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ABSTRACT

Graph transformer model integrates the relative positional relationships among
nodes into the transformer architecture, holding significant promise for model-
ing graph-structured data. They address certain limitations of graph neural net-
works (GNNs) in leveraging information from distant nodes. However, these
models overlooked the representations of neighboring nodes with dissimilar la-
bels, i.e., heterophilous relationships. This limitation inhibits the scalability of
these methods from handling a wide range of real-world heterophilous datasets.
To mitigate this limitation, we introduce MPformer, comprising the information
aggregation module called Tree2Token and the position encoding module, Het-
erPos. Tree2Token aggregates node and its neighbor information at various hop
distances, treating each node and its neighbor data as token vectors, and serializing
these token sequences. Furthermore, for each newly generated sequence, we intro-
duce a novel position encoding technique called HeterPos. HeterPos employs the
shortest path distance between nodes and their neighbors to define their relative
positional relationships. Simultaneously, it captures feature distinctions between
neighboring nodes and ego-nodes, facilitating the incorporation of heterophilous
relationships into the Transformer architecture. We validate the efficacy of our
approach through both theoretical analysis and practical experiments. Extensive
experiments on various datasets demonstrate that our approach surpasses existing
graph transformer models and traditional graph neural network (GNN) models.

1 INTRODUCTION

While graph neural networks exhibit proficiency in handling non-Euclidean data, they encounter
challenges related to limited receptive fields and the effective utilization of distant node informa-
tion. Conversely, the Transformer architecture has gained widespread adoption in natural language
processing and computer vision tasks due to its extensive modeling capabilities across long ranges.
To address the challenges faced by graph neural networks, researchers initiated investigations into
extending the Transformer architecture for graph data. This approach aimed to inherit GNN’s com-
petence in processing non-Euclidean data while leveraging the Transformer architecture’s expansive
receptive field to compensate for GNN’s limitations in utilizing distant node information. However,
when dealing with graph-structured data, there are complex attributes involved, such as structural
topology and attribute features, that cannot be directly encoded as tokens in the Transformer ar-
chitecture. As a result, a significant amount of research in this area focuses on integrating graph
structure information into the Transformer architecture. Graph-structured data frequently includes
complex attributes like structural topology and attribute features, which cannot be directly encoded
within the Transformer architecture. Consequently, extensive research in this phase has concentrated
on incorporating graph structural information into Transformer architectures. Some of these studies
concentrate on integrating graph neural networks with the Transformer architecture. For instance,
GraphTrans(Wu et al. (2021)) and GraphiT(Mialon et al. (2021)) employ GNNs to create structure-
aware representations from original features. They subsequently leverage the computational as-
pects of the Transformer architecture to handle all pairwise node interactions, thereby enhancing
the model’s global inference capability. But these approaches do not accurately model sequential
information jumps, which may result in the blending of features with varying orders. Furthermore,
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methods that integrate graph neural networks into the Transformer architecture demand thorough
parameter tuning, adding complexity to the model training process.

Consequently, some researchers have investigated techniques for directly incorporating graph topol-
ogy information into the transformer architecture. Dwivedi & Bresson (2020) utilizes the k smallest
non-zero eigenvalue of the Laplace matrix with its corresponding eigenvector for positional embed-
ding. similarly, Hussain et al. (2021) employs singular value decomposition on the adjacency matrix,
utilizing the left and right singular vectors associated with the top r singular values as a means of
representing position encoding. Furthermore, in contrast to the compression of graph structural
data into position encoding via Laplacian matrices, Graphormer(Ying et al. (2021)) employs de-
gree centrality derived from the adjacency matrix as its positional encoding method. Additionally,
Graph-BERT (Zhang et al. (2020)) introduces three distinct types of position encoding to integrate
node position information: absolute position encoding based on the Weisfeiler-Lehman algorithm,
absolute position encoding, and relative position encoding based on intimacy and shortest path dis-
tance. In contrast to embedding graph structure information into positional encoding, alternative
approaches leverage graph structure information as a bias within the attention matrix. For instance,
Ying et al. (2021), Khoo et al. (2020), and Zhao et al. (2021) incorporate pairwise information as a
bias when computing the attention matrix. Nevertheless, these approaches still overlook the possi-
ble heterogeneous relationships among interconnected nodes, leading to models struggle to handle
heterophily.

serialization

Figure 1: a serializing case show
two cases under heterophily.

To enhance modeling capabilities for heterophilous data, we
present MPformer. Differing from prior graph transformers
that treat nodes as independent tokens, MPformer leverages
both individual node information and that of its neighbors to
form a new sequence. This is achieved through the Tree2Token
module, which regards each node and its neighbors as tokens,
thus creating a new sequence that preserves neighborhood in-
formation to facilitate transformer module training. Further-
more, to incorporate graph topological information and het-
erophilous relationships into the model, we introduce the Het-
erPos position encoding module for MPformer. HeterPos uses
the distance of the shortest path between a node and its neigh-
boring nodes to determine their positional relationship. It takes into account the differences in fea-
tures between nodes and their neighbors to incorporate heterophilous relationships into the model.
To facilitate the comparison of our approach with existing methods, we provide an illustrative ex-
ample of a heterogeneous graph, as depicted in Fig.1. Based on the figure, accurately classifying
the ego node (root node) within the graph can be challenging when relying solely on the inter-node
degree matrix and relative positional relationships. However, our approach enables the model to
identify similarities among node neighbors by treating a node and its neighbors as tokens and se-
rializing them. This enhances the model’s capacity to capture hop-wise semantic correlations, ulti-
mately improving its ability to model heterophilous graph. Our model yields the following practical
contributions:

• Our model is improved by creating new tokens based on nodes and their neighbors, gath-
ering information from nearby nodes at varying hop distances in a flexible way. This ap-
proach ensures versatility by avoiding the stacking of node information from different hops
and provides a more detailed understanding of the relationships between nodes and their
neighbors. By integrating localized structural information into the model, our methodology
results in better performance on heterophilous graphs.

• We develop an innovative position encodings approach that leverages hop counts, node
representation, and neighboring node representation to seamlessly incorporate shortest path
distances and heterophilous relationships into the Transformer architecture, offering fresh
insights for extending the graph transformer model to heterogeneous graphs in the future.

• We validate our approach using multiple datasets and consistently achieved superior per-
formance compared to the current state-of-the-art method. These results demonstrate the
high effectiveness and reliability of our approach in achieving superior results.
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2 MPFORMER

In this section, we introduce MPformer, illustrated in Figure 2. To enhance its effectiveness in
handling graph-structured data, we begin by introducing the Tree2Token neighborhood aggregation
module, which constructs new sequences for nodes and their neighbors. Next, we present HeterPos,
a novel positional encoding method designed to capture relative positional and heterophily relation-
ships within this sequence and integrate them into the Transformer architecture. We also conduct
a theoretical analysis of HeterPos to highlight its exceptional properties. Finally, we present the
algorithmic flow of MPformer, providing a detailed explanation of each step in the process.
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Figure 2: This figure depicts the architecture of the MPformer model.

2.1 TREE2TOKEN

Utilizing neighbor information from different hops has proven to be highly effective in capturing
hop-wise semantic relations, significantly enhancing the model’s ability to manage graph-structured
data(Abu-El-Haija et al. (2019), Zhu et al. (2020), Song et al. (2023)). To leverage this exceptional
capability, we introduce Tree2Token, a mechanism that considers neighbor information from various
hops.

Consider a node v, and we view the node v and its neighbor nodes at each hop as a rooted-tree
hierarchy as illustrated in Fig.2. Hk(v) represents the collection of nodes on a shortest path distance
of k from node v. All nodes within this set constitute the same k-th hop. Specifically, H0(v) is
the set that includes only node v itself, and it’s referred to as the 0-th hop. Initially, we aggregate
information from neighboring nodes that reside at the same hop:

xk
v = ϕ(Hk(v)) (1)

Here, xk
v ∈ Rd denotes the node representation at the k-th hop, and ϕ represents the aggregation

function. This aggregation operation helps prevent the overlapping of neighbor information from
different hops in the previous message passing. Referring to equation 1, we generate token vectors
for each hop of node v and create a sequence, Sk

v = (x0
v, ...,x

k
v), representing the neighborhood

information of node v, with k as a hyperparameter. For all nodes on the graph G, we can construct a
matrix Xk

G = (Sk
1 , ...,Sk

n)
⊤ ∈ Rn×(k+1)d, with n representing the number of nodes.

To provide a more detailed explanation of our computational procedure, we begin by introducing
two operators: one for regularization denoted as N, and the other for binarization denoted as B.

N(A) = D− 1
2AD− 1

2 ,

I(A) =

{
1 if Aij ≥ 0

0 otherwise

(2)

In this context, D represents a diagonal matrix, and each diagonal element dii in D corresponds to
the sum of the elements in the ith row of matrix A. Specifically, when A serves as an adjacency
matrix, D takes on the role of a degree matrix. Consequently, we can derive

A(k)
norm = N(B(Ak −Ak−1 − I))

Xk
G = [X0

G ,A
(1)
normX0

G , . . . ,A
(k)
normX0

G ]
(3)
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where I ∈ Rn×n is identity matrix. In practice, for more efficient aggregation of level information,
we employ an aggregation method similar to Zhu et al. (2020):

[A(1)
normXk

G ,A
(2)
normXk

G ] (4)
The Tree2Token approach provides two significant advantages. Firstly, this aggregation method en-
codes information about each level of a node’s neighbors as representations, facilitating the capture
of semantic correlations between these levels—typically overlooked in conventional GNNs. Ad-
ditionally, this aggregation method mitigates the issue of stacking between different hop nodes , a
challenge in traditional message passing methods.

2.2 HETERPOS

Initially, positional encoding techniques were used in sequence data to provide models with po-
sitional information about tokens within input sequences. This improved the models’ ability to
understand and process such data. However, graph-structured data is more complex than sequential
data. Unlike sequence data, where each token has a clear direction, nodes in graph-structured data
are dispersed in a complex spatial arrangement, making it difficult to establish clear directions. As
a result, the conventional positional encoding approach is not suitable for graph-structured data.

Recently, several positional encoding approaches have emerged for graph-structured data, with the
aim of incorporating graph-structural information into the Transformer architecture to enhance the
model’s capacity for graph data modeling. However, most of the current positional encoding meth-
ods designed for graph Transformer models focus only on the relative positional relationships be-
tween nodes and basic topological attributes, such as node degrees. They tend to overlook situations
where nodes have different labels compared to their connected nodes. This oversight can lead to
problems related to heterophily.

To deal with heterophily, the key is to focus on the presence of distinct labels among connected
nodes. When designing position encoding, our goal is to capture the variations in features between
a node and its neighboring nodes. Additionally, we must consider the diminishing influence of
neighboring nodes on the ego node as the distance between them increases. To achieve this goal, we
propose the HeterPos module. For each node v, its feature vector, represented as xk

v ∈ Rd, with kth
hop neighbors, is encoded as follows:

PE(xk
v) = [xk

v , sin(cx
k
ve

−k ln(10000/d)), cos(cxk
ve

−k ln(10000/d))]wPE (5)
where k, and d are hyperparameters, c is a constant, wPE ∈ R3d.

2.2.1 WHAT HETERPOS CAN TELL US ABOUT POSITION?

To provide a more comprehensive understanding of our proposed position encoding, we utilize the
analytical approach of position encoding as described in (Shaw et al. (2018), Dai et al. (2019)).These
encoded node features are integrated into the section of the Transformer architecture that calculates
the self-attention matrix, leading to the formulation of equation 6. For a more detailed explanation
and step-by-step procedure, please consult the Appendix A.1.

[xk
v , sin(cx

k
ve

−kln(10000/d)), cos(cxk
ve

−kln(10000/d))]⊤·
[xj

v, sin(cx
j
ve

−kln(10000/d)), cos(cxj
ve

−jln(10000/d))].
(6)

It is important to mention that one of the factors involved in the equation expansion is:

sin(cxk
ve

−kln(10000/d)) sin(cxj
ve

−αkln(10000/d))+

cos(cxk
ve

−jln(10000/d)) cos(cxj
ve

−αjln(10000/d)).
(7)

Thus by trigonometric properties we have:

cos(cxk
ve

−kln(10000/d) − cxj
ve

−jln(10000/d)). (8)
From the analysis above, our positional coding provides two clear benefits: (1) It accurately captures
the relative differences between the central node and its k-th hop neighbors, allowing for precise
adjustments of these differences through the parameters d. (2) As the parameter k increases, the
influence of the k-th hop neighboring nodes on the central node decreases, enabling the model adapt
to the relative positional changes between a node and its neighbors. The results in Fig. 6 validates
these viewpoints.
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2.3 A RESCALED REGULARIZATION OF WPE FOR BETTER GENERALIZATION

In order to enhance the generalization ability of the HeterPos module and at the same time give
it more flexibility, we further analyze and discuss HetePos from a theoretical perspective in this
section.

Definition 1 For a given class F of vector-valued functions, the covering number
N∞(F ; ϵ; {z(i)}mi=1 ; ∥·∥) is defined as the smallest collection such that for any f ∈ F ,
there exists f̂ ∈ C satisfying:

max
i

∥f(z(i))− f̂(z(i))∥ ≤ ϵ (9)

Furthermore, it is denoted as:

N∞(F , ϵ,m, ∥ · ∥) = sup
z(1),...,z(m)

N∞(F ; ϵ; z(1), ..., z(m), ∥ · ∥). (10)

Based on the Definition 1, we introduce a lemma about the Capacity of a Transformer head without
Position encoding:

Lemma 1 (Edelman et al. (2022)) For all ϵ > 0 and x(1), ...,xn ∈ Rd such that ∥x(i)∥ ≤ Bx for
all i ∈ [n]. Then the covering number of F satisfies

logN∞(F ; ϵ;x(1), ...,x(n), ∥ · ∥) ≲ (LσBx)
2 · log(nd) · ((BV )

2
3 + (BQKBV Bx)

2
3 )3

ϵ2
. (11)

Here, BV is the upper bound of the weight matrix ∥WV ∥ for computing values in the attention
mechanism, and BQK is the upper bound of the weight matrix ∥WQWK∥ for computing queries
and keys in the attention mechanism. Based on the above Lemma 1, we now consider the inclusion
of HeterPos for Transformer model, then Theorem 1 is given in this case.

Theorem 1 Assume that the activation function σ is L-Lipschitz, and for all x(1), . . . ,x(n) ∈ Rd,
there exists ∥X(i)⊤∥ for all i ∈ [n]. Then, the covering number of F satisfies:

logN∞(F(X; ϵ;x(1), . . . ,x(n), ∥ · ∥)) ≲ ((BV )
2/3 + (2BQ,KBWBV (BX + 1))2/3)3

ϵ2
·

(Lσ(BX + 1))2log(nd)

(12)

Further, when the loss function is b-bounded loss function that is L-Lipschitz in its first argument,
and for all x(i) obeys the distribution D , we can get the generalization error bound satisfies

|risk(f ;D)− ˆrisk(f ; (x(i), y(i))mi=1)| ≤ 4cL

√
NF

n
(1 + log(A

√
n

NF
)) + 2b

√
log(1/δ)

2n
(13)

where NF = ((BV )
2/3+(2BPEBQ,KBWBV (BX+1))2/3)3·(LσBPE(BX+1))2log(nd), |f | ≤ A

for all f ∈ F and c > 0 is a constant, BW is the upper bound of the weight matrix ∥WPE∥.

Remark Theorem 1 provides insights into an underlying trade-off, specifically, when the upper
bound 12 becomes larger it may leads to a larger covering number, which implies a larger hypothesis
space, and thus may lead to a smaller empirical risk, i.e., exhibit a smaller training loss. Meanwhile,
according to Eq.13, a larger covering number implies a larger generalized Gap (L.H.S of Eq.13),
and this means that the model’s performance on the training and test sets may be more inconsistent,
i.e., more unstable. Therefore, in order to further improve the generalization performance of the
model, we need to find a trade-off between stability and empirical risk minimization to ensure the
generalization ability of this model. Note that BW in Eq.12 is directly related with HeterPos.

Based on the analysis above, we propose a rescaled regularization for HeterPos to enhance its flexi-
bility of trade-off the stability and generalization ability. The loss function is shown as the equation
below:

L = NLL+ α∥WPE∥, (14)
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where α is a optional scalling factor to adjust the restrict on the value of BW . To validate our the-
oretical analysis, we conduct experiments on two datasets, randomly selected in heterophilous and
homophilous datasets, respectively. We plotted the curves representing empirical risk and general-
ized risk while varying the value of α.

The experimental results are presented in the Fig.3, revealing a clear trade-off between general-
ization risk and empirical risk, which matched with our analysis. Additionally, we can achieve a
balance between stability and generalization ability by tuning the scalling factor α. Specifically, the
best choice of α is 1e− 4 as shown in the figure.
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Figure 3: The figure shows the training and testing errors for different limits on the upper bound of
WPE for the model cora and under the Squirrel dataset.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets & Setup We assess the performance of our model on both homophilic and heterophilic
datasets. Specifically, we utilize two homophilic citation network datasets, namely Cora and Cite-
seer(Sen et al. (2008)), as well as six heterophilic network datasets: Cornell, Texas, Wisconsin,
Actor, Chameleon, and Squirrel (Pei et al. (2020); Rozemberczki et al. (2021)). In the context
of citation networks, nodes correspond to documents, and edges represent citations between them.
Node features are represented as bag-of-words representations of the documents. In contrast, in
web networks, nodes represent web pages, and edges symbolize hyperlinks between them. Node
features are also represented as bag-of-words representations of the web pages. To quantify the
level of homogeneity for each dataset, we calculate the marginal homophily score H(G) (Yan et al.
(2022)). The results of these calculations are summarized in Table 1. Our optimization strategy
employs the Adam optimizer, with L2 regularization applied to WPE. Across each dataset, we
employ a two-headed attention mechanism and a single layer of the Transformer architecture. We
perform a comprehensive hyperparameter tuning process for all models using grid search. Detailed
information can be found in the appendix.

Table 1: Homophily, number of nodes, number of edges, and number of node classes for each dataset
item

Cora Citeseer Cornell Texas Wisconsin Actor Chameleon Squirrel

H(G) 0.81 0.74 0.3 0.11 0.21 0.22 0.23 0.22
Nodes 2,708 3,327 183 183 251 7,600 2,277 5,201
Edges 5,278 4,676 280 295 466 26,752 31,421 198,493
Classes 6 7 5 5 5 5 5 5

3.2 HOMOPHILY AND HETEROPHILY

We evaluated the performance of our model on eight datasets using the same data splitting ap-
proach outlined by Yan et al. (2022). The results are presented in Table 2, which displays the
mean accuracy and standard deviation across ten random data partitions for the test set. Our
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baseline models include traditional Graph Neural Network (GNN) architectures, such as vanilla
Graph Convolutional Networks (GCN) (Kipf & Welling (2016)), Graph Attention Networks (GAT)
(Veličković et al. (2017)), and GraphSAGE (Hamilton et al. (2017)). Additionally, we incorporated
models specifically designed for heterophily, such as Heterogeneous Heterophily Graph Convolu-
tional Networks (H2GCN) (Zhu et al. (2020)), Graph Partition Regularized Graph Neural Networks
(GPRGNN) (Chien et al. (2020)), and Generalized Graph Convolutional Networks (GGCN) (Yan
et al. (2022)). We also compared two methods for aggregating information from different hop nodes:
MixHop(Abu-El-Haija et al. (2019)) and JK-net(Xu et al. (2018)). Furthermore, we evaluated two
state-of-the-art GNN methods, namely Graph Convolutional Networks with Information Integra-
tion (GCNII) (Chen et al. (2020)) and Ordered Graph Neural Networks (OrderedGNN) (Song et al.
(2023)). To further explore the capabilities of our model, we also tested three graph Transformer
models: Spectral Attention Network (SAN) (Kreuzer et al. (2021)), fast Graph Transformer Network
(FGTN) (Yun et al. (2022)), and Specformer (Bo et al. (2023)).

Table 2: Results on real-world node classification tasks.

Cora Citeseer Cornell Texas Wisconsin Actor Chameleon Squirrel

GCN 87.1±1.01 76.6±0.67 60.54±5.30 55.14±1.10 51.96±3.06 27.34±1.10 64.5±2.24 53.05±2.01
GAT 87.69±1.23 76.55±1.10 61.08±5.05 53.51±6.63 49.8±4.09 27.63±0.89 59.85±2.50 40.64±1.55

GraphSAGE 86.90±1.04 76.04±1.30 75.95±5.01 82.43±6.14 81.18±5.56 34.23±0.99 58.73±1.68 41.61±0.74

H2GCN 86.84±1.20 75.91±1.56 74.32±5.28 80.27±7.23 80.20±4.98 32.13±1.00 62.08±2.15 31.58±1.86
GPRGCN 87.59±1.18 76.98±1.67 77.84±8.11 74.86±4.36 82.35±4.21 33.94±1.22 45.79±1.71 28.63±1.24

GGCN 87.55±1.05 76.78±1.45 84.05±6.63 82.7±4.55 86.67±3.29 37.53±1.56 71.16±1.84 55.12±1.58
OrderedGNN 85.31±0.75 73.81±1.73 74.05±4.73 86.21±4.12 85.29±3.36 37.5±1.00 71.29±2.29 59.8±1.96

MixHop 87.61±0.85 76.26±1.33 73.51±6.34 77.84±7.73 75.88±4.90 32.22±2.34 60.50±2.53 43.80±1.48
JK-Net 85.96±0.83 76.05±1.37 75.68±4.03 83.78±2.21 82.55±4.57 35.14±1.37 63.79±2.27 45.03±1.73

GCNII 88.51±1.25 77.1±1.48 74.32±3.79 71.08±3.38 72.75±3.40 37.46±1.30 61.86±3.04 37.03±1.58
Geom-GCN 85.35±1.57 78.02±1.15 60.54±3.67 66.76±2.72 64.51±3.66 31.59±1.15 60.00±2.81 38.15±0.92

Specformer 87.40±1.01 74.92±0.94 72.16±3.32 79.19±4.34 81.37±2.33 27.01±1.02 70.13±2.33 58.27±2.12
FGTN 86.52±1.32 80.66±2.21 83.78±6.42 81.08±5.27 86.27±4.15 37.30±0.67 50.00±2.91 31.12±1.78

OURS 88.13±1.12 77.28±1.57 86.76±5.68 90±6.16 90.2±9.49 37.55±1.44 75.07±1.96 66.5±4.11

The proposed MPformer model has outperformed all existing methods, achieving state-of-the-art
(SOTA) results on both homophilic and heterophilic datasets. On homophilic datasets, our approach
is comparable to the FGTN model. However, the FGTN model exhibits inferior performance on
heterophilic datasets. Notably, on the Squirrel dataset, our method demonstrates a performance su-
periority of over 35% compared to the FGTN model. We have observed that MPformer’s enhance-
ment on heterophilic datasets is more pronounced than on homophilic graphs. This phenomenon
may be attributed to the fact that in homophilic graphs, the distinctions between nodes and their
neighboring nodes are comparatively smaller, thereby constraining the advantage of MPformer in
leveraging node and neighbor node disparities. Furthermore, our investigation revealed that con-
temporary graph Transformer models do not exhibit significant improvements over Graph Neural
Network (GNN) models in the context of node classification tasks, potentially due to inadequate
attention to local information.

3.3 EFFECTIVENESS STUDY OF HETERPOS

In order to analyze the effectiveness of our proposed position encoding, we performed a series of
ablation studies on all datasets.

Setups To validate the effectiveness of HeterPos, we employed the Tree2Token module for in-
formation aggregation across all eight datasets. We conducted a performance comparison between
models utilizing HeterPos position encoding and those employing various other position encoding
methods, including absolute position encoding (Vaswani et al. (2017)), relative position encoding
(Dai et al. (2019)), learnable position encoding (Devlin et al. (2019)), rotational position encod-
ing(Su et al. (2021)), and Laplacian position encoding(Dwivedi & Bresson (2020)). Each of these
position encoding techniques was applied to the sequences generated by the Tree2Token module.
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Notably, Tree2Token treats a node and its neighboring features as tokens, constructing a new se-
quence based on them. For both absolute and rotational position encoding, we assigned hop num-
bers as token position numbers. In the case of relative position encoding, we quantified the relative
position relationships between nodes using the distances between a node and its neighboring nodes.
It is important to emphasize that to ensure a fair and unbiased comparison, we maintained uniform
parameter configurations when testing all position encoding methods.

Analysis Figure 4 presents our experimental findings. The results vividly demonstrate the con-
siderable superiority of HeterPos over alternative position encoding methods. Furthermore, both
relative position encoding and learnable position encoding exhibit notably superior performance
compared to other encoding techniques. This phenomenon can be attributed to the unique char-
acteristics of these encoding methods. Relative position encoding quantifies the relative positional
relationships between nodes by considering the distances between a node and its neighboring nodes.
On the other hand, learnable position encoding offers enhanced flexibility in comparison to alter-
native methods. This flexibility enables the model to capture valuable structural information from
the graph during training, thereby enhancing its overall performance. In contrast, rotational position
encoding demonstrates inferior effectiveness compared to position encoding-free methods. This
outcome stems from the inherent complexity of graph-structured data, where node distribution in
space lacks a clear, ordered pattern, making it challenging to establish a definite directional relation-
ship between nodes and their neighbors. Encoding based solely on hop numbers proves inadequate
in defining such directionality, leading to the inclusion of extraneous and detrimental information
within the model, thereby compromising its performance.
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Figure 4: Performance of different location coding methods on each dataset

3.3.1 PARAMETER STUDY

In order to fully evaluate the impact of our proposed position encoding parameters on the model
performance, we experimentally illustrate each parameter in HeterPos separately.

Constant c To investigate the influence of different values of the constant c on HeterPos, we set
the number of hops in HeterPos to 1 and dimensions k and d to 128, respectively. We sequentially
vary the constant c within the range of 0 to 100 and assess how Equation 8 changes in response
to c variations. The results are depicted in Figure 5 and Figure 6. From figures, we observe that
the results of Equation 8 exhibit minimal variation as c changes. This indicates that the choice of
constant c has a limited impact on HeterPos. However, when c equals 0, Equation 8 is no longer
affected by xk

v and d, making it challenging for the model to capture the relative positions of nodes
and their neighboring nodes, resulting in a decline in model performance.

Hyperparameter h To assess the impact of the hyperparameter h on HeterPos fairly, we con-
ducted ablation experiments on h. Initially, we set the constants c and k to specific values: c was set
to 100, and k to 1. We selected values for h from the set {2, 4, 8, ..., 1024, 2048} and simultaneously
observed how Equation 8 evolved with changing h and the model’s accuracy across eight datasets.
The results are depicted in Figure 5 and Figure 6. From these experimental findings, it becomes
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Figure 5: The figure above shows from left to right the curve of accuracy of the model with constant
c, hyperparameters k and d for the eight datasets.
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Figure 6: HeterPos with different values of c, k, d. Best viewed in color.

evident that when the model parameter h is less than 8, HeterPos faces challenges in effectively cap-
turing distinctions between nodes and their neighboring nodes. These difficulties arise because node
and neighbor information is compressed into small dimensions, making it challenging to represent
the differences. However, when h exceeds 8, it allows the model to flexibly represent differences
between nodes and neighboring nodes by controlling the size of h. However, when h becomes very
large (exceeding 1024), it becomes insensitive to changes in the size of h, making it challenging
to capture subtle distinctions between nodes and neighboring nodes, thereby limiting the model’s
performance.

Hyperparameter k To elucidate the impact of the hyperparameter k on HeterPos, we conducted
an ablation experiment. We set the constants and hyperparameters to fixed values: h at 100 and k
at 128. Since k signifies the shortest path distance between a node and its neighboring nodes, we
visualized how k influences HeterPos as the distance between a node and its neighbors increased.
The results are presented in Figure 5 and Figure 6. Upon observing the figure, it becomes evident
that our parameter k effectively characterizes the relative positional relationships between nodes
and their neighbors. Moreover, as k increases, these distinctions become even more pronounced.
However, in practice, the nodes in the k-th hop have less influence on the center node due to the fact
that the nodes in the k-th hop have less influence on the center node as k continues to increase; on
the other hand, the number of nodes in the k-th strip will grow exponentially as k increases, which
leads to a large amount of redundant information participating in the aggregation, thus limiting the
performance of the model.

4 CONCLUSION

In this paper, we introduce MPformer, a novel model designed to tackle the challenge of extend-
ing the existing graph Transformer architecture to heterophilous datasets. This approach constructs
a sequence for each node, incorporating its neighbor node features by aggregating nodes at vari-
ous hops. Additionally, we introduce an innovative and effective positional encoding method that
leverages hop number and node representation to embed information, including shortest path dis-
tances, similarities between nodes and their neighbors, relative positions, and node heterophily, into
the Transformer architecture. We also mathematically illustrate that the positional encoding facil-
itates a more favorable trade-off between stability and empirical risk minimization, contributing to
improved model performance on heterophilous datasets. Our approach surpasses several current
state-of-the-art methods in experiments conducted on diverse datasets.
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