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ABSTRACT

Training machine learning models with differential privacy (DP) limits an adver-
sary’s ability to infer sensitive information about the training data. It can be in-
terpreted as a bound on adversary’s capability to distinguish two adjacent datasets
according to chosen adjacency relation. In practice, most DP implementations use
the add/remove adjacency relation, where two datasets are adjacent if one can be
obtained from the other by adding or removing a single record, thereby protecting
membership. In many ML applications, however, the goal is to protect attributes
of individual records (e.g., labels used in supervised fine-tuning). We show that
privacy accounting under add/remove overstates attribute privacy compared to ac-
counting under the substitute adjacency relation, which permits substituting one
record. To demonstrate this gap, we develop novel attacks to audit DP under
substitute adjacency, and show empirically that audit results are inconsistent with
DP guarantees reported under add/remove, yet remain consistent with the budget
accounted under the substitute adjacency relation. Our results highlight that the
choice of adjacency when reporting DP guarantees is critical when the protection
target is per-record attributes rather than membership.

1 INTRODUCTION

Differential Privacy (DP) (Dwork et al., 2006) provides provable protection against the most com-
mon privacy attacks, including membership inference, attribute inference and data reconstruction
(Salem et al., 2023). It limits an adversary’s ability to distinguish between two adjacent datasets
based on the an algorithm’s output. The level of DP guarantee depends on the underlying adjacency
relation. There exist different notions of adjacency such as the add/remove adjacency, where two
datasets differ by the inclusion or removal of a single record. An alternative is substitute adjacency,
where one dataset is obtained by replacing a record in the other. A special case of the latter is
zero-out adjacency, in which a record is replaced with a null entry. In deep learning (Abadi et al.,
2016; Ponomareva et al., 2023), the standard approach to DP uses add/remove adjacency, that was
designed to protect against an adversary’s ability to detect whether an individual was part of the
training dataset or not.

In this paper, we draw attention to the fact that while DP can provide protection against all the
common attacks listed above, the add/remove adjacency does not provide protection against infer-
ence attacks on data of a subject known to be a part of the training dataset at the level indicated
by the privacy parameters. Protection against such inference attacks requires considering substitute
adjacency, which protects against inference of a single individual’s contribution to the data. An
add/remove privacy bound implies a substitute privacy bound, but with substantially weaker privacy
parameters. Most DP libraries (such as Opacus Yousefpour et al. (2021)) implement privacy ac-
counting assuming add/remove adjacency. A practitioner concerned with attribute or label privacy
who relies on these libraries to train their model with DP may therefore be misled: the guarantees
provided by add/remove adjacency overstate the actual protection against attribute inference attacks.

In order to evaluate practical vulnerability of DP models and mechanisms to substitute-type attacks,
we develop a range of auditing tools for the substitute adjacency and apply these to DP deep learning.
In this setting, we craft a pair of neighbouring datasets, D andD′ by replacing a target record z ∈ D
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with a canary record z′. A canary serves as a probe that enables the adversary to determine whether
a model was trained on D or D′. We find that the algorithms do indeed leak more information to a
training data inference attacker than the add/remove bound would suggest.

Our Contributions:

• We propose algorithms for crafting canaries for auditing DP under substitute adjacency, provid-
ing tight empirical lower bounds matching theoretical guarantees from accountants (Section 3).

• We show that privacy leakage can exceed the guarantees derived from add/remove accountants
but (as expected), closely tracks the guarantees predicted by substitute accountants (Section 6).

• Our results demonstrate that accounting for privacy under the commonly used add/remove ad-
jacency overstates the protection against attribute inference, including label inference.

2 RELATED WORK AND PRELIMINARIES

2.1 DIFFERENTIAL PRIVACY

Differential Privacy (DP) (Dwork et al., 2006) is a framework to protect sensitive data used for data
analysis with provable privacy guarantees.

Definition 1 ((ε, δ,∼)-Differential Privacy). A randomized algorithmM is (ε, δ,∼)-differentially
private if for all pairs of adjacent datasets D ∼ D′, and for all events S:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ,

Under add/remove adjacency (∼AR), D′ is obtained by adding or removing a record z from D. In
substitute adjacency (∼S),D′ is formed by replacing a record z inD with another record z′. Kairouz
et al. (2021) also introduced the zero-out adjacency which corresponds to removing a record from
D and replacing it with a zero-out record (⊥) to form D′. Privacy guarantees for this adjacency are
semantically equivalent to the add/remove DP.

2.2 DIFFERENTIALLY PRIVATE STOCHASTIC GRADIENT DESCENT (DP-SGD)

Differentially Private Stochastic Gradient Descent (DP-SGD) (Rajkumar & Agarwal, 2012; Song
et al., 2013; Abadi et al., 2016) forms the basis of training machine learning algorithms with DP. It
is used to train ML models while satisfying DP. Given a minibatch Bt ∈ D at time step t, DP-SGD
first clips the gradients for each sample in Bt such that the ℓ2 norm for per-sample gradients does not
exceed the clipping bound C. Following that, Gaussian noise with scale σC is added to the clipped
gradients. These clipped and noisy gradients are then used to update the model parameters θ during
training as follows:

θt+1 ← θt −
η

|B|

[ ∑
z∈Bt

clip(∇θℓ(θt; z), C) + Zt

]
, (1)

where Zt ∼ N (0, σ2C2I), |B| is the expected batch size, and η denotes the learning rate of the
training algorithm. In this way, DP-SGD bounds the contribution of an individual sample to train
the model. In this paper, we also use DP-Adam which is the differentially private version of the
Adam (Kingma & Ba, 2015) optimizer.

DP provides upper bounds for the privacy loss expected from an algorithm for a given adjacency re-
lation. Early works used advanced composition (Dwork et al., 2010; Kairouz et al., 2015) to account
for the cumulative privacy loss over multiple runs of a DP algorithm. Abadi et al. (2016); Mironov
(2017); Bun & Steinke (2016) developed accounting methods for deep learning algorithms. How-
ever, the bounds on DP parameters provided by these accountants are not always tight. Recently,
numerical accountants based on privacy loss random variables (PRVs) (Dwork & Rothblum, 2016;
Meiser & Mohammadi, 2018) have been adopted across industry and academia (Koskela et al., 2020;
Gopi et al., 2021) because they offer tighter estimates of DP upper bounds.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.3 AUDITING DIFFERENTIAL PRIVACY

Privacy auditing helps evaluate the empirical privacy leakage from a differentially private machine
learning algorithm. DP auditing involves assessing the privacy it affords to worst-case canary
records. Jayaraman & Evans (2019) were the first to evaluate the empirical privacy leakage from
machine learning models trained with DP-SGD and revealed a large gap between the empirical leak-
age and the theoretical bounds guaranteed by DP-SGD. Later, Nasr et al. (2021) audited DP machine
learning algorithms under progressively stronger threat models. They show that the empirical pri-
vacy leakage from their strongest threat model using worst-case dataset canaries was “tight” with
respect to the privacy accounting upper bound for DP. Subsequent works such as Nasr et al. (2023);
Steinke et al. (2023); Annamalai & Cristofaro (2024); Zanella-Béguelin et al. (2023); Mahloujifar
et al. (2025); Cebere et al. (2025) have since been focused on crafting worst-case canary records
that could yield tight auditing for models trained with natural datasets with the more recent works
focusing on practical threat models.

Threat models in auditing differ by the adversary’s level of access: in the White-Box setting, the
adversary can access the intermediate models during training (Nasr et al., 2021; 2023; Steinke et al.,
2023); in the more realistic Hidden-State setting, the adversary can only access the final model but
may still perturb inputs to intermediate models (Annamalai, 2024; Cebere et al., 2025); and in the
Black-Box setting (Annamalai & Cristofaro, 2024; Boglioni et al., 2025), the adversary can only
insert canary sample(s) at the start of training and tracks the final trained model’s response on these
canary sample(s).

3 AUDITING DP WITH SUBSTITUTE ADJACENCY

Algorithm 1 Privacy Auditing With Substitute Adjacency
Requires: Model Architecture M, Model Initialization θ0, Dataset
D, Target Sample z, Training Loss ℓ, Training Steps T , learning rate
η, Optimizer opt step(), Crafting Algorithm craft(), DP Parame-
ters (σ,C, q), Repeats R, Crafting ∈ {Gradient-Space, Input-Space}.

1: O ← 0R,B ← 0R

▷ Adversary as Crafter:
2: if Crafting = Gradient-Space then
3: gz, gz′ ← craft(M,D, θ0, T, η, ℓ, C, q, opt step)
4: else
5: z′ ← craft(z,M,D, θ0, T, η, ℓ, opt step)

6: for r ∈ 1, ..., R do
▷ Challenger as Model Trainer:

7: Choose b uniformly at random: b ∼ {0, 1}
8: B[r]← b
9: for t ∈ 1, ..., T do

10: Sample Bt from D with prob. q
11: gθt ← 0|θ|
12: for zi ∈ Bt do
13: gθt ← gθt + clip(∇θ(l(zi), C)

14: if b = 0 then
15: gθt ← gθt + [clip(∇θ(ℓ(θt; z), C) or +gz] with prob. q
16: else
17: gθt ← gθt + [clip(∇θ(ℓ(θt; z

′), C) or +gz′ ] with prob. q
18: gθt ← gθt +N (0, σ2C2I)
19: θt+1 ← opt step(θt, gθt , η)

▷ Adversary as Distinguisher:
20: O[r]← logit(z; θT )− logit(z′; θT ) or

(gz
C

)
· (θT − θ0)

21: return O,B

Our goal is to design canary sam-
ples for auditing DP under sub-
stitute adjacency in a hidden-state
threat model. In this setting, the
adversary can only access the final
model at any step t, without visibil-
ity into prior intermediate models.
Table 1 briefly describes the craft-
ing scenarios for canaries used to
audit DP with substitute adjacency.
In Table 2, we detail the adversary’s
prior knowledge in each scenario.
Algorithm 1 presents the method to
audit DP in a substitute-adjacency
threat model.

3.1 AUDITING MODELS
USING CRAFTED WORST-CASE
DATASET CANARIES

DP gives an upper bound on pri-
vacy loss of an algorithm. It as-
sumes that the adversary can access
the gradients from the mechanism.
Furthermore, it guarantees that the
privacy of a target record (crafted
to yield worst-case gradient) holds
even when the adversary constructs
a worst-case pair of neighbouring
datasets (D,D′). Thus, any privacy
auditing procedure with such a strong adversary yields tightest empirical lower bound on privacy
parameters. Nasr et al. (2021) were the first to propose an auditing procedure which is provably
tight for worst-case neighbouring datasets crafted to audit DP with add/remove adjacency.

3
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Table 1: Crafting schema for auditing privacy leakage under substitute adjacency with varying ad-
versary capabilities. The adversary can either craft canaries that allow them to directly manipulating
the gradient input to the DP algorithm or they are restricted to input-space perturbations to craft
the canary samples. The adversary’s visibility into the training process is defined by the following
threat models: (a) Visible-State (commonly referred to in the literature as White-Box), where the
adversary assumes access to gradients from the model, and (b) Hidden-State, where they rely on
model parameter updates/ output logits to estimate privacy loss.

Scenario Crafting Space Type of Canary Crafting Algorithm Distinguishability Score Threat Model
S1 Gradient Crafted Dataset Section 3.1 log(Pr(gT |D))− log(Pr(gT |D′)) Visible-State
S2 Gradient Crafted Gradient Algorithm 2 θT − θ0 Hidden-State
S3 Input Crafted Input Sample Algorithm 3 logit(z; θT )− logit(z′; θT ) Hidden-State
S4 Input Crafted Mislabeled Sample Algorithm 4 logit(z; θT )− logit(z′; θT ) Hidden-State
S5 Input Adversarial Natural Sample Algorithm 5 logit(z; θT )− logit(z′; θT ) Hidden-State

Table 2: Adversary’s prior knowledge in each au-
diting scenario described in Table 1.

Priors Scenario
S1 S2 S3 S4 S5

Data Distribution − ✓ ✓ ✓ ✓
Target Sample (z) − − ✓ ✓ ✓

Model Architecture ✓ ✓ ✓ ✓ ✓
Training Hyperparameters − ✓ ✓ ✓ ✓

Subsampling Rate (q) − ✓ ✓ ✓ ✓
Clipping Bound (C) ✓ ✓ − − −
Noise Multiplier (σ) − − − − −

We craft D and D′ as worst-case neighbour-
ing datasets under substitute adjacency (sce-
nario S1 in Table 1). Assuming D has a sample
z which yields a gradient gz such that ∥gz∥ =
C throughout training. For maximum distin-
guishability, we form D′ by replacing z with z′

such that ∥gz′∥ = C but it is directionally op-
posite to gz . For all the other samples in D and
D′, we assume that they contribute 0 gradients
during training. Unlike Nasr et al. (2021), we
do not assume that the learning rate is 0 for the
steps with no gradient canary in the minibatch
since this discounts the effect of subsampling on auditing. Since we account for the noise contri-
bution by the minibatches without z or z′, our setting more accurately reflects the true dynamics of
DP-SGD. We further assume the adversary cannot access intermediate updates and observes only
the final gradients from the mechanism.

At any step T , given subsampling rate q, the number of times the canary is sampled over T steps is
a binomial, B ∼ Binomial(T, q). Conditioned on B = k, the cumulative gradient gT given by

Pr(gT |B = k) ∼ N (±kC, Tσ2C2). (2)

The marginal distribution of gT over D or D′ at step T is given by

Pr(gT |D or D′) =

T∑
k=0

(
T

k

)
qk(1− q)T−kN (gT ;±kC, Tσ2C2), (3)

where C is the gradient contribution of D and −C of D′. The adversary can use Equation (3) to
compute log(Pr(gT |D))−log(Pr(gT |D′)) as the scores to compute the empirical lower bound for
εS during auditing.

3.2 AUDITING MODELS TRAINED WITH NATURAL DATASETS

While DP offers protection to training samples against worst-case adversaries, high-utility ML mod-
els are obtained by training on natural datasets. Under substitute adjacency, D and D′ differ by
replacing a target sample z in D with z′. Effective auditing for models trained with natural datasets,
therefore requires canaries that maximize the distinguishability between the two datasets.

3.2.1 CRAFTING CANARIES FOR AUDITING IN GRADIENT SPACE

Recently, Cebere et al. (2025) propose a worst-case gradient canary for tight auditing
on models trained with add/remove DP using natural datasets in a hidden state threat
model. Adapting their idea to substitute adjacency-based auditing, we first select the train-
able model parameter which changes least in terms of its magnitude throughout training.
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We then define canary gradients gz and gz′ by setting all other parameter gradients to
0, and assigning a magnitude C to the gradient of the selected least-updated parameter.

Algorithm 2 Generating Crafted Gradient Canary
Pair (gz, gz′ )
Requires: Dataset D, Training Loss ℓ, Model Initial-
ization θ0, Training Steps T , Learning Rate η, Clipping
Bound C, Optimizer opt step().

1: def craft:
2: S ← 0d s.t. d← |θ0|
3: for t ∈ 1, ..., T do
4: Sample Bt from D
5: gθt ← clip(∇θℓ(θt; zi), C)
6: θt+1 ← opt step(θt, gθt , η)
7: for j ∈ 1, ..., d do
8: Sj ← Sj +

∣∣θjt+1 − θjt
∣∣

9: j∗ ← argmin1≤j≤d(Sj)
10: gz ← 0d

11: gz[j
∗]← C

12: gz′ ← 0d

13: gz′ [j
∗]← −C

14: return gz, gz′

This ensures that ∥gz∥ = ∥gz′∥ = C. For max-
imum distinguishability between gz and gz′ , we
orient them in opposite directions in gradient
space. The detailed procedure for construct-
ing these canaries is provided in Algorithm 2.
For computing the empirical privacy leakage,
we record change in parameter from initializa-
tion, θt − θ0 as scores for auditing. These
scores serve as proxies for the adversary’s con-
fidence that the observed outputs were from
model trained on D or D′. This setting corre-
sponds to scenario S2 in Table 1. Such canaries
can be used to audit models trained using fed-
erated learning.

3.2.2 CRAFTING CANARIES FOR
AUDITING IN INPUT SPACE

In practice, adversaries are unlikely to directly
manipulate a model’s gradient space during
training. In such cases, the adversary is constrained to input-space perturbations where a natural
sample z ∈ D will be replaced with an adversarially crafted sample z′ to form D′ prior to training.
For instance, an adversary could mount a data-poisoning attack during the fine-tuning of a large
model, or attempt to infer the label of a known-in-training user. For input-space canaries, we track
logit(z; θt)− logit(z′; θt) as scores for auditing.

Algorithm 3 Generating Crafted Input Canary
(z′ ∼ (x′, y))
Requires: Target Sample z ∼ (x, y), DatasetD, Training
Loss ℓ, Model M, Model Initialization θ0, Training Steps
T , Crafting Steps N , Learning Rate η.

1: def craft:
2: θT ← train(M, θ0,D, T, ℓ, η)
3: z′ ∼ (x′, y) s.t. x′ ← 0|x|

4: Lcosim(x′)← ∇θℓ(θT ;x, y) · ∇θℓ(θT ;x
′, y)

∥∇θℓ(θT ;x, y)∥ · ∥∇θℓ(θT ;x′, y)∥
5: LMSE(x

′)← MSE(∇θℓ(θT ;x, y),∇θℓ(θT ;x
′, y))

6: for n ∈ 1, ..., N do
7: x′ ← x′ − η(∇Lcosim(x′) +∇LMSE(x

′))

8: return z′

For auditing using input-space canaries, we
begin by selecting a target sample (z) for
which the a reference model (trained with-
out DP) exhibits least-confidence over train-
ing. The crafted canary equivalent (z′) can
then be generated using the following crite-
ria:

• Algorithm 3 is used to generate a
crafted input canary z′ ∼ (x′, y) com-
plementary to the target sample z (Sce-
nario S3 in Table 1). It uses the ref-
erence model to craft z′ such that the
cosine similarity between gz and gz′

is minimized while ensuring that gz′

is similar in scale to gz so that the
model interprets z′ as a legitimate sam-
ple from the data distribution.

• Algorithm 4 is used to generate a crafted mislabeled canary z′ ∼ (x, y′) complementary to the
target sample z (Scenario S4 in Table 1). We use the reference model to find a label y′ in the
label space Y such that it minimizes cosine similarity between gz′ and gz′ .

• Algorithm 5 is used to select an adversarial natural canary z′ ∼ (x′, y′) from an auxiliary
datasetDaux (formed using a subset of samples not used for training the model) complementary
to the target sample z (Scenario S5 in Table 1). We use the reference model to find a sample z′

in Daux which yields minimum cosine similarity between gz′ and gz′ .

4 USE OF GROUP PRIVACY TO APPROXIMATE SUBSTITUTE ADJACENCY
YIELDS SUBOPTIMAL UPPER BOUNDS

By the definition of DP with substitute adjacency (Definition 1), D′ can be obtained from D by
removing a record z and adding another record z′ to D. As such, it is a common practice to infer

5
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Substitute adjacency as a composition of one Add and one Remove operation (Kulesza et al., 2024).
According to Dwork & Roth (2014), if an algorithmM satisfies (ε, δ,∼AR)-DP, then for any pair
of D and D′ that differ in at most k records, the following relationship holds true

Pr[M(D) ∈ S] ≤ ekε Pr[M(D′) ∈ S] +
( k−1∑

i=0

eiε
)
δ. (4)

From Equation (4), it follows that
Theorem 4.1 (Dwork & Roth (2014)). Any algorithmM which satisfies (εAR, δAR,∼AR)-DP is
(εS , δS ,∼S)-DP with εS = 2εAR and δS = (1 + eεAR)δAR.

Theorem 4.1 yields an upper bound for substitute DP derived from add/remove DP which is agnostic
of the underlying algorithm. For certain algorithms (such as the Poisson-subsampled DP-SGD used
in this paper), which can be characterized by privacy loss random variables (PRVs) and their corre-
sponding privacy loss distribution (PLD) (Dwork & Rothblum, 2016; Meiser & Mohammadi, 2018;
Koskela et al., 2020), numerical accountants can derive the privacy curve directly. This approach
is recommended over using general, algorithm-agnostic upper bounds, as it provides significantly
tighter privacy guarantees.

Algorithm 4 Generating Crafted Mislabeled
Canary (z′ ∼ (x, y′))
Requires: Target Sample z ∼ (x, y), Dataset D,
Training Loss ℓ, Model M, Model Initialization θ0,
Training Steps T , Learning Rate η, Label Space Y .

1: def craft:
2: θT ← train(M, θ0,D, T, ℓ, η)
3: S ← 0d s.t. d← |Y|
4: for ŷ ∈ Y do
5: ẑ ∼ (x, ŷ)

6: S[ŷ]← ∇θℓ(θT ; z)∇θℓ(θT ; ẑ)

∥∇θℓ(θT ; z)∥∥∇θℓ(θT ; ẑ)∥
7: j∗ ← argmin1≤j≤d(Sj)

8: y′ ← Y[j∗]
9: return z′

Algorithm 5 Selecting Canary From Natural
Samples(z′ ∼ (x′, y′))
Requires: Target Sample z ∼ (x, y), DatasetD, Train-
ing Loss ℓ, Model M, Model Initialization θ0, Training
Steps T , Learning Rate η, Auxiliary Dataset Daux.

1: def craft:
2: θT ← train(M, θ0,D, T, ℓ, η)
3: S ← 0d s.t. d← |Daux|
4: for ẑ ∈ Daux do
5: ẑ ∼ (x̂, ŷ)

6: S[ẑ]← ∇θℓ(θT ; z)∇θℓ(θT ; ẑ)

∥∇θℓ(θT ; z)∥∥∇θℓ(θT ; ẑ)∥
7: j∗ ← argmin1≤j≤d(Sj)

8: z′ ← Daux[j
∗]

9: return z′

5 GENERAL EXPERIMENTAL SETTINGS

Training Details:

• Training Paradigm: We fine-tune the final layer of ViT-B-16 (Dosovitskiy et al., 2021)
model pretrained on ImageNet21K. We also fine-tune a linear layer on top of Sentence-BERT
(Reimers & Gurevych, 2019) encoder for text classification experiments. We use a 3-layer
fully-connected multi-layer perceptron (MLP) (Shokri et al., 2017) for the from-scratch train-
ing experiments.

• Datasets: For supervised fine-tuning experiments, we use 500 samples from CIFAR10
(Krizhevsky, 2009), a widely used benchmark for image classification tasks (De et al., 2022;
Tobaben et al., 2023) and 5K samples from SST-2 (Socher et al., 2013) for text classification
task. To train models from scratch, we use 50K samples from Purchase100 (Shokri et al., 2017).

• Privacy Accounting: We adapt Microsoft’s prv-accountant (Gopi et al., 2021) to com-
pute the theoretical upper bounds for substitute adjacency-based DP with Poisson subsampling.
We share the code for this accountant in supplementary materials.

• Hyperparameters: We tune the noise added for DP relative to the subsampling rate q and train-
ing steps T . We keep the other training hyperparameters fixed to isolate the effect of privacy
amplification by subsampling (Bassily et al., 2014; Balle et al., 2018) on auditing performance.
Detailed description of the hyperparameters used in our experiments is provided in Table A1.

• Auditing Privacy Leakage / Step: We perform step-wise audits by treating the model at each
training step t as a provisional model released to the adversary. The adversary is restricted to use
only current model’s parameters or outputs to compute the empirical privacy leakage at step t.

6
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Computing Empirical ε with Gaussian DP (Dong et al., 2019): DP (by Definition 1) implies an
upper bound on the adversary’s capability to distinguish betweenM(D) andM(D′). For computing
the corresponding empirical lower bound on ε, we use the method prescribed by Nasr et al. (2023)
which relies on µ-GDP. This method allows us to get a high confidence estimate of ε with reasonable
repeats of the training algorithm.

Given a set of observations O and corresponding ground truth labels B obtained from Algorithm 1,
the auditor can compute the False Negatives (FN), False Positives (FP), True Negatives (TN),
and True Positives (TP) at a fixed threshold. Using these measures, the auditor estimates upper
bounds on the false positive rate (FPR) and false negative rate (FNR) by using the Clopper–Pearson
method (Clopper & Pearson, 1934) with significance level α = 0.05.

Kairouz et al. (2015) express privacy region of a DP algorithm in terms of FPR and FNR. DP
bounds the FPR and FNR attainable by any adversary. Nasr et al. (2023) note that the privacy
region for DP-SGD can be characterized by µ–GDP (Dong et al., 2019). Thus, the auditor can use
FPR and FNR to compute the corresponding empirical lower bound on µ in µ-GDP,

µlower = Φ−1(1− FPR)− Φ−1(FNR), (5)

where Φ represents the cumulative density function of standard normal distribution N (0, 1). This
lower bound on µ can be translated into a lower bound on ε given a δ in (ε, δ)-DP using the following
theorem,
Theorem 5.1 (Dong et al. (2019) Conversion from µ-GDP to (ε, δ)-DP). If a mechanism M is
µ-GDP, then it is also (ε, δ)-DP (ε ≥ 0), where

δ(ε) = Φ
(
− ε

µ
+

µ

2

)
− eεΦ

(
− ε

µ
− µ

2

)
. (6)
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Figure 1: Auditing DP using worst-case dataset canaries based on substitute adjacency. When
the adversary crafts the neighbouring datasets as worst-case dataset canaries (S1), we find that the
empirical privacy leakage for a DP algorithm, ε (Auditing ), exceeds the privacy upper bound for
add/remove DP, εAR (Accounting). It closely tracks the privacy budget predicted by substitute
accountant, εS (Accounting). The plot shows that εS (Accounting) is tighter when compared to that
εS (Group Privacy) computed using Theorem 4.1. We fix δtarget = 10−5, C = 1.0 and T = 500. The
auditing estimates are averaged over 3 repeats. For each repeat, we use R = 25K runs to estimate ε
(Auditing) at the final step of training. The error bars represent ±2 standard errors around the mean
computed over 3 repeats of auditing algorithm.

6 RESULTS

6.1 AUDITING WITH WORST-CASE CRAFTED DATASET CANARIES

Figure 1 depicts the relation between εS (Accounting) computed with a substitute accountant, εS
(Group Privacy) computed using Theorem 4.1, ε (Auditing) using crafted worst-case dataset ca-
naries from Section 3.1, and εAR (Accounting) computed with an add/remove accountant for a set
of DP parameters. We observe that ε (Auditing) exceeds εAR (Accounting) but remains tight with
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respect to εS (Accounting). Thus, mounting a substitute-style attack using worst-case dataset ca-
naries enables the adversary to detect whether D or D′ was used for training a model with higher
confidence than promised by εAR (Accounting).

0 2 4 6 8 10
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8

10
q = 1.0

0 2 4 6 8 10
S (Accounting)

q = 0.25

0 2 4 6 8 10

q = 0.0625

S (Accounting)
AR (Accounting)

Crafted Gradient Canaries (S2)
Crafted Input Canary (x ', y) (S3)

Crafted Mislabeled Canary (x, y ') (S4)
Adversarial Natural Canary (x ', y ') (S5)

Figure 2: Auditing models trained with DP using natural datasets. We fine-tune final layer of
ViT-B-16 models pretrained on ImageNet21K using CIFAR10. The privacy leakage (ε) audited us-
ing our proposed canaries for this setting exceeds the add/remove DP upper bounds, εAR (Account-
ing). As these canaries are used to mount a substitute-style attack, the figure shows that add/remove
DP overestimates protection against such attacks. Efficacy of the canaries decline as subsampling
rate q decreases, the effect being most significant for audits using input-space canaries. We plot ε
for every kth step (k = 25) of training averaged over 3 repeats of the auditing algorithm. For each
repeat, we train R = 2500 models, 1/2 trained with z and the remaining with z′. The error bars
represent ±2 standard errors around the mean computed over 3 repeats of auditing algorithm.

6.2 AUDITING MODELS TRAINED WITH NATURAL DATASETS

In this section, we report auditing results on models trained with natural datasets. In fine-tuning
experiments with CIFAR10, all are proposed canaries outperform add/remove DP at large subsam-
pling rates. With the strongest canaries, we observe that the empirical privacy leakage exceeds the
add/remove DP upper bounds for models trained from scratch with Purchase100.

6.2.1 USING GRADIENT-SPACE CANARIES

Figure 2 shows that, when auditing models that are trained using natural datasets, we get the tightest
estimates of ε by using crafted gradient canaries for auditing. The empirical privacy leakage (ε)
estimated using these canaries violates εAR (Accounting). The canary gradients, gz and gz′ , crafted
using Algorithm 2 stay constant over the course of training and have near-saturation gradient norms
(∥gz∥ = ∥gz′∥ = C). This ensures that their effect on the parameter updates of the model is
consistent and is most affected by the choice of subsampling rate q. As q decreases, the canary is
less visible to the model during training, which yields weaker audits.

6.2.2 USING INPUT-SPACE CANARIES

In this setting, the adversary is only permitted to insert a crafted input record into the training dataset.
In Figure 2, we observe that even though input-space canaries yield less tight audits when compared
to crafted gradient canaries, the privacy leakage audited using the input-space canaries can exceed
the guarantees of add/remove DP. We observe that the efficacy of audits with input-space canaries
decreases for later training steps. This deterioration is much more significant at a low subsampling
rate (q). Additionally, in Appendix A.2, we observe that audits using input-space canaries are sensi-
tive to the choice of other training hyperparameters such as the number of training steps T , clipping
bound C, and the learning rate η.
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Figure 3: Auditing MLP model trained from scratch with random initialization using Pur-
chase100. We find that auditing such models using input-space canaries yield weaker audits. We do
not observe ε from such audits to exceed the privacy implied by εAR (Accounting). However, using
crafted gradient canaries, we still get ε from auditing which is consistent with εS (Accounting). We
plot ε for every kth step (k = 125) of training. We train R = 2500 models, 1/2 trained with z and
the remaining with z′.

6.2.3 AUDITING MODELS TRAINED FROM SCRATCH

Training models from scratch with random initialization is a non-convex optimization problem.
Figure 3 shows that auditing models trained from scratch on Purchase100 dataset using input-space
canaries yields weaker audits. We find that input-space canaries are sensitive to model initialization
and the choice of optimizer (DP-Adam in this case). Subsampling further deteriorates the effec-
tiveness of audits with input-space canaries. In this setting, add/remove DP does suffice to protect
against attacks using input-space canaries as shown in Figure 3. However, our proposed crafted gra-
dient canaries still yield strong audits for models trained from scratch with empirical privacy leakage
that closely follows εS (Accounting).

6.3 AUDITING MODELS FINE-TUNED FOR TEXT CLASSIFICATION

We fine-tune a linear layer on top of Sentence-BERT (Reimers & Gurevych, 2019) encoder using
5K samples from Stanford’s Sentiment Treebank (SST-2) dataset (Socher et al., 2013). We present
the results for this experiment in Figure A6. The models are trained using DP-SGD. We find that
gradient-canary-based auditing yields tight results. While the audits using input-space canaries are
not tight, we do observe that the empirical privacy leakage estimated using them does exceed the
privacy guaranteed by add/remove DP.

7 DISCUSSION AND CONCLUSION

We provide empirical evidence which shows that for certain ML models, DP with add/remove ad-
jacency will not offer adequate protection against attacks such as attribute inference at the level
guaranteed by the privacy parameters. This is because the threat model for these attacks mimics
substitute-style attacks. In Figure 2, for DP models are trained using natural datasets, we observe
violations of add/remove DP guarantees with the canaries designed to substitute a target record or a
target record’s gradient in the training dataset. The resulting empirical privacy leakage from such au-
dits closely follows DP upper bound for substitute adjacency. Thus, practitioners seeking attribute or
label privacy using standard DP libraries which default to add/remove adjacency-based accountants
might risk overestimating the protection add/remove DP affords against substitute-style attacks.

We observe that fine-tuned models (as shown in Figure 2) are more prone to privacy leakage with
input-space canaries compared to models trained from scratch (Figure 3). In practice, limited
sensitive data makes DP training from scratch challenging. Tramèr & Boneh (2021) have shown
that given a suitable public pretraining dataset, fine-tuning a pretrained model on sensitive data
can yield higher utility than models trained from scratch. This makes our results with supervised
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fine-tuning important since it reveals that poisoning the fine-tuning datasets once with input-space
canaries is sufficient to cause privacy leakage exceeding add/remove DP bounds, particularly at
large subsampling rates which are often used for improved privacy–utility trade-off (De et al., 2022;
Mehta et al., 2023).
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101 102 103

q = 0.0625
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Adversarial Natural Canary (x , y ) (S5)

Figure 4: Effect of number of training runs R on privacy auditing. For ViT-B-16 models with
final layer fine-tuned on CIFAR10 (T = 500, C = 2.0), we record the effect of change in R on the
empirical privacy leakage ε̂, at the final step of training. The error bars represent ±2 standard errors
around the mean computed over 3 repeats of auditing algorithm. In each repeat, 1/2 of the models
are trained with z and the remaining with z′.

Our methods to audit DP under substitute adjacency are not without limitations. We note that the
efficacy of our proposed input-space canaries depends strongly on the training hyperparameters (see
Appendix A.2). They provide weaker audits at later training steps, especially when the training
problem involves non-convex optimization and a low subsampling rate q. This has been a persistent
issue with input-space canaries as noted by Nasr et al. (2023). Our results show that canaries with
consistent gradient signals and near-saturation gradient norms are most robust to the effect of train-
ing hyperparameters. An interesting direction for future work is to design input-space canaries that
are robust to training hyperparameters and yield tight audits for models trained with real, non-convex
objectives. Our canaries are tailored to audit gradient-based DP algorithms, such as DP-SGD. We
expect the canaries to work well with other gradient-based methods, such as DP-Adam, although
some performance degradation is possible (as seen in Figure 3). However, we do not expect our pro-
posed auditing approach to extend to other DP mechanisms which operate differently. For instance,
label DP (Chaudhuri & Hsu, 2011) is a special case of substitute DP, where you only substitute the
label of an example. Auditing using a crafted mislabeled canary is the same threat model as label
DP. As substitute DP is a generalization of label DP, it will also be valid for auditing a substitute
DP mechanism, even though it might not be optimal for that. While DP-SGD with substitute ac-
counting is a valid label DP mechanism, in practice, label DP is implemented using very different
methods (Ghazi et al., 2021; 2024; Busa-Fekete et al., 2023; Zhao et al., 2025). As such, our auditing
techniques would not be suitable for those methods.

Furthermore, our methods for privacy auditing rely on multiple repeats of the training process to
obtain a high confidence measure of lower bound on ε. In Figure 4, we observe that with limited
number of runs, there is a risk of underestimating the privacy leakage. At low subsampling rate (q),
the continuous upward trend of auditing curves show that the process has not converged, even with
R = 2500 runs. While the current method is costly, it could potentially be optimized by integrating
our proposed canaries with some recent works on auditing using single training run (Steinke et al.,
2023; Mahloujifar et al., 2025). However, as these works note, this might involve a trade-off between
computational efficiency and the strength of the resulting audits.
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Shruti Tople, and Santiago Zanella-Béguelin. SoK: Let the Privacy Games Begin! A Unified
Treatment of Data Inference Privacy in Machine Learning. In 44th IEEE Symposium on Security
and Privacy, SP 2023, pp. 327–345. IEEE, 2023.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership Inference At-
tacks Against Machine Learning Models. In 2017 IEEE Symposium on Security and Privacy, SP
2017, pp. 3–18. IEEE Computer Society, 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computa-
tional Linguistics.

Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. Stochastic gradient descent with dif-
ferentially private updates. In IEEE Global Conference on Signal and Information Processing,
GlobalSIP 2013, Austin, TX, USA, December 3-5, 2013, pp. 245–248. IEEE, 2013.

Thomas Steinke, Milad Nasr, and Matthew Jagielski. Privacy Auditing with One (1) Training Run.
In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023.

Marlon Tobaben, Aliaksandra Shysheya, John Bronskill, Andrew Paverd, Shruti Tople, Santi-
ago Zanella Béguelin, Richard E. Turner, and Antti Honkela. On the Efficacy of Differentially
Private Few-shot Image Classification. Trans. Mach. Learn. Res., 2023, 2023.
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A APPENDIX

A.1 EXPERIMENTAL TRAINING DETAILS

Table A1 details the hyperparameters used for training the models for our experiments. We use Opa-
cus (Yousefpour et al., 2021) to facilitate DP training of models with Pytorch (Paszke et al., 2019).In
our experiments, we vary the seed per run, which ensures randomness in mini-batch sampling and,
in the case of models trained from scratch, also ensures random initialization per run.

We find that adding a canary to the gradients or datasets does not compromise the utility of the
trained models which we measure in terms of their accuracy on the test dataset. Figure A1 compares
the test accuracies for models poisoned using gradient canaries Algorithm 2 and crafted input canary
Algorithm 3 to models trained with the target record. With q = 1, the model “sees” the canary at
each step of training. Despite that, we observe minimal difference in test accuracies averaged across
5 models trained with target record and models trained with either gradient or crafted input canaries.

Table A1: Hyperparameters used for the experiments in the main paper. We use these as default
hyperparameters for a given dataset unless otherwise specified.

Hyperparameters CIFAR10 Purchase100 SST-2
DP Optimizer DP-SGD DP-Adam DP-SGD

Trainable Parameter Count (|θ|) 768 89828 384
Initialization (θ0) Fixed Random Fixed

Subsampling Rate (q) (1.0, 0.25, 0.0625) (0.25, 0.0625) (1.0, 0.25)
Clipping Bound (C) 2.0 5.0 2.0
Training Steps (T ) 500 2500 2500
Learning Rate η 0.001 0.0018 0.01

Common Settings
Loss Function Cross Entropy Loss
Subsampling Poisson

Auditing Runs (R) 2500
δ 10−5

A.2 EFFECT OF TRAINING HYPERPARAMETERS ON AUDITING

Choice of the clipping bound C only affects audits done using input-space canaries significantly.
This is because gradient-space canaries are crafted using Algorithm 2 which ensures that ∥gz∥
and ∥gz′∥ = C (that is, they have near-saturation gradient norms) throughout the training process.
Thus, the crafted gradient canaries are minimally affected by clipping during training. In contrast,
input-space canaries, specifically, crafted input (Algorithm 3) and adversarial natural canaries (Al-
gorithm 5) show high sensitivity to the choice of C. High C corresponds to higher noise added
during DP which affects the distinguishability between target sample and the canary.

In Figure A3, we find that, keeping subsampling rate q fixed (= 0.0625), if we vary the number of
training steps T , it affects the auditing with input-space canaries. For a fixed q, a larger T means
that the canary is “seen” more number of times during training. As we keep the total privacy budget
constant, a larger T for a fixed q also implies an increase in the noise accumulated over intermediate
steps. We observe that the audits done with crafted input canary and adversarial natural canaries
suffer with an increase in T , especially at later training steps.

Similarly, Figure A4 demonstrates that auditing done with input space canaries is affected by the
choice of learning rate. Thus, we find that canaries crafted/ chosen to mimic samples from training
data are susceptible to the training hyperparameters. In auditing, we assume that the adversary has
access to the hyperparameters. However, in practice, the model trainer might choose to keep these
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Figure A1: Auditing with our proposed canaries does not compromise model utility. The figure
depicts test accuracies as observed over the course of training for (a) models trained with gradient
canaries (Algorithm 2), and (b) models trained on crafted input canary (Algorithm 3). The model is
ViT-B-16 pretrained on ImageNet21K with final layer fine-tuned on CIFAR10. We train the model
with q = 1 for 500 steps with ε = 10, δ = 10−5 for substitute DP.

hyperparameters confidential. This means that the audits done using such canaries can underestimate
privacy leakage suggested by formal DP guarantees.
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Figure A2: Effect of clipping bound C on privacy auditing. For ViT-B-16 models with final layer
fine-tuned on CIFAR10 (with q = 1.0, T = 500), varying C causes crafted input and adversarial
natural canary to loose their effectiveness as C increases. Higher C leads to higher per-step noise
added during training. This adversely affects the audits using crafted input and adversarial natural
canary. Crafted gradient and crafted mislabeled canary show relatively less sensitivity to C. We plot
ε for every kth step (k = 25) averaged over 3 repeats of the auditing algorithm. For each repeat, we
train R = 2500 models, 1/2 trained with z and the remaining with z′. The error bars represent ±2
standard errors around the mean computed over 3 repeats of auditing algorithm.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10
S (Accounting)

0

2

4

6

8

10
T = 500

0 2 4 6 8 10
S (Accounting)

T = 2500

S (Accounting)
AR (Accounting)

Crafted Gradient Canaries (S2)
Crafted Input Canary (x , y) (S3)

Crafted Mislabeled Canary (x, y ) (S4)
Adversarial Natural Canary (x , y ) (S5)

Figure A3: Effect of training steps T on privacy auditing. For ViT-B-16 models with final layer
fine-tuned on CIFAR10 (with q = 0.0625, C = 2.0), varying T with subsampling leads to an
increase in the noise accumulated over intermediate steps between successive canary appearances
during training. This most significantly affects auditing with crafted input and adversarial natural
canary. They yield relatively stronger audits for T = 500 but with T = 2500, they loose their
efficacy for later training steps. As the total privacy budget is fixed for T = 500 and T = 2500,
the degradation in audits for input-space canaries can be attributed to the higher per-step noise
associated with larger T . We plot ε for every kth step (k = 25 for T = 500 and k = 125 for
T = 2500) averaged over 3 repeats of the auditing algorithm. For each repeat, we train R = 2500
models, 1/2 trained with z and the remaining with z′. The error bars represent ±2 standard errors
around the mean computed over 3 repeats of auditing algorithm.

A.3 RELATIONSHIP BETWEEN EXPECTED PRIVACY LOSS UNDER SUBSTITUTE DP AND
ADD/REMOVE DP

Typically, the privacy loss under substitute DP is expected to be 2× the privacy loss under
add/remove DP. However, as shown in Equation (4), this holds true when the δ is also scaled appro-
priately when moving from add/remove to substitute DP. If we keep the δ constant for add/remove
and substitute DP, εSR can be > 2εAR, especially when ε is large, that is, when we use a large
subsampling rate (q) and low noise (σ), as shown in Figure A5. We also show that this ratio is
dependent on changes in q and σ.

A.4 ADDITIONAL RESULTS
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Figure A4: Effect of learning rate η on privacy auditing. For ViT-B-16 models with final layer
fine-tuned on CIFAR10 (with q = 1.0, T = 500), change in η reduces the effectiveness of audits
with inpute-space canaries. We plot ε for every kth step (k = 25) averaged over 3 repeats of
the auditing algorithm. For each repeat, we train R = 2500 models, 1/2 trained with z and the
remaining with z′. The error bars represent ±2 standard errors around the mean computed over 3
repeats of auditing algorithm.
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Figure A5: Relationship between εS and εAR For varying Subsampling Rate (q) and Noise
(σ). The relationship between εS and εAR as defined by Equation (4) is expected to hold when
δS = (1 + eεAR)δAR. However, for a fixed δS = δAR = 10−5, we find that εS can be > 2εAR,
especially for large q and low σ.
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Figure A6: Auditing Models Trained For Text Classification. We audit Sentence-BERT models
with final linear layer fine-tuned on SST-2 dataset (C = 2.0, T = 2500). We find that using our
canaries, we can extract privacy leakage from these models which may exceed the privacy guaran-
teed by add/remove DP but is in line with the guarantees of substitute DP. We plot ε for every kth
step (k = 125) of training. For each repeat, we train R = 2500 models, 1/2 trained with z and the
remaining with z′.
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