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ABSTRACT

Masked AutoEncoder (MAE) has revolutionized the field of self-supervised learn-
ing with its simple yet effective masking and reconstruction strategies. However,
despite achieving state-of-the-art performance across various downstream vision
tasks, the underlying mechanisms that drive MAE’s efficacy are less well-explored
compared to the canonical contrastive learning paradigm. In this paper, we explore
a new perspective to explain what truly contributes to the “rich hidden representa-
tions inside the MAE”. Firstly, concerning MAE’s generative pretraining pathway,
with a unique encoder-decoder architecture to reconstruct images from aggres-
sive masking, we conduct an in-depth analysis of the decoder’s behaviors. We
empirically find that MAE’s decoder mainly learns local features with a limited
receptive field, adhering to the well-known Locality Principle. Building upon this
locality assumption, we propose a theoretical framework that reformulates the
reconstruction-based MAE into a local region-level contrastive learning form for
improved understanding. Furthermore, to substantiate the local contrastive nature
of MAE, we introduce a Siamese architecture that combines the essence of MAE
and contrastive learning without masking and explicit decoder, which sheds light
on a unified and more flexible self-supervised learning framework.

1 INTRODUCTION

Recently, self-supervised learning has seen significant progress in the field of computer vision with
two dominant paradigms, i.e., Contrastive Learning and Masked Image Modeling. The Contrastive
Learning methods (Chen & He, 2021; He et al., 2020; Caron et al., 2020; Dwibedi et al., 2021;
Chen et al., 2020; Grill et al., 2020; Chen* et al., 2021; Caron et al., 2021) benefit from learning
invariance by contrasting positive and negative image pairs, which are constructed from random
data augmentations. On the other hand, the Masked Image Modeling paradigm (Bao et al., 2021;
Xie et al., 2022; He et al., 2022; Gao et al., 2022), which is inspired by Masked Language Modeling
in the field of Natural Language Processing, involves randomly masking a portion of an input image
and learning to reconstruct the missing pixels based on the visible part. Recent studies have shown
that the ViT features pretrained with Masked Image Modeling have achieved competitive or even
better performance than those with Contrastive Learning, when finetuning on downstream tasks.
However, the underlying mechanisms that drive the effectiveness of Masked Image Modeling are
still not fully understood compared to the well-explored Contrastive Learning paradigm.

As a typical MIM method, Masked AutoEncoder (MAE) (He et al., 2022) represents a significant
milestone for meaningful visual representation learning. MAE paves the way for leveraging the
power of masked autoencoding techniques and exploring new possibilities in self-supervised learn-
ing. This prompts us to understand how MAE effectively pretrains visual features using a generative
learning approach. One crucial aspect of uncovering MAE’s underlying mechanism lies in study-
ing its decoder. The key distinction of MAE from previous MIM methods (Bao et al., 2021; Xie
et al., 2022; Zhou et al., 2021) is its adoption of an asymmetric encoder-decoder architecture. The
encoder is designed to map visible patches only to latent representations, while the decoder recon-
structs masked tokens into the original image pixels. Additionally, MAE’s decoder demonstrates the
remarkable ability to reconstruct images even when subjected to aggressive masking, with a large
mask ratio of up to 75%. Given these intriguing yet somewhat ambiguous features, it is essential to
gain insight into what MAE truly encodes through a careful analysis of its decoder.
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In this paper, we adopt a novel perspective to explain what contributes to “a rich hidden representa-
tion inside the MAE” (He et al., 2022), focusing on analyzing its decoder’s behaviors. Based on the
special initialization form of the mask tokens, we first statistically investigate the similarity among
all mask tokens’ learned attention maps on ImageNet’s validation set. The results reveal that the first
layer of the decoder primarily relies on the positional information of tokens. While in the subsequent
layers, the decoder gradually integrates higher-level semantic information with positional guidance.
In another empirical analysis, we conducted a further investigation into the effective receptive field
of the decoder. We averaged the attention maps of all mask tokens and observed that the receptive
field of the decoder is indeed very limited. This suggests that the decoder primarily relies on local
features to perform the reconstruction task. Both of these findings are highly intuitive, as images in-
herently exhibit locality, and patches in close proximity are often highly dependent. To a significant
extent, the training of MAE relies on the image’s Locality Principle.

Several recent works (Kong & Zhang, 2023; Zhang et al., 2022a) reconsider MAE in a contrastive
learning viewpoint which is indeed a promising direction, as contrastive learning has well-defined
formulations and explicit supervision on encoded features. While these methods treat visible patches
and masked patches as two views for global contrastive learning, we shed light on explicitly intro-
ducing the local receptive field assumption into MAE’s masked autoencoding formulation. Our
theoretical analysis shows that MAE’s reconstruction loss can be interpreted as a region-level con-
trastive learning loss, with masking as the data augmentation. Moreover, we delve deeper into the
role of masking: apart from providing training objectives and data augmentation for MAE, the in-
tensity of masking actually determines the receptive field of the encoder. To further substantiate the
local contrastive nature of MAE, we propose a novel self-supervised learning framework, namely
Uni-SSL (Unified Self-Supervised Learning), which combines the core principles of the MAE and
contrastive learning. Uni-SSL adopts a Siamese architecture to perform local contrastive learning
between two views augmented by common image augmentations. In contrast to similar works that
approximate MAE to contrastive learning (Kong & Zhang, 2023; Zhang et al., 2022a) but still rely
on the masking strategy, Uni-SSL offers a significant advantage by removing the dependence on
masking. This removal provides more flexibility in network design choices.

Our contributions are as follows:

• We develop a comprehensive understanding framework for MAE, with a novel focus on
the decoder. We reveal that the decoder (1) exhibits a transition from positional focus to
semantic focus from shallow to deeper layers, (2) reconstructs the image by learning local
features within a limited receptive field.

• Based on the assumption of local receptive field, we reformulate MAE as region-level
contrastive learning. Moreover, we propose a reasonable framework that can unify MAE
and contrastive learning without reliance on masking.

2 UNDERSTANDING MAE AS LOCAL CONTRASTIVE LEARNING

In this section, we elucidate that MAE is equivalent to local contrastive learning. We first provide a
brief revisit of MAE in Section 2.1 and then investigate the decoding process in Section 2.2. Finally,
the region-level contrastive learning form of MAE is proposed in Section 2.3.

2.1 A BRIEF REVISIT OF MAE

Masked Autoencoders (MAE) (He et al., 2022) is a straightforward yet efficacious self-supervised
method for pretraining Vision Transformers (ViT)(Dosovitskiy et al., 2020; Touvron et al., 2021).
MAE learns rich hidden representations by masking a portion of the image and then reconstructs the
masked patches, leveraging the visible patches.

Formally, given an input image x, MAE firstly partitions it into n non-overlapping patches, denoted
as x ∈ Rn×s, where s is the patch size. Then, the n patches are split into two complementary
subsets with a random binary mask m ∈ {0, 1}n: the visible patches xv = x[m] and the masked
patches xm = x[1−m]. MAE adopts an encoder-decoder architecture. Only the visible patches are
fed into the encoder (f(·)), which outputs the visible tokens (the representation of visible patches)
z: z = f(xv). Then, some learnable mask tokens M are appended to z. The visible and mask
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Figure 1: (a) The average attention similarity of each decoder layer. (b) From left to right: the input
images, the masked images, the attention maps of the first decoder layer, and the attention maps of
the third decoder layer. The red circles (⃝) denote the masked tokens serving as queries. The block
in the top-left of each attention map is the attention weight for the [CLS] token.

tokens are rearranged back to their original positions in the image. The token sequence is fed into
the decoder to reconstruct the original pixels corresponding to the mask tokens. Finally, a simple
Mean Squared Error (MSE) loss function is employed for pretraining:

L(x,m) = ||h− xm||2, h = g([z,M ]), (1)

where g(·) denotes the decoder, [·, ·] denotes the concatenation of visible and mask tokens based on
their positions, and h denotes the predicted pixels of mask tokens.

2.2 HOW DOES THE DECODER RECONSTRUCT MASKED PATCHES?

To uncover the inner mechanisms of MAE, it’s critical to comprehend the decoder’s role in helping
the encoder learn “rich hidden representations” in a generative manner, even though the decoder will
be discarded after pretraining.

The decoding process of the decoder. It is noteworthy that all the mask tokens are initialized from
the same mask embedding (denoted as [MASK]). Only the added position embeddings PE to the
mask tokens are different when fed into the decoder:

Mi = [MASK] + PEi, (2)

where i denotes the patch index. Thus, it is evident that the decoded content of different mask tokens
is diverse, which implies that MAE’s decoding process may mainly be guided by tokens’ positional
information.

To examine this assumption, we first conduct statistical analysis on the attention maps from different
decoder layers using the validation set of ImageNet. To reduce the complexity of the analysis, we
deliberately mask all the images with an identical random binary mask (i.e., masked positions are
kept the same). Let I denotes the set of all images, for the l-th decoder layer, we extract the attention
maps from all masked positions of the i-th image, defined as Al,i ∈ Rk×h×n with k, h, and n denote
the number of mask tokens, the number of heads, and the number of patches, respectively. Then we
compute the cosine similarity of each attention map pair cos(Al,i, Al,j) and average the similarity
scores across the whole image set:

Sl =

∑|I|
i ̸=j cos(Al,i, Al,j)

|I|(|I| − 1)
, (3)

where |I| is the number of images, Sl is the average similarity of the l-th decoder layer. The higher
similarity means the decoder layer relies more on invariant features, e.g., the positional information.
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Figure 2: The average relative attention maps for mask tokens of each layer in the decoder.

Conversely, the lower similarity means more reliance on the image-specific information, e.g., the
semantic information.

As shown in Figure 1 (a), the average attention map similarity across all images is the highest in the
first decoder layer (up to 0.9). Then, the average similarity diminishes in the successive layers. This
suggests that different layers leverage distinct features: the first layer is more interested in features
shared across images, while successive layers focus more on image-specific features.

To further clarify the decoding mechanism of MAE’s decoder, we visualize the attention maps of
the first and third layers in Figure 1 (b). In the first layer, where the average similarity is the highest,
the attention maps exhibit very similar patterns for the two very different images. This indicates
that the first layer primarily relies on positional information. In the third layer, where the average
similarity is the lowest, the attention maps reveal that the mask tokens mainly focus on adjacent
foreground objects. This indicates that a layer with low similarity places a greater emphasis on cap-
turing semantic information. Combining with Figure 1 (a), where the average similarity starts to be
relatively lower from the second layer, we can infer that a deeper decoder is more advantageous for
learning semantic information. This aligns with the results of the ablation study about the decoder’s
depth conducted in the original MAE paper, which demonstrated that a deeper decoder outperforms
a shallower one in linear probing.

Decoder can be seen as a local feature learner. In Figure 1(b), another noteworthy observation is
that the attention weights of the mask token tend to concentrate more on tokens in the closer region.
Hence, we further investigate the receptive field of the mask tokens in the decoder. Specifically, we
average the relative attention maps of all mask tokens over the whole dataset for each decoder layer.
The visualization of the average relative attention maps is shown in Figure 2. We can observe that,
across all decoder layers, mask tokens mainly attend to an extremely local area around themselves,
which suggests that the decoder primarily learns local features to perform the reconstruction task.

Table 1: Comparisons of different
decoders. As the decoder, single-
layer convolution and weighted aver-
age exhibit effects akin to the trans-
former.

Decoder FT Acc(%)
Transformer 82.9
Weighted Average 82.5
Conv Layer 82.9

Motivated by this observation, we design experiments to
replace the transformer-based decoder with operations that
only have a local receptive field. Our first attempt is to re-
place the transformer layers of the decoder with a weighted
average operation, in which the weights are set as a normal-
ized two-dimensional Gaussian, with σ = 1 and the size of
the receptive field is about 5×5. Then, we adopted a single-
layer MLP to reconstruct the masked patches. We pre-
train this Weighted Average decoder version and the orig-
inal Transformer decoder version of MAE on ImageNet-
1K (Russakovsky et al., 2015) for 100 epochs using the same
training strategy. As shown in Table 1, surprisingly, the
Weighted Average decoder achieved a finetuning accuracy
of 82.5%, which is only 0.4% lower than the Transformer decoder with much fewer parameters.
Furthermore, we employ a convolutional layer with a kernel size of 5 as the decoder. We can see
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that this Conv Layer decoder achieves the same finetuning accuracy as the original MAE, reaching
82.9%. Both the visualization of the average relative attention map and experimental results indicate
that MAE’s decoder can be regarded as a local feature learner.

2.3 THE LEARNING OBJECTIVE OF MAE IMPLICITLY ALIGNS LOCAL FEATURES

The region-level contrastive learning form of MAE. Based on the conclusions drawn in Sec. 2.2,
we rethink the formulation of MAE’s reconstruction loss by explicitly introducing the local receptive
field of the decoder into Eq. 1: for each masked position i, the mask token Mi attends to its local
surrounding tokens Ni(z). The reconstruction loss of position i becomes:

L(x,m)i = ||hi − xm
i ||2, hi = g([Ni(z),Mi]). (4)

In the entire training process of MAE, for image x, there exists a position j that is masked in two
random masking operations with ma and mb, the loss of position j with respective to ma and mb is:

L(x,ma)j = ||g([Nj(f(x[ma])),Mj ])− xm
j ||2,

L(x,mb)j = ||g([Nj(f(x[mb])),Mj ])− xm
j ||2.

(5)

This training objective encourages that the predicted values at position j w.r.t. different masking
operations approximate the invariant image patch xj .

Then we define the prediction error of the decoder as epred(j|m) = g([Nj(f(x[m])),Mj ]) − xj ,
Eq. 5 can be rewritten in the following equivalent form:

L(x,ma,mb)j = ||(g([Nj(f(x[ma])),Mj ])− g([Nj(f(x[mb])),Mj ])) + epred(j|mb)||2, (6)

where the second term is the reconstruction loss of MAE. By viewing masking as data augmentation,
the first term can be seen as a contrastive loss, ensuring that features obtained based on different
random masks are locally similar.

However, in the implementation of MAE, two masking operations for the same image typically occur
in two separate epochs, thus the form of Eq. 6 cannot fully describe MAE. We then demonstrate that
the aforementioned conclusion still holds for a single forward iteration. Given a random mask m,
we define the pixel distance between two masked positions i and j as epixel(i, j) = xm

i − xm
j . The

MAE loss for position j can be rewritten as:

L(x,m)j =||g([Nj(f(x[m])),Mj ])− xi + epixel(i, j)||2

=||(g([Nj(f(x[m])),Mj ])− g([Ni(f(x[m])),Mi]) + epixel(i, j)) + epred(i|m)||2,
(7)

where the first term requires the difference in predicted values at positions i and j should be equiva-
lent to their pixel distance, thus can be regarded as a contrastive loss with epixel(i, j) as margin.

Eq. 6 and Eq. 7 both indicate that MAE implicitly aligns local features through a region-level con-
trastive mechanism, we hereby name them as the region-level contrastive learning form of MAE.
From this perspective, the reconstruction loss in Eq. 6 and Eq. 7 serves as a constraint to prevent
the training of the contrastive loss collapse into trivial solutions, as it prevents tokens from produc-
ing identical prediction. This reformulation aids in a more direct understanding of MAE’s learning
mechanism, as contrastive learning is relatively easier to interpret.

The encoder mainly focus on local features. The region-level contrastive form indicates that MAE
actually learns features that are invariant to masking in a local region, implying that the encoder
should primarily focus on local features. To verify this, we computed the attention distance of
MAE (He et al., 2022), DINO (Caron et al., 2021), and supervised pretrained DeiT (Touvron et al.,
2021). Attention distance (Dosovitskiy et al., 2020) is defined as the average distance between the
query tokens and key tokens, multiplied by the attention weights. It is conceptually similar to the
size of the effective receptive fields in CNNs. As illustrated in Figure 3 (a), the attention distance
of MAE is significantly lower than that of the contrastive learning method DINO and supervised
pretrained DeiT. Many works (Yuan et al., 2021; Liu et al., 2021; Wu et al., 2021) have demonstrated
that incorporating the inductive bias of CNNs into ViT can yield better results. We believe that a
smaller receptive field is also one of the reasons for the better finetuning performance of MAE.
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Figure 4: The overall architecture of the proposed Uni-SSL framework. The red and blue boxes
indicate the areas of two augmented views, and the yellow dots indicate the sampling points.
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Figure 3: Attention distance for (a)
MAE, DINO, DeiT, and (b) MAE
with different mask ratios.

The role of masking. As the most important hyperparam-
eter of MAE, the mask ratio governs the degree of masking.
Intuitively, a smaller mask ratio allows the decoder to find fea-
tures helpful for reconstruction within a more confined range,
thereby indirectly controlling the size of the region for con-
trastive learning. We pretrain MAE on ImageNet-1K (Rus-
sakovsky et al., 2015) for 100 epochs with mask ratios of 0.9,
0.75, 0.6, 0.45, and 0.3. The attention distances for differ-
ent mask ratios are depicted in Figure 3 (b). We can observe
that the attention distance under different mask ratios aligns
with our intuition: the greater the mask ratio, the larger the
attention distance.

We summarize the role of masking into three aspects: 1) As
a kind of data augmentation, it enables MAE to learn invari-
ance to occlusion. Since masking operates at the patch level, it
results in varying mask strategies across different regions, al-
lowing MAE to perform local contrasts within a single image.
2) It provides training objectives for MAE, and the mask ratio
determines the number of training samples. 3) The intensity
of masking determines the region’s size for contrastive learn-
ing, thereby controlling the receptive field of the Encoder.
These three roles are not irreplaceable. In the next section, we
employ image transformations for data augmentation, utilize
contrastive learning approaches to provide training objectives,
and constrain the network’s receptive field using reconstruc-
tion loss for image patches. Through this decoupling, we can
design pretraining strategies in a targeted manner.

3 THE UNIFICATION OF MAE AND CONTRASTIVE LEARNING

To validate the aforementioned conclusions, we propose a novel self-supervised framework to unify
MAE into the form of contrastive learning, namely Uni-SSL (Unified Self-Supervised Learning).
Uni-SSL adopts a Siamese architecture, utilizing data augmentation specifically designed for im-
ages, and executes local contrastive learning between two views. As a result, masking is not essential
for Uni-SSL, allowing it to be compatible with a wider range of network structures and techniques
in contrastive learning.

The overall pipeline is shown in Figure 4. Uni-SSL takes two randomly augmented views x1 and
x2 of an image x as inputs. The two augmented views are fed into the student network fs(·) and
the teacher network ft(·), respectively. The student network and the teacher network have identi-
cal architecture, which can be either convolutional neural networks (CNNs) or vision transformers
(ViTs). The outputs of the student network and teacher network (denoted as zs and zt, respectively)
are dense feature maps, for CNN backbones like ResNet-50, we remove global average pooling, and
for ViT backbones, we utilize patch tokens as output.
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To acquire positive pairs, we uniformly initialize K × K sampling points from the overlapping
region between x1 and x2, and positive feature pairs are sampled over zs and zt according to the
mapped sampling points, formally:

z′s = grid sample(zs, p1), z′t = grid sample(zt, p2), (8)

where p1 and p2 are mapped sampling points, z′s ∈ R(K×K)×C with C being the feature channel
dimension.

Due to the use of color augmentations such as ColorJitter and RandomGrayscale, directly employing
MSE loss in Eq. 6 to minimize the differences between z′s and z′t would be inappropriate. Therefore,
we employ the 3-layer projection head and cross-entropy loss proposed by DINO (Caron et al.,
2021) to ensure the semantic consistency between z′s and z′t:

Lsim(x1, x2) = −softmax(sg(pt(z′t))) · log softmax(ps(z′s)), (9)

where sg(·) is the stop-gradient operation, pt(·) and ps(·) are projection heads for the student net-
work and teacher network, respectively. The parameters of the teacher network are updated with an
exponential moving average (EMA) of the student parameters.

To implement the second term of Eq. 6, which is an image reconstruction loss, we adopt a linear
layer as the predictor to estimate raw pixels for each feature vector in zs. We use the unfold operation
to extract sliding local patches from image x as the target for the reconstruction loss, formally:

Lpixel(x1) = ||ppixel(zs)− unfold(x1, S)||2, (10)

where ppixel is the patch predictor, and S is the size of local patches. Just as MAE can adjust the
size of the effective receptive field by altering the mask ratio, we empirically find that adjusting the
local patch size S is a practical way to control the effective receptive field in Uni-SSL. For instance,
for a large patch size, the network needs to learn a larger receptive field, whereas, for a smaller patch
size, the network only needs to focus on a much smaller region.

The overall objective function of Uni-SSL is calculated as:

LUni-SSL = Lsim(x1, x2) + Lpixel(x1). (11)

Numerous novel techniques (e.g. multi-crop) can be applied to the Uni-SSL framework to achieve
better results, but we leave this part for future work.

Data augmentations. MAE only employs masking as data augmentation. This is because it uses the
input images of the network as targets, thus data augmentations such as ColorJitter are meaningless
for MAE.

In order to render Uni-SSL a universal self-supervised learning framework for computer vision,
we exclusively employ data augmentation methods designed for images. Specifically, geometric
augmentations are RandomResizedCrop with a scale in [0.25, 1.0] and RandomHorizontalFlip with
a probability of 0.5. Color augmentations are ColorJitter and RandomGrayscale with probabilities
of 0.8 and 0.2, respectively. Blurring augmentation has a Gaussian kernel with std in [0.1, 2.0].
For ColorJitter, the strength of brightness, contrast, saturation, and hue are 0.4, 0.4, 0.4, and 0.1,
respectively. For RandomResizedCrop, we required the area of the overlapping region to be greater
than 30% of the area of the two cropped regions.

Experimental results and analysis. Table 2 shows the finetuning accuracy (FT Acc) and linear
probing accuracy (Lin. Prob Acc) of ViT-B (Touvron et al., 2021) initialized by different methods.

Table 2: Finetuning accuracy (FT Acc) and linear probing accuracy (Lin. Prob Acc) of ViT-B/16
pretrained by DINO, MAE, and Uni-SSL on ImageNet-1K.

Pretrain Methods Epochs Crops FT Acc(%) Lin. Prob Acc (%)
Random Init - 1 78.6 -
DINO 300 12 82.8 78.2
DINO 100 2 81.8 68.1
MAE 100 1 82.9 55.4
Uni-SSL 100 2 82.7 61.3

7



Under review as a conference paper at ICLR 2024

Table 3: Effect of the number of sampling points N .

K 3 4 5 6 7 8
FT Acc(%) 82.4 82.5 82.6 82.7 82.6 82.4

Table 4: Effect of the patch size S.

S 80 48 16
FT Acc(%) 82.6 82.1 81.7

Compared with DINO (Caron et al., 2021) with two global crops, which shares the same network
architecture and data augmentation with Uni-SSL, Uni-SSL absolutely improves the finetuning ac-
curacy by 0.9% (81.8% v.s. 82.7%), approaching that of DINO with 12 crops pretrained for 300
epochs. With 100 pretraining epochs, the finetuning accuracy of Uni-SSL is only slightly lower
than that of MAE. However, the linear probing accuracy of Uni-SSL is 5.9% higher than MAE. We
attribute this improvement to the ability to access the entire image during pretraining.

(a)

(b)

Figure 5: (a) Attention distance and
(b) finetuning accuracy curve for
Uni-SSL, MAE, and DINO.

In Figure 5 (a) and (b), we respectively illustrate the atten-
tion distance and the finetuning accuracy curve of Uni-SSL,
MAE, and DINO. We can observe that, akin to MAE, the
receptive field of Uni-SSL is effectively confined to a very
limited range. Figure 5 (b) shows that the finetuning accu-
racy curve of Uni-SSL remains consistent with that of MAE,
manifesting a noticeable difference from DINO. These phe-
nomena indicate that Uni-SSL, through the method of con-
trastive learning, is able to learn representations analogous
to those learned by MAE.

Ablation studies. Uni-SSL has two primary hyperparame-
ters: the number of sampling points N , and the size of target
patches S. We first evaluate how the sampling number pa-
rameter N affects the finetuning performance. N determines
the number of positive pairs involved in the contrastive loss,
the larger the N , the stronger the constraint on the local-
ity of the network. Table 3 reports the finetuning accuracy
with different N . It has been shown that as the value of N
increases, the finetuning accuracy also exhibits an upward
trend. The model performs best when N = 6 and the accu-
racy begins to decline when N > 6. The number of tokens
output by the backbone network is 14×14, and a large value
of N can lead to overly dense sampling, thereby impairing
performance.

As mentioned previously, we utilize the size of target
patches S to control the size of the receptive field. In Ta-
ble 4, we compared the finetuning accuracy for S values of
80, 48, and 16, with K = 5. Since we employed a vision
transformer with a patch size of 16 as the backbone, these three S values correspond to window
sizes of 5, 3, and 1 on the feature map, respectively. It can be observed that different values of S
yield significantly varied results, and Uni-SSL performs the best when S = 80.

Implementation details. For pretraining, we conduct experiments on the ImageNet-1K (Rus-
sakovsky et al., 2015) training set, with ViT-B/16 (Touvron et al., 2021) employed as the default
backbone. For MAE pretraining, the mask ratio is set to 0.75. We use AdamW (Loshchilov &
Hutter, 2017) as the optimizer, with a batch size of 1024. The base learning rate base lr is initial-
ized with 1.5e-4, and the actual learning rate lr = base lr × batch size

256 . We adopt a 20-epoch linear
warmup, and then the learning rate decays with the cosine scheduler (Loshchilov & Hutter, 2016).
For the pretraining of Uni-SSL, we set the base learning rate to 5e-4, with 10 warmup epochs. The
projection head used in Uni-SSL has the same setting as DINO (Caron et al., 2021). We also keep
the centering operation of DINO and update the center vector with a momentum of 0.9. The student
temperature and teacher temperature are set as 0.1 and 0.04, respectively. We set K = 5 and S = 80
by default except as otherwise noted.

For all the pretrained models, we employed the same finetuning strategy. We use AdamW as the
optimizer. The total training epoch number and the batch size are set to 100 and 1024, respectively.
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We set the base learning rate as 1.0e-4, and use a 5-epoch warmup. By default, we use the globally
pooled patch tokens as inputs for the classifier.

4 RELATED WORK

Contrastive learning. As the dominant self-supervised representation learning paradigm in the
field of computer vision, contrastive learning (Chen & He, 2021; He et al., 2020; Caron et al., 2020;
Dwibedi et al., 2021; Grill et al., 2020) learns invariance by comparing random views. A represen-
tative work in this domain is SimCLR (Chen et al., 2020), which learns semantic representations by
maximizing the similarity between different views derived from the same image within the latent
space. MoCo v3 (Chen* et al., 2021) explores the pretraining of vision transformers through the
methodology of contrastive learning. DINO (Caron et al., 2021) explores new properties of self-
supervised vision transformers. Our work is also related to contrastive learning at the pixel and
region levels (Zhang et al., 2022b; Wang et al., 2021; Xie et al., 2021).

Masked Image Modeling. In recent years, the development of Vision Transformers (Dosovitskiy
et al., 2020; El-Nouby et al., 2021; Touvron et al., 2021) has significantly encouraged the applica-
tion of Masked Image Modeling (MIM). Originating from Masked Language Modeling, MIM has
achieved impressive results in visual self-supervised representation learning. BEiT (Bao et al., 2021)
maps image patches into visual tokens using d-VAE (Ramesh et al., 2021) and predicts these visual
tokens based on the masked images. SimMIM (Xie et al., 2022) attempts to simplify the algorithmic
process of MIM by directly using the original image pixels as the target. MAE (He et al., 2022)
employs an encoder-decoder framework to perform image reconstruction tasks. IBOT (Zhou et al.,
2021), CAE (Chen et al., 2023), and CMAE (Huang et al., 2022) try to combine contrastive learning
and MIM.

Understanding MAE. Despite the simplicity and efficacy of MAE, there is a paucity of work ded-
icated to understanding and analyzing its inner mechanism. Many existing works (Liu et al., 2023;
Li et al., 2022; Liu et al., 2022) focus on improving MAE based on intuitive understanding. Cao
et al. (2022) primarily focuses on the role of self-attention within the MAE framework. Kong et al.
(2023) abstracted MAE as a hierarchical latent variable model, thereby analyzing the mechanism
through which MAE learns semantic information. Park et al. (2023) conducted a comparative anal-
ysis of the behavioral differences between the MIM and contrastive learning. Kong & Zhang (2023)
and Zhang et al. (2022a) reformulate MAE as contrastive learning, sharing similar motivation with
us. However, they both consider masked patches and visible patches as two views for global con-
trastive learning, while we demonstrate that MAE actually conducts contrastive learning between
local regions on the masked image.

5 CONCLUSION

In this paper, we commence by analyzing the decoding process of MAE and highlight the reliance
of the decoder on positional and local information for performing the pixel reconstruction task. By
approximating the decoder as a module with a local receptive field, we introduce the region-level
contrastive learning formulation of MAE, thereby facilitating a deeper comprehension of its inner
mechanisms. Through this reformulation, we uncover that MAE inherently acquires invariance to
masking within local regions. We also summarize the roles of masking into three aspects: 1) Serving
as data augmentation; 2) Providing training objectives for MAE; 3) Controlling the receptive field
of the network. Moreover, to validate our conclusions, we introduce a visual representation learning
framework named Uni-SSL, which employs a contrastive learning approach. Experimental results
demonstrate that, even without masking, Uni-SSL is still capable of learning representations analo-
gous to MAE, suggesting that Uni-SSL is a feasible way to unify MAE and contrastive learning.

Limitation. The major limitation of our work is the implementation of Uni-SSL. Limited by com-
putational resources, we only employ ViT-B/16 as the backbone network and do not experiment
with other networks. Additionally, the number of epochs used in our pretraining strategy is much
fewer compared to other SSL methods, and the impact of longer training remains unexplored. We
will address these two limitations in our open-source code release.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
arXiv preprint arXiv:2106.08254, 2021.

Shuhao Cao, Peng Xu, and David A Clifton. How to understand masked autoencoders. arXiv
preprint arXiv:2202.03670, 2022.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in neural
information processing systems, 33:9912–9924, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021.

Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, and Lei Li. Dense contrastive learning
for self-supervised visual pre-training. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3024–3033, 2021.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 22–31, 2021.

Zhenda Xie, Yutong Lin, Zheng Zhang, Yue Cao, Stephen Lin, and Han Hu. Propagate yourself:
Exploring pixel-level consistency for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16684–16693,
2021.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
Simmim: A simple framework for masked image modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9653–9663, 2022.

11



Under review as a conference paper at ICLR 2024

Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Fengwei Yu, and Wei Wu. Incorporating convo-
lution designs into visual transformers. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 579–588, 2021.

Qi Zhang, Yifei Wang, and Yisen Wang. How mask matters: Towards theoretical understandings
of masked autoencoders. Advances in Neural Information Processing Systems, 35:27127–27139,
2022a.

Wenwei Zhang, Jiangmiao Pang, Kai Chen, and Chen Change Loy. Dense siamese network for dense
unsupervised learning. In European Conference on Computer Vision, pp. 464–480. Springer,
2022b.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
Image bert pre-training with online tokenizer. arXiv preprint arXiv:2111.07832, 2021.

12


	Introduction
	Understanding MAE as local contrastive learning
	A Brief Revisit of MAE
	How does the decoder reconstruct masked patches?
	The learning objective of MAE implicitly aligns local features

	The Unification of MAE and Contrastive Learning
	Related Work
	Conclusion

