorch,
torchaudio, librosa, and for the “mastering” style anchor, pyloudnorm.

• Training Time: Training the final model for 50 epochs on the full dataset took approxi-
mately 3.8 hours.

A.5 SUPPLEMENTARY VISUAL ANALYSIS

In this appendix, we provide the complete set of visual analysis figures for various audio samples
from our test set. These figures complement the compact analytical figure presented in the main
paper (Figure 2) by offering a more detailed comparison of our model’s performance against both
the SpectrogramUNet and ConvTasNet baselines across a diverse range of audio content.

For each audio sample analyzed, we present a pair of comprehensive analysis figures: one compar-
ing our model against the SpectrogramUNet baseline, and the other against the ConvTasNet
baseline. Each of these figures is a self-contained visual report, including: a 2x2 grid of spectro-
grams, a spectral difference plot, a frequency band energy comparison, and a numerical summary
table. All spectrograms are focused on a representative 3-second segment to highlight fine details.
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A.5.1 ANALYSIS ON AI-GENERATED SAMPLE

Visualized comparison of TimbrePalette and baseline generated Guitar samples, As shown in Fig-
ure 4 and Figure 5.
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Figure 4: Full analysis for an AI-generated guitar sample
(Ai generated guitar Prelude.wav), comparing TimbrePalette with the
SpectrogramUNet baseline. The figure contains a comprehensive visual report, including
spectrograms, a spectral difference plot (Ours vs. DSP), a bar chart comparing energy by frequency
band, and a numerical summary. The plots demonstrate our model’s ability to correctly apply the
“Fullness” style’s spectral characteristics, closely matching the DSP ground truth, whereas the
baseline fails to replicate the intended low-frequency boost.
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Figure 5: Full analysis for the same AI-generated guitar sample
(Ai generated guitar Prelude.wav), comparing TimbrePalette with the
ConvTasNet baseline. The energy band plot and the low spectral difference value in the
table highlight our model’s superior accuracy in matching the DSP target’s frequency profile
compared to the strong time-domain baseline.
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A.5.2 ANALYSIS ON VOCAL SAMPLES

Visualized comparison of TimbrePalette and baseline generated Vocal samples, As shown in Figure 6
and Figure 7.
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Figure 6: Full analysis for a chorus vocal sample (Human Chorus vocal.wav), comparing
against the SpectrogramUNet baseline. The spectral difference plot (Ours vs. DSP) shows
predominantly neutral colors, indicating minimal error for our model. In contrast, the baseline’s
large spectral difference and incorrect energy profile demonstrate its inability to handle this type of
audio.
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Figure 7: Full analysis for the chorus vocal sample (Human Chorus vocal.wav), comparing
against the ConvTasNet baseline. This figure provides a direct comparison against a strong time-
domain competitor, showcasing the superior performance of our proposed architecture on complex
vocal material.

A.5.3 ANALYSIS ON PIANO SAMPLES

Visualized comparison of TimbrePalette and baseline generated Piano samples, As shown in Fig-
ure 8 and Figure 9, Figure 10 and Figure 11, Figure 12 and Figure 13, .
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Figure 8: Full analysis for a piano solo sample (human pianoSolo1.wav), comparing against
the SpectrogramUNet baseline. The spectrograms and energy chart clearly show our model
successfully adding fullness and body in the low-mid frequencies, closely mirroring the DSP ground
truth.
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Figure 9: Full analysis for the first piano solo sample (human pianoSolo1.wav), comparing
against the ConvTasNet baseline. The numerical summary table quantifies our model’s lower
spectral difference, reinforcing the visual evidence of its higher fidelity.
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Figure 10: Full analysis on a second piano solo sample (human pianoSolo2.wav) against the
SpectrogramUNet baseline. This example further validates our model’s consistent performance
on acoustic instrument recordings.
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Figure 11: Full analysis on a second piano solo sample (human pianoSolo2.wav) against the
ConvTasNet baseline, confirming the performance gap between our specialized architecture and
the SOTA source separation model on this task.
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Figure 12: Full analysis on a third piano solo sample (human pianoSolo3.wav) against the
SpectrogramUNet baseline. The visuals consistently show the failure of the frequency-domain
model and the success of our time-domain approach.
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Figure 13: Full analysis on a third piano solo sample (human pianoSolo3.wav) against the
ConvTasNet baseline, providing another data point for the robustness of our results across differ-
ent examples.
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A.6 USAGE OF LARGE LANGUAGE MODELS (LLMS)

In adherence to the conference guidelines, we wish to disclose the role that Large Language Models
(LLMs) played in the preparation of this manuscript and during the research process. The LLM was
utilized in two primary capacities: as a writing assistant for language refinement and as an interactive
debugging tool.

• Language Polishing of the Introduction: The Abstract and Introduction section of this
paper was polished on a sentence-by-sentence basis using an LLM. For each sentence,
we provided the model with a prompt such as, “Please make the following sentence more
concise, fluent, and easy to understand” to improve the overall clarity and readability of the
text.

• Interactive Debugging and Code Fixing: Throughout the experimental phase of this
research, we encountered numerous warnings, errors, and exceptions. To accelerate the
debugging process, we provided the LLM with error messages, tracebacks, and the cor-
responding code snippets. We used prompts such as, “Please fix the errors in this code
snippet based on the error message,” to help identify the root causes of bugs and generate
potential solutions.

The LLM served as a general-purpose assistance tool to enhance the quality of the writing and
the efficiency of the coding workflow. The core research ideation, experimental design, and final
analysis presented in this paper are the original contributions of the authors.
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