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ABSTRACT

Class incremental learning aims to enable models to learn from sequential, non-
stationary data streams across different tasks without catastrophic forgetting. In
class incremental semantic segmentation (CISS), the semantic content of the back-
ground class changes across incremental phases, which is known as semantic
drift. Our research identifies two severe issues within semantic drift: separate
optimization and noisy semantics, which significantly degrade CISS performance.
Based on this insight, we propose a simple yet effective method, Image Posterior
and Semantics Decoupling for Segmentation (IPSeg), designed to address these
challenges through two specific mechanisms. First, IPSeg leverages image poste-
rior probabilities as guidance to resolve the separate optimization issue. Second,
IPSeg utilizes semantics decoupling to effectively handle noisy semantics and tailor
the learning strategies for different types of knowledge. Experiment results on
the Pascal VOC 2012 and ADE20K datasets demonstrate superior performance
compared to previous state-of-the-art approaches, particularly in more realistic and
challenging long-term scenarios. Furthermore, IPSeg exhibits excellent properties
in terms of both learning plasticity and memory stability.

1 INTRODUCTION

Deep learning methods have achieved significant success in vision (Qu et al., 2021) and language (Ke
& Liu, 2022) tasks with fixed or stationary data distributions. However, real-world scenarios are
characterized by dynamic and non-stationary data distributions, posing the challenge of catastrophic
forgetting (McCloskey & Cohen, 1989; McClelland et al., 1995). Incremental learning, a.k.a. contin-
ual learning or lifelong learning (Silver et al., 2013), has been proposed to enable models to adapt to
new data distributions without forgetting previous knowledge (Kudithipudi et al., 2022). Within this
domain, Class Incremental Learning (CIL) methods (Serra et al., 2018; Li & Hoiem, 2017; Rebuffi
et al., 2017; Mai et al., 2022; Wang et al., 2024a) have shown great potential in learning new classes
from incoming data, particularly for classification tasks (De Lange et al., 2021).

Class Incremental Semantic Segmentation (CISS) extends the principles of CIL to pixel-wise tasks. In
addition to catastrophic forgetting in CIL, CISS encounters an even more critical challenge: semantic
drift (Yuan & Zhao, 2023) or background shift (Cermelli et al., 2020), which describes the incremental
change in the semantic meaning of pixel labels. Several studies (Douillard et al., 2021; Cha et al.,
2021; Zhang et al., 2022b; 2023) attribute semantic drift to the dynamic semantic content of the
background across incremental stages. Subsequent works (Cermelli et al., 2020; Douillard et al.,
2021) early pioneer this investigation using knowledge distillation and pseudo-labeling. More recent
works (Cha et al., 2021; Zhang et al., 2022b; 2023) further use saliency maps and segment proposals
to differentiate between the foreground and background regions. However, these works predominantly
target the separation of noisy semantics, still leaving room for further optimization.

Furthermore, we delve into semantic drift challenge and identify an additional critical issue, separate
optimization, as being of significant importance. Separate optimization refers to the CIL methods that
update the task heads for each target class independently and sequentially. This leads to a scenario
where task heads trained earlier may produce higher scores than those trained later for similar-looking
categories. Figure 1(a) directly presents the impact of separate optimization, where the SSUL-M
model mistakenly classifies a horse as a “cow” class with a higher logit score after learning “horse”
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Figure 1: (a) Affected by noisy semantics and separate optimization, the previous method SSUL-M
misclassifies a “horse” as a “cow” with higher logit scores when learning “horse” after “cow”. While
our IPSeg leverages image posterior (IP) guidance to produce accurate predictions on these two
similar-look classes. In class-wise prediction visualizations, we use deeper colors to indicate higher
prediction scores. (b) The quantitative performance comparison with state-of-the-art methods under
the long-term incremental challenge (VOC 2-2).

following “cow”. Under the combined impacts of separate optimization and noisy semantics, the
previous efforts are still short of effectively addressing the semantic drift challenge.

Motivated by our observations and analyses, we introduce Image Posterior and Semantics Decoupling
for Class-Incremental Semantic Segmentation (IPSeg) to address the aforementioned challenges.
Specifically, we propose image posterior guidance to mitigate separate optimization by rectifying
the error pixel-wise predictions using image-wise predictions. As illustrated in Figure 1(a), IPSeg is
capable of correctly predicting “horse” with the assistance of image posterior guidance. Moreover,
we propose permanent-temporary semantics decoupling to decouple the noisy semantics into
two groups, one characterized by simple, stable, and static semantics, and the other by complex,
dynamic, and temporary semantics. To accommodate these distinct semantic groups, we design
separate permanent and temporary branches with varied life cycles to learn the associated concepts.

Extensive experimental results on two popular benchmarks, Pascal VOC 2012 and ADE20K, demon-
strate the effectiveness and competitiveness of IPSeg. Our method consistently outperforms other
methods across various incremental scenarios, particularly in long-term challenges with performance
gains of 24.8% in VOC 2-2 task as illustrated in Figure 1(b). Experiment results further reveal that
IPSeg has good properties of both learning plasticity and memory stability.

2 RELATED WORK

Class Incremental Learning (CIL) Class-incremental learning is a method that continuously
acquires knowledge in the order of classes, aiming to address catastrophic forgetting (McCloskey &
Cohen, 1989) while continually learning new classes. Existing work (Wang et al., 2024b) broadly
categorizes these approaches into three main types: Replay-based methods involve storing data or
features of old classes or generating data that includes old classes to mitigate catastrophic forgetting.
This class can be further divided into Experience Replay (Rebuffi et al., 2017; Bang et al., 2021),
Generative Replay (Liu et al., 2020; Shin et al., 2017), and Feature Replay (Belouadah & Popescu,
2019). Regularization-based methods focus on designing loss functions that incorporate second-
order penalties based on the contribution of parameters to different tasks (Kirkpatrick et al., 2017;
Jung et al., 2020). They also rely on knowledge distillation, typically using the model from a previous
phase as a teacher to constrain the current phase model (Li & Hoiem, 2017; Rebuffi et al., 2017;
Douillard et al., 2020; Buzzega et al., 2020). Architecture-based methods dynamically adjust model
parameters based on new data, including assigning specific parameters for different data (Gurbuz &
Dovrolis, 2022; Serra et al., 2018) and breaking down model parameters into task-specific or shared
parts (Douillard et al., 2022).
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Class Incremental Semantic Segmentation (CISS) CISS is similar to class-incremental learning
(CIL) but extends the task to pixel-level predictions (Phan et al., 2022; Camuffo & Milani, 2023;
Zhang et al., 2022a; Xiao et al., 2023). MiB (Cermelli et al., 2020) first introduces the concept of
semantic shift unique to CISS, employing distillation strategies to mitigate this issue. PLOP (Douillard
et al., 2021) utilizes pseudo-labeling techniques for incremental segmentation to address background
shift, while SSUL (Cha et al., 2021) further incorporates salient information, introducing the concept
of “unknown classes” into each learning phase and using a memory pool to store old data to prevent
catastrophic forgetting. RECALL (Maracani et al., 2021) and DiffusePast (Chen et al., 2023) extend
traditional replay methods by incorporating synthetic samples of previous classes generated using
Diffusion (Ho et al., 2020) or GAN (Goodfellow et al., 2020) models. MicroSeg (Zhang et al., 2022b)
employs a proposal generator to simulate unseen classes. CoinSeg (Zhang et al., 2023) highlights
differences within and between classes, designing a contrastive loss to adjust the feature distribution
of classes. PFCSS (Lin et al., 2023) emphasizes the preemptive learning of future knowledge to
enhance the model’s discrimination ability between new and old classes.

3 METHOD

In this section, we begin by presenting the necessary notation and definition of the problem, followed
by our analysis of semantic drift in section 3.1. Next, we introduce our proposed method, IPSeg, with
detailed designs including image posterior and semantics decoupling in section 3.3 and section 3.4.

3.1 PRELIMINARY

Notation and problem formulation Following previous works (Cha et al., 2021; Zhang et al.,
2022b; 2023), in CISS, a model needs to learn the target classes C1:T from a series of incremental
tasks as t = 1, 2, 3, ..., T . For task t, the model learns from a unique training dataset Dt which
consists of training data and ground truth pairs Dt = {(xti, yti)}

|Dt|
i=1 . Here i denotes the sample index,

t for the task index, and |Dt| for the training dataset scale. xti,j and yti,j denote the j-th pixels and the
corresponding annotation in the image xti. In each incremental phase t, the model can only access the
class set Ct ∪ cb where Ct denotes the class set of current task t and cb for background class.

To prevent catastrophic forgetting, architecture-based methods allocate and optimize distinct sets
of parameters for each class, instead of directly updating the whole model. The whole model ft is
composed of a frozen backbone hθ, followed by a series of learnable task-specific heads ϕ1:t, with
one task head corresponding to each task. In task t, only the newly added task head ϕt is needed to
be optimized. In inference, the prediction for the j-th pixel in image xi can be obtained by:

ŷi,j = ft(xi,j) = argmax
c∈C1:T

ϕc1:T (hθ(xi,j)). (1)

Where ϕc1:T (·) denotes the C-dimension outputs. Additionally, we introduce the image-level labels
Yi of the image xi, a memory buffer M, and an extra image classification head ψ to support our
implementation. A comprehensive explanation of symbols can be found in the appendix.

Semantic Drift Previous works (Kirkpatrick et al., 2017) mainly attribute the semantic drift to noisy
semantics within the background class cb. They attempt to mitigate this challenge by decoupling
the background class cb into subclasses c′b and cu, where c′b denotes the “pure” background and cu
denotes the unknown class. The most advanced methods (Zhang et al., 2022b; Cha et al., 2021)
further decouple the unknown classes cu into past seen classes C1:t−1 and dummy unknown class c′u
using pseudo labeling. However, semantic drift remains unresolved as the decoupled classes are still
changing across incremental phases and models are always hard to learn these chaotic classes.

Additionally, another challenge caused by separate optimization of incremental learning exacerbates
semantic drift but attracts few attention. Previous work (Kim et al., 2024) points out that freezing
parameters from the old stage can preserve the model’s prior knowledge, leading to error propagation
and confusion between similar classes. While in CISS, the task head ϕt is exclusively trained by
supervision from the current classes and will be frozen to resist catastrophic forgetting in the following
incremental phases. In the following task t1, t1 > t, ϕt may produce high scores on objects from
other appearance-similar classes, without any penalty and optimization. Meanwhile, the new task
head ϕt1 just predicts moderate scores which might be slightly lower than error predictions from ϕt.
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Figure 2: Overall architecture of our proposed IPSeg, mainly composed of image posterior and
permanent-temporary semantics decoupling two parts. In the latter part, ϕp denotes the permanent
learning branch and ϕ1, ϕ2, ..., ϕt for temporary ones. The black solid lines are used to indicate the
data flow in training and the green ones are for inference.

In this way, it is common that earlier incremental task heads may have larger output scales than the
later heads, especially in similar classes. This separate optimization manner ultimately causes the
incremental models to misclassify some categories and makes semantic drift more difficult to address.
Some cases are provided to help better understand this challenge in the appendix.

3.2 OVERVIEW

As illustrated in Figure 2, we propose Image Posterior and Semantics Decoupling for Class-
incremental Semantic Segmentation (IPSeg) to mitigate semantic drift through two main strategies:
image posterior guidance and permanent-temporary semantics decoupling. In section 3.3, we describe
how the IPSeg model uses image posterior guidance to overcome separate optimization. To address
noisy semantics, IPSeg employs two branches to decouple the learning of noisy semantics. Detailed
explanations of this approach are provided in section 3.4.

3.3 IMAGE POSTERIOR GUIDANCE

As previously discussed, the separate optimization leads to inconsistent output scales across different
incremental task heads and error predictions. We propose leveraging the image-level posterior as the
global guidance to correct the probability distributions of different task heads. The rationale for using
the image posterior probabilities is based on the following fact:

Fact: For any image, if its image-level class domain is CI and its pixel-level class domain is CP , the
class domains CI and CP are the same, i.e., CI = CP .

Inspired by this fact, we propose to use an extra image posterior branch ψ to predict image classifica-
tion labels and train it in an incremental learning manner. As illustrated in Figure 2, ψ is composed of
Pooling, Fully connected (FC) layers, and Multi-Layer Perceptrons (MLPs) with the input dimension
of 4096 and the output dimension of |C1:T |, where the FC layers serve as shared intermediate feature
processors, and the MLPs serve as incremental classification heads for incremental classes.

In task t (t > 1), the model is only able to access data from both the memory buffer M and the
current task training data Dt. The mixed data samples xm,t

i from these two sources are processed by
the network backbone hθ into the image feature hθ(xti), and further processed by image posterior
branch ψ into the image classification prediction Ŷt

i . The objective function for training ψ is:

LIP = LBCE(Ŷt
i , Ỹt

i ) = LBCE(ψ(hθ(x
m,t
i )), Ỹt

i ), Ỹt
i = Yt

i ∪ Ỹϕ1:t−1(hθ(x
m,t
i )). (2)

Where image classification label Ỹt
i consists of two parts, the ground truth label Yt

i on current task
class set Ct and pseudo label Ỹϕ1:t−1(hθ(x

m,t
i )) on past seen classes C1:t−1. Instead of relying solely

on the label Yt
i , we use the image-level pseudo labels from previous task heads prediction to provide

informative signals of previous incremental tasks, mitigating biases in the image posterior branch ψ.
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During testing, the image posterior branch predicts posterior probabilities on all classes C1:T . For a
test image xi, the final pixel-wise prediction scores are computed by element-wise multiplication
between the image posterior probabilities from ψ and the pixel-wise probabilities from ϕ0:T :

pi = Concat( αBC, σ( ψ(hθ(xi)) ) )︸ ︷︷ ︸
Image Posterior Probability

· σ( ϕ0:T (hθ(xi))︸ ︷︷ ︸
Pixel-wise Probability

). (3)

where σ(·) denotes the Sigmoid function. The hyperparameter αBC is used to compensate for the lack
of background posterior probability, with the default value αBC = 0.9. The result pi is the rectified
pixel-wise prediction with a shape of [C,HW ], and pci,j is prediction of the j-th pixel on class c. The
final prediction of the j-th pixel by IPSeg can be written as:

ŷi,j = argmax
c∈C1:t

pci,j . (4)

3.4 PERMANENT-TEMPORARY SEMANTICS DECOUPLING

To further address semantic drift caused by the coupled learning of complex and noisy dummy
labels cb and cu along with incomplete yet accurate label Ct, we propose a decoupling strategy that
segregates the learning process for different semantics. Here is our empirical observation:

Observation: Given an image in incremental task t, the semantic contents of it include four parts:
the region of past classes C1:t−1, target classes Ct, unknown foreground c′u and pure background c′b.

Based on this observation, we first introduce dummy label cf = C1:t−1 ∪ c′u to represent the
foreground regions that encompass both past seen classes and unknown classes, which are not the
primary targets in the current task. Subsequently, we decouple the regions of a training image into
two sets: Ct ∪ cf and c′b ∪ c′u. The former set Ct ∪ cf are current target classes and other foreground
objects, which are temporary concepts varying across different phases. While c′b ∪ c′u are dummy
labels representing “pure” background and unknown objects, which are permanent concepts existing
throughout all incremental phases. For instance, “cat” and “horse” are target classes in the current
task but change into the region of past seen foreground classes in subsequent tasks, while the concepts
of background and unknown objects remain consistent.

Following our decoupling strategy, we can reassign the labels of image xi as:

ỹ
p
i =


ci, if yt

i ∈ Ct ∨ ((yt
i = cb) ∧ (ft−1(xi) ∈ C1:t−1))

c′u, if (yt
i = cb) ∧ (ft−1(xi) /∈ C1:t−1) ∧ (S(xi) = 1)

c
′
b, else,

, ỹ
t
i =


yt
i , if yt

i ∈ Ct

cf , if (yt
i = cb) ∧ (S(xi) = 1)

c
′
b, else,

(5)

where ft−1(·) is the model of task t− 1 and S(·) is the salient object detector as used in SSUL (Cha
et al., 2021). ỹpi is the label used to train the permanent branch ϕp. ỹti is the label used to train the
incremental learning heads ϕt for the current task t. ci is the ignored region not included in the loss
calculation. The visualization of semantics decoupling is provided in the appendix.

The learning of these two sets of semantics is also decoupled. In addition to the existing incremental
heads ϕ1:T , we introduce a permanent branch ϕp to learn the permanent dummy classes c′b and
c′u. ϕp has the same network architecture as the incremental head ϕt. They are composed of three
3x3 convolution layers and several upsampling layers. The existing incremental head ϕt serves as
the temporary branch to learn the semantics Ct ∪ cf existing in the current incremental phase. It’s
worth noting that ϕp and ϕt have different learning life cycles. The permanent branch ϕp is trained
and optimized across all incremental phases to distinguish foreground and background. While the
temporary branch ϕt is temporarily trained in task phase t to recognize the current foreground classes
Ct. The objective functions for these two branches is defined as:

Lp = LBCE( ϕp(hθ(x
t
i)), ỹ

p
i ), Lcurrent = LBCE( ϕt(hθ(x

t
i)), ỹ

t
i ). (6)

Finally, the total optimization objective function of IPSeg is:
Ltotal = LIP + λ1Lcurrent + λ2Lp, (7)

where λ1 and λ2 are trade-off hyperparameters to balance different training objective functions.

During inference, as shown by the greens line in Figure 2, the permenant branch ϕp outputs prediction
for the background c′b, and the temporary branch ϕi (i = 1, 2, ..., t) outputs predictions for the target
classes Ct. And the pixel-level prediction ϕ0:T (hθ(xti)) can be writen as:

ϕ0:T (hθ(x
t
i)) = Concat( ϕp(hθ(x

t
i)) , ϕ1:T (hθ(x

t
i))). (8)
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Where ϕp(hθ(xti)) and ϕ1:T (hθ(xti)) represent background prediction from permenant branch and
all foreground prediction from temporary branch. The pixel-level prediction is then producted by
image posterior probability to form the final predition maps as Eq 3 and Eq 4.

Furthermore, to mitigate the issue of inaccurate predictions on other foreground classes cf within
each task head ϕt during inference, we introduce a Noise Filtering trick, filtering out prediction errors
associated with cf . The prediction for the j-th pixel ŷi,j is processed as:

ŷi,j =

{
αNF · ŷi,j if max( pfi,j , p

c
i,j ) = pfi,j

ŷi,j if max( pfi,j , p
c
i,j ) = pci,j

(9)

Where αNF is noise filtering term with the default value αNF = 0.4. And pfi,j and pci,j are the j-th
pixel logit outputs on the foreground and target class respectively.

3.5 IMPROVING MEMORY BUFFER

The memory buffer M plays a crucial role in our implementation and we implement the memory
buffer based on unbiased learning and storage efficiency. IPSeg employs a class-balanced sampling
strategy, ensuring the image posterior branch can adequately access samples from all classes. Specifi-
cally, given the memory size |M| and the number of already seen classes |C1:t|, the sampling strategy
ensures there are at least |M| // |C1:t| samples for each class. IPSeg also optimizes the storage cost
of M by only storing image-level labels and object salient masks for samples. Image-level labels
are required for the image posterior branch for unbiased classification. While the salient masks split
images into background and foreground objects, labeled with 0 and 1 respectively. This simplification
mechanism requires less storage cost compared to previous methods that store the whole pixel-wise
annotations on all classes. More details can be found in the appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Dataset Following previous works (Zhang et al., 2023; Cha et al., 2021), we evaluate our method
using the Pascal VOC 2012 (Everingham et al., 2010) and ADE20K (Zhou et al., 2017) datasets.
Pascal VOC 2012 includes 20 foreground classes and one background class, with 10,582 training
images and 1,449 validation images. ADE20K, a larger-scale dataset, comprises 150 classes of stuff
and objects, with 20,210 training images and 2,000 validation images.

Protocols We primarily use the overlap setting to evaluate our method. This setting is more
challenging and realistic than the disjoint setting (Qiu et al., 2023), as the images may contain
both seen and unseen classes across different incremental steps. We evaluate IPSeg under several
incremental scenarios, denoted as M -N , where M is the number of classes learned initially, and N
is the number of classes learned in each incremental step. For example, VOC 15-1 (6 steps) means
learning 15 classes initially and one new class in each subsequent step until all 20 classes are learned.
We use the mean Intersection over Union (mIoU) as the evaluation metric.

Implementation details Following previous works (Lin et al., 2022; Baek et al., 2022; Xiao et al.,
2023), IPSeg utilizes DeepLab V3 (Chen et al., 2017) as the segmentation model with ResNet-
101 (He et al., 2016) and Swin Transformer-base (Swin-B) (Liu et al., 2021) pre-trained on ImageNet-
1K (Deng et al., 2009) as the backbones. The training batch size is 16 for Pascal VOC 2012 and 8 for
ADE20K. IPSeg uses the SGD optimizer with a momentum of 0.9 and a weight decay of 1e-4. The
learning rates for both datasets are set to 0.01, with learning rate policies of poly for Pascal VOC
2012 and warm poly for ADE20K. All experiments are conducted with 2 NVIDIA GeForce RTX
3090 GPUs. For a fair comparison, the memory size is set as the same as SSUL (Cha et al., 2021)
that |M| = 100 for Pascal VOC 2012 and |M| = 300 for ADE20K. Pseudo-label (Zhang et al.,
2023) and saliency information (Hou et al., 2017) are adopted as previous methods (Cha et al., 2021;
Zhang et al., 2022b). To avoid information leaking, the ground truth of the training data in the image
posterior branch only consists of annotations and pseudo-labels from the corresponding steps.

6
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Table 1: Comparison with state-of-the-art methods on Pascal VOC 2012 dataset across 4 typical
incremental segmentation scenarios. “-” denotes the results not provided in the original paper. †

denotes the result is reproduced using the official code with Swin-B backbone. “IPSeg w/o M”
denotes the data-free version of IPSeg, which is trained without the memory buffer.

Method Backbone VOC 15-5 (2 steps) VOC 15-1 (6 steps) VOC 10-1 (11 steps) VOC 2-2 (10 steps)
0-15 16-20 all 0-15 16-20 all 0-10 11-20 all 0-2 3-20 all

D
at

a-
fr

ee

LwF-MC (Rebuffi et al., 2017) Resnet-101 58.1 35.0 52.3 6.4 8.4 6.9 4.7 5.9 5.0 3.5 4.7 4.5
ILT (Michieli & Zanuttigh, 2019) Resnet-101 67.1 39.2 60.5 8.8 8.0 8.6 7.2 3.7 5.5 5.8 5.0 5.1
MiB (Cermelli et al., 2020) Resnet-101 71.8 43.3 64.7 46.2 12.9 37.9 12.3 13.1 12.7 41.1 23.4 25.9
SSUL (Cha et al., 2021) Resnet-101 77.8 50.1 71.2 77.3 36.6 67.6 71.3 46.0 59.3 62.4 42.5 45.3
RCIL (Zhang et al., 2022a) Resnet-101 78.8 52.0 72.4 70.6 23.7 59.4 55.4 15.1 34.3 28.3 19.0 19.4
IDEC (Zhao et al., 2023) Resnet-101 78.0 51.8 71.8 77.0 36.5 67.3 70.7 46.3 59.1 - - -
PLOP+LGKD (Yang et al., 2023) Resnet-101 75.2 54.8 71.1 69.3 30.9 61.1 - - - - - -
PLOP+NeST (Xie et al., 2024) Resnet-101 77.6 55.8 72.4 72.2 33.7 63.1 54.2 17.8 36.9 - - -
IPSeg w/o M (ours) Resnet-101 78.5 55.2 72.9 77.4 41.9 68.9 74.9 52.9 64.4 64.7 51.5 53.4
SSUL (Cha et al., 2021) Swin-B 79.7 55.3 73.9 78.1 33.4 67.5 74.3 51.0 63.2 60.3 40.6 44.0
MicroSeg (Zhang et al., 2022b) Swin-B 81.9 54.0 75.2 80.5 40.8 71.0 73.5 53.0 63.8 64.8 43.4 46.5
PLOP+NeST (Xie et al., 2024) Swin-B 80.5 70.8 78.2 76.8 57.2 72.2 64.3 28.3 47.3 - - -
IPSeg w/o M (ours) Swin-B 81.4 62.4 76.9 82.4 52.9 75.4 80.0 61.2 71.0 72.1 64.5 65.5

R
ep

la
y

Joint Resnet-101 80.5 73.0 78.2 80.5 73.0 78.2 79.1 77.1 78.2 73.9 78.9 78.2
SDR (Michieli & Zanuttigh, 2021) Resnet-101 75.4 52.6 69.9 44.7 21.8 39.2 32.4 17.1 25.1 13.0 5.1 6.2
PLOP-M (Douillard et al., 2021) Resnet-101 78.5 65.6 75.4 71.1 52.6 66.7 57.9 51.6 54.9 - - -
SSUL-M (Cha et al., 2021) Resnet-101 79.5 52.9 73.2 78.9 43.9 70.6 74.8 48.9 65.5 58.8 45.8 47.6
MicroSeg-M (Zhang et al., 2022b) Resnet-101 82.0 59.2 76.6 81.3 52.5 74.4 77.2 57.2 67.7 60.0 50.9 52.2
PFCSS-M (Lin et al., 2023) Resnet-101 79.9 70.2 77.1 77.1 60.4 73.1 69.5 63.2 66.5 - - -
IPSeg (ours) Resnet-101 79.5 71.0 77.5 79.6 58.9 74.7 75.9 66.4 71.4 62.4 61.0 61.2
Joint Swin-B 83.8 79.3 82.7 83.8 79.3 82.7 82.4 83.0 82.7 75.8 83.9 82.7
SSUL-M† (Cha et al., 2021) Swin-B 79.3 55.1 73.5 78.8 49.7 71.9 75.3 54.1 65.2 61.1 47.5 49.4
MicroSeg-M† (Zhang et al., 2022b) Swin-B 82.9 60.1 77.5 82.0 47.3 73.3 78.9 59.2 70.1 62.7 51.4 53.0
CoinSeg-M (Zhang et al., 2023) Swin-B 84.1 69.9 80.8 84.1 65.5 79.6 81.3 64.4 73.7 68.4 65.6 66.0
IPSeg (ours) Swin-B 83.3 73.3 80.9 83.5 75.1 81.5 80.3 76.7 78.6 73.1 72.3 72.4

Baselines We compare IPSeg with various data-free and replay-based CISS methods, including
LwF-MC (Rebuffi et al., 2017), ILT (Michieli & Zanuttigh, 2019), MiB (Cermelli et al., 2020),
SDR (Michieli & Zanuttigh, 2021), and PLOP (Douillard et al., 2021), as well as state-of-the-
art methods such as RCIL (Zhang et al., 2022a), IDEC (Zhao et al., 2023), SSUL (Cha et al.,
2021), MicroSeg (Zhang et al., 2022b), PFCSS (Lin et al., 2023), CoinSeg (Zhang et al., 2023) and
NeST (Xie et al., 2024). Among these, PFCSS, CoinSeg, and NeST are the current state-of-the-art.
For a fair comparison, we reproduce some works using their official code with the Swin-B backbone.
Additionally, we provide the results of Joint as a theoretical upper bound for incremental tasks. We
report incremental results in three parts: initial classes, new classes, and overall classes.

4.2 MAIN RESULTS

Results on Pascal VOC 2012 We evaluate IPSeg in various incremental scenarios on Pascal VOC
2012, including standard incremental scenarios (15-5 and 15-1) and long-term incremental scenarios
(10-1 and 2-2). As shown in Table 1, IPSeg achieves the best results across all incremental scenarios
on Pascal VOC 2012 with both ResNet-101 and Swin-B backbones. Notably, in the long-term
incremental scenarios 10-1 and 2-2, IPSeg achieves performance gains of 4.9% and 6.4% over the
second-best method, CoinSeg-M, with the same Swin-B backbone. Meanwhile, the data-free version
of IPSeg (denotes as “IPSeg w/o M” ) also demonstrates competitive performance.

The superior and robust performance of IPSeg is mainly attributed to the reliable role of guidance
provided by the image posterior branch. The image posterior design effectively helps IPSeg avoid
catastrophic forgetting and achieve excellent performance on new classes, which often suffer from
semantic drift due to separate optimization in new steps. Additionally, the semantics decoupling
design enables IPSeg to better learn foreground classes within each incremental step. This design
brings the improvement of 12.3% and 6.7% over CoinSeg-M on new classes in the 10-1 and 2-2
scenarios, respectively.

Furthermore, as illustrated in Figure 3(a), IPSeg experiences less performance degradation compared
to previous state-of-the-art methods as the number of incremental steps increases, which indicates
that IPSeg has stronger resistance to catastrophic forgetting. This conclusion is further supported
by the data in Figure 3(b) and Figure 3(c), which show that IPSeg exhibits minimal performance
declines as the incremental process continues. In contrast, other methods only maintain comparable
performance during the initial incremental learning step but quickly degrade in subsequent steps
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Figure 3: (a) The overall performance of different methods on Pascal VOC 2012 under 4 scenarios,
(b) mIoU visualization on Pascal VOC 2012 2-2, (c) mIoU visualization on Pascal VOC 2012 15-1.

Table 2: Comparison with state-of-the-art methods on ADE20K dataset. † denotes the result is
reproduced using the official code with Swin-B backbone.

Method Backbone ADE 100-5 (11 steps) ADE 100-10 (6 steps) ADE 100-50 (2 steps) ADE 50-50 (3 steps)
0-100 101-150 all 0-100 101-150 all 0-100 101-150 all 0-50 51-150 all

D
at

a-
fr

ee

MiB (Cermelli et al., 2020) Resnet-101 36.0 5.7 26.0 38.2 11.1 29.2 40.5 17.2 32.8 45.6 21.0 29.3
SSUL (Cha et al., 2021) Resnet-101 39.9 17.4 32.5 40.2 18.8 33.1 41.3 18.0 33.6 48.4 20.2 29.6
RCIL (Zhang et al., 2022a) Resnet-101 38.5 11.5 29.6 39.3 17.6 32.1 42.3 18.8 34.5 48.3 25.0 32.5
MicroSeg (Zhang et al., 2022b) Resnet-101 40.4 20.5 33.8 41.5 21.6 34.9 40.2 18.8 33.1 48.6 24.8 32.9
IDEC (Zhao et al., 2023) Resnet-101 39.2 14.6 31.0 40.3 17.6 32.7 42.0 18.2 34.1 47.4 26.0 33.1
AWT+MiB (Goswami et al., 2023) Resnet-101 38.6 16.0 31.1 39.1 21.4 33.2 40.9 24.7 35.6 46.6 27.0 33.5
PLOP+LGKD (Yang et al., 2023) Resnet-101 - - - 42.1 22.0 35.4 43.6 25.7 37.5 49.4 29.4 36.0
PLOP+NeST (Xie et al., 2024) Resnet-101 39.3 17.4 32.0 40.9 22.0 34.7 42.2 24.3 36.3 48.7 27.7 34.8
IPSeg w/o M (ours) Resnet-101 41.0 22.4 34.8 41.0 23.6 35.3 41.3 24.0 35.5 46.7 26.2 33.1

SSUL† (Cha et al., 2021) Swin-B 41.3 16.0 32.9 40.7 19.0 33.5 41.9 20.1 34.6 49.5 21.3 30.7
CoinSeg (Zhang et al., 2023) Swin-B 43.1 24.1 36.8 42.1 24.5 36.2 41.6 26.7 36.6 49.0 28.9 35.6
PLOP+NeST (Xie et al., 2024) Swin-B 39.7 18.3 32.6 41.7 24.2 35.9 43.5 26.5 37.9 50.6 28.9 36.2
IPSeg w/o M (ours) Swin-B 43.1 26.2 37.6 42.5 27.8 37.6 43.2 29.0 38.4 49.3 33.0 38.5

R
ep

la
y

Joint Resnet-101 43.5 29.4 38.3 43.5 29.4 38.8 43.5 29.4 38.8 50.3 32.7 38.8
SSUL-M (Cha et al., 2021) Resnet-101 42.9 17.8 34.6 42.9 17.7 34.5 42.8 17.5 34.4 49.1 20.1 29.8
TIKP (Yu et al., 2024) Resnet-101 37.5 17.6 30.9 41.0 19.6 33.8 42.2 20.2 34.9 48.8 25.9 33.6
IPSeg (ours) Resnet-101 42.4 22.7 35.9 42.1 22.3 35.6 41.7 25.2 36.3 47.3 26.7 33.6
Joint Swin-B 47.2 31.9 42.1 47.2 31.9 42.1 47.2 31.9 42.1 54.6 35.5 42.1
SSUL-M† (Cha et al., 2021) Swin-B 41.6 20.1 34.5 41.6 19.9 34.4 41.5 48.0 33.7 47.6 18.8 28.5
CoinSeg-M† (Zhang et al., 2023) Swin-B 42.8 24.8 36.8 39.6 24.8 34.7 38.7 23.7 33.7 48.8 28.9 35.4
IPSeg (ours) Swin-B 43.2 30.4 38.9 43.0 30.9 39.0 43.8 31.5 39.7 51.1 34.8 40.3

due to catastrophic forgetting. This detailed trend of performance decline across steps validates the
effectiveness and robustness of IPSeg in resisting forgetting.

Results on ADE20K We also perform a comparison between IPSeg and its competitors under
different incremental scenarios on the more challenging ADE20K dataset with two backbones. As
shown in Table 2, IPSeg consistently achieves performance advantages similar to those observed
on Pascal VOC 2012. Notably, IPSeg with Swin-B backbone demonstrates more significant im-
provements over its competitors across all incremental scenarios on the ADE20K dataset, with the
smallest improvement of 2.1% in the 100-5 scenario and the largest improvement of 6.0% in the
100-50 scenario. The superior performance on the more realistic and complex ADE20K dataset
further demonstrates the effectiveness and robustness of IPSeg.

Qualitative analysis of IPSeg Figure 4 presents a qualitative analysis of IPSeg compared with
SSUL-M and CoinSeg-M. Visualization results are from each incremental step in the VOC 2-2
scenario. The results in rows 1, 3, and 5 demonstrate that both SSUL-M and CoinSeg-M mistakenly
predict “horse” as “cow” at step 6, while IPSeg correctly identifies “horse”. In rows 2, 4, and 6, IPSeg
consistently predicts the old class “chair”, whereas SSUL-M predicts “sofa” as “table” at step 6, and
both SSUL-M and CoinSeg-M mistake “chair” for “sofa” at step 8. These visualization results reveal
that IPSeg not only achieves excellent learning plasticity but also maintains strong memory stability.

4.3 ABLATION STUDY

Ablation study on IPSeg We analyze the effect of the proposed components in IPSeg, including
Image Posterior (IP), Semantics Decoupling (SD), and the design of Noise Filtering (NF) in SD. All
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Figure 4: Qualitative analysis of IPSeg on Pascal VOC 2012. Texts and bounding boxes in white
indicate incorrect class predictions starting from the corresponding incremental step. Color-shaded
boxes with classes and indexes represent the learned classes in the corresponding learning steps.

Table 3: (a): Overall ablation study for IPSeg on VOC 15-1. (b) and (c): Ablation studies for
hyper-parameters: memory size |M |, the ratio of noise filtering αNF and the ratio of background
compensation αBC.

IP SD NF VOC 15-1 (6 steps)
0-15 16-20 all

% % % 78.8 49.7 71.9
! % % 79.4 69.6 77.0
% ! % 83.1 65.1 78.8
% ! ! 83.4 69.6 80.1
! ! % 83.4 74.7 81.3
! ! ! 83.6 75.1 81.6

(a)

value 0-15 16-20 all

|M |
50 83.4 72.3 80.8
100 83.5 75.1 81.5
200 83.5 75.5 81.7

αNF

0.2 83.5 75.0 81.4
0.4 83.6 75.1 81.6
0.6 83.4 74.6 81.3
0.8 83.3 74.2 81.2
1.0 83.4 74.7 81.3

(b)

αBC
VOC 15-1 (6 steps)
0-15 16-20 all

1 82.9 74.9 81.0
0.9 83.5 75.1 81.6
0.8 83.5 75.0 81.5
0.7 83.4 74.4 81.3
0.6 83.3 74.3 81.2
0.5 83.2 73.8 81.0
0 80.6 66.6 77.3

(c)

ablations are implemented under the 15-1 setting of Pascal VOC 2012 using the Swin-B backbone.
As shown in Table 3(a), the second row indicates that IP brings significant improvement to new
classes. Benefiting from IP’s ability to maintain consistency between tasks, the reliable guidance
effectively prevents model performance from degradation caused by separate optimization. The
third row illustrates the excellent ability of SD in learning foregrounds at each step. SD consists
of a permanent branch and a temporary branch, and decouples noisy information into static and
dynamic groups, allowing the model to individually learn the corresponding knowledge. The fifth
row demonstrates IPSeg’s outstanding performance on both old and new classes with IP and SD
together. The last row shows that NF, as an additional trick, further enhances performance.

Ablation study of hyper-parameters Table 3(b) and Table 3(c) illustrate the effects of hyper-
parameters: memory size |M|, the strength of noise filtering αNF, and background compensation αBC,
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Table 4: Comparison of different label choices to incrementally train the image posterior branch. The
choice of Pseudo is adopted in IPSeg.

Methods Labels VOC 15-5 (2 steps) VOC 10-1 (11 steps) VOC 2-2 (10 steps)
C1:t−1 Ct 0-15 16-20 all 0-10 11-20 all 0-2 3-20 all

Part-GT % GT 83.3 72.8 80.8 79.3 74.5 77.0 72.6 69.4 69.8
Pseudo (ours) PL GT 83.3 73.3 80.9 80.3 76.7 78.6 73.1 72.3 72.4
Full-GT GT GT 83.2 73.8 81.0 80.1 78.0 79.2 75.2 74.6 74.8

Table 5: The ablation study of SD over background (BG), base foreground classes (Base) and new
foreground classes (New) on Pascal VOC 15-1 with Swin-B backbone.

SD BG Base(1-15) New(16-20) All

% 92.4 78.5 69.6 77.0
! 94.3(+1.9) 82.3(+3.7) 75.1(+5.5) 81.5

which shows that IPseg is not sensitive to the value of αNF and αBC and we set the default values for
these parameters to |M| = 100, αNF = 0.4 and αBR = 0.9. Besides, we set loss trade-off factors
λ1 = λ2 = 0.5 in our implementation, and more details are provided in the appendix.

Ablation study on image-level pseudo-label Ỹk The image posterior (IP) branch is trained
incrementally but faces challenges due to the lack of labels for old classes. To address this issue,
we employ image-level pseudo-label Ỹk (PL) instead of directly using the partial ground truth label
Yk, providing richer supervision at the risk of introducing some noise due to the inconsistencies
between previous heads predictions and current dataset labels. As shown in Table 4, our method
achieves significant improvement compared to using only partial ground truth (Part-GT), and further
improvements can be observed when using full ground truth (Full-GT). This indicates that using Ỹk

is an efficient trade-off, where the benefits of additional supervision outweigh the potential noise.

Impact of semantics decoupling on temporary concepts To understand which types of concepts
most benefit from IPSeg, we categorize the 20 classes of Pascal VOC into 15 base classes and 5
new classes based on the incremental process. According to the learning objectives, all foreground
classes are treated as temporary concepts in the corresponding step and the background is constantly
considered as permanent ones. The comparison shown in Table 5 indicates that the new classes
gain more significant performance improvement than the base classes. Furthermore, the permanent
concepts (i.e., the background) achieve less improvement compared to the temporary concepts. This
observation suggests that IPSeg is more effective in enhancing the learning of new foreground classes.
The detailed class-wise results are provided in the appendix.

5 CONCLUSIONS

In this paper, we propose IPSeg, a simple yet effective method designed to address the issue of
semantic drift in class incremental semantic segmentation. We begin by analyzing the details of
semantic drift, identifying two key issues: separate optimization and noisy semantics. To mitigate
these issues, IPSeg introduces two specific designs: image posterior guidance and semantics de-
coupling. Experimental results on the Pascal VOC 2012 and ADE20K datasets demonstrate the
superior performance of our method, particularly in long-term incremental scenarios. Moreover,
IPSeg exhibits excellent properties in terms of both learning plasticity and memory stability.

Limitations and social impact Though IPSeg exhibits superior performance and properties of
learning plasticity and memory stability, we acknowledge that the usage of memory buffers leaves a
lot of room for discussion. On the one hand, the use of memory buffers brings additional storage
costs and the risk of information leakage. On the other hand, the use of memory buffers is related to
privacy issues, such as storing private information without approval. These issues need to be treated
with caution in artificial intelligence applications.
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A APPENDIX

A.1 SYMBOLS AND EXPLANATIONS

Table 6 provides key symbols used in our paper along with their explanations to facilitate a better
understanding.

Table 6: Symbols and explanations

Symbol Explanations

M
od

el
ar

ch
ite

ct
ur

e ft Model of task t.
hθ The backbone extracting features.
ϕ1:t All segmentation heads, outputting the final results.
ϕt The head of task t, representing the temporary branch.
ϕp The permanent branch.
ψ The image posterior branch.

Se
m

an
tic

co
nc

ep
ts

Ct The target classes set of task t.
C1:t−1 The old classes set.
c′b The pure background.
c′u Unknown foreground.
ci The ignored region that does not participate in loss calculation.
cf The foreground regions that do not belong to target classes Ct.
cu Unknown classes defined in previous methods, consisting of C1:t−1 and c′u.
cb The background defined in previous methods, consisting of c′b and cu.

D
at

a
an

d
la

be
l

Dt Training dataset of current incremental task t.
M Memory buffer, with fixed size of 100 for Pascal VOC and 300 for ADE20K.
xti The i-th image in Dt.
yti The pixel annotations of xti.
xm,t
i The mixed data selected from M and Dt.
Ỹt
i The image-level pseudo-label of xm,t

i .
ỹpi Label assigned to the permanent branch ϕp.
ỹti Label assigned to the temporary branch ϕt.

A.2 OBSERVATION

Visualization of separate optimization As shown in Figure 5, to illustrate the inconsistent outputs
caused by separate optimization, we select three pairs of similar classes from Pascal VOC 2012:
“cow” and “horse”, “bus” and “car”, “sofa” and “chair”, and split them into two separate groups for
learning. Sequence B follows a reverse learning order compared to Sequence A, and the goal is to
examine the model’s final predictions with different learning sequence. Columns A and B are the
models’ final predictions of sequence A and sequence B respectively. These visualizations indicate
that the earlier head of the model tends to produce high scores for certain classes, regardless of the
learning order, suggesting that separate optimization causes a persistent bias towards the classes
learned first.

Impact of IPSeg on separate optimization To validate the impact of IPSeg on separate optimiza-
tion, we calculate the average probability distribution of the incorrect prediction area (red box in
the image) as depicted in Figure 6. SSUL-M misclassifies the little sheep as cow with abnormal
probability distribution. In contrast, IPSeg utilizes image posterior guidance to produce more accurate
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Image GTA B
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People
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Car
Chair
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Car
Chair

Figure 5: The visualization of separate optimization. Sequence A: first learn “cow”, “bus” and “sofa”
in step 1, then “horse”, “car” and “chair” in step 2. Sequence B: first learn “horse”, “car” and “chair”
in step 1, then “cow”, “bus” and “sofa” in step 2.

and harmonious prediction. Compared to previous works, IPseg maintains a harmonious and realistic
probability distribution more similar to that of the theoretical upper bound, Joint-Training (Joint),
demonstrating its superior capability in dealing with separate optimization.
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Figure 6: The probability distributions for SSUL-M, IPSeg, and Joint-Training (Joint) in the regions
of incorrect predictions. Class indexes “10” and “17” represent “cow” and “sheep” respectively.

Visualization of semantics decoupling Figure 7 is the semantics decoupling illustration for image
xti. In this case, the current classes Ct “person” is provided with ground truth as yti . The foreground
classes “sofa” and “cat”, however, are unknown without ground truth. IPSeg uses a saliency map
to locate the current unknown object “sofa” and “cat” as other foregrounds cf and further utilizes
pseudo label to distinguish “sofa” as unknown foreground c′u. It is worth noting that the regions
of “person” and “cat” belong to the ignored regions ci that do not participate in loss calculation. In
this way, the remaining region is labeled as “pure” background c′b. The “pure” background c′b and
unknown foreground c′u are considered as static and permanent concepts. The target classes Ct with
ground truth yti and other foreground cf are considered as dynamic and temporary concepts.

A.3 ADDITIONAL RESULTS AND ANALYSIS

Evaluation on image-level predictions To investigate the ability to resist catastrophic forgetting of
the image posterior (IP) branch and the segmentation branch, we evaluate the image level accuracy
performance of the base 15 classes using the IP branch and the segmentation branch at each step
on Pascal VOC 15-1 as shown in Table 7. “IP” refers to the image-level accuracy of the IP branch,
“Pixel” refers to the image-level accuracy of the segmentation branch, where class C exists if a pixel is
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Figure 7: Semantics decoupling strategy

predicted as C. “Pixel+IP” denotes the final result of IPSeg. The ablation shows that: the image-level
performance suffers less forgetting than the segmentation, and our method shows similar property
against forgetting with the help of IP.

Table 7: The image-level accuracy of IP branch and the segmentation branch on 15 base classes.

ACC (%) step 0 step 1 step 2 step 3 step 4 step 5

IP 87.44 86.41 86.99 86.82 86.86 86.29
Pixel 88.17 86.42 86.30 85.43 84.84 84.70
Pixel+IP 93.07 92.24 92.41 91.93 91.95 91.02

We also present the image-level accuracy on all seen classes at each step to analyze their performance
on both old classes and new classes in Table 8. For the segmentation branch, the image-level accuracy
of it on all seen classes gradually degrades after learning new classes, performing worse than its
accuracy on base classes. This indicates the segmentation branch performs poorly on new classes,
which is consistent with our description about separate optimization. In contrast, the IP branch
experiences less deterioration from separate optimization and help our method maintain a good
balance between retaining old knowledge and learning new knowledge.

Table 8: The image-level accuracy of IP branch and the segmentation branch on all seen classes.

ACC (%) step 0 step 1 step 2 step 3 step 4 step 5 (Final)
IP 87.44 82.54 81.14 81.32 82.09 82.34
Pixel 88.17 83.56 82.29 78.23 77.60 76.57
Pixel+IP 93.07 90.05 90.13 87.30 87.68 88.03

Evaluation on image posterior branch Image posterior (IP) branch is trainable during different
incremental steps, and it will undoubtedly suffer from catastrophic forgetting. To evaluate the
effectiveness of IP branch, we conduct a quantitative evaluation of it as shown in Table 9. We train IP
branch with a multi-label classification task in three scenarios and report the precision, recall, and F1
results: “Seq” refers to training the IP branch sequentially without any additional tricks, indicating
the worst case suffering from catastrophic forgetting, “Ours” refers to the training setting used in our
paper, and “Joint” refers to training with all task data jointly serving as the upper bound. It is obvious
that IP branch suffers little forgetting. We achieve this performance mainly owing to two specific
settings:
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• Mixed training data: IP branch uses data from both the memory buffer and the current task
dataset for training. Compared to fine-grained task heads, it is easier for IP branch to learn
image-level knowledge from memory buffer.

• Image-level pseudo-label for supervision: IPSeg introduces image-level pseudo-label on
past classes as supervision to mitigate catastrophic forgetting challenge. The ablation result
in Table 4 partially reflects the effectiveness of this design.

Table 9: The performance of image posterior branch on different settings.

Method Precision (%) Recall (%) F1 (%)

Seq 55.62 24.67 23.78
Ours 78.28 87.03 80.68
Joint 89.96 90.00 89.89

Evaluation on model parameters, training and inference costs We provide a comprehensive
analysis of the model parameters, training, and inference costs as shown in Table 10. We test and
report the results of IPSeg, SSUL-M and CoinSeg-M with Swin-B on the VOC 15-1 setting. We
set image size=512x512, epochs=50, and batch size=16 in training and image size=512x512 for
inference test. All results are run on RTX 3090 GPU.

• Model Parameters: Using the thop tool, we analyze and compare the trainable parameters
for these methods. The sizes of increased parameters in them are close, with average 3.84M
per step. Additionaly, IPSeg has 29.72M parameters more than SSUL due to the additional
image posterior branch.

• Training: Due to the introduced image posterior branch, IPSeg needs more training cost
compared with SSUL-M but less than CoinSeg-M.

• Inference: The inference speed of IPSeg (27.3 FPS) is slightly lower than SSUL-M (33.7
FPS) and similar to CoinSeg-M (28.2 FPS). Due to the proposed image posterior branch,
the model’s floating-point operations (137.1 GFLOPs) are higher than the baseline (94.9
GFLOPs), and with an approximately 1 GB increase in GPU usage.

Overall, IPSeg introduces an additional image posterior branch with slight increases in model
parameters, training cost, and inference but brings great performance improvement. It is a worthwhile
trade-off between performance and cost.

Table 10: Comparison of IPSeg with baseline on model parameters, training and inference costs.

Method Incremental Steps Training Inference
0 1 2 3 4 5 Time GPU usage FPS FLOPs GPU usage

IPseg 135.92 M 139.76 M 143.60 M 147.66 M 151.28 M 155.12 M 9h 14min 21.1G 27.3 137.1G 6.2G
SSUL-M 106.20 M 110.03 M 113.89 M 117.95 M 121.56 M 125.40 M 7h 13min 19.4G 33.7 94.9G 5.3G
CoinSeg-M 107.02 M 111.15 M 115.29 M 119.42 M 123.55 M 127.68 M > 15h 21.3G 28.2 96.3G 5.6G

Ablation study on salient map The salient map is effective for Pascal VOC 2012, but not as useful
for ADE20K as we expected. Specifically, the use of saliency map on ADE20K presents challenges
in correctly identifying target regions, especially for objects that are not at the center of the image and
cover large areas. To evaluate the quality of salient map, we conduct ablation on the ADE20K 100-10
task with the following settings as shown in Table 11: “w/o Sal” uses no saliency map supervision,
“w/ Sal” uses saliency map supervision as we do in paper, and “w/ SAM” uses saliency map extracted
by SAM model. We use the official Grounded SAM (Ren et al., 2024; Kirillov et al., 2023) code
with all classes in ADE20K used as text prompts to extract corresponding masks. Additionally, we
also report performance differences on “Thing” and “Stuff” classes defined in ADE20K panoptic
segmentation (Zhou et al., 2019) to investigate the bias of saliency map on different semantic regions.
Basically, we find the following conclusion:
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• Using the default saliency map supervision to implement knowledge decoupling strategy,
IPSeg gets a performance improvement by +1.6% mIoU. And using saliency extracted by
SAM further improves IPSeg performance by 0.7% mIoU.

• The default saliency maps perform well in identifying “Things” classes but struggle with
“Stuff” classes, resulting in a performance gain of +1.9% on “Things” classes but merely
+0.1% on “Stuff” classes. Furthermore, the SAM-based saliency maps provide better
supervision for both “Things” and “Stuff” classes, with improvements of +0.6% on “Things”
and +1.1% on “Stuff” compared to “w/ Sal”.

Table 11: Ablation study on salient map of IPSeg on ADE20K 100-10 tasks.

Method 0-100 101-150 all Things Stuff

w/o Sal 42.1 28.0 37.4 37.2 37.5
w/ Sal 43.0 30.9 39.0 39.1 37.6
w/ SAM 43.6 31.8 39.7 39.7 38.7

The details of efficient data storage in memory buffer For raw data, IPSeg directly stores the
image paths in a JSON file, as done in previous works (Cha et al., 2021; Zhang et al., 2022b; 2023).
For image-level labels, IPSeg stores the class labels of the images as arrays in the same JSON file with
multi-hot encoding, where 1 indicates the presence of a class and 0 indicates absence. The memory
cost for this is negligible. For pixel-level labels, instead of storing full-class annotations (with a data
type of uint8 ) as prior approaches, IPSeg only stores the salient mask, where the background and
foreground are labeled as 0 and 1, respectively (with a data type of bool ). Theoretically, the storage
space could be reduced to 1/8.

Ablation study on memory buffer Since IPSeg is designed for data-replay scenarios, the IP branch
heavily relies on a memory buffer. To evaluate the impact of the memory buffer on performance, we
compare the standard version of IPSeg with a data-free variant (denoted as IPSeg w/o M). As shown
in Table 12, IPSeg demonstrates competitive performance even without the memory buffer. However,
the performance gap between the data-free and data-replay settings highlights the essential role of the
memory buffer in enhancing IPSeg’s effectiveness.

Table 12: Comparison with other methods in data-free version using Swin-B backbone.

Method VOC 15-5 (2 steps) VOC 15-1 (6 steps) VOC 10-1 (11 steps) VOC 2-2 (10 steps)
0-15 16-20 all 0-15 16-20 all 0-10 11-20 all 0-2 3-20 all

SSUL 79.7 55.3 73.9 78.1 33.4 67.5 74.3 51.0 63.2 60.3 40.6 44.0
MicroSeg 81.9 54.0 75.2 80.5 40.8 71.0 73.5 53.0 63.8 64.8 43.4 46.5
IPSeg w/o M 81.4 62.4 76.9 82.4 52.9 75.4 80.0 61.2 71.0 72.1 64.5 65.5
IPSeg w/ M 83.3 73.3 80.9 83.5 75.1 81.5 80.3 76.7 78.6 73.1 72.3 72.4

Ablation study for hyper-parameters: weight terms of loss. We conduct an ablation study on the
two weight terms λ1 and λ2, testing values of 0.1, 0.25, 0.5, 0.75, and 1.0. The results are shown
in Table 13. It is obvious that the setting of λ1 = 0.5 and λ2 = 0.5 achieves the best performance,
which is the default value of IPSeg.

Detailed results of semantics decoupling on temporary concepts To understand which types of
classes or concepts benefit from our method, we compare IPseg against the baseline on 20 classes of
the VOC 15-1 setting. The detailed results are presented in Table 14, which demonstrates that IPSeg
is more effective in enhancing the learning of new foreground classes.

Class-wise results of IPSeg Table 15 shows the detailed experimental results of IPSeg for each class
across four incremental scenarios of Pascal VOC 2012. IPSeg demonstrates superior performance in
various incremental learning tasks, including standard tasks with a large number of initial classes
(e.g., 15-5 and 15-1) and long-range tasks with fewer initial classes (e.g., 10-1 and 2-2). Notably, in
the 2-2 task, the mIoU for “cow” and “horse” reaches 70.7% and 81.4%, respectively. This indicates
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Table 13: Ablation Studies on Pascal VOC 15-1 task for hyper-parameters: weight terms of loss, λ1
and λ2.

λ1 \ λ2 0.1 0.25 0.5 0.75 1.0

0.1 79.2 80.3 80.4 80.8 78.0
0.25 79.8 80.3 81.1 81.0 80.9
0.5 80.3 80.9 81.5 81.2 80.9

0.75 81.1 81.3 81.1 81.0 81.0
1.0 80.8 81.3 81.1 81.2 80.1

Table 14: Detailed results of the ablation study for semantics decoupling (SD) over each class on
Pascal VOC 15-1 with Swin-B backbone. Texts in red indicate 5 new classes.

SD Detailed results

%

BG plane bike bird boat bottle bus car cat chair cow
92.4 87.4 37.7 89.1 67.8 80.4 93.8 86.9 93.6 43.9 85.7
tabel dog horse motor person plant sheep sofa train TV mIoU
63.8 90.0 87.2 85.9 84.1 57.5 81.6 53.3 87.1 68.4 77.0

!

BG plane bike bird boat bottle bus car cat chair cow
94.3 91.8 43.8 93.8 75.0 86.0 94.2 91.2 96.1 44.3 94.6
tabel dog horse motor person plant sheep sofa train TV mIoU
67.3 94.5 93.0 88.8 88.2 65.6 90.1 57.9 89.3 72.7 81.5

that IPSeg maintains excellent prediction performance even when classes with similar semantic
information are trained in different stages.

Table 15: Class-wise results of IPSeg over each class.

VOC 15-5

BG plane bike bird boat bottle bus car cat chair cow
93.6 92.2 44.9 93.8 74.4 85.2 93.9 90.8 96.2 43.0 94.5
tabel dog horse motor person plant sheep sofa train TV mIoU
68.0 94.2 92.9 88.0 88.0 66.3 91.5 46.4 87.8 74.4 80.9

VOC 15-1

BG plane bike bird boat bottle bus car cat chair cow
94.3 91.8 43.8 93.8 75.0 86.0 94.2 91.2 96.1 44.4 93.5
tabel dog horse motor person plant sheep sofa train TV mIoU
67.4 94.5 92.9 88.8 88.2 66.4 88.6 58.1 89.5 72.7 81.5

VOC 10-1

BG plane bike bird boat bottle bus car cat chair cow
93.1 93.1 42.2 93.2 72.1 83.5 93.9 91.9 95.8 38.0 86.9
tabel dog horse motor person plant sheep sofa train TV mIoU
54.1 91.8 86.1 87.5 87.5 64.2 85.6 49.9 88.4 72.1 78.6

VOC 2-2

BG plane bike bird boat bottle bus car cat chair cow
91.4 88.6 39.3 87.9 71.5 71.9 89.1 78.2 89.3 28.8 70.7
tabel dog horse motor person plant sheep sofa train TV mIoU
55.2 83.5 84.1 77.6 82.6 63.6 72.1 44.4 82.1 69.1 72.4

Experimental results of disjoint setting To demonstrate IPSeg’s robust learning capability under
different incremental learning settings and to further prove its superiority over general methods, we
evaluate IPSeg using the disjoint setting on the Pascal VOC 2012 dataset for the 15-1 and 15-5 tasks,
as shown in Table 16. The results indicate that IPSeg consistently achieves the best performance
compared to state-of-the-art methods. Additionally, similar to the results in the overlap setting, IPSeg
exhibits a strong ability to learn new classes while retaining knowledge of the old classes. Specifically,
IPSeg outperformed the second-best method by 10.1% in the 15-5 task and by 22.8% in the 15-1 task
in terms of new class performance.
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Table 16: Comparison with state-of-the-art methods on Pascal VOC 2012 dataset for disjoint setup.

Method VOC 15-5 (2 steps) VOC 15-1 (6 steps)
0-15 16-20 all 0-15 16-20 all

D
at

a-
fr

ee LwF-MC 67.2 41.2 60.7 4.5 7.0 5.2
ILT 63.2 39.5 57.3 3.7 5.7 4.2
MiB 71.8 43.3 64.7 46.2 12.9 37.9
RCIL 75.0 42.8 67.3 66.1 18.2 54.7

R
ep

la
y-

ba
se

d SDR 74.6 44.1 67.3 59.4 14.3 48.7
SSUL-M 76.5 48.6 69.8 76.5 43.4 68.6

MicroSeg-M 80.7 55.2 74.7 80.0 47.6 72.3
CoinSeg-M 82.9 61.7 77.9 82.0 49.6 74.3
IPSeg(ours) 82.7 71.8 80.1 82.6 72.4 80.2

image GT0-15

step 0 step 2step 1 step 3 step 4 step 5

16 plant 17 sheep 18 sofa 19 train 20 TV

Figure 8: Qualitative results on Pascal VOC 2012 dataset with the 15-1 scenario.

More qualitative results on Pascal VOC 2012 In addition to the qualitative results of the VOC
2-2 task shown in the main paper, we present additional qualitative analysis in Figure 8. We select
the 15-1 task and perform a visual analysis for each newly added class. Each image includes both old
and new classes, covering indoor and outdoor scenes as well as various objects and environments.
For example, the first row shows the learning ability for ”plant”. After step 1, the model consistently
predicts “plant” correctly while retaining the ability to recognize ”dog”. Similarly, rows 2-5 show
consistent performance. For each new class (i.e., sheep, sofa, train, and TV in the figure), IPSeg
quickly adapts to them while retaining the ability to recognize old classes (i.e., bird, person, cat in
the figure). These results clearly and intuitively demonstrate IPSeg’s strong capability in addressing
incremental tasks.

More qualitative results on ADE20K The qualitative results of the 100-10 task on the ADE20K
dataset are shown in Figure 9. We select five examples to illustrate the model’s ability to predict
various classes as the learning step increases. Row 1 shows the performance of predicting the new
class ”ship” in step 1, where the model effectively recognizes both the old class ”sky” and the new
class ”ship.” Similarly, in rows 2-5, for the newly introduced classes (tent, oven, screen, flag), IPSeg
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demonstrates excellent performance in learning the new classes without forgetting the old ones. This
indicates that IPSeg achieves a balance between stability and plasticity even on more challenging and
realistic datasets.

image GT

step 0 step 2step 1 step 3 step 4 step 5

0-100 115 tent 131 screen125 oven104 ship 150 flag

Figure 9: Qualitative results on ADE20K dataset with the 100-10 scenario.
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