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Abstract

Embedding tables are used by machine learning systems to work with categorical
features. In modern Recommendation Systems, these tables can be very large,
necessitating the development of new methods for fitting them in memory, even
during training. We suggest Clustered Compositional Embeddings (CCE) which
combines clustering-based compression like quantization to codebooks with dy-
namic methods like The Hashing Trick and Compositional Embeddings [Shi et al.,
2020]. Experimentally CCE achieves the best of both worlds: The high com-
pression rate of codebook-based quantization, but dynamically like hashing-based
methods, so it can be used during training. Theoretically, we prove that CCE is
guaranteed to converge to the optimal codebook and give a tight bound for the
number of iterations required.

1 Introduction

Neural networks can efficiently handle various data types, including continuous, sparse, and sequential
features. However, categorical features present a unique challenge as they require embedding a
typically vast vocabulary into a smaller vector space for further calculations. Examples of these
features include user IDs, post IDs on social networks, video IDs, and IP addresses commonly
encountered in Recommendation Systems.

In some domains where embeddings are employed, such as Natural Language Processing [Mikolov
et al., 2013], the vocabulary can be significantly reduced by considering “subwords” or “byte pair
encodings”. In Recommendation Systems like Matrix Factorization or DLRM (see Figure 2) it is
typically not possible to factorize the vocabulary this way, leading to large embedding tables that
demand hundreds of gigabytes of GPU memory [Naumov et al., 2019]. This necessitates splitting
models across multiple GPUs, increasing cost and creating a communication bottleneck during both
training and inference.

The traditional solution is to hash the IDs down to a manageable size using the Hashing Trick [Wein-
berger et al., 2009], accepting the possibility that unrelated IDs may share the same representation.
Excessively aggressive hashing can impair the model’s ability to distinguish its inputs, as it may mix
up unrelated concepts, ultimately reducing model performance.

Another option for managing embedding tables is quantization. This typically involves reducing the
precision to 4 or 8 bits or using multi-dimensional methods like Product Quantization and Residual
Vector Quantization, which rely on clustering (e.g., K-means) to identify representative “code words”
for each original ID. (See Gray and Neuhoff [1998] for a survey of quantization methods.) For
instance, vectors representing “red”, “orange”, and “blue” may be stored as simply “dark orange”
and “blue”, with the first two concepts pointing to the same average embedding. See Section 1 for
∗Equal contribution.
†Work done mostly at Probability at Meta.
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(a) Single iteration of CCE: (a) Starting from a ran-
dom embedding table, each ID is hashed to a vector
in each of 2 small tables. (b) During training, the em-
bedding of an ID is taken to be the mean of the two
referenced code words. (c) After training for an epoch,
the vectors for all (or a sample of) the IDs are computed
and clustered. This leaves a new small table in which
similar IDs are represented by the same vector. (d)
We can choose to combine the cluster centers with a
new random table (and new hash function), after which
the process can be repeated for an increasingly better
understanding of which ID should be combined.
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(b) CCE for Least Squares: The least squares prob-
lem is to find the matrix T that minimizes ‖XT−Y ‖F .
To save space we may use codebook quantization, that
is factorize T ≈ HM , where H is a sparse Boolean
matrix, and M is a small dense matrix. If we already
know T this is easy to do using the K-means algorithm,
but if T is too large to store in memory, we can find the
compressed form directly using CCE, which we prove
finds the optimal H and M .
For the plot, we sampled X ∈ R104×103 and Y ∈
R104×10. We ran CCE and compared it with the opti-
mal solution of first T and then factorised it with either
one or two 1s per row in H .

Figure 1: Clustered Compositional Embeddings is a simple algorithm which you run interspersed
with your normal model training, such as every epoch of SGD. While the theoretical bound (and the
least squares setting shown here) requires a lot of iterations for perfect convergence, in practice we
get substantial gains from running 1-6 iterations.

an example. Clustering also plays a crucial role in the theoretical literature on vector compression
[Indyk and Wagner, 2022]. However, a significant drawback of these quantization methods is that the
model is only quantized after training, leaving memory utilization during training unaffected3

Recent authors have explored more advanced uses of hashing to address this challenge: Tito Svenstrup
et al. [2017], Shi et al. [2020], Desai et al. [2022], Yin et al. [2021], Kang et al. [2021]. A common
theme is to employ multiple hash functions, enabling features to have unique representations, while
still mapping into a small shared parameter table. Although these methods outperform the traditional
Hashing Trick in certain scenarios, they still enforce random sharing of parameters between unrelated
concepts, introducing substantial noise into the subsequent machine learning model has to overcome.

Clearly, there is an essential difference between “post-training” compression methods like Product
Quantization which can utilize similarities between concepts and “during training” techniques
based on hashing, which are forced to randomly mix up concepts. This paper’s key contribution
is to bridge that gap: We present a novel compression approach we call “Clustered Compositional
Embeddings” (or CCE for short) that combines hashing and clustering while retaining the benefits
of both methods. By continuously interleaving clustering with training, we train recommendation
models with performance matching post-training quantization, while using a fixed parameter count
and computational cost throughout training, matching hashing-based methods.

In spirit, our effort can be likened to methods like RigL [Evci et al., 2020], which discovers the wiring
of a sparse neural network during training rather than pruning a dense network post-training. Our
work can also be seen as a form of “Online Product Quantization” Xu et al. [2018], though prior work

3Reducing the precision to 16-bit floats is often feasible during training, but this work aims for memory
reductions much larger than that.
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focused only on updating code words already assigned to the concept. Our goal is more ambitious:
We want to learn which concepts to group together without ever knowing the “true” embedding for
the concepts.

Why is this hard? Imagine you are training your model and at some point decide to use the same
vector for IDs i and j. For the remaining duration of the training, you can never distinguish the two
IDs again, and thus any decision you make is permanent. The more you cluster, the smaller your
table gets. But we are interested in keeping a constant number of parameters throughout training,
while continuously improving the clustering.

In summary, our main contributions are:

• A new dynamic quantization algorithm (CCE) that combines clustering and sketching. Particularly
well suited to optimizing the compression of embedding tables in Recommendation Systems.

• We use CCE to train the Deep Learning Recommendation System (DLRM) to baseline performance
with less than 50% of the table parameters required by the previous state of the art, and a wobbling
11,000 times fewer parameters than the baseline models without compression.

• Using slightly more parameters, but still significantly less than the baseline, we can also improve
the Binary Cross Entropy by 0.66%. Showing that CCE helps combat overfitting problems.

• We prove theoretically that a version of our method for the linear least-squares problem always suc-
ceeds in finding the optimal embedding table in a number of steps logarithmic in the approximation
accuracy desired.

An implementation of our methods and related work is available at github.com/thomasahle/cce.

2 Background and Related Work

Figure 2: Typical Recommenda-
tion System Architecture: The
DLRM model Naumov et al. [2019]
embeds each categorical feature
separately and combines the result-
ing vectors with pair-wise dot prod-
ucts. Other architectures use dif-
ferent interaction layers or a single
embedding table for all categorical
features, but the central role of the
embedding table is universal.
(Picture credit: Nvidia).

We show how most previous work on table compression can
be seen in the theoretical framework of linear dimensionality
reduction. This allows us to generalize many techniques and
guide our intuition on how to choose the quality and number
of hash functions in the system.

We omit standard common preprocessing tricks, such as weight-
ing entities by frequency, using separate tables and precision
for common vs uncommon elements, or completely pruning
rare entities. We also don’t cover the background of “post-
training” quantization, but refer to the survey by Gray and
Neuhoff [1998].

Theoretical work by Li et al. [2023] suggests “Learning to
Count sketch”, but these methods require a very large number of
full training runs of the model. We only consider methods that
are practical to scale to very large Recommendation Systems.
See also Indyk and Wagner [2022] on metric compression.

2.1 Embedding Tables as Linear Maps

An embedding table is typically expressed as a tall skinny
matrix T ∈ Rd1×d2 , where each ID i ∈ [d1] is mapped to the
i-th row, T [i]. Alternatively, i can be expressed as a one-hot
row-vector ei ∈ {0, 1}d1 in which case T [i] = eiT ∈ Rd2 .

Most previous work in the area of table compression is based
on the idea of sketching: We introduce a (typically sparse)
matrixH ∈ {0, 1}d1×k and a dense matrixM ∈ Rk×d2 , where
k << d1, and take T = HM . In other words, to compute T [i]
we compute (eiH)M . Since H and ei are both sparse, this requires very little memory and takes only
constant time. The vector eiH ∈ Rk is called “the sketch of i” and M is the “compressed embedding
table” that is trained with gradient descent.
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In this framework, we can also express most other approaches to training-time table compression.
Some previous work has focused on the “problem” of avoiding hash collisions, which intuitively
makes sense as they make the model completely blind to differences in the colliding concepts.
However, from our experiments, hashing does nearly as well as said proposed methods, suggesting
that a different approach is needed. Sketching is a more general way to understand this.

The Hashing Trick [Weinberger et al., 2009] is normally described by a hash function h : [d1]→ [k],
such that i is given the vector M [h(i)], where M is a table with just k << d1 rows. Alternatively, we
can think of this trick as multiplying ei with a random matrix H ∈ {0, 1}d1×k which has exactly one
1 in each row. Then the embedding of i is M [h(i)] = eiHM , where HM ∈ Rd1×d2 .

Hash Embeddings [Tito Svenstrup et al., 2017] map each ID i ∈ V to the sum of a few table rows.
For example, if i is mapped to two rows, then its embedding vector is v = M [h1(i)] + M [h2(i)].
Using the notation ofH ∈ {0, 1}m×n, one can check that this corresponds to each row having exactly
two 1s. In the paper, the authors also consider weighted combinations, which simply means that the
non-zero entries of H can be some real numbers.

Compositional Embeddings (CE or “Quotient Remainder”, Shi et al., 2020), define h1(i) = bi/pc
and h2(i) = i mod p for integer p, and then combines T [h1(i)] and T [h2(i)] in various ways.
As mentioned by the authors, this choice is, however, not of great importance, and more general
hash functions can also be used, which allows for more flexibility in the size and number of tables.
Besides using sums, like Hash Embeddings, the authors propose element-wise multiplication4

and concatenation. Concatenation [T [h1(i)], T [h2(i)]] can again be described with a matrix H ∈
{0, 1}d1×k where each row has exactly one 1 in the top half of H and one in the bottom half of H , as
well as a block diagonal matrix M . While this restricts the variations in embedding matrices T that
are allowed, we usually compensate by picking a larger m, so the difference in entropy is not much
different from Hash Embeddings, and the practical results are very similar as well.

ROBE embeddings [Desai et al., 2022] are essentially Compositional Embeddings with concatena-
tion as described above, but add some more flexibility in the indexing from the ability of pieces to
“wrap around” in the embedding table. In our experiments, ROBE was nearly indistinguishable from
CE with concatenation for large models, though it did give some measurable improvements for very
small tables.

Deep Hashing Embeddings (DHE, Kang et al., 2021) picks 1024 hash functions h1, . . . , h1024 :
[d1] → [−1, 1] and feed the vector (h1(i), . . . , h1024(i)) into a multi-layer perceptron. While the
idea of using an MLP to save memory at the cost of larger compute is novel and departs from the
sketching framework, the first hashing step of DHE is just sketching with a dense random matrix
H ∈ [−1, 1]d1×1024. While this is less efficient than a sparse matrix, it can still be applied efficiently
to sparse inputs, ei, and stored in small amounts of memory. Indeed in our experiments, for a fixed
parameter budget, the fewer layers of the MLP, the better DHE performed. This indicates to us that
the sketching part of DHE is still the most important part.

Tensor Train [Yin et al., 2021] doesn’t use hashing, but like CE it splits the input in a deterministic
way that can be generalized to a random hash function if so inclined. Instead of adding or concatenat-
ing chunks, Tensor Train multiplies them together as matrices, which makes it not strictly a linear
operation. However, like DHE, the first step in reducing the input size is sketching.

Learning to Collide In recent parallel work, Ghaemmaghami et al. [2022] propose an alternate
method for learning a clustering based on a low dimensional embedding table. This is like a
horizontal sketch, rather than a vertical, which unfortunately means the potential parameter savings is
substantially smaller.

Our method introduces a novel approach to dynamic compression by shifting from random sketching
to learned sketching. This process can be represented as eiHM , where H is a sparse matrix and M
is a small dense matrix. The distinguishing factor is that we derive H from the data, instead of relying
on a random or fixed matrix. This adaptation, both theoretically and empirically, allows learning the
same model using less memory.

4While combining vectors with element-wise multiplication is not a linear operation, from personal commu-
nication with the authors, it is unfortunately hard to train such embeddings in practice. Hence we focus on the
two linear variants.
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(a) The Hashing Trick:
Also known as Count
Sketch, each ID is hashed
to one location in a table
(here with 1000 rows) and
it is assigned the embed-
ding vector stored at the lo-
cation. Many IDs are likely
to share the same vector.
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(b) Hash Embeddings:
Each ID is hashed to two
rows, one per table, and
its embedding vector is as-
signed to be the sum of
those two vectors. Here,
we use two separate tables
unlike in Tito Svenstrup
et al. [2017].
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(c) ROBE: Similar to CE
with concatenation, but in-
stead of using separate
columns, it uses a contin-
uous array from which the
(in this case dim=4) pieces
are picked. The pieces may
even overlap.
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(d) Deep Hash Em-
beddings: Computes a
weighted sum of all the
table entries, where the
weights come from hash-
ing the input 1000 times
to [−1, 1]. The produced
(hidden) vector is then
sent through an MLP for
further refinement.
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(e) CE with concatenation: In the hashing version
of compositional embeddings (CE), each ID is hashed
to a location in each of, say, 4 different tables. The
four vectors stored there are concatenated into the final
embedding vector. Given the large number of possible
combinations (here 10004), it is unlikely that two IDs
get assigned the exact same embedding vector, even if
they may share each part with some other IDs.
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(f) Clustered CE: We can combine the sum hashing
method of Tito Svenstrup et al. [2017] with the concate-
nation method of Shi et al. [2020]. Each ID then gets
assigned a vector that is the concatenation of smaller
sums. This is enhanced with the clustering idea shown
in Section 1: In each of the four blocks, we apply
clustering every epoch, setting the results in the green
tables, and replacing the hash functions in the blue
tables with new random values.

Figure 3: The evolution of hashing-based methods for embedding tables. The Hashing Trick and
Hash Embeddings shown at the top, side by side with an equal amount of parameters. Next we
introduce the idea of splitting the space into multiple concatenated subspaces. This is a classic idea
from product quantization and reminiscent of multi-head attention in transformers. Finally in CCE
we combine both methods in a way that allows iterative improvement using clustering.
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3 Sparse and Dense CCE

The goal of this section is to give the background of Theorem 3.1, where we prove that CCE converges
to the optimal assignments we would get from training the full embedding tables without hashing and
clustering those.

We can’t hope to prove this in a black box setting, where the recommendation model on top of
the tables can be arbitrary, since there are pathological functions where only a full table will work.
Instead, we pick a simple linear model, where the data is given by a matrix X ∈ Rn×d1 and we want
to find a matrix T that minimizes the sum of squares, ‖XT − Y ‖2F =

∑
i,j((XT )i,j − Yi,j)2.

We give two versions of the algorithm, a sparse method, which is what we build our experimental
results on; and a dense method which doesn’t use clustering, and replaces the Count Sketch with
a dense normal distributed random matrix for which we prove optimal convergence. The dense
algorithm itself is interesting since it constitutes a novel approximation algorithm for least squares
regression with lower memory use.

Algorithm 1 Dense CCE for Least Squares

Require: X ∈ Rn×d1 , Y ∈ Rn×d2 , k ∈ N
1: H0 = 0 ∈ Rd1×2k
2: M0 = 0 ∈ R2k×d2

3: for i = 0, 1, . . . do
4: Ti = HiMi

5: N ∼ N(0, 1)d1×k

6: Hi+1 = [Ti | N ]
7: Mi+1 = arg minM ‖XHi+1M − Y ‖2F
8: end for

Algorithm 2 Sparse CCE for Least Squares

Require: X ∈ Rn×d1 , Y ∈ Rn×d2 , k ∈ N
1: H0 = 0 ∈ Rd1×2k . Initialize assignments
2: M0 = 0 ∈ R2k×d2 . Initialize codebook
3: for i = 0, 1, . . . do
4: Ti = HiMi ∈ Rd1×d2
5: A = kmeans(Ti) ∈ {0, 1}d1×k
6: C ∼ countsketch() ∈ {−1, 0, 1}d1×k
7: Hi+1 = [A | C] ∈ Rd1×2k
8: Mi+1 = arg minM ‖XHi+1M − Y ‖2F
9: end for

In the Appendix we show the following theorem guaranteeing the convergence of Algorithm 1:
Theorem 3.1. Assume d1 > k > d2 and let T ∗ ∈ Rd1×d2 be the matrix that minimizes ‖XT ∗−Y ‖2F ,
then Ti = HiMi from Algorithm 1 exponentially approaches the optimal loss in the sense

E[‖XTi − Y ‖2F ] ≤ (1− ρ)ik‖XT ∗‖2F + ‖XT ∗ − Y ‖2F ,
where ρ = ‖X‖2−2/‖X‖2F ≈ 1/d1 is the smallest singular value of X squared divided by the sum of
singular values squared.

We also show how to modify the algorithm to get an improved bound of (1− 1/d1)ik by conditioning
the random part H by the eigenspace of X . This means that after i = O(d1k log(1/ε)) iterations we
have a 1 + ε approximation to the optimal solution. Note that the standard least squares problem can
be solved in O(nd1d2) time, but one iteration of our algorithm only takes O(nkd2) time. Repeating
it for d1/k iterations is thus no slower than the default algorithm for the general least squares problem,
but uses less memory.

Some notes about Algorithm 2: In line 4 we computeHM ∈ Rd1×d2 which may be very large. (After
all the main goal of CCE is to avoid storing this full matrix in memory.) Luckily K-means in practice
works fine on just a sample of the full dataset, which is what we do in the detailed implementation in
Section 4.2.

In line 5, note that K-means normally returns both a set of cluster assignments and cluster centroids.
For our algorithm we only need the assignments. We write those as the matrix A which has Aid,j = 1
if id is assigned to cluster j and 0 otherwise. In the Appendix (Figure 5) we show how A is a sparse
approximation to T ’s column space. Using the full, dense column space we’d recover the dense
algorithm, Algorithm 1.

In line 6, countsketch() is the distribution of {−1, 0, 1}d1×k matrices with one non-zero per row.
A matrix C is sampled based on hash functions hi : [d1] → [k] and si : [d1] → {−1, 1} such that
Cj,` = si(j) if hi(j) = ` and 0 otherwise. 5 We see that with A and C sparse, XHM can be
computed efficiently.

5We can ignore the sign, ±1 in most models if M has mean 0. See Charikar et al. [2002].
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(a) Best of 10 Epochs Test Loss on Criteo Kaggle. We trained DLRM on the Criteo Kaggle dataset with
different compression algorithms. Each of 27 categorical features was given its own embedding table, where we
limited the number of parameters in the largest table as shown in the x-axis. Out of 10 epochs, we did early
stopping at the minimum validation loss, plotting the test loss. We did independent repetitions with 3 seeds each,
plotting the min, max and mean test losses. Binary Cross-Entropy was used as both the training and test loss.
We also evaluated the AUC in Appendix G, but the results were indistinguishable. The Full Embedding Table
used up to 16 · 107 parameters per table, as each categorical value is mapped to a unique embedding vector.
This model over-fits immediately if trained for more than 1 epoch, which is why it does poorly compared to
more parameter-restricted methods. For Clustered Compositional Embeddings we ran clustering once every
epoch for the first 6 epochs, unless stopping earlier. Product Quantization, being a post-training quantization
method, is never able to do better than the baseline model it is trained on. We tried fine-tuning the tables after
PQ, but this approach immediately overfitted and gave terrible results. Interestingly this suggests CCE works as
a regularization method for PQ.
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(b) Kaggle dataset, 1 epoch: Previous work, like Shi
et al. [2020] only trained each method for one epoch,
following DLRM, which did this to avoid over-fitting
the baseline model. To compare with these results, we
ran CCE clustering after 1/4 and 1/2 of an epoch. In
this setting, the hashing-based methods were not able
to compete with the baseline and product quantization,
but CCE was able to do slightly better. Allowing a
300× parameter reduction.
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(c) Terabyte dataset, 1 epoch: We ran similar experi-
ments on Criteo Terabyte dataset, which was expensive
enough that we could only perform one repetition of
each algorithm. Like on the Kaggle dataset, running
for just 1 epoch is not enough to show an improvement
in BCE over the baseline, but we are still able to save
space. Curiously Product Quantization was basically
no better than sketch-based methods for this dataset,
which may be another reason CCE didn’t perform great
either.

Figure 4: CCE also improves models even when trained for just one epoch. This shows useful
information is available from clustering even when only parts of the data have been seen.
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Table 1: Memory Reduction Rates Across all Datasets. For each algorithm, dataset and epoch
limit we measured the necessary number of parameters to reach baseline BCE. The compression
ratios with ranges are estimated using degree 1 and 2 polynomial extrapolation. We can compare
these results with reported compression rates from Desai et al. [2022] (ROBE) which gets 1000×
with multi epoch training; [Yin et al., 2021] (Tensor Train) which reports a 112× reduction at 1 epoch
on Kaggle; and Yin et al. [2021] which reports a 16× reduction at 1 epoch with “Mixed Dimension
methods” on Kaggle.

Method Dataset Epochs Embedding Compression

CCE (This Paper) Criteo Kaggle ≤ 10 8,500×
CE with Concatenation Criteo Kaggle ≤ 10 3,800×
The Hashing Trick Criteo Kaggle ≤ 10 4,600×
Deep Hash Embeddings Criteo Kaggle ≤ 10 1,300×
CCE (This Paper) Criteo Kaggle 1 212×
CE with Concatenation Criteo Kaggle 1 127− 155×
The Hashing Trick Criteo Kaggle 1 78− 122×
Deep Hash Embeddings Criteo Kaggle 1 7− 25×
CCE (This Paper) Criteo TB 1 101×
CE with Concatenation Criteo TB 1 25− 48×
The Hashing Trick Criteo TB 1 23− 32×
Deep Hash Embeddings Criteo TB 1 2− 6×

4 Experiments and Implementation Details

Our primary experimental finding, illustrated in Table 1 and Figure 4a, indicates that CCE enables
training a model with Binary Cross Entropy matching a full table baseline, using only a half the
parameters required by the next best compression method. Moreover, when allocated optimal
parameters and trained to convergence, CCE can yield a not insignificant 0.66% lower BCE.

4.1 Experimental Setup

In our experiments, we adhered to the setup from the open-source Deep Learning Recommendation
Model (DLRM) by Naumov et al. [2019], including the choice of optimizer (SGD) and learning
rate. The model uses both dense and sparse features with an embedding table for each sparse feature.
We modified only the embedding table portion of the DLRM code. We used two public click log
datasets from Criteo: the Kaggle and Terabyte datasets. These datasets comprise 13 dense and 26
categorical features, with the Kaggle dataset consisting of around 45 million samples over 7 days,
and the Terabyte dataset containing about 4 billion samples over 24 days.

We ran the Kaggle dataset experiments on a single A100 GPU. For the Terabyte dataset experiments,
we ran them on two A100 GPUs using model parallelism. This was done mainly for memory reasons.
With this setup, training for one epoch on the Kaggle dataset takes around 4 hours, while training for
one epoch on the Terabyte dataset takes around 4 days. There was not a big difference in training time
between the algorithms we tested. In total we used about 11,000 GPU hours for all the experiments
across 5 algorithms, 3 seeds, 10 epochs and 9 different parameter counts.

4.2 CCE Implementation Details

In the previous section we gave pseudo code for “Sparse CCE for Least Squares” (Algorithm 2). In a
general model, an embedding table can be seen as a data-structure with two procedures. Below we
give pseudo-code for an embedding table with vocabulary [d1] and output dimension d2, using 2kd2
parameters. The CCE algorithm is applied to each of c columns, as mentioned in Figure 3f.

The value c = 4 was chosen to match Shi et al. [2020], but larger values are generally better, as long
as the hi functions don’t become too expensive to store. See Appendix E. The random hash functions
h′i are very cheap to store using universal hashing. See Appendix D. The number of calls to Cluster
was determined by grid search. See Appendix F for the effect of more or less clustering.
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Algorithm 3 Clustered Compositional Embeddings with c columns and 2k rows

1: class CCE:
2: method Initialize:
3: for i = 1 to c do:
4: hi, h

′
i ← i.i.d. ∼ random functions from [d1] to [k] . H in Algorithm 2

5: Mi,M
′
i ← i.i.d. ∼ N(0, 1)k×d2/c

6:
7: method GetEmbedding(id):
8: return CONCAT(Mi[hi(id)] +M ′i [h

′
i(id)] for i = 1 to c)

9:
10: method Cluster(items):
11: for i = 1 to c do:
12: T ←

[
Mi[hi(id)] +M ′i [h

′
i(id)] for id ∈ [d1]

]
. See discussion below

13: centroids, assignments← K-MEANS(T ) . Find k clusters and assign T to them
14: hi ← assignments
15: Mi ← centroids
16: h′i ← random function from [d1] to [k]
17: M ′i ← 0k×d2/c

In line 12 we likely don’t want to actually compute the embedding for every id in the vocabulary, but
instead use mini batch K-Means with oracle access to the embedding table. In practice we follow the
suggestion from FAISS K-means[Johnson et al., 2019] and just sample 256k ids from [d1] and run
K-means only for this subset. The assignments from id to nearest cluster center are easy to compute
for the full vocabulary after running K-means. The exact number of samples per cluster didn’t have a
big impact on the final performance of CCE.

5 Conclusion

We have shown the feasibility of compressing embedding tables at training time using clustering.
Our method, CCE, outperforms the state of the art on the largest available recommendation data
sets. While there is still work to be done in expanding our theoretical understanding and testing the
method in more situations, we believe this is an exciting new paradigm for dynamic sparsity in neural
networks and recommender systems in particular.

Previous studies have presented diverging views regarding the feasibility of compressing embedding
tables. Our belief is that Figure 4a, Figure 4b, and Figure 4c shed light on these discrepancies.
At standard learning rates and with one epoch of training, it’s challenging to make significant
improvements over the DLRM baseline, corroborating the findings of Naumov et al. [2019]. However,
upon training until convergence, it’s possible to achieve parity with the baseline using a thousand times
fewer parameters than typically employed, even with the straightforward application of the hashing
trick. Nevertheless, in the realm of practical recommendation systems, training to convergence isn’t
a common practice. Our experiment, as illustrated in Figure 4a, proposes a potential reason: an
excessive size of embedding tables may lead to overfitting for most methods. This revelation is
startling, given the prevailing belief that “bigger is always better” and that ideal scenarios should allow
each concept to have its private embedding vectors. We contend that these experimental outcomes
highlight the necessity for further research into overfitting within DLRM-style models.

In this paper we analyzed only the plain versions of each algorithm. There are a number of practical
and theoretical improvements one may add. All methods are naturally compatible with float16 and
float8 reduced or mixed precision. The averaging of multiple embeddings may even help smooth
out some errors. It is also natural to consider pruning the vocabularies. In particular in an offline
setting we may remove very rare values, or give them a smaller weight in the clustering an averaging.
However, in an online setting this kind of pruning is harder to do, and it is easier to rely on hash
collisions and SGD to ignore the unimportant values. In our experiments we used 27 embedding
tables, one for each categorical feature. A natural compression idea is to map all features to the same
embedding table (after making sure values don’t collide between features.) We didn’t experiment
with this, but it potentially could reduce the need for tuning embedding table sizes separately. A later
paper by Coleman et al. [2023] report good results with this method. For things we tried, but didn’t
work, see Appendix A.
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Reproducibility

The backbone recommendation model, DLRM by Naumov et al. [2019], has an open-source PyTorch
implementation available on Github which includes an implementation of CE. For CCE you need a
fast library for K-means. We recommend the open-sourced implementation by Johnson et al. [2019]
for better performance, but you can also use the implementation in Scikit-learn [Pedregosa et al.,
2011]. The baseline result should be straightforward to reproduce as we closely follow the instructions
provided by Naumov et al. [2019]. For the CE methods, we only need to change two functions in
the code: create_emb and apply_emb. We suggest using a class for each CE method; see Figure 3.
For the random hash function, one could use a universal hash function or numpy.random.randint.

Measuring the Embedding Compression factor The most important number from our experi-
mental section is the “Embedding Compression” factor in Table 1. We measure this by training the
model with different caps on of parameters in the embedding tables (See e.g. the x-axis in Figure 4a.
E.g. if the Criteo Kaggle dataset has categorical features with vocabularies of sizes 10, 100 and 106,
we try e.g. to cap this at 8000, using a full embedding table for the small features, and a CCE table
with 8000/16 = 500 rows (since each row has 16 parameters). This corresponds to a compression
rate of (10 + 100 + 106)/(10 + 100 + 500) ≈ 1639.5. Or if we measure only the compression of
the largest table, 106/500 = 2000. Unfortunately there’s a discrepancy in the article, which we only
found after the main deadline, that uses the second measure in the introduction (hence the number
11,000x compression) where as Figure 4a uses the first measure (and thus the lower number 8,5000x).

For the experiments where we only train for 1 epoch, some methods never reach baseline BCE
within the number of parameters we test. Hence the Compression Rates we report are based on
extrapolations. For each algorithm we report a range, e.g. 127-155x for CE with Concatenation on
Criteo Kaggle 1 epoch. Since the loss graphs tend to be convex, the upper bound (155x) is based on a
linear interpolation (being optimistic about when the method will hit baseline BCE) and the lower
bound (127x) is based on a quadratic interpolation, which only intersects the baseline at a higher
parameter count.

K-means For the K-means from FAISS, we use max_points_per_centroid=256 and niter=50.
The first parameter sub-samples the number of points to 256 times the number of cluster centroids (k),
and is the recommended rate after which “no benefit is expected” according to the library maintainers.
In practice we predict the right value will depend on the dimensionality of your data, so using the
split into lower dimensional columns is beneficial. For niter we initially tried a larger value (300), but
found it didn’t improve the final test loss. We found on Kaggle for PQ, niter=50, BCE=0.455540 and
niter=300, BCE=0.455537. For CCE (single epoch, single clustering at half an epoch), niter=50 gave
BCE=0.45928 and niter=300 gave BCE=0.45905, so a very slight improvement, but not enough to
make up for the extra training time.

Datasets For our experiments, we sub-sampled an eighth of the Terabyte dataset and pre-hashed
them using a simple modulus to match the categorical feature limit of the Kaggle dataset. For both
Kaggle and Terabyte dataset, we partitioned the data from the final day into validation and test sets.
Using the benchmarking setting of the DLRM code, the Kaggle dataset has around 300,000 batches
while the Terabyte dataset has around 2,000,000 batches.

Early stopping Early stopping is used when running the best of 10 epochs on the Kaggle dataset.
We measure the performance of the model in BCE every 50,000 batches (around one-sixth of one
epoch) using the validation set. If the minimum BCE of the previous epoch is less than the minimum
BCE of the current epoch, we early stop.

Deep Hash Embeddings We follow Kang et al. [2021] in using a fixed-width MLP with Mish
activation. However, DHE is only described in one version in the paper: 5 layers of 1024 nodes
per layer. For our experiments, we need to initialize DHE with different parameter budgets. We
found that in general, DHE performs better with fewer layers when the number of parameters is fixed.
However, we cannot use just a single layer, since that would be a linear embedding table, not an MLP.
As a compromise, we fix the number of hidden layers to 2 and set the number of hashes to be the
same as the dimension of the hidden layers.
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For example, if we were allowed to use 64, 000 parameters with an embedding dimension of 64, then
by solving a quadratic equation we get that the number of hashes and the dimension of the hidden
layers are both 136. This gives us

n_hashes · hidden_dim + 2 ∗ hidden_dim2 + hidden_dim · embedding_dim = 64192

parameters.
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A What didn’t work

Here are the ideas we tried but didn’t work at the end.

Using multiple helper tables It is a natural idea use more than one helper table. However, in our
experiments, the effect of having more helper tables is not apparent.

Circular clustering Based on the CE concat method, the circular clustering method would use
information from other columns to do clustering. However, the resulting index pointer
functions are too similar to each other, meaning that this method is essentially the hashing
trick. We further discuss this issue in Appendix H.

Continuous clustering We originally envisioned our methods in a tight loop between training and
(re)clustering. It turned out that reducing the number of clusterings didn’t impact perfor-
mance, so we eventually reduced it all the way down to just one. In practical applications,
with distribution shift over time, doing more clusterings may still be useful, as we discuss in
Section 3.

Changing the number of columns In general, increasing the number of columns leads to better
results. However the marginal benefits quickly decrease, and as the number of hash functions
grow, so does the training and inference time. We found that 4 columns / hash-functions
was a good spot.

Residual vector quantization The CCE method combines Product Quantization (PQ) with the CE
concat method. We tried combining Residual vector quantization (RVQ) with the Hash
Embeddings method from Tito Svenstrup et al. [2017]. This method does not perform
significantly better than the Hash Embeddings method.

Seeding with PQ We first train a full embedding table for one epoch, and then do Product Quantiza-
tion (PQ) on the table to obtain the index pointer functions.
We then use the index pointer functions instead of random hash functions in the CE concat
method. This method turned out performing badly: The training loss quickly diverges from
the test loss after training on just a few batches of data.

Here are some variations of the CCE method:

Earlier clustering We currently have two versions of the CCE method: CCE half, where clustering
happens at the middle of the first epoch, and CCE, where clustering happens at the end of
the first epoch. We observe that when we cluster earlier, the result is slightly worse. Though
in our case the CCE half method still outperforms the CE concat method.

More parameters before clustering The CCE method allows using two number of parameters, one
in Step 1 where we follow the CE hybrid method to get a sketch, and one in Step 3 where we
follow the CE concat method. We thought that by using more parameters at the beginning,
we would be able to get a better set of index pointer tables. However, the experiment
suggested that the training is faster but the terminal performance is not significantly better.

Smarter initialization after clustering In Algorithm 3 we initialize Mi with the cluster centroids
from K-means and the “helper table” M ′i ← 0. We could instead try to optimize M ′i to
match the residuals of T as well as possible. This could reduce the discontinuity during
training more than initializing to zeros. However, we didn’t see a large effect in either
training loss smoothness or the ultimate test score.
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B Proof of the main theorem

0.417 0.720
0.000 0.302
0.147 0.092
0.186 0.346
0.397 0.539
0.419 0.685
0.204 0.878

 ≈


1 0 0 0
0 1 0 0
0 0 0 1
0 1 0 0
1 0 0 0
1 0 0 0
0 0 1 0


0.411 0.648

0.093 0.324
0.204 0.878
0.147 0.092



Figure 5: K-means as matrix factorization. A central part of the analysis of CCE is the simple
observation that K-means factors a matrix into a tall sparse matrix and a small dense one. In other
words, it finds a sparse approximation the column space of the matrix.
Let’s remind ourselves of the “Dense CCE algorithm” from Section 3: Given X ∈ Rn×d1 and
Y ∈ Rn×d2 , pick k such that n > d1 > k > d2. We want to solve find a matrix T ∗ of size d1 × d2
such that ‖XT ∗ − Y ‖F is minimized – the classical Least Squares problem. However, we want to
use memory less than the typical nd21. We thus use this algorithm:

Dense CCE Algorithm: Let T0 = 0 ∈ Rd1×d2 . For i = 1 to m:

Sample Gi ∼ N(0, 1)d1×(k−d2);

Compute Hi = [Ti−1 | Gi] ∈ Rd1×k

Mi = arg inf
M
‖XHiM − Y ‖2F ∈ Rk×d2 .

Ti = HiMi

We will now argue that Tm is a good approximation to T ∗ in the sense that ‖XTm − Y ‖2F is not
much bigger than ‖XT ∗ − Y ‖2F .

Let’s consider a non-optimal choice of Mi first. Suppose we set Mi =
[
Id2
M ′i

]
where M ′i is chosen

such that ‖HiMi − T ∗‖F is minimized. By direct multiplication, we have HiMi = Ti−1 +GiM
′
i .

Hence in this case minimizing ‖HiMi − T ∗‖F is equivalent to finding M ′i at each step such that
‖GiM ′i − (T ∗ − Ti−1)‖F is minimized.

In other words, we are trying to estimate T ∗ with
∑
iGiM

′
i , where each Gi is random and each M ′i

is greedily chosen at each step. This is similar to, for example, the approaches in Barron et al. [2008],
though they use a concrete list of Gi’s. In their case, by the time we have d1/k such Gi’s, we are just
multiplying X with a d1 × d1 random Gaussian matrix, which of course will have full rank, and so
the concatenated M matrix can basically ignore it. However, in our case we do a local, not global
optimization over the Mi.

Recall the theorem:
Theorem B.0. Given X ∈ Rn×d1 and Y ∈ Rn×d2 . Let T ∗ = arg minT∈Rd1×d2‖XT − Y ‖2F be an
optimal solution to the least squares problem. Then

E
[
‖XTi − Y ‖2F

]
≤ (1− ρ)i(k−d2)‖XT ∗‖2F + ‖XT ∗ − Y ‖2F ,

where ρ = ‖X‖2−2/‖X‖2F .

Here we use the notation that ‖X‖−2 is the smallest singular value of X .
Corollary B.1. In the setting of the theorem, if all singular values of X are equal, then

E
[
‖XTi − Y ‖2F

]
≤ e−i

k−d2
d1 ‖XT ∗‖2F + ‖XT ∗ − Y ‖2F .

Proof of Theorem B.1. Note that ‖X‖2F is the sum of the d1 singular values squared: ‖X‖2F =
∑
i σ

2
i .

Since all singular values are equal, say to σ ∈ R, then ‖X‖2F = d1σ
2. Similarly in this setting,

‖X‖2−2 = σ2 so ρ = 1/d1. Using the inequality 1− 1/d1 ≤ e−1/d1 gives the corollary.

Proof of Theorem B.0. First split Y into the part that’s in the column space of X and the part that’s
not, Z. We have Y = XT ∗ + Z, where T ∗ = arg minT ‖XT − Y ‖F is the solution to the least
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squares problem. By Pythagoras theorem we then have

E
[
‖XTi − Y ‖2F

]
= E

[
‖XTi − (XT ∗ + Z)‖2F

]
= E

[
‖X(Ti − T ∗)‖2F

]
+ ‖Z‖2F ,

so it suffices to show

E
[
‖X(Ti − T ∗)‖2F

]
≤ (1− ρ)i(k−d2)‖XT ∗‖2F .

We will prove the theorem by induction over i. In the case i = 0 we have Ti = 0, so E[‖X(T0 −
T ∗)‖2F ] = E[‖XT ∗‖2F ] trivially. For i ≥ 1 we insert Ti = HiMi and optimize over M ′i :

E[‖X(Ti − T ∗)‖2F ] = E[‖X(HiMi − T ∗)‖2F ]

≤ E[‖X(Hi[I |M ′i ]− T ∗)‖2F ]

= E[‖X((Ti−1 +GiM
′
i)− T ∗)‖2F ]

= E[‖X(GiM
′
i − (T ∗ − Ti−1))‖2F ].

= E[E[‖X(GiM
′
i − (T ∗ − Ti−1))‖2F | Ti−1]]

≤ (1− ρ)k−d2 E[‖X(T ∗ − Ti−1)‖2F ]

≤ (1− ρ)i(k−d2)‖XT ∗‖2F ,

where the last step followed by induction. The critical step here was bounding

EG[inf
M
‖X(GM − T )‖2F ] ≤ (1− ρ)k−d2‖XT‖2F ,

for a fixed T . We will do this in a series of lemmas below.

We show the lemma first in the “vector case”, corresponding to k = 2, d2 = 1. The general matrix
case follow below, and is mostly a case of induction on the vector case.
Lemma B.2. Let X ∈ Rn×d be a matrix with singular values σ1 ≥ · · · ≥ σd ≥ 0. Define
ρ = σ2

d/
∑
i σ

2
i , then for any t ∈ Rd,

Eg∼N(0,1)d

[
inf
m∈R
‖X(gm− t)‖22

]
≤ (1− ρ)‖Xt‖22.

Proof. Setting m = 〈Xt,Xg〉/‖Xg‖22 we get

‖X(gm− t)‖22 = m2‖Xg‖22 + ‖Xt‖22 − 2m〈Xg,Xt〉 (1)

=

(
1− 〈Xt,Xg〉2

‖Xt‖22‖Xg‖22

)
‖Xt‖22. (2)

We use the singular value decomposition of X = UΣV T . Since g ∼ N(0, 1)d and V T is unitary, we
have V T g ∼ N(0, 1)d and hence we can assume V = I . Then

〈Xt,Xg〉2

‖Xt‖22‖Xg‖22
=

(tTΣUTUΣg)2

‖UΣt‖22‖UΣg‖22
(3)

=
(tTΣ2g)2

‖Σt‖22‖Σg‖22
(4)

=
(
∑
i tiσ

2
i gi)

2

(
∑
i σ

2
i t

2
i )(
∑
i σ

2
i g

2
i )
, (5)

where Equation (4) follows from UTU = I in the SVD. We expand the upper sum to get

Eg

[
(
∑
i tiσ

2
i gi)

2

(
∑
i σ

2
i t

2
i )(
∑
i σ

2
i g

2
i )

]
= Eg

[ ∑
i,j titjσ

2
i σ

2
j gigj

(
∑
i σ

2
i t

2
i )(
∑
i σ

2
i g

2
i )

]
(6)

= Eg

[ ∑
i t

2
iσ

4
i g

2
i

(
∑
i σ

2
i t

2
i )(
∑
i σ

2
i g

2
i )

]
. (7)
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Here we use the fact that the gi’s are symmetric, so the cross terms of the sum have mean 0. By scaling,
we can assume

∑
i σ

2
i t

2
i = 1 and define pi = σ2

i t
2
i . Then the sum is just a convex combination:

(7) =
∑
i

pi Eg

[
σ2
i g

2
i∑

i σ
2
i g

2
i

]
. (8)

Since σi ≥ σd and gi’s are IID, by direct comparison we have

Eg

[
σ2
i g

2
i∑

i σ
2
i g

2
i

]
≥ Eg

[
σ2
dg

2
d∑

i σ
2
i g

2
i

]
Hence

(7) ≥ Eg

[
σ2
dg

2
d∑

i σ
2
i g

2
i

]∑
i

pi = Eg

[
σ2
dg

2
d∑

i σ
2
i g

2
i

]
.

It remains to bound

Eg

[
σ2
dg

2
d∑

i σ
2
i g

2
i

]
≥ σ2

d∑
i σ

2
i

= ρ, (9)

but this follows from a cute, but rather technical lemma, which we will postpone to the end of this
section. (Theorem B.4.)

It is interesting to notice how the improvement we make each step (that is 1− ρ) could be increased
to 1− 1/d by picking G from a distribution other than IID normal.

If X = UΣV T , we can also take g = V Σ−1g′, where g′ ∼ N(0, 1)d1×(k−d2). In that case we get

E

(
〈Xt,Xg〉
‖Xg‖2‖Xt‖22

)2

= E

(
tTV Σ2V T g

‖Ug′‖2‖Xt‖22

)2

= E

(
tTV Σg′

‖g′‖2‖Xt‖22

)2

=
1

d1

‖tTV Σ‖22
‖Xt‖22

=
1

d1
.

So this way we recreate the ideal bound from Theorem B.1. Note that ‖X‖
2
−2

‖X‖2F
≤ 1/d1. Of course it

comes with the negative side of having to compute the SVD of X . But since this is just a theoretical
algorithm, it’s still interesting and shows how we would ideally update Ti. See Figure 6 for the effect
of this change experimentally.

It’s an interesting problem how it might inspire a better CCE algorithm. Somehow we’d have to get
information about the the SVD of X into our sparse super-space approximations.

We now show how to extend the vector case to general matrices.

Lemma B.3. Let X ∈ Rn×d1 be a matrix with singular values σ1 ≥ · · · ≥ σd1 ≥ 0. Define
ρ = σ2

d1
/
∑
i σ

2
i , then for any T ∈ Rn×d2 ,

EG∼N(0,1)d1×k

[
inf

M∈Rk×d2

‖X(GM − T )‖2F
]
≤ (1− ρ)k‖XT‖2F .

Proof. The case k = 1, d2 = 1 is proven above in Theorem B.2.

Case k = 1: We first consider the case where k = 1, but d2 can be any positive integer (at most
k). Let T = [t1|t2| . . . |td2 ] be the columns of T and M = [m1|m2| . . . |md2 ] be the columns of M .
Then the ith column of X(GM − T ) is X(Gmi − ti), and since the squared Frobenius norm of a
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Figure 6: SVD aligned noise converges faster. In the discussion we mention that picking the random
noise in Hi as g = V Σ−1g′, where g′ ∼ N(0, 1)d1×(k−d2), can improve the convergence rate from
(1 − ρ)ik to (1 − 1/d)ik, which is always better. In this graph we experimentally compare this
approach (labeled “smart noise”) against the IID gaussian noise (labeled “noise”), and find that the
smart noise indeed converges faster – at least once we get close to zero noise. The graph is over 40
repetitions where X is a random rank-10 matrix plus some low magnitude noise.
We also investigate how much we lose in the theorem by only considering M on the form [I|M ′],
rather than a general M that could take advantage of last rounds Ti. The plots labeled “half noise”
and “half smart noise” are limited in this way, while the two others are not. We observe that the effect
of this is much larger in the “non-smart” case, which indicates that the optimal noise distribution we
found might accidentally be tailored to our analysis.

matrix is simply the sum of the squared column l2 norms, we have

E[‖X(GM − T )‖2F ] = E

[
d2∑
i=1

‖X(Gmi − ti)‖22

]

=

d2∑
i=1

E
[
‖X(Gmi − ti)‖22

]
≤

d2∑
i=1

(1− ρ) E[‖Xti‖22] (10)

= (1− ρ) E

[
d2∑
i=1

‖Xti‖22

]
= (1− ρ) E[‖XT‖2F ].

where in (10) we applied the single vector case.

Case k > 1: This time, let g1, g2, . . . , gk be the columns of G and let mT
1 ,m

T
2 , . . . ,m

T
k be the

rows of M .

We prove the lemma by induction over k. We already proved the base-case k = 1, so all we need
is the induction step. We use the expansion of the matrix product GM as a sum of outer products
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Figure 7: Expectation, E
[

x
px+(1−p)y

]
when x, y are IID with Exponential (blue) or Chi Square

distribution (Orange). In both cases the expectation is ≥ 1 when p ≤ 1/2, just as Theorem B.4
predicts.

GM =
∑k
i=1 gim

T
i :

E[‖X(GM − T )‖2F ] = E

∥∥∥∥∥X
(

k∑
i=1

gim
T
i − T

)∥∥∥∥∥
2

F


= E

∥∥∥∥∥X
(
g1m

T
1 +

(
k∑
i=2

gim
T
i − T

))∥∥∥∥∥
2

F


≤ (1− ρ) E

X (∥∥∥∥∥
k∑
i=2

gim
T
i − T

)∥∥∥∥∥
2

F

 (11)

≤ (1− ρ)k E
[
‖XT‖2F

]
.

where (11) used the k = 1 case shown above, and (12) used the inductive hypothesis. This completes
the proof for general k and d2 that we needed for the full theorem.

B.1 Technical lemmas

It remains to show an interesting lemma used for proving the vector case in Theorem B.2.

Lemma B.4. Let a1 . . . , an ≥ 0 be IID random variables and assume some values pi ≥ 0 st.∑
i pi = 1 and pn ≤ 1/n. Then

E

[
an∑
i piai

]
≥ 1.

This completes the original proof with pi =
σ2
i∑

j σ
2
j

and ai = g2i .
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Proof. Since the ai are IID, it doesn’t matter if we permute them. In particular, if π is a random
permutation of {1, . . . , n− 1},

E

[
an∑
i piai

]
= Ea

[
Eπ

[
an

pnan +
∑
i piaπi

]]
(12)

≥ Ea

[
an

Eπ
[
pnan +

∑
i<n piaπi

]] (13)

= Ea

[
an

pnan +
∑
i<n pi(

1
n−1

∑
j<n aj)

]
(14)

= Ea

[
an

pnan + (1− pn)
∑
i<n

ai
n−1

]
, (15)

where Equation (13) uses Jensen’s inequality on the convex function 1/x.

Now define a =
∑n
i=1 ai. By permuting an with the other variables, we get:

Ea

[
an

pnan + (1− pn)
∑
i<n

ai
n−1

]
= Ea

[
an

pnan + 1−pn
n−1 (a− an)

]
(16)

= Ea

[
1

n

n∑
i=1

ai

pnai + 1−pn
n−1 (a− ai)

]
(17)

= Ea

[
1

n

n∑
i=1

ai/a
1−pn
n−1 − ( 1−pn

n−1 − pn)ai/a

]
(18)

= Ea

[
1

n

n∑
i=1

φ(ai/a)

]
, (19)

where

φ(qi) =
qi

1−pn
n−1 − ( 1−pn

n−1 − pn)qi

is convex whenever 1−pn
n−1

/
( 1−pn
n−1 − pn) = 1−p

1−np > 1, which is true when 0 ≤ pn < 1/n. That
means we can use Jensen’s again:

1

n

n∑
i=1

φ(ai/a) ≥ φ

(
1

n

∑
i

ai
a

)
= φ

(
1

n

)
= 1,

which is what we wanted to show.

C Correspondence between theory and practice

Theorem 3.1 quite tightly matches the empirical behavior of Algorithm 1 (Dense CCE for
Least Squares). In Figure 8, we show the convergence when solving the least squares problem
argminT ||XT − Y ||2F using the method.
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Figure 8: Convergence of the least squares problem. We show and compare the convergence of
the least square methods using different methods. We found that the convergence of Theorem 3.1 is
close to that of Algorithm 1.

As discussed in Appendix B, we can often strengthen the result from using ρ (smallest singular value
/ the squared Frobenius norm) to just using 1/d1. This is because the smallest singular value issue
only becomes relevant when Y is chosen to exactly align with the worst possible subspace of X. In
practice this is rarely the case. In the particular case of Figure 8, we chose X and Y as iid standard
normals.

D Hashing

If h : [n] → [m] and s : [n] → {−1, 1} are random functions, a Count Sketch is a matrix
H ∈ {0,−1, 1}m×n where Hi,j = s(i) if h(i) = j and 0 otherwise. Charikar et al. [2002] showed
that if m is large enough, the matrix H is a dimensionality reduction in the sense that the norm ‖x‖2
of any vector in Rn is approximately preserved, ‖Hx‖2 ≈ ‖x‖2.6

This gives a simple theoretical way to think about the algorithms above: The learned matrix T ′ =
HTT is simply a lower dimensional approximation to the real table that we wanted to learn. While
the theoretical result requires the random “sign function” s for the approximation to be unbiased, in
practice this appears to not be necessary when directly learning T ′. Maybe because the vectors can
simply be slightly shifted to debias the result.

There are many strong theoretical results on the properties of Count Sketches. For example, Woodruff
[2014] showed that they are so called “subspace embeddings” which means the dimensionality
reduction is “robust” and doesn’t have blind spots that SGD may accidentally walk into. However, the
most practical result is that one only needs h to be a “universal hash function” ala Carter and Wegman
[1977], which can be as simple and fast as the “multiply shift” hash function by Dietzfelbinger et al.
[1997].

If Count Sketch shows that hashing each i ∈ [n] to a single row in [m], we may wonder why methods
like Hash Embeddings use multiple hash functions (or DHE uses more than a thousand.) The answer
can be seen in the theoretical analysis of the “Johnson Lindenstrauss” transformation and in particular
the “Sparse Johnson Lindenstrauss” as analyzed by Cohen et al. [2018]. The analysis shows that
if the data being hashed is not very uniform, it is indeed better to use more than one hash function
(more than 1 non-zero per column in H .) The exact amount depends on characteristics in the data
distribution, but one can always get away with a sparsity of ε when looking for a 1 + ε dimensionality
reduction. Hence we speculate that DHE could in general replace the 1024 hash functions with
something more like Hash Embeddings with an MLP on top. Another interesting part of the Cohen
et al. [2018] analysis is that one should ideally split [m] in segments, and have one hash function into
each segment. This matches the implementations we based our work on below.

6This also implies that inner products are approximately preserved by the dimensionality reduction.
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E How to store the hash functions

We note that unlike the random hash functions used in Step 1, the index pointer functions obtained
from clustering takes space linear in the amount of training data or at least in the ID universe size.
At first this may seem like a major downside of our method, and while it isn’t different from the
index tables needed after Product Quantization, it definitely is something extra not needed by purely
sketching based methods.

We give three reasons why storing this table is not an issue in practice:

1. The index pointer functions can be stored on the CPU rather than the GPU, since they are
used as the first step of the model before the training/inference data has been moved from
the CPU to the GPU. Furthermore the index lookup is typically done faster on CPUs, since
it doesn’t involve any dense matrix operations.

2. The index pointers can replace the original IDs. Unless we are working in a purely streaming
setting, the training data has to be stored somewhere. If IDs are 64 bit integers, replacing
them with four 16-bit index pointers is net neutral.

3. Some hashing and pruning can be used as a prepossessing step, reducing the universe size
of the IDs and thus the size of the index table needed.

F Different strategies for CCE

We include other graphs about CCE in Figure 9. They are all on the Kaggle dataset and were run
three times. These graphs helped us develop insights on CCE and choose the correct versions for
Figure 4a and Figure 4b.

G AUC Graphs

We also evaluate the models using AUC, which is another commonly used metric for gauging the
effectiveness of a recommendation model. For example, it was used in [Kang et al., 2021]. AUC
provides the probability of getting a correct prediction when evaluating a test sample from a balanced
dataset. Therefore, a better model is implied by a larger AUC. In this section, we plot the graphs
again using AUC; see Figure 10 and Figure 11.

H Table Collapse

Table collapsing was a problem we encountered for the circular clustering method as described in
Appendix A. We describe the problem and the metric we used to detect it here, since we think they
may be of interest to the community.

Suppose we are doing k-means clustering on a table of 3 partitions in order to obtain 3 index pointer
functions hcj . These functions can be thought as a table, where the (i, j)-entry is given by hcj(i).

There are multiple failure modes we have to be aware of. The first one is column-wise collapse:

1 0 0
1 1 2
1 0 3
...

...
...

1 3 1

In this table the first column has collapsed to just one cluster. Because of the way k-means clustering
works, this exact case of complete collapse isn’t actually possible, but we might get arbitrarily low
entropy as measured by H1, which we define as follows: For each column j, its column entropy is
defined to be the entropy of the probability distribution pj : hcj([n])→ [0, 1] defined by

pj(x) =
#{i : hcj(i) = x}

n
.
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B
C

E

CCE best of 10 epochs

Full Embedding Table
CCE ct0
CCE ct1 cf300000
CCE ct2 cf300000
CCE ct3 cf300000
CCE ct4 cf300000
CCE ct5 cf300000
CCE ct6 cf300000

(a) Kaggle dataset, CCE, best of 10 epoch: We ran
different versions of CCE for 10 epochs. Here ct means
the number of clustering done, and cf refers to the num-
ber of batches between clusterings. Since each epoch
has around 300, 000 batches, we essentially clustered
once every epoch. The performance increases with
more clustering. Another observation is that as m in-
creases, a few lines were merged due to early stopping.
We found that CCE ct6 cf300000 performs the best,
which becomes the CCE model in Figure 4a.
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E

Strategy 1 for 1 epoch

Full Embedding Table
CCE ct0
CCE ct1 cf150000
CCE ct2 cf75000
CCE ct3 cf50000
CCE ct4 cf37500
CCE ct5 cf30000
CCE ct6 cf25000

(b) Kaggle dataset, CCE, Strategy 1: We ran differ-
ent versions of CCE for 1 epoch under the constraint
that all clusterings must finish before half of an epoch.
It turns out that there is a balance between the num-
ber of clusterings and the ‘quality’ of the clustering,
represented by the number of batches between cluster-
ings. We found that CCE ct2 cf75000 performs the
best, which becomes the CCE model in Figure 4b.
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Strategy 2 for 1 epoch

Full Embedding Table
CCE ct1 cf150000
CCE ct2 cf100000
CCE ct4 cf60000
CCE ct6 cf42500

(c) Kaggle dataset, CCE, Strategy 2: Strategy 2 here
tries to have all the clustering finish by 2/3 of an epoch.
These runs did not perform well. It turned out that we
need to let the model have time to converge after all the
clusterings.
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C

E

Strategy 3 for 1 epoch

Full Embedding Table
CCE ct1 cf300000
CCE ct1 cf150000
CCE ct2 cf150000
CCE ct1 cf75000
CCE ct2 cf75000

(d) Kaggle dataset, CCE, Strategy 3: This strategy
perfectly summarizes all the previous findings. Increas-
ing the number of clusterings in general gives better
performance; Letting the model ‘rest’ after clustering
increases the performance; Increasing the interval be-
tween clusterings give better result.

Figure 9: Strategies for CCE that gave us insight.

Then we define H1 to be the minimum entropy of the (here 3) column-entropies.

The second failure mode is pairwise collapse:

1 0 1
2 2 3
1 0 3
3 1 0
2 2 1
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(a) Kaggle dataset, Best of 10 epoch, AUC.
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(b) Kaggle dataset, 1 epoch, AUC.
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(c) Terabyte dataset, 1 epoch, AUC.

Figure 10: The AUC version of Figure 4.

In this case the second column is just a permutation of the first column. This means the expanded
set of possible vectors is much smaller than we would expect. We can measure pairwise collapse
by computing the entropy of the histogram of pairs, where the entropy of the column pair (j1, j2) is
defined by the column entropy of hcj1(·) + max(hcj1)hcj2(·). Then we define H2 to be the minimum
of such pair-entropies for all

(
3
2

)
pairs of columns.

Pairwise entropy can be trivially generalized to triple-wise and so on. If we have c columns we may
compute each of H1, . . . ,Hc. In practice H1 and H2 may contain all the information we need.

H.1 What entropies are expected?

The maximum value forH1 is log k, in the case of a uniform distribution over clusters. The maximum
value for H2 is log

(
k
2

)
≈ 2 log k. (Note log n is also an upper bound, where n is the number of

points in the dataset / rows in the table.)

With the CE method we expect all the entropies to be near their maximum. However, for the Circular
Clustering method this is not the case! That would mean we haven’t been able to extract any useful
cluster information from the data.

Instead we expect entropies close to what one gets from performing Product Quantization (PQ) on a
complete dataset. In short:
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(a) Kaggle dataset, CCE, best of 10 epoch, AUC.
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(b) Kaggle dataset, CCE, Strategy 1, AUC.
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(c) Kaggle dataset, CCE, Strategy 2, AUC.
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(d) Kaggle dataset, CCE, Strategy 3, AUC.

Figure 11: The AUC version of Figure 9.

1. Too high entropy: We are just doing CE more slowly.
2. Too low entropy: We have a table collapse.
3. Golden midpoint: Whatever entropy normal PQ gets.
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