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Abstract

Continual learning (CL) empowers pre-trained vision-language (VL) models to
efficiently adapt to a sequence of downstream tasks. However, these models of-
ten encounter challenges in retaining previously acquired skills due to parameter
shifts and limited access to historical data. In response, recent efforts focus on
devising specific frameworks and various replay strategies, striving for a typical
learning-forgetting trade-off. Surprisingly, both our empirical research and theoret-
ical analysis demonstrate that the stability of the model in consecutive zero-shot
predictions serves as a reliable indicator of its anti-forgetting capabilities for previ-
ously learned tasks. Motivated by these insights, we develop a novel replay-free CL
method named ZAF (Zero-shot Antidote to Forgetting), which preserves acquired
knowledge through a zero-shot stability regularization applied to wild data in a plug-
and-play manner. To enhance efficiency in adapting to new tasks and seamlessly
access historical models, we introduce a parameter-efficient EMA-LoRA neural ar-
chitecture based on the Exponential Moving Average (EMA). ZAF utilizes new data
for low-rank adaptation (LoRA), complemented by a zero-shot antidote on wild
data, effectively decoupling learning from forgetting. Our extensive experiments
demonstrate ZAF’s superior performance and robustness in pre-trained models
across various continual VL concept learning tasks, achieving leads of up to 3.70%,
4.82%, and 4.38%, along with at least a 10x acceleration in training speed on three
benchmarks, respectively. Additionally, our zero-shot antidote significantly reduces
forgetting in existing models by at least 6.37%. Our code is available at https:
//github.com/Zi-Jian-Gao/Stabilizing-Zero-Shot-Prediction-ZAF.

1 Introduction

In the rapidly evolving landscape of artificial intelligence, pre-trained models have become funda-
mental to achieving state-of-the-art results across a myriad of applications [25]. Recently, large
vision-language (VL) models have provided remarkable predictions on downstream tasks without
any training examples [30, 13, 2, 19]. However, these models are typically trained on static datasets,
which may not capture the continuously evolving variety and complexity of real-world data. As
new concepts emerge and existing categories expand, the static nature of these pre-trained models
can lead to diminished performance over time. For example, the CLIP model [30] achieves an
accuracy of less than 60% on the MNIST dataset (i.e., a performance significantly lower than that of a
conventionally trained CNN [17]) [49]. To bridge this gap, continual learning (CL) has emerged as a
vital methodology, making learning new knowledge a lifelong process for the pre-trained VL model.
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However, the adaptation process, whether involving comprehensive fine-tuning of the entire pre-
trained model [7, 49, 3] or parameter-efficient continual fine-tuning [33, 45, 29], inevitably undergo
incremental parameter shifts. This presents a significant challenge in CL, where VL models forget
historical knowledge as they adapt to new tasks [41, 45]. Additionally, the high computational costs
required to integrate new data with old data, combined with often limited access to complete previous
datasets, further exacerbate the severity of forgetting [47, 45]. Thus far, most CL research has
focused on mitigating the forgetting of class information from previously learned images, a process
known as class incremental learning [38]. Multimodal tasks such as visual question answering
(VQA) and natural language visual reasoning (NLVR) have received less attention. Building upon
the foundations laid by unimodal CL efforts, recent initiatives have aimed to mitigate forgetting
from parameter shifts by developing robust continual VL learning frameworks, including Mixture-of-
Experts [45], weight consolidation [49], and Layered-LoRA [33]. Furthermore, a growing body of
work is dedicated to developing anti-forgetting strategies, such as knowledge distillation [23] and
rectification [3]. Meanwhile, latent replay mechanisms, including adversarial pseudo-replay [33]
and prototype learning [47], have shown effectiveness in retaining historical knowledge, albeit with
significant additional memory and computational costs. All these methods, however, struggle with
the inherent trade-off between acquiring new knowledge and preserving historical knowledge.

In this work, we aim to decouple the learning-forgetting dynamic, striving for a win-win outcome —
enhancing anti-forgetting capabilities without interfering with the learning process. Our extensive
empirical investigation reveals uniform patterns in the model’s performance across learned and
future VL tasks. Theoretically, we find that the generalization errors for old and new tasks are nearly
identical. Motivated by these insights, particularly the observed stability of zero-shot predictions that
reflects the stability required for old tasks (i.e., anti-forgetting capabilities), we develop a novel CL
approach. This method, named ZAF (Zero-shot Antidote to Forgetting), incorporates a zero-shot
prediction stability regularization term within our EMA-LoRA architecture. ZAF employs two
low-rank adapters: one facilitates the learning of new tasks and ensures stable zero-shot predictions
on wild data; the other, an Exponential Moving Average (EMA)-based adapter, preserves historical
knowledge and utilizes it for zero-shot supervision. The synergistic interaction between these adapters
effectively decouples learning from forgetting, thereby enhancing overall CL performance.

Our contributions include: (1) We conduct a comprehensive empirical and theoretical study on
continual learning for pre-trained VL models, establishing zero-shot stability as a reliable indicator of
anti-forgetting capabilities; (2) Inspired by this finding, we develop a plug-and-play zero-shot antidote
that enhances models’ anti-forgetting across various CL methods, through a zero-shot prediction
stability regularization on wild data; (3) We introduce an innovative replay-free CL method (termed
ZAF), implemented within a parameter-efficient EMA-LoRA architecture, effectively decoupling
learning from forgetting; (4) Across various continual VL benchmarks and pre-trained models, our
approach achieves state-of-the-art performance and significantly reduced complexity.

2 Related Work

Continual Learning (CL): Continual learning aims to train a single model capable of incrementally
updating its knowledge with a new sequence of tasks while preserving historical knowledge [41, 39].
However, due to parameter shift and limited access to historical data, the primary challenge in CL is
forgetting previously learned tasks over time [41]. A plethora of strategies have been explored to
address this issue [32, 21, 18, 6, 12], including selective stabilization of network weights, replay of a
few old training samples, construction of task-specific parameters, etc. Despite advancements in the
unimodal community, such as in image classification, multimodal tasks have received comparatively
less attention. This gap highlights the complexity and emerging interest in multimodal settings [9,
4, 8, 24, 35, 47]. In this context, VQACL [47] introduced a continual VQA task leveraging a latent
replay strategy. RATT [4] focused on continual image captioning through weight regularization and
knowledge distillation. Distinctively, ConStruct-VL [33] pursued continual adaptation to fine-grained
Structured VL Concepts reasoning skills without fixed task boundaries. This is particularly applicable
to real-world scenarios, and thus, we choose this VL task as a case study in our experiments.

It is noteworthy that several studies closely related to ours discuss both zero-shot and continual
learning capabilities [49, 45, 46]. However, their objectives differ fundamentally from ours. These
studies, including ZSCL [49] and MoE-Adapters [45], aim to preserve the zero-shot transfer ability
inherent in pre-trained VL models during continual adaptation for sequentially arriving tasks, even
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though these capabilities may be inherently limited. In contrast, our research is exclusively focused
on enhancing the anti-forgetting capabilities in downstream CL tasks with our zero-shot antidote.

Vision-and-Language (VL) Pre-training: VL pre-training aims to enhance the performance of
downstream VL tasks by pre-training models on large-scale image-text data. The effectiveness of
these models largely depends on their representational capacity, including factors like data quality and
model architecture, as well as the similarity between pre-training tasks and downstream applications.
Generally, higher data quality and greater task similarity lead to stronger generalizability. However,
due to the high costs of human annotation, most methods leverage noisy image-text pairs sourced
from the web, which are a sub-optimal form of supervision (e.g., CLIP [30] and ALIGN [13]). A
novel dataset bootstrapping method, Captioning and Filtering (CapFilt), was introduced to utilize
web datasets more effectively [19]. Furthermore, most existing pre-trained models excel either
in understanding-based tasks like image-text retrieval [30, 20] or generation-based tasks such as
image captioning [26, 11]. The primary challenge lies in designing model architectures capable
of performing diverse tasks [44]. In response, the ‘BLIP’ framework was proposed, providing
flexible transfer ability to both tasks [19]. Specifically, its image transformer is initialized from ViT
pre-trained on ImageNet [37, 5], and the text transformer originates from BERT [14]. An important
variant of BLIP, enhanced with CapFilt to boost performance, is termed ‘BLIP w/ CapFilt-L’ [19].
Additionally, to enable reasoning on downstream tasks, ‘BLIP’ was further fine-tuned on the NLVR2
dataset [36] with a more computationally efficient architecture, referred to as ‘BLIP w/ NLVR’ [19].

In this work, we primarily focus on BLIP and its two variants, unlike the closely related studies [49,
45, 46] that utilize CLIP. Our choice is driven by the nature of our case study, which involves
reasoning tasks as opposed to classification tasks typically associated with CLIP.

3 Preliminary Analysis

In this section, we first define the problem of continual VL learning and then examine the correlation
between the model’s anti-forgetting capabilities and zero-shot stability through an empirical study.

3.1 Formulation of Continual Vision-Language (VL) Learning

In this work, we focus on adapting pre-trained VL models to a sequence of newly arriving reasoning
tasks, denoted as {T 1, · · · , T n}. Each task T t involves a set of image-text pairs (I, T ), with a binary
ground-truth function P (T, I) ∈ {(0, 1), (1, 0)} determining whether the text precisely describes
the image content. The primary distinction among these tasks lies in the types of cognitive skills
they aim to develop. Notably, traditional CL methods, which require identifying the specific task to
which input belongs during inference, are impractical here. This is due to the challenge of discerning
the required skills from free-form text and the likelihood that multiple skills may be simultaneously
necessary. Given the constraints of privacy in practical applications, we adopt a strict policy of not
retaining any task-specific data between training sessions. This leads us to a continual, replay-free
setting without task identifiers, which is precisely the focus of our study.

3.2 Empirical Study of Anti-Forgetting and Zero-Shot Performance

To investigate the correlation between a model’s anti-forgetting capabilities and its stability in zero-
shot predictions, we conducted an empirical study using the Structured VL Concepts (SVLC) learning
multimodal benchmark [33]. This benchmark utilizes two widely recognized public VL datasets:
Visual Genome (VG) [16] and Visual Attributes in the Wild (VAW) [28], adhering to protocols
outlined by the VL-Checklist [48]. The ‘7 Task VG+VAW’ benchmark, derived from both VG and
VAW datasets, includes seven distinct concepts designed to assess a VL model’s understanding of
various relationships, including spatial and inter-object transitive actions, as well as attributes such as
size, color, material, and intransitive single-object actions. Examples of these concepts are depicted
in Fig. 5. Additionally, the ‘7 Task VG’ benchmark is solely based on the VG dataset, and the ‘5
Task VAW’ benchmark focuses on five attributes and object state concepts from the VAW dataset.
We adhere strictly to the dataset splits outlined in ConStruct-VL [33].

We rigorously evaluate the official implementations of all baseline models to ensure a fair comparison.
Our evaluations largely adhere to the training regimes established by LoRA [10], MoE-Adapters [45],
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Figure 1: Empirical study of anti-forgetting, learning, and zero-shot performance in CL methods.

Layered-LoRA [33], and ConStruct-VL [33]. Since MoE-Adapters [45] was originally designed
for both pre-trained and downstream classification tasks requiring task-id inference, we adapt its
implementation to include a single task-dependent router for our needs. Given the focus on reasoning
tasks, we opt for ‘BLIP w/ NLVR’ as our pre-trained model, chosen for its robust representation
capabilities and adequate zero-shot transfer ability.

Fig. 1 illustrates a heatmap that depicts the performance of various CL methods across two bench-
marks (see Appendix C.1 for additional benchmarks). In this heatmap, rows represent training steps,
and Aij denotes the prediction accuracy on task T j after training on task T i. It is important to note
that traditional CL methods typically focus only on the lower triangular matrix of results, which rep-
resents performance on previously learned tasks. However, our analysis extends to include zero-shot
predictions on future tasks, which are represented in the upper triangular matrix. By comparing these
results, we observe that larger average values and less fluctuation in the red area, which represents
strong zero-shot stability, typically correspond to similar patterns in the blue area, indicative of strong
anti-forgetting capabilities, without adversely affecting the yellow area, where learning new tasks
occurs. This observation suggests that a model’s stability in zero-shot predictions can reflect its
anti-forgetting capabilities. Our findings further suggest that by systematically stabilizing zero-shot
predictions during continual learning, we can significantly enhance the model’s ability to retain
historical knowledge without compromising the acquisition of new information.

4 Theoretical Foundation and Our Approach

In this section, we first provide a theoretical analysis to substantiate our empirical findings. Subse-
quently, we present an innovative CL approach specifically tailored for pre-trained VL models.

4.1 Continual Vision-Language Learning Objective

In the continual learning of sequentially arriving VL tasks T t = {T, I}, the model is designed to align
with the binary ground-truth function P (T, I) that evaluates whether the text T precisely describes
the image content I . In this case study, we employ BLIP-based encoders to learn discriminative deep
embeddings. Specifically, let fν represent the image encoder and fτ the text encoder, while hω and
hψ serve as the cross-attention decoder and the final binary classifier, respectively. The predictive
modeling process within the BLIP framework for learning task T t is structured as follows:

P t(T, I) = hψt(hωt(fνt(I), fτt(T ))), (1)

where P t(T, I) denotes the prediction probability made by the current modelMt = {νt, τ t, ωt, ψt}.
To sequentially fine-tune the BLIP model for downstream tasks, we employ a cross-entropy loss term,
LCE(P

t(T, I), P (T, I)). This loss measures the discrepancy between the current prediction, P t(·),
and the ground truth, P (·), ensuring that the model progressively acquires new information.
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Figure 2: Comparison of training and inference procedures between traditional and our CL methods.

Let Ê1:t denote the empirical errors on the t observed tasks, and Êt represent the empirical error on the
current task T t. For k ∈ {t+ 1, . . . , n} and s ∈ {1, . . . , t− 1}, Ek and Es denote the generalization
errors on the future task T k and the old task T s, respectively. Inspired by the PAC-Bayes theory [27]
and previous work in domain generalization [1, 31, 40], we present the upper bounds of these two
errors under the continual VL scenario (see Appendix A for the detailed proof).

Proposition 1 For continual learning with pre-trained VL models, letMt denote a solution of the
continually learned tasks T 1, · · · , T t. In particular,Mt = argmin||M−Mt−1||2≤∆ Êt(M) where
||M −Mt−1||2 ≤ ∆ represents the weight vectors for continual tasks are only minor variations.
For any δ ∈ (0, 1) with probability at least 1− δ:

∀s ∈ {1, · · · , t− 1}, Es(Mt) ≤ Ê1:t(Mt) +
1

2t

t∑
i=1

Div(Ti, Ts) +

√
d[ln(N̄/d)] + ln(1/δ)

2N̄
, (2)

∀k ∈ {t+ 1, · · · , n}, Ek(Mt) ≤ Ê1:t(Mt) +
1

2t

t∑
i=1

Div(Ti, Tk) +

√
d[ln(N̄/d)] + ln(1/δ)

2N̄
, (3)

where Div(Ti, Tj) := 2 suph∈H |PTi
(I(h)) − PTj

(I(h))| defines the H-divergence between the
distributions for tasks Ti and Tj , with I(h) being the characteristic function. Here, N̄ denotes the
harmonic mean of the training example sizes for the t observed tasks, and d represents the VC
dimension of the parameter space.

Proposition 1 demonstrates that the modelMt has consistent upper bounds on the generalization
errors for both previously learned and future tasks. These abilities are significantly influenced by
three key factors: empirical error of continual tasks, discrepancy between task distributions, and
complexity of the parameter space. Such consistency underscores that the model’s capabilities in
zero-shot prediction can reliably indicate its anti-forgetting capabilities. In practice, maintaining
this consistency necessitates the implementation of carefully designed regularization techniques.

Motivated by these insights, we develop a zero-shot regularization antidote to mitigate forgetting.
Considering the unpredictable nature and broad array of future tasks, we initially introduce an
unlabeled wild dataset, denoted as Dwild = {Twild, Iwild}, to assess the zero-shot capabilities of the
continually learned VL model. It is crucial to note that both the text Twild and the images Iwild are
entirely unpaired and unlabeled2. Additionally, the substantial number of wild examples in Dwild are
distinct and separate from the actual downstream tasks {T i}ni=1. Fig. 8 illustrates some wild examples.
To stabilize zero-shot predictions, we develop a novel loss term, LZS(P

t(Twild, Iwild), P̂ t(Twild, Iwild)),
where P̂ t(·) is the prediction probability derived from the model in the previous training step and
used for zero-shot supervision. The formulation of our method’s loss function is outlined below:

L = LCE(P
t(T, I), P̄ (T, I)) + LZS(P

t(Twild, Iwild), P̂ t(Twild, Iwild)), (4)

2Please refer to Appendix C.5 for more details about the construct of the wild dataset.
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Algorithm 1 Training Algorithm of ZAF
Input: A pre-trained VL modelM0, number of epochs E, and hyperparameter α ∈ [0, 1]
Data: A sequence of training tasks T 1, ..., T n and a wild dataset Dwild = {Twild, Iwild}
Output: The continually learned modelMt for inference

1: Initialize the LoRA component {A,B} and EMA component Ŵ
2: for t in 1 : n do
3: for e in E do
4: while not traverse over all current data T t do
5: Sample a batch of current data Bi, and a batch of wild data Bwild

6: W =M0 +A · B
7: Predict the probabilities P t(Bi) usingW
8: Calculate LCE with P t(Bi) and ground truth P (Bi)
9: if t = 1 then

10: Optimize {A,B} with LCE
11: else
12: Predict the probabilities P t(Bwild) usingW , and P̂ t(Bwild) usingMt−1

13: Calculate LZS with P t(Bwild) and P̂ t(Bwild)
14: Optimize {A,B} with loss function Eq. (4)
15: if t = 1 then
16: Ŵ ← A · B, andM1 =M0 + Ŵ
17: else
18: Update the EMA component Ŵ andMt with Eq. (5)
19: returnMt

where LZS = ||P t(Twild, Iwild)− P̂ t(Twild, Iwild)||1 in our experiments to restrain its fluctuations.

4.2 EMA-LoRA Architecture

To achieve the objective outlined above, rather than conducting comprehensive fine-tuning of the
entire pre-trained model {νt, τ t, ωt, ψt} as defined in Eq. (1), we develop a parameter-efficient
approach using an EMA-LoRA architecture based on BLIP. As depicted in Fig. 2(b), for efficient
adaptation to new tasks, we first integrate LoRA adapters into all layers of the image encoder fν , text
encoders fτ , and the cross-attention decode hω, which are updated during the training of task T t.
Specifically, each of fν , fτ , and hω consists of a combination of non-parametric functions - referred to
here as data norms, such as LayerNorm, which remain frozen, and two types of parametric functions,
namely linear and embedding functions. Typically, linear and embedding functions are parameterized
by a weight matrixW , which is optimized at every iteration by adding residuals to the weights from
the initial pre-trained VL modelM0. Formally, this is represented asW =M0 +A · B, where A
and B are learnable low-rank matrices of dimensions m× r and r × l respectively, with m× l being
the dimensions ofM0. During the training of task T t, only the current task’s LoRA adapters {A,B}
are learned, and predictions P t(·) are made usingW . This strategy not only enhances the adaptability
of the model to new tasks but also maintains a balance between efficiency and performance.

As demonstrated in Eq. (4), accessing previous models is essential for predicting wild data (i.e., P̂ (·)).
To facilitate this, we implement the Exponential Moving Average (EMA) on the aforementioned
LoRA adapters (see Fig.2(b)). This approach allows for memory-efficient access to previous models
while learning new tasks. Specifically, the EMA process is conducted at the end of every epoch:

Ŵ ← αŴ + (1− α)A · B, and Mt =M0 + Ŵ, (5)

where the hyperparameter α ∈ [0, 1] plays a crucial role in updating the model parameters (refer to
Fig. 3 for its sensitivity analysis). Importantly,Mt represents the final model used for inference after
continual learning. The weights Ŵ are updated following the completion of the first downstream task,
at which point there is no risk of forgetting, thereby eliminating the need for the zero-shot antidote
LZS. For subsequent tasks, predictions on wild data using P̂ t(·) are made withMt−1.

Algorithm 1 provides a detailed view of our training algorithm for the Zero-shot Antidote to Forgetting
(ZAF) framework. Key highlights of the proposed ZAF include: (1) Learning vs. Forgetting: As
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illustrated in Fig. 2(a) and (b), traditional CL frameworks, such as those incorporating knowledge
distillation, often struggle with a trade-off between learning and forgetting. This trade-off typically
manifests in the balance of LCE and LKD, where the LoRA adapter is optimized to align with both old
and new knowledge using current data: minLCE(P

t(T t), P (T t)) + LKD(P
t(T t), P t−1(T t)). Our

approach introduces a zero-shot antidote using wild data to effectively separate the learning processes
from the problem of forgetting: minLCE(P

t(T t), P (T t)) +LZS(P
t(Dwild), P̂

t(Dwild)). (2) Privacy
Protections: Unlike conventional methods that require replaying old task data, our framework
utilizes generated wild data to prevent forgetting, adhering to privacy constraints. (3) Innovative
Mixture Strategy: Deviating from the typical spatial Mixture of Experts (MoE) and Layered-LoRA
architectures, our model employs a temporal mixture strategy through EMA. This approach not only
conserves memory but also integrates downstream tasks incrementally and effectively. (4) Efficiency
in Resource Usage: The EMA-LoRA architecture involves only two low-rank adapters, which are
computationally efficient, and also ensure ||M−Mt−1||2 ≤ ∆, as established in our Proposition 1.

5 Experiment

Benchmark: We utilize the ‘7 Task VG+VAW’, ‘7 Task VG’, and ‘5 Task VAW’ benchmarks
for our empirical studies as discussed in Sec. 3.2. We use the object state → attr. action →
attr. size → rel. spatial → attr. material → rel. action → attr. color 7-task sequence in the
7 Task VG+VAW benchmark and 7 Task VG benchmark, and the object state→ attr. action→
attr. size→ attr. material→ attr. color 5-task sequence in the 5 Task VAW benchmark. Given
the reasoning task scenario, our primary focus is on the original ‘BLIP’ model and its two variants:
‘BLIP w/ CapFilt-L’ and ‘BLIP w/ NLVR’. Notably, the latter variant, which is fine-tuned on the
NLVR2 dataset, exhibits enhanced zero-shot transfer ability.

Model Architecture: All experiments begin with the BLIP model architectures and its pre-trained
weights. The image encoder, denoted as fν , utilizes ViTB/16, and the text encoder fτ is a BERT with
a 12-layer encoder and 768 hidden size. The decoder hω extends fτ , incorporating cross-attention
layers between every two self-attention layers, with each receiving encoded image tokens as additional
input. Our binary classifier hψ is a 2-layer MLP with a hidden size of 768. For all baselines, we
adhere to the implementation protocols established in ConStruct-VL [33], a pioneering work in SVLC
scenario that has demonstrated exceptional performance. We maintain a shared binary classifier hψ
across all task models. In practice, for the BLIP w/ NLVR model, hψ is frozen across all tasks. For
the BLIP and BLIP w/ CapFilt-L models, hψ is trained only for the first task T 1 and then remains
frozen for all subsequent tasks.

Baseline and Implementation: Due to the inadequate performance of unimodal CL methods in
multimodal scenarios, as highlighted by [33], our analysis primarily focuses on frameworks and multi-
modal CL methods designed for VL scenarios. We include only one representative unimodal method,
LwF [21], which mitigates forgetting through knowledge distillation for comparison. Detailed
comparisons with other unimodal CL methods are provided in Appendix C.6. Among the methods
compared, Continual-FT [7] and LoRA [10] train the VL model continuously without incorporating
anti-forgetting procedures. Layered-LoRA [33] and MoE-Adapters [45] are viewed as representative
continual VL learning frameworks. Furthermore, we compare our ZAF with ZSCL [49], which
aims to preserve the inherent zero-shot capability of the pre-trained model, and ConStruct-VL [33],
which employs an expensive pseudo-replay strategy involving adversarial attacks on every sample.
Following the implementation from previous work [33], specifically, we adapt WD 0.05, an initial
LR of 1.25e-3, a cosine scheduler, and a maximum of 12 training epochs in all experiments. For all
low-rank adapters, the rank r is set to 16. The only hyperparameter, α, of our method is fixed at 0.85.
Please refer to Appendix B for more implementation details.

Evaluation Metrics: We utilize three widely-recognized evaluation metrics for continual learn-
ing - Final Average Accuracy (FAA), Cumulative Average Accuracy (CAA), and Final Forgetting
Measure (FFM) as detailed in [41, 38]. We define the accuracy on the task T j after learning the
task T i as Aij . The average accuracy after learning task T i is denoted as AAi = 1

i

∑i
j=1Aij .

Upon completing all n tasks, we report FAA = AAn, CAA = 1
n

∑n
i=1AAi, and FFM =

1
n−1

∑n−1
j=1 maxt∈{1,...,n−1}(Atj − Anj). The FAA is a critical metric highlighting performance
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Table 1: Overall performance (%) of CL methods across three benchmarks under various VL models.

VL models Method
7 Task VG+VAW 7 Task VG 5 Task VAW

FAA (↑) CAA (↑) FFM (↓) FAA (↑) CAA (↑) FFM (↓) FAA (↑) CAA (↑) FFM (↓)

BLIP

Joint Learning 91.90 - - 95.27 - - 92.60 - -
Continual-FT [7] 65.21 73.98 30.32 63.91 73.97 31.34 67.07 78.35 28.14
LoRA [10] 75.39 76.59 20.73 69.16 75.89 28.20 71.54 79.07 22.48
Layered-LoRA [33] 76.68 78.51 18.96 70.13 79.66 28.08 83.77 83.47 9.20
LwF [21] 70.93 73.62 26.26 69.62 77.05 29.05 80.07 84.32 14.93
ZSCL [49] 66.87 66.00 19.08 67.32 75.65 27.45 66.53 75.05 25.13
MoE-Adapters [45] 69.90 74.47 27.11 64.50 77.18 34.98 80.09 83.02 14.36
ConStruct-VL [33] 87.27 86.98 6.14 89.01 91.87 5.80 83.73 86.34 6.47
ZAF (Ours) 90.05 89.45 3.32 92.49 92.39 1.97 89.13 90.03 3.93
Improvement 2.78 2.47 2.82 3.48 0.52 3.83 5.40 3.69 2.54

BLIP w/
CapFilt-L

Joint Learning 93.72 - - 95.31 - - 92.90 - -
Continual-FT [7] 67.20 74.85 28.02 70.05 75.17 23.99 71.95 79.31 22.18
LoRA [10] 71.97 76.07 25.27 69.97 77.52 28.49 79.66 82.36 13.78
Layered-LoRA [33] 76.66 76.27 19.20 70.43 78.00 27.16 81.89 82.66 11.18
LwF [21] 73.39 75.42 23.81 70.02 77.62 28.47 79.83 84.21 15.63
ZSCL [49] 62.90 64.29 22.06 67.12 76.21 27.14 68.13 77.15 24.67
MoE-Adapters [45] 69.76 73.29 27.34 63.99 76.19 35.34 80.01 84.10 14.43
ConStruct-VL [33] 85.16 87.61 8.75 88.95 90.69 5.22 83.33 85.57 6.28
ZAF (Ours) 89.61 89.65 4.18 92.53 92.20 1.72 89.43 90.20 3.02
Improvement 4.45 2.04 4.57 3.58 1.51 3.50 6.10 4.63 3.26

BLIP w/
NLVR

Joint Learning 93.37 - - 95.07 - - 92.36 - -
Continual-FT [7] 67.23 73.60 27.96 73.40 78.60 20.55 73.19 80.58 20.69
LoRA [10] 69.55 75.03 27.25 68.73 78.03 29.62 75.63 81.87 19.37
Layered-LoRA [33] 80.62 79.89 13.92 73.03 81.12 24.99 83.73 84.26 9.29
LwF [21] 73.00 77.26 23.12 71.11 79.39 27.09 82.10 84.69 11.24
ZSCL [49] 60.27 67.94 28.48 65.82 78.06 27.68 62.03 74.33 31.20
MoE-Adapters [45] 72.50 74.81 23.74 67.09 76.54 31.83 79.05 84.21 15.58
ConStruct-VL [33] 85.97 87.00 6.94 86.96 90.47 7.91 84.36 85.93 5.36
ZAF (Ours) 89.67 89.30 3.38 91.78 91.74 2.02 88.74 89.03 2.67
Improvement 3.70 2.30 3.56 4.82 1.27 5.89 4.38 3.10 2.69

discrepancies between CL methods and joint learning. The CAA provides a comprehensive view of
overall historical performance, and the FFM quantifies the model’s capability to mitigate forgetting.

Overall Performance: As shown in Table 1, our ZAF consistently achieves the highest FAA, CAA,
and lowest FFM, significantly outperforming competitors across three benchmarks with different pre-
trained models. ZSCL [49], despite employing weight ensemble and knowledge distillation, exhibits
inadequate learning on the challenging 7 Task VG+VAW and 7 Task VG benchmarks, resulting
in declined performance. Similarly, MoE-Adapters, like Continual-FT [7] and LoRA [10], which
lack anti-forgetting mechanisms, exhibit significant forgetting as the number of tasks increases. In
contrast, both the Layered-LoRA architecture [33], with its task-specific parameter isolation strategy,
and LwF [21], with only a knowledge distillation strategy, show improved performance. Notably,
only ConStruct-VL [33] approaches the performance of our method but requires computationally
intensive training involving adversarial attacks and utilizing all historical models for pseudo-sample
generation. Despite this, ZAF shows substantial advantages, leading by 3.70%, 4.82%, and 4.38% in
FAA under the BLIP w/ NLVR model. Meanwhile, our method demonstrates a narrow performance
gap compared to Joint Learning - the pinnacle of continual learning. The smaller this gap, the
greater the challenge for CL methods to bridge it. Importantly, despite the inherent limitations in
the zero-shot capabilities of some pre-trained VL models (e.g., BLIP and BLIP w/ CapFilt-L), our
zero-shot antidote still effectively mitigates forgetting, underscoring its utility across a wide range of
CL scenarios and pre-trained models.

Complexity Analysis: Table 2 presents the model size, training parameter count, and training
times of various CL methods across three benchmarks. All comparisons are conducted on 7 NVIDIA
GeForce RTX 3090 GPUs using ‘BLIP w/NLVR’, which serves as the standard configuration for
subsequent experiments. As reflected in the table, ConStruct-VL exhibits exceptionally high training
times, especially in the 7 Task VG+VAW scenario, attributed to the utilization of all historical models
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Table 2: Comparison of training complexity among various CL methods across three benchmarks.

Method Model Size (M) Train Params (M)
Train Times (h)

7 Task VG+VAW 7 Task VG 5 Task VAW
Continual-FT [7] 223.94 223.94 5.57 2.25 2.90

LoRA [10] 230.13 6.19 4.64 1.86 2.82
Layred-LoRA [33] 230.13 ∼ 267.29 6.19 11.10 4.04 5.60

LwF [21] 230.13 ∼ 236.33 6.19 8.13 5.19 6.34
MoE-Adapters [45] 251.04 27.10 6.01 2.82 4.19

ZSCL [49] 223.94 223.94 11.83 6.44 7.83
ConStruct-VL [33] 230.13 ∼ 267.29 6.19 247.78 102.59 73.24

ZAF (Ours) 236.33 6.19 8.35 5.81 6.67
Training Speed Acceleration 247.78/8.35 ≈ 29.67 102.59/5.81 ≈ 17.66 73.24/6.67 ≈ 10.98

Table 3: Comparison of plugin performance for various CL methods across three benchmarks.

Method
7 Task VG+VAW 7 Task VG 5 Task VAW

FAA (↑) CAA (↑) FFM (↓) FAA (↑) CAA (↑) FFM (↓) FAA (↑) CAA (↑) FFM (↓)
Joint Learning 93.37 - - 95.07 - - 92.36 - -
LoRA [10] 69.55 75.03 27.25 68.73 78.03 29.62 75.63 81.87 19.37
w/ Zero-shot Antidote 72.47 77.78 23.15 79.12 83.47 16.85 81.55 84.01 12.39
Layered-LoRA [33] 80.62 79.89 13.92 73.03 81.12 24.99 83.73 84.26 9.29
w/ Zero-shot Antidote 83.81 85.11 10.37 84.10 88.75 11.26 86.66 87.02 4.98
MoE-Adapters [45] 72.50 74.80 23.74 67.09 76.54 31.83 79.05 84.21 15.58
w/ Zero-shot Antidote 86.78 86.78 6.29 83.62 87.89 12.27 85.55 87.47 6.67
ConStruct-VL [33] 85.97 87.00 6.94 86.96 90.47 7.91 84.36 85.93 5.36
w/ Zero-shot Antidote 89.60 88.13 1.26 92.05 92.06 0.88 86.94 86.72 1.22
EMA-LoRA 77.78 80.96 17.30 75.02 82.22 21.55 83.08 86.21 10.18
w/ Zero-shot Antidote (ZAF) 89.67 89.30 3.38 91.78 91.74 2.02 88.74 89.03 2.67
Average Improvement 7.18 5.88 8.94 11.96 7.10 14.52 4.72 2.35 6.37

and complex adversarial attacks on every training sample. Although methods like MoE-Adapters and
Layered-LoRA are more efficient than ConStruct-VL, their performance is still found lacking. In
contrast, our method, ZAF, maintains relatively modest training times and model size, comparable
to LwF - one of the simplest CL methods - yet significantly enhances anti-forgetting capabilities.
Compared to ConStruct-VL, the currently best-performing method, ZAF achieves substantial training
speed accelerations of 29.67, 17.66, and 10.98 on the three benchmarks, respectively. These results
underscore ZAF’s considerable advantages in terms of complexity, efficiency, and memory usage.

Plugin Analysis: Table 3 presents a comprehensive plugin analysis, illustrating the significant
reductions in FFM and improvements in FAA and CAA achieved by our zero-shot antidote when
applied to various CL methods. In practical implementations, the model from the last task of the
baselines is utilized to calculate the zero-shot regularization term. The results underscore the anti-
forgetting capabilities of the zero-shot antidote, as evidenced by an average reduction of 14.52% in
the FFM, and increases of 11.96% in FAA and 7.10% in CAA, in the 7 Task VG benchmark. These
observations further validate the universality and effectiveness of our proposed decoupled training
objectives: enhancing anti-forgetting capabilities without compromising the learning process. For
additional qualitative results, please refer to Appendix C.1. Furthermore, although our proposed
EMA-LoRA architecture demonstrates anti-forgetting capabilities comparable to the Layered-LoRA
framework, a comparative analysis when both are enhanced with the zero-shot antidote further
underscores the superior performance of our approach (ZAF). This superiority arises from the
synergistic effects of combining the EMA-LoRA neural architecture with zero-shot prediction stability.
This configuration not only improves training efficiency but also significantly reduces memory usage.
For additional results across various pre-trained models, please refer to Appendix C.2.

Hyperparameter Analysis: Fig. 3 showcases the performance of our ZAF method across different
hyperparameter values α ∈ [0, 1], including comparative analyses with Joint Learning and our
strongest competitor, ConStruct-VL. Notably, when α ranges from 0.65 to 0.90, ZAF consistently
outperforms ConStruct-VL by clear margins in both FAA and CAA metrics across three distinct
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Figure 3: Comparison of FAA and CAA metrics for ZAF across various α values against 3 baselines.

Figure 4: Results of various CL methods across three distinct task orders within 7 Task VG+VAW.

benchmarks, underscoring its superior adaptability. However, setting α to 0.95 leads to a notable
decline in performance, reflecting the model’s compromised ability to integrate new knowledge
effectively. Overall, ZAF demonstrates remarkable robustness across a broad range of hyperparameter
settings. Please refer to Appendix C.4 for ZAF’s heatmaps across different α values.

Task Order Analysis: Fig. 4 presents the statistical results of various CL methods across three distinct
task orders within the challenging 7 Task VG+VAW benchmark. Excluding the aforementioned task
order within the 7 Task VG + VAW benchmark, the second and third orders are the rel. spatial→
attr. size → attr. material → rel. action → attr. color → object state → attr. action task
sequence and the rel. spatial → attr. material → attr. state → attr. action → attr. size →
rel. action → attr. color task sequence, respectively. Our ZAF method exhibits remarkable
robustness to variations in the task order, showing only minimal fluctuations across three performance
metrics, and consistently outperforms existing CL methods by a significant margin. For detailed task
sequence and quantitative results, please refer to Appendix C.3.

6 Discussion and Conclusion

In this work, we analyze the challenges of learning and forgetting in continual learning for pre-
trained VL models from both empirical and theoretical perspectives. A key finding is that zero-shot
stability reliably indicates forgetting. We introduce a plug-and-play zero-shot antidote to enhance
anti-forgetting capabilities across various CL methods, integrating it into our parameter-efficient EMA-
LoRA architecture. This facilitates efficient adaptation and memory-free access to historical models,
effectively circumventing the learning-forgetting trade-off prevalent in current CL works [3, 49, 45,
46]. Our approach demonstrates superior performance across various continual VL benchmarks and
pre-trained models. We anticipate future research will explore the anti-forgetting challenge from the
perspective of zero-shot prediction stability, diverging from traditional mechanisms.

This work presents several potential limitations. The effectiveness of our plug-and-play zero-shot
antidote presumes the existence of a feasible CL framework, which may not be available in all contexts.
Also, it is designed specifically for a sequence of downstream tasks, limiting its applicability to the
original training contexts of the pre-trained models. As a fundamental research in machine learning,
the potential negative societal impacts are not immediately apparent at this stage.
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A Theoretical Foundation

A.1 Preliminary

For the convenience of readers who are not familiar with the PAC-Bayesian framework, we introduce
the most relevant concepts from the literature here [27]. PAC-Bayesian theory studies the properties
of randomized predictors, called Gibbs predictors. Formally, let X be an image-text input set3, Y
be an output set, and H ⊂ {h : X → Y} a set of prediction functions (hypotheses). We assume
that a distribution D is with X , Y , and a global labeling function h : X → Y , where h(x) generates
target label for all the input, i.e., y = h(x). Consider a bounded loss function L : Y × Y → [0, 1] for
binary prediction, such that L(y1, y2) = 0 holds if and only if y1 = y2. Then, we define an expected
loss over the distribution D by ED(M, h) = ED(M) = E(x,y)∼D[L(PM(x), y)], where PM(·) is the
prediction function parameterized onM. Let D denote a training set following the distribution D
with N data-label pairs. To minimize ED(M), we can minimize an empirical risk over the training
set D in a parameter space, i.e., minM ÊD(M) where ÊD(M) = 1

N

∑N
n=1 L(PM(xn), yn).

Below are one important definition and three critical lemmas for the proof of our Proposition 1.

Definition 1 (Based on Definition 1 of [1]) Given two distributions, T and S, letH be a hypothesis
class on input space X and denote by I(h) the set for which h ∈ H is the characteristic function:
that is, x ∈ I(h)⇔ h(x) = 1. TheH-divergence between T and S is

Div(T,S) = 2 sup
h∈H
|PT(I(h))− PS(I(h))|. (6)

Lemma 1 Let S = {Si}si=1 and T be s source distributions and a target distribution, respectively.
TheH-divergence between {Si}si=1 and T is bounded as follows:

Div(S,T) ≤ 1

s

s∑
i=1

Div(Si,T). (7)

Proof. By the definition ofH-divergence in Definition 1,

Div(S,T) = 2 sup
h∈H
|PS(I(h))− PT(I(h))|

= 2 sup
h∈H

∣∣∣∣∣
s∑
i=1

1

s
(PSi(I(h))− PT(I(h)))

∣∣∣∣∣
≤ 2 sup

h∈H

s∑
i=1

1

s
|PSi(I(h))− PT(I(h))|

≤ 2

s∑
i=1

1

s
sup
h∈H
|PSi(I(h))− PT(I(h))|

=
1

s

s∑
i=1

Div(Si,T),

(8)

where the first inequality is due to the triangle inequality (i.e., |
∑
i ai| ≤

∑
i |ai|) and the second

inequality is by the additivity of the sup function. This finishes the proof.

Lemma 2 Given two distributions, T and S, letM1 ∈ H and h1 ∈ H be two prediction functions.
The difference between the expected loss with T and S is bounded by the divergence between T and S
as follows:

|ET(M1, h1)− ES(M1, h1)| ≤
1

2
Div(T,S), (9)

where Div(T,S) := 2 suph∈H |PT(I(h))− PS(I(h))| is theH-divergence for the distribution T and
S (I(h) is the characteristic function).

3We abbreviate the image-text input space as X instead of {X , I} for simplicity and ease of notation
throughout this document. Likewise, x instead of {T, I}.
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Proof. By the definition ofH-divergence in Definition 1,

Div(T,S) = 2 sup
h∈H
|PT(I(h))− PS(I(h))|

= 2 sup
M1,h1∈H

∣∣P(x,y)∼T[PM1
(x) ̸= h1(x)]− P(x,y)∼S[PM1

(x) ̸= h1(x)]
∣∣

= 2 sup
M1,h1∈H

∣∣E(x,y)∼T[L(PM1
(x), h1(x))]− E(x,y)∼S[L(PM1

(x), h1(x))]
∣∣

= 2 sup
M1,h1∈H

|ET(M1, h1)− ES(M1, h1)|

≥ 2|ET(M1, h1)− ES(M1, h1)|.

(10)

It completes the proof.

Lemma 3 Let Θ be a cover of a parameter space with VC dimension d. Then, for any δ ∈ (0, 1)
with probability at least 1− δ, for anyM∈ Θ:

|ED(M)− ÊD(M)| ≤
√

d[ln(N/d)] + ln(1/δ)

2N
, (11)

where ÊD(M) is an empirical risk with N samples in its training set D.

Proof. For the distribution D, according to [22], we have

P(|ED(θ)− ÊD(θ)| ≥ ϵ) ≤ 2mΘ(N) exp(−2Nϵ2), (12)

where mΘ(N) is the amount of all possible prediction results for N samples, which implies the
model complexity in the parameter space Θ. We set mΘ(N) = 1

2

(
N
d

)d
in our model, and assume a

confidence bound ϵ =
√

d[ln(N/d)]+ln(1/δ)
2N . Then we get

P(|ED(θ)− ÊD(θ)| ≥ ϵ) ≤
(
N

d

)d
exp(−2Nϵ2) = δ. (13)

Hence, the inequality |ED(θ)− ÊD(θ)| ≤ ϵ holds with probability at least 1− δ.

It completes the proof.

A.2 Proof of Proposition 1

If we continually learn t VL tasks T 1, · · · , T t that follow the distribution D1, · · · ,Dt, a solution
Mt can be obtained with their training data D1, · · · , Dt. We define D1:t := {D1, · · · ,Dt} and
D1:t := {D1, · · · , Dt}. Then, for a future task T k where k ∈ {t + 1, · · · , n}, its distribution is
denoted as Dk with training setDk. Let Ek be the zero-shot generalization error on a future task T k.
Here, we use Ek(Mt) instead of Ek(Mt, h) since we assume there is no difference between labeling
functions for each task for simplicity. Specifically, within the context of continual VL reasoning
tasks, the labeling function h is defined as a binary function. In fact, we cannot compute Ek since the
distributions over the tasks (i.e., Dk) and the tasks’ data (i.e, Dk) are both unknown. However, we
can approximate it by its empirical counterpart, based on the t observed tasks:

Ek(Mt) ≤ E1:t(Mt) +
1

2
Div(D1:t,Dk)

≤ Ê1:t(Mt) +
1

2
Div(D1:t,Dk) +

√
d[ln(N̄/d)] + ln(1/δ)

2N̄

≤ Ê1:t(Mt) +
1

2t

t∑
i=1

Div(Di,Dk) +

√
d[ln(N̄/d)] + ln(1/δ)

2N̄
,

(14)

where ÊD1:t
(Mt) = 1

t

∑t
i=1 ÊDi

(Mt) because ||Mi+1 −Mi||2 ≤ ∆ that represents the weight
vectors for continual tasks are only minor variations. The three inequalities hold due to Lemma 2,
Lemma 3 and Lemma 1, respectively. D1:t := {Di}ti=1 and we rewrite a mixture of all the t

distributions as D1:t :=
1
t

∑t
i=1 Di using convex combination. N̄ =

(
1
t

∑t
i=1

1
Ni

)−1

is the harmonic
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mean of the training example sizes (i.e., Ni) in each task. Of note, Div(Di,Dk) is rewritten as
Div(Ti, Tk) in the main body to avoid using the distribution notation Di and Dk.

Furthermore, for previously learned tasks T s where s ∈ {1, · · · , t− 1}, let Es denote the general-
ization error on old task T s. We cannot compute Es since the distributions over the old tasks (i.e.,
Ds) and the tasks’ data (i.e, Ds) are both unavailable at current time t. However, we can approximate
it by its empirical counterpart, based on t observed tasks:

Es(Mt) ≤ E1:t(Mt) +
1

2
Div(D1:t,Ds)

≤ Ê1:t(Mt) +
1

2
Div(D1:t,Ds) +

√
d[ln(N̄/d)] + ln(1/δ)

2N̄

≤ Ê1:t(Mt) +
1

2t

t∑
i=1

Div(Di,Ds) +

√
d[ln(N̄/d)] + ln(1/δ)

2N̄
,

(15)

where Div(Di,Ds) is rewritten as Div(Ti, Ts) in the main body to avoid using the distribution notation
Di and Ds.

Interestingly, the bound in both Eq. (14) and Eq. (15) contains two types of complexity terms that
correspond to two levels of our model: Div(D1:t, ·) corresponds specifically to the similarity between

target task with all t observed tasks, while
√

d[ln(N̄/d)]+ln(1/δ)
2N̄

belongs to the similarity among all
tasks in general.

Based on the definition ofH-divergence in Definition 1, for future task T k and k ∈ {t+ 1, · · · , n},
we have

t∑
i=1

Div(Di,Dk) = 2

t∑
i=1

sup
h∈H

|PDi(I(h))− PDk (I(h))|

≥ 2

t∑
i=1

sup
h∈H

|PDi(I(h))− PDs(I(h))|

=

t∑
i=1

Div(Di,Ds),

(16)

where the inequality holds due to s ∈ {1, · · · , t−1}, and current modelMt incorporates knowledge
of the distribution from the old task T s. In fact, Div(D1:t,Dk) can also be interpreted as the extent to
which modelMt needs to be adjusted to learn task T k. Obviously, Div(D1:t,Dk) is generally larger
than Div(D1:t,Ds) because T s has already been learned previously, even though its data and model
are no longer available.

It can be concluded from the two bounds in Eq. (14) and Eq. (15) that a modelMt that has learned
t tasks demonstrates consistent reasoning abilities on both future tasks and previously learned
tasks. This consistency hinges on the model’s ability to zero-shot prediction and anti-forgetting.
Additionally, the ability to maintain statistical consistency, i.e., showing stable performance across
different tasks, is a key indicator of the success of a continual learning strategy, especially to the
anti-forgetting challenge. In practice, ensuring this consistency of trend requires carefully designed
learning strategies and appropriate regularization measures to enhance anti-forgetting capabilities
without interfering with the learning process.

B Implementation Details on Baselines

In the implementation of LwF [21], we conduct it based on LoRA, instead of fine-tuning the entire
model. For each incremental task, we preserve the LoRA from the last task for the distillation
procedure. Regarding ConStruct-VL, the results are reproduced using the official codes and hyperpa-
rameters. We use update steps nadv = 10, the step size λadv = 0.01 , and the loss weight ρ = 0.2.
For ZSCL [49], which employs a KD loss to align with the original CLIP model, the hyperparameter
I dictates the weight ensemble frequency, as specified in the original papers. The KD weight is set
to 1, and the hyperparameter I is set to 5 to enhance learning capability and overall performance,
although it still performs inadequately in the challenging 7 Task VG+VAW benchmark. For MoE-
Adapters [45], originally proposed for image classification tasks requiring task-id for inference, we
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Figure 5: Examples of Structured VL Concept reasoning task.

adapt its implementation to include a single task-dependent router for our VL task where there is
no task boundary. Following the original paper, the number of experts is set to 14, and the router
chooses the top-4 experts during training and inference.

C Extended Results

In this section, we provide some extended results for the main text.

C.1 Extended Plugin Analysis

Figure 6: Effect of our zero-shot antidote on various CL methods across three benchmarks.

We present a comprehensive plugin analysis by detailing the performances of various methods with
and without our zero-shot antidote in Table 3. Here, we offer visual comparisons in Fig. 6 to illustrate
the impact of our zero-shot antidote on enhancing both zero-shot prediction and anti-forgetting
capabilities across different methods. As demonstrated in the figure, incorporation our zero-shot
antidote significantly improves zero-shot prediction performance on unseen tasks (indicated by the
upper triangular red area) for each method without compromising their learning abilities (represented
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Table 4: Component analysis of our ZAF under three pre-trained VL models.

VL models Method
7 Task VG+VAW 7 Task VG 5 Task VAW

FAA (↑) CAA (↑) FFM (↓) FAA (↑) CAA (↑) FFM (↓) FAA (↑) CAA (↑) FFM (↓)

BLIP

Joint Learning 91.90 - - 95.27 - - 92.60 - -
EMA-LoRA 76.24 79.89 20.11 64.50 78.96 32.63 81.92 86.28 12.69
ZAF (Ours) 90.05 89.45 3.32 92.49 92.39 1.97 89.13 90.03 3.93
Improvement 13.81 9.56 16.79 27.99 13.43 30.66 7.21 3.75 8.76

BLIP w/
CapFilt-L

Joint Learning 93.72 - - 95.31 - - 92.90 - -
EMA-LoRA 75.80 79.56 20.66 73.77 82.04 23.54 80.74 85.87 14.08
ZAF (Ours) 89.61 89.65 4.18 92.53 92.20 1.72 89.43 90.20 3.02
Improvement 13.81 10.09 16.48 18.76 10.16 21.82 8.69 4.33 11.06

BLIP w/
NLVR

Joint Learning 93.37 - - 95.07 - - 92.36 - -
EMA-LoRA 77.78 80.96 17.30 75.02 82.22 21.55 83.08 86.21 10.18
ZAF (Ours) 89.67 89.30 3.38 91.78 91.74 2.02 88.74 89.03 2.67
Improvement 11.89 8.34 13.92 16.76 9.52 19.53 5.66 2.82 7.51

by the diagonal yellow area). Moreover, the anti-forgetting capability (shown in the lower triangular
blue area) of each method is also substantially improved. Although ConStruct-VL already exhibits
strong anti-forgetting capabilities, its performance is further enhanced when its zero-shot prediction
ability is augmented with our antidote. These visual comparisons not only support our empirical
findings that the stability of consecutive zero-shot predictions can serve as a reliable indicator of its
anti-forgetting capabilities but also verify that our zero-shot antidote successfully decouples learning
from forgetting.

C.2 Detailed Component Analysis

In the main text, we present part results for EMA-LoRA architecture and ZAF, noting that EMA-
LoRA demonstrates performance comparable to Layered-LoRA, and the integration of the zero-shot
antidote significantly enhances its performance. Here, we perform an extended ablation study in
Table 4 to delve into the interaction between the EMA-LoRA architecture and zero-shot antidote
under three pre-trained VL models. The excellent performance improvement in the table can be
attributed to the close cooperation between the EMA-LoRA architecture and the zero-shot antidote.
As illustrated in Fig. 2 (b), on the one hand, the EMA-LoRA architecture effectively ensembles
historical knowledge to provide informative zero-shot supervision. On the other hand, the zero-shot
antidote offers an effective solution that separates the learning processes from the problem of anti-
forgetting. By incorporating them, ZAF significantly mitigates forgetting and provides overwhelming
performance compared to existing baselines, along with significantly improved efficiency.

C.3 Detailed Performance Analysis across Different Task Orders

Table 5: Overall performance (%) of various CL methods across different task orders.

Method
Task Order 1 Task Order 2 Task Order 3

FAA (↑) CAA (↑) FFM (↓) FAA (↑) CAA (↑) FFM (↓) FAA (↑) CAA (↑) FFM (↓)
Joint Learning 93.37 - - 93.37 - - 93.37 - -
Continual-FT [7] 67.23 73.60 27.96 71.68 75.31 22.24 65.61 76.88 29.65
LoRA [10] 69.55 75.03 27.25 74.13 81.17 21.99 67.21 78.00 29.38
Layered-LoRA [33] 80.62 79.89 13.92 75.92 83.47 19.66 78.23 76.96 24.86
LwF [21] 73.00 77.26 23.12 75.38 79.59 20.58 74.76 81.32 21.21
ZSCL [49] 60.27 67.94 28.48 60.27 67.94 28.48 55.46 70.95 35.68
MoE-Adapters [45] 72.50 74.81 23.74 71.42 76.96 24.86 72.61 78.73 23.27
ConStruct-VL [33] 85.97 87.00 6.94 86.07 91.36 5.49 86.56 90.15 4.88
ZAF (Ours) 89.67 89.30 3.38 90.67 93.12 2.33 90.16 92.84 2.35
Improvement 3.70 2.30 3.56 4.60 1.76 3.16 3.60 2.69 2.53

In the main text, Fig. 4 illustrates the results of various CL methods across three different task
orders, demonstrating the robustness of our approach. In Table 5, we further present the quantitative
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performance of all these methods. It is evident that our ZAF method consistently outperforms all
baselines by substantial margins. Moreover, our method exhibits minimal performance variation
across different task orders, with the FAA consistently hovering around 90%. In contrast, none of the
baselines come close to reaching the FAA near 90%.

C.4 Extended Hyperparameter Analysis

Figure 7: Heatmap changes for our ZAF across various α values in three benchmarks.

The hyperparameter α introduced by our method is important to control the rate of parameter updates.
As depicted in Fig. 3, our ZAF method exhibits remarkable robustness across a wide range of α values
compared to three baselines. Further insights into the qualitative impact of α on the anti-forgetting
capability are provided in Fig. 7, which presents heatmaps of our ZAF performance across various
α values. It can be observed from these visualizations that an increase in the α value significantly
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improves the zero-shot prediction stability, thereby enhancing the model’s anti-forgetting capability.
This enhancement is attributed to preserving more historical knowledge at higher α values, which
ensures more stable zero-shot predictions and less forgetting. However, it is important to note that
setting α to 0.9 and 0.95 compromises the model’s ability to integrate new knowledge effectively,
resulting in reduced learning ability (the brighter diagonal yellow area) and a decline in overall
performance. These observations underscore the effectiveness of our ZAF implementation and, in
turn, also validate our empirical findings.

C.5 Wild Data Composition Analysis

Figure 8: Randomly selected examples from our wild dataset.

The construction of the wild dataset is important for stabilizing zero-shot predictions across a broad
spectrum of downstream tasks. Like the SVLC multimodal benchmark, each sample in our wild
dataset consists of triplets, including a single image and two texts. These texts do not correspond
to the image content; one text is manipulated by altering a specific concept found in the other. To
ensure that images and texts remain unpaired, we shuffle them in the training batch, as done in the
provided code. For our dataset, we first collect a substantial collection of images from the VG and
VAW datasets. We then identify the main objects within these images to form a list of nouns. Next,
we use ChatGPT4 [25] to generate a list of concepts words covering a wide range of structured VL
concepts, such as shape (e.g., round, square, triangular), texture (e.g., smooth, coarse, sandy), and
brightness (e.g., faint, light, bright). For each image, we then randomly combine words from the noun
and concept lists in a grammatical format to create one text. We create another text for the image by
replacing the concept word in this text with another randomly selected concept from our concept list.
It is important to note that the clarity of these texts (e.g., round cat, sandy couple, faint bus) is not
prioritized, as the main objective is to evaluate the model’s zero-shot ability to handle image-text
pairs. The generation process allows us to create wild data efficiently with the help of ChatGPT4.
In total, our dataset comprises 12,358 unique images and 30,144 unique texts, resulting in 21,006
triplets. Fig. 8 shows some randomly selected examples from our wild dataset.

Figure 9: Performance of our ZAF using the wild data with different compositions.

As shown in Fig. 9, our comparative analysis evaluates the performance of ZAF using different
compositions of wild data. First, employing only current task data to calculate the zero-shot loss
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yields notably limited results. This limitation stems from coupled training targets, similar to traditional
knowledge distillation techniques, which rely on the same data source, as illustrated in Subsection 4.2.
Moreover, utilizing wild data with ungrammatical text leads to decreased performance, likely because
the model tends to overlook image information and classify image-text pairs with ungrammatical texts
as inherently negative. This limitation also hampers the effective evaluation of the model’s zero-shot
capabilities. In contrast, employing grammatically correct text achieves the best performance in our
experiments. The figure clearly demonstrates that employing grammatically correct texts significantly
enhances both FAA and CAA, thereby confirming the effectiveness of our process for creating wild
data.

C.6 Extended Comparisons

Table 6: Extended comparison with unimodal CL methods across three benchmarks.

Method
7 Task VG+VAW 7 Task VG 4 Task VAW

FAA (↑) CAA (↑) FAA (↑) CAA (↑) FAA (↑) CAA (↑)
Joint Leaning 93.37 - 95.07 - 92.26 -
L2 [34] 76.36 85.59 77.40 87.12 83.72 86.01
EWC [15] 73.29 81.81 72.78 82.61 86.00 87.26
L2P [43] 66.96 76.46 60.88 69.23 62.27 68.68
Dual Prompt [42] 58.59 68.64 65.55 66.94 60.07 71.98
ConStruct-VL [33] 85.40 90.88 86.99 93.00 87.50 89.77
ZAF (Ours) 90.77 93.23 91.71 94.73 89.26 90.95
Average Improvement 5.37 2.35 4.72 1.73 1.76 1.18

In Table 1, we provide the overall performance of our ZAF method and other multimodal baselines.
To conduct more comprehensive comparisons with CL methods, Table 6 presents the performances
for widely-used regularization-based unimodal CL methods such as L2 [34] and Elastic Weight
Consolidation (EWC) [15], alongside prompt-based baselines like Learning to Prompt (L2P) [43]
and Dual Prompt (DP) [42]. Here, we use the rel. spatial → attr. size → attr. material →
rel. action→ attr. color → object state→ attr. action 7-task sequence in the ‘7 Task VG+VAW’
benchmark and ‘7 Task VG’ benchmark, and the attr. action → object state → attr. color →
attr. size 4-task sequence in the ‘4 Task VAW’ benchmark, using the ‘BLIP w/ CapFilt-L’ model.
The task sequence settings and results are excerpted from [33].

The table shows a substantial performance gap between unimodal and multimodal methods, highlight-
ing the insufficient adaptation ability of visual CL methods in multimodal scenarios. Additionally,
our ZAF method consistently outperforms ConStruct-VL with notable margins in the FAA metric
across three benchmarks, further proving its effectiveness. The more challenging the benchmark, the
more remarkable the margins become.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:[Yes]
Justification: [NA]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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