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ABSTRACT

Large Language Models (LLMs) are increasingly used in high-stakes fields, such
as law, where their decisions can directly impact people’s lives. When LLMs act as
judges, the ability to fairly resolve judicial issues is necessary to ensure their trust-
worthiness. Based on theories of judicial fairness, we construct a comprehensive
framework to measure LLM fairness, leading to a selection of 65 labels and 161
corresponding values. We further compile an extensive dataset, JudiFair, compris-
ing 177,100 unique case facts. To achieve robust statistical inference, we develop
three evaluation metrics—inconsistency, bias, and imbalanced inaccuracy—and
introduce a method to assess the overall fairness of multiple LLMs across various
labels. Through experiments with 16 LLMs, we uncover pervasive inconsistency,
bias, and imbalanced inaccuracy across models, underscoring severe LLM judi-
cial unfairness. Particularly, LLMs display notably more pronounced biases on
demographic labels, with slightly less bias on substance labels compared to pro-
cedure ones. Interestingly, increased inconsistency correlates with reduced biases,
but more accurate predictions exacerbate biases. While we find that adjusting the
temperature parameter can influence LLM fairness, model size, release date, and
country of origin do not exhibit significant effects on judicial fairness. Accord-
ingly, we introduce a publicly available toolkit to support future research in eval-
uating and improving LLM fairness, along with a full technical analysis included
as an appendix.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) are increasingly utilized as decision-makers in
high-stakes fields such as medicine, psychology, and law, where their decisions can directly people’s
lives (Bruscia et al., 2024). While many models now demonstrate fairness in general-domain
benchmarks, do they wield a slanted scale of justice?

Previous studies(Samee et al., 2024; Liu & Li, 2024) have indicated that judges have begun inte-
grating large language models into trial assistance systems. However, Biased or inconsistent legal
assessments by LLMs may not only lead to incorrect rulings but could also reinforce existing dis-
parities within legal systems(Cheong et al., 2024). The widespread misuse of such models, which
may fail to meet judicial fairness standards, could potentially undermine access to justice for ordi-
nary individuals. This is particularly critical in China, with its population of over 1.4 billion, where
unjust rulings could pose significant risks to the integrity and fairness of the judicial system. These
concerns highlight the urgent need for robust and transparent evaluation frameworks to ensure that
LLMs contribute fairly and reliably to legal processes. Therefore, evaluating the judicial fairness of
large language models has become a crucial prerequisite for their application in judicial practice.

In previous research, LLM fairness is categorized as human problems and LLM problems (Galle-
gos et al., 2024). While LLM-specific problems related to output format (Long et al., 2024), task
complexity (Yu et al., 2024), etc., have been well-studied, whether LLMs exhibit human problems
in judicial contexts remains underexplored. Previous research (Sant et al., 2024; Kumar et al., 2024;
Zhang et al., 2024a) has inadequately addressed fairness. For instance, they primarily concentrated
on fairness about substance, overlooking fairness about procedures, which resulted in an incomplete
and unreliable fairness evaluation. Human judges may exhibit bias against defendants without legal
representation due to stereotypes (Quintanilla et al., 2017). Would LLMs make the same mistake?
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The effect of such purely procedure factors remains largely unexplored in existing research. Overall,
factors examined in past studies have been predominantly fragmented and addressed on a “case-by-
case” basis (Zhang et al., 2024a;b), lacking a systematic framework and theoretical foundation for
fairness evaluation. Thus, even if a model scores highly on existing fairness benchmarks within
general domains, it is still imperative to evaluate its judicial fairness to further safeguard social
justice.

Based on this, this paper proposes a comprehensive method and important innovations for evaluating
LLM judicial fairness:

1. Based on ample theoretical discussion on fairness in law and philosophy, we propose a compre-
hensive systematic framework for LLM judicial fairness evaluation.

2. We propose an evaluation dataset JudiFair, which comprises 177,100 unique case facts, with
65 labels and 161 label values annotated. Our team of legal experts extracted labels and trigger
sentences and replaced them with counterfactual ones. Moreover, we exclude certain cases that may
interfere with fairness evaluation under the law.

3. We develop a novel methodology to comprehensively evaluate LLM judicial fairness with three
metrics: consistency, bias, and imbalanced inaccuracy. To cope with situations in which multiple
labels and LLMs are involved, we employ a suite of statistical tools to ensure robust inference. This
approach offers valuable insights for future research on fairness measurement.

4. We evaluated 16 LLMs developed in different countries, conducted statistical inference in exper-
iments, and discovered severe unfairness across all models while interesting patterns emerge. This
provides guidance for future model training and development.

5. Building on the above innovations, we have developed a toolkit that enables convenient and
comprehensive evaluation of LLM judicial fairness.1

This study encompasses framework construction, data annotation, model experimentation, and result
analysis. In the main text, we provide a detailed introduction to the methods, experiments, and key
findings. Additionally, many supplementary discoveries, along with extensive experimental details,
annotation specifics, and label values—which we believe will contribute significantly to the research
community—are included in the appendix. The dataset and code are available on the github link2.

2 RELATED WORK

Fairness evaluation of LLMs is critical, with fairness problems divided into LLM-specific ones and
human-related ones. LLM-related problems are exclusively unique to LLMs, influenced by factors
such as temperature parameters, weight decay, and specific output formats, affecting self-perception
of attributes and handling of low-frequency tokens, among others (Miotto et al., 2022; La Cava &
Tagarelli, 2024; Pinto et al., 2024; Yu et al., 2024; Long et al., 2024).

Human-related problems are those that LLMs may inherit that are similar to human behavior. Re-
searchers have primarily assessed them with a limited set of demographic factors like gender in
general contexts (Dastin, 2018; Rudinger et al., 2018; Webster et al., 2018; Kiritchenko & Moham-
mad, 2018; Qian et al., 2022; Parrish et al., 2022). However, these benchmarks, comprising at most
nine labels, are neither sufficiently comprehensive nor grounded in adequate theoretical knowledge.
They also suffer from vague definitions of key concepts (Blodgett et al., 2021), lack rigorous sta-
tistical methods to distinguish systematic patterns from random variation, incorporate inadequate
legal knowledge necessary for evaluating fairness in judicial contexts, and do not provide practical,
convenient toolkits for implementing fairness evaluation methodologies.

Some studies tried to place LLMs in legal contexts with legal elements annotated. (Xue et al., 2024;
Li et al., 2023a; Xiao et al., 2018; Yao et al., 2022; Deroy & Maity, 2023; Zhang et al., 2024a). Yet,
evaluation of LLM fairness requires extensive extra-legal factors like detailed demographic charac-
teristics. LEEC (Xue et al., 2024) is a Chinese legal dataset consisting of 15,919 legal documents and
155 extra-legal factor labels. The LEEC dataset is highly comprehensive, offering extensive cover-
age of criminal cases while encompassing a diverse range of defendant demographic factors—such

1https://drive.google.com/file/d/1lB2U3q-kI5B5frv8iqVceVaA9Yks3kE6/view?usp=sharing
2https://anonymous.4open.science/r/LLM-Fairness-8167
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as sex, ethnicity, education level, and age—as well as procedural elements including demographic
details of defenders, prosecutors, and judges. As both legal and extra-legal factors may significantly
impact the application of law (Ulmer, 2012), LEEC’s design ensures the dataset’s reliability for
studying judicial fairness in LLMs.

This prior work is based on real human judgments and provide insight for this study. However, LLM
fairness evaluations are not necessarily bound to real-world documents, and a specialized dataset
tailored for LLM-based judgments is necessary. Moreover, measuring LLM judicial fairness in a
comprehensive, multi-dimensional, and statistically rigorous way remains an unresolved challenge.
More detailed analysis can be found in Appendix B.

3 JUDICIAL FAIRNESS FRAMEWORK

This section introduces a structured judicial fairness framework designed to support robust and holis-
tic LLM fairness evaluations. Figure 1 illustrates our framework, which is organized into two main
hierarchical layers.

Figure 1: Framework of LLM judicial fairness.

3.1 SUBSTANCE AND PROCEDURE FACTORS

Procedural fairness lies at the heart of the rule of law and justice (Rawls, 1971; Waldron, 2011).
Beyond reinforcing substantive fairness, it promotes predictability, stability, and public confidence
in the judicial system (Burke & Leben, 2024). Empirical research demonstrates that procedure ele-
ments can significantly influence judicial decisions. For instance, judges may view pro se claimants
as less competent, leading to less favorable case outcomes (Quintanilla et al., 2017). Live broad-
casting deliberations can also change the behavior of judges (Lopes, 2018). This raises an important
question: Would LLMs replicate these patterns caused by procedure factors?

Moreover, given that LLMs may be trained on vast amounts of judicial documents, they may inter-
nalize statistical correlations between procedure factors and judicial outcomes. For example, more
complex or severe cases are typically handled by higher courts. Would LLMs, then, learn to predict
harsher penalties simply because a case is processed at a higher court level? Procedure factors exist
not only in judicial settings, yet they remain largely overlooked in LLM fairness studies.

Thus, we categorize fairness challenges into two primary domains: substance factors and proce-
dure factors. Substance factors encompass elements directly tied to the factors related to the crime
itself, including the nature of the crime, its location and timing, the defendant’s demographic char-
acteristics, etc. Meanwhile, procedure factors pertain to the judicial decision-making process itself,
which may influence LLMs’ decisions independently of the crime’s intrinsic facts. This framework
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allows for a clearer analysis of how LLMs might internalize and replicate different forms of fairness
problems within legal judgments.

3.2 DEMOGRAPHIC AND NON-DEMOGRAPHIC FACTORS

Demographic factors, including defendant ethnicity (Hou & Truex, 2022), defendant gender (Mc-
Coy & Gray, 2007), victim age (Marier et al., 2018), juror gender (Pozzulo et al., 2010), etc., have a
substantial impact on judicial decision-making (Xue et al., 2024). Therefore, we incorporate a range
of demographic factors into our framework for both substantive and procedural considerations. No-
tably, characteristics related to judicial workers are categorized as procedure factors. Consequently,
attributes like defender gender or judge age are classified as procedural demographic factors.

While previous LLM fairness studies have predominantly focused on demographic factors (Qian
et al., 2022; Parrish et al., 2022), this study also includes non-demographic factors for both substan-
tive and procedural dimensions. These non-demographic elements are essential, as they can also
serve as extra-legal factors influencing judicial decisions in practice (Quintanilla et al., 2017). For a
detailed description of specific labels within each category, please refer to Section 4.1.

4 EVALUATION BENCHMARK

4.1 LABEL SYSTEM

Our team developed an extensive fairness framework comprising 65 labels across four categories
(see Tables A2 to A5). Building on the LEEC dataset (Xue et al., 2024) and informed by empirical
legal studies, this system provides a robust foundation for label selection and data construction.
To better evaluate LLM fairness, we extended this framework by incorporating critical attributes
often absent in judicial records—such as sexual orientation and unrecorded litigation participant
details—thereby broadening the scope and depth of fairness assessment.

Specifically, substance factors include demographic labels for defendants and victims, as well as
non-demographic extra-legal factors such as crime date, time, and location. The labels selected
from LEEC include defendant demographic factors, including sex, ethnicity, education level, age,
and more. Procedure factors encompass demographic information for defenders, prosecutors, and
judges. For procedural non-demographic factors, we included elements from LEEC, such as whether
a recusal is applied by the defendant, whether a supplementary civil action is initiated with the
criminal case. For critical factors not typically recorded in judicial documents, we supplemented our
label system to include crucial procedure elements such as whether the trial is open to the public,
whether it is broadcast online, the duration of the trial process, whether the judgment is delivered
immediately following the trial, etc. Overall, our approach allows us to capture a broader range of
procedural fairness considerations in LLM fairness evaluation. For further details about the labeling
system, please refer to Appendix C.

4.2 DATASET

In this section, we present JudiFair, an evaluation benchmark comprising 177,100 unique case facts
across 65 labels, derived from 1,100 judicial documents. For case data collection, due to the high
coverage of crimes in the LEEC dataset (Xue et al., 2024) and the integration of extra-legal factor
labels in its label system, we select case data from LEEC for further screening and annotation. We
selected the 13 most relevant labels from the LEEC dataset based on our framework. We also include
51 non-LEEC labels, and further annotate them in the dataset.

4.2.1 DATA ANNOTATION AND PROCESSING

The construction of LEEC involved assigning over 40 legal experts to annotate judicial documents.
For each label, the experts annotated the label value and the trigger sentence for the label. Based
on LEEC, we conducted further annotations. When annotating each case, we adopted an automated
annotation approach. For each case, we performed an exact match of the label’s trigger sentence
throughout the text. If there was no match, we used LLMs for semantic retrieval and annotation,
which is then reviewed by experts. Due to the relatively standardized writing of legal documents,
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most annotations could be carried out by direct extraction and replacement. Meanwhile, for some
labels, we were able to infer and annotate based on the label information annotated in LEEC. For
example, through the court name in the judicial documents, we could infer the Court level label.

Due to the long token count of legal documents, the cost of testing all documents was prohibitive.
Therefore, we initially randomly selected 1100 documents from the dataset for each label. Subse-
quently, we excluded some crimes for certain labels based on Chinese law from the selected data,
because some factors may only be legally relevant in certain cases according to law. For example,
measuring LLM bias based on defendants’ occupations without accounting for cases of accepting
bribes could result in an inaccurate evaluation, as occupation may be a legally relevant factor in such
cases.

4.2.2 COUNTERFACTUAL PROMPTING

Counterfactual prompting is a technique that encourages LLMs to reason with alternative facts. The
success of counterfactual generation in LLMs has demonstrated their ability to detect differences
between facts (Li et al., 2023b). In the context of LLM-as-a-judge, we expect LLMs to maintain
neutrality when presented with irrelevant factual changes. This method, as demonstrated in (Moore
et al., 2024) and (Kumar et al., 2024), has proven effective in bias detection.

Inspired by APriCot (Moore et al., 2024), our approach generates a separate query for each fac-
tual alternative. This strategy ensures that LLMs evaluate each option independently, minimizing
shortcuts or comparisons that may arise from contextual influences between neighboring queries.
Additionally, it allows LLMs to reason logically rather than relying on empirical data, thereby miti-
gating the impact of Base Rate Probability.

We aim to construct prompts with minimal alteration from real judicial documents. For each factor
in the label system, there is a corresponding set of fact alternatives. We began by identifying the
relevant texts in case facts and parties, which we refer to as “trigger sentences”. Next, we constructed
the initial query using the original facts. Subsequently, we replaced each fact in the trigger sentences
with its corresponding counterfactual meanings. This process resulted in a set of queries for a single
case and label, as shown in Figure A4. Additional information about prompt construction is in
Appendix D.

5 EVALUATION METHOD

5.1 MULTI-DIMENSIONS OF LLM FAIRNESS EVALUATION

In this section, we introduce three evaluation metrics to comprehensively capture important dimen-
sions of LLM judicial fairness:

1. Inconsistency. Even when prompted with identical inputs and a fixed temperature of 0, LLMs
may generate varying responses (Atil et al., 2024). In judicial settings, different sentencing for
similar offenders is a clear sign of potential inequality (Schulhofer, 1991).

2. Bias. Bias is a systematic pattern based on certain characteristics (Ranjan et al., 2024). If LLMs’
judicial decisions are not only inconsistent based on different label values, but also demonstrate a
systematic directional shift based on certain label values based on statistical inferences, they indicate
the presence of bias.

3. Imbalanced Inaccuracy. As the JudiFair dataset is constructed from real judicial documents, it
allows us to incorporate actual sentencing outcomes from human judges into our fairness analysis.
This integration enables us to evaluate how closely LLM-generated sentences align with real-world
judicial decisions. Specifically, certain characteristics may lead LLMs to produce more accurate
or less accurate predictions compared to human judgments. However, the accuracy of LLMs’ pre-
dictions may vary among different groups (e.g., male vs. female defendants), leading to unfairness
(Dieterich et al., 2016)(Gupta et al., 2024)(Dieterich et al., 2016)(Das et al., 2021). This concept is
illustrated in Figure 2.

Figure 3 illustrates the evaluation methodology. By leveraging descriptive statistics and multiple
statistical inference tools, we assess the consistency, bias, and imbalanced inaccuracy of both in-
dividual models and the overall indicators across all models in our study. This multi-dimensional
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Figure 2: Comparison of imbalanced inaccuracy and bias across scenarios. In Scenario 1, LLMs
predict 100 months for male defendants and 200 months for female defendants while real sentences
are 150 months for both. There is LLM gender-based bias but no imbalanced inaccuracy, as the
absolute deviation is equal. Similarly, in Scenario 2, there is LLM gender-based bias but no imbal-
anced inaccuracy. In Scenario 3, compared with real sentencing, there are both bias and imbalanced
inaccuracy of LLMs. All numbers are fully hypothesized to illustrate the concepts.

evaluation framework also enables the analysis of internal correlations among these three metrics,
as well as their relationships with other key indicators such as model size, temperature, and more.

Figure 3: Evaluation framework of LLM judicial fairness.

5.2 EVALUATION METRICS

This section details the algorithm and method for the three measurements of LLM judicial fairness.

5.2.1 INCONSISTENCY

We measure inconsistency by assessing how often LLM judgments change in response to variations
in label values. Specifically, for each label, we calculate the proportion of judicial documents in
which the LLM’s output differs when the label’s value changes. To account for differences in the
number of values across all the labels, we assign weights proportional to the effective sample size
for each label. The inconsistency measure for an individual LLM is formally defined in Equation 1,
where N represents the total number of labels, wl is the weight for label l, calculated as its effective
sample size; pl is the proportion of judicial documents where the LLM’s prediction changes when
the value of label l changes. Next, we calculate the average Inconsistency of all LLMs assessed in
this study to obtain an overall picture across all models collectively.

Inconsistency =

∑N
l=1 wl · pl∑N

l=1 wl

(1)

5.2.2 BIAS

We apply multiple methods to ensure robust statistical inference when assessing potential bias in
LLMs. First, we conduct regression analysis for each label, using Treated, the variable representing

6
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the label of interest, as the independent variable. One value of Treated serves as the reference group,
and we create separate binary variables for each remaining value. We include fixed effects for ID
to capture each judicial document’s unique characteristics, thereby isolating the effect of interest.
The dependent variable in the main regression is the length of limited imprisonment in months,
the most commonly imposed principal punishment under Chinese criminal law. Following prior
empirical legal studies (Berdejó & Yuchtman, 2013; Johnson, 2006), we take the natural logarithm
of sentencing length (plus 1) to address the right-skewed distribution. Equation 2 presents the details.
If Treated has j categories, the model includes j-1 treated variables. Similarly, if ID has i categories,
the model includes i-1 ID variables.

Ln(Sentence) = γ +

j−1∑
j=1

αj · Treatedj +

i−1∑
i=1

βi · IDi + ε (2)

We use high-dimensional fixed-effect linear regression models with the REGHDFE package in
Stata (Correia, 2017), which efficiently handles high-dimensional fixed effects with accuracy. This
method fits the study as in our analysis, controlling for ID fixed effects introduces around a thou-
sand variables per regression, significantly increasing computational demands. This method is also
widely adopted in quantitative social science research (Huang & Zhang, 2023; Wu et al., 2024;
Gormley et al., 2025). We cluster robust standard errors at the ID level to account for intra-document
correlation, preventing the underestimation of standard errors from shared unobservable character-
istics within the same judicial document.

Next, we conduct multiple robust analyses to test the reliability of our main regression results. The
methods and results of robustness checks are shown in Appendix F.4, all confirming the main results.

After estimating the effect of Treated variables for each label, we apply statistical tests to assess
whether an LLM’s bias is systematic and significant. When analyzing multiple labels simultane-
ously, observed significance may arise purely from random variation. To separate true systematic
biases from random noise, we treat each label test as a Bernoulli trial whose “success” is a signif-
icant result (p ≤ τ ) (Casella & Berger, 2024). Following this methodology, we conduct Bernoulli
tests to evaluate the overall statistical significance from 96 label values across 65 labels for each
model. Equation 3 shows the method.3 If we observe k significant labels, the probability of seeing
at least that many under the null hypothesis of pure randomness is pBernoulli. A small value of pBernoulli
indicates that the number of significant labels is unlikely to be explained by random noise alone, sug-
gesting that the individual LLM’s bias is systematic rather than incidental. Finally, we aggregate
the results of all LLMs and perform an additional Bernoulli test using Equation 3 to determine if
there is a significant bias across all models collectively.

pbernoulli =

N∑
l=k

(
N

l

)
τ l
(
1− τ

)L−l
(3)

5.2.3 IMBALANCED INACCURACY

First, we summarize accuracy by calculating two key metrics: Mean Absolute Error (MAE) and
Mean Absolute Percentage Error (MAPE). MAE measures the average absolute difference between
predicted and actual values, reflecting overall prediction error regardless of direction. MAPE mea-
sures the average percentage error, indicating the relative size of the error compared to the actual
value. For each label, we calculate these metrics and then compute a weighted average across all
labels to provide a comprehensive accuracy assessment.

Similar to the steps in Section 5.2.2, we apply Equation 2 and replace the dependent variable with the
absolute differences between predicted and actual values to test whether a specific model shows sig-
nificant imbalanced inaccuracy, as shown in Equation 4. Next, we conduct a Bernoulli test in Equa-
tion 3 to assess whether the individual model exhibits systematic imbalanced inaccuracy across all
examined labels. Finally, we aggregate the results across all models in the study and perform an ad-
ditional Bernoulli test using Equation 3 to determine if there is a significant imbalanced inaccuracy
across all models collectively.

3pbernoulli is the right-tail probability of observing at least k significant labels under the null of purely random
variation, N is the total number of labels tested, l enumerates the possible counts of significant labels being
summed over, k is the number actually found significant, and τ is the per-label significance threshold.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Abs Dif = γ +

J∑
j=1

αj · Treatedj +

I∑
i=1

βi · IDi + ε (4)

6 EXPERIMENTS

6.1 MODEL SELECTION

The experiment is conducted on 16 different LLMs, including models with varying parameter sizes,
release dates, and countries of origin to ensure a diverse representation of models. The model details
are shown in Table A1. For the main analysis, we set the temperature as 0 to reduce randomness in
the models.

6.2 FINDINGS

The main analysis and key findings are described in this section. The full results, including all three
metrics about model inconsistency, bias, and imbalanced inaccuracy are shown in Table A17 and
Table A18, with the former presenting models at a temperature of 0 and the latter at a temperature
of 1.

Consistency. All models show considerable inconsistency in outputs, either with a temperature of
0 or 1. Among the 15 models with a temperature of 0, the average inconsistency is over 15%. This
means that around 18% of judicial documents lead to different outputs with varied value of labels.
When the temperature is set to 1, inconsistency rises. A full analysis of temperature and consistency
is provided in Section H.2.

Bias. When temperature is 0, all models show numerous label values that exhibit significant bias. A
Bernoulli test that sets significant threshold at 0.1 and 0.05 show similar results, suggesting signifi-
cant biases for 14 models out of 15 models.It is also worth noting that models’ biases are not com-
pletely randomly distributed, but concentrate more on some labels. For example, defendant wealth
shows significant bias in 10 of the 13 models, while victim age is only biased in one model. When
the model temperature is set to 1, the overall pattern remains consistent: most models exhibit signif-
icant overall biases. Moreover, the Bernoulli test applied to all LLMs in our sample show a p-value
below 0.01, suggesting significant biases across all models. More detailed results are shown in F.

Meanwhile, compared with substance factors, the p-value of procedure factors are smaller, particu-
larly for judge characteristics. The difference between demographic labels and non-demographic
ones is much bigger. Demographic ones demonstrate significantly more biases. Yet, all non-
demographic factors in both substance and procedure categories still exhibit significant bias in some
models. Compulsory measure and Court level are two of the most biased labels.

Utilizing the LEEC labels that enable us to compare with real information of judicial documents, a
deeper analysis based on Appendix F.3 reveals that LLM biases tend to mirror real-world judicial
biases identified in prior empirical legal studies. For instance, if the defendant’s gender significantly
affects LLM sentencing, female defendants are generally treated more leniently, aligning with find-
ings from previous research (McCoy & Gray, 2007). This trend is consistent for other labels as
well. In the Chinese context, studies have shown that defendants with rural household registrations
(Hukou) are likely to suffer a judicial “penalty effect” compared to their urban counterparts (Jiang &
Kuang, 2018). Similarly, if this label significantly influences LLMs’ biases, it tends to increase the
severity of sentencing. Meanwhile, labels typically absent from Chinese judicial documents, such
as the parties’ sexual orientation, may also contribute to LLM bias. This suggests that the origins
of LLM bias are not necessarily confined to judicial records.

Imbalanced Inaccuracy. When the temperature is set to 0, 14 out of 15 models show significant
unfairness. When the temperature is set to 1, for several models, at least one of the two p-value
thresholds (0.1 and 0.05) fails to reach significance. Moreover, the Bernoulli test applied to all LLMs
in our sample show a p-value below 0.01, suggesting significant imbalanced inaccuracy across all
models. It is also valuable to present the analysis of pure accuracy of LLM sentencing compared
with real sentencing. The mean of Weighted Average MAE of all models is 64.871. This means that
on average, LLM models would divert form the real sentences for over 5 years on sentencing length.

8
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This is far from satisfactory. The mean of Weighted Average MAPE of all models is 219%, which
means that LLMs’ decisions are in general multiple times harsher than the real sentence, leading to
extensive deviation from real sentencing. More detailed results are shown in Appendix G.

6.3 ADDITIONAL FINDINGS

We analyze correlations among metrics, the effect of temperature, and the influence of parameter
size and release time; comprehensive analyses of findings are in Appendices E–H.

Internal Correlation among Metrics We identify several intriguing correlations among the met-
rics, as shown in Appendix H.1. Using the Pearson Correlation Coefficient to achieve statistical
significance, we find that:1) There is a significant negative correlation between inconsistency and
the number of biased label values for each model. This suggests that greater randomness in LLM
outputs may obscure underlying biases. 2) There is a positive significant correlation between bias
and significant imbalanced inaccuracy. 3) Notably, as an LLM’s accuracy increases, its bias also
increases substantially. This suggests that when LLMs learn the patterns from real-world judicial
data, the improvement in their predictive accuracy generally comes at the expense of biases.

Temperature Impact We also explores the impact of temperature on LLM fairness, using 12
randomly selected models. The findings show that inconsistency issues become significantly more
prominent at higher temperatures, due to the temperature parameter’s influence on the randomness
of model outputs. Additionally, while all models generally exhibit significant biases at both temper-
ature settings, the number of label values showing significant biases decreases as the temperature
increases, with a p-value of less than 0.01 indicating a strong correlation. These results align with the
analysis in Section 6.3, suggesting that increased randomness in LLM outputs may mask underlying
biases. The findings are presented in Figure A10.

Influence of Parameter Size, Release Date, and Country of Origin We further examined the in-
fluence of a model’s release date, parameter size, and country of origin to LLM fairness, as illustrated
in Appendix H.3 to H.5. The analysis reveals no significant influence of release date, indicating that
newer LLMs do not exhibit substantially lower biases compared to their predecessors. Meanwhile,
Experiments show that increasing parameter size could not reduce bias or imbalanced inaccuracy
in LLMs, and it may even significantly increase the inconsistency problem of LLMs. Lastly, in our
sample, LLMs developed in China and the United States show no consistent advantage over one
another in terms of judicial fairness across all three metrics. The findings underscore critical chal-
lenges in current LLM development regarding judicial fairness. Detailed results can be found from
Figure A11 to A13.

7 CONCLUSION

This study presents a systematic framework for evaluating LLM judicial fairness. We craft a multi-
dimensional framework for judicial fairness that distinguishes between substantive and procedu-
ral factors, and between demographic and non-demographic attributes, and thus, covers a broader
range of fairness dimensions than prior studies. Based on this, we construct a comprehensive label
system with 65 extra-legal factors and 161 different values, and implement it through JudiFair—a
benchmark of 177,100 counterfactually generated case facts. We assess 16 LLMs across three core
metrics: inconsistency, bias, and imbalanced inaccuracy. To ensure statistical rigor, we apply fixed-
effect regressions, cluster-robust standard errors, Bernoulli tests, and multiple robustness checks,
offering a comprehensive, robust and interpretable methodological foundation for auditing LLMs in
legal contexts. Our results reveal widespread fairness issues: nearly all models display substantial
and systematic inconsistency, bias, and imbalanced inaccuracy. Demographic and procedural
factors trigger stronger biases. Even though our experiments were conducted solely within the Chi-
nese legal system, our overall fairness testing framework, labeling system, and evaluation methodol-
ogy can still be applied to the legal systems of other countries. Researchers from other jurisdictions
may only need to annotate datasets based on court documents from their own legal systems using
our approach to conduct fairness testing for large language models.
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high-stakes domains such as law. The methodology, the dataset JudiFair, and the results of this
study, as well as the toolkit JustEva, are solely for LLM fairness evaluation and auditing, and should
not replace any human decision-making in real-world legal systems.

The inclusion of any laws in this study is purely for analytical purposes in evaluating LLM judicial
fairness and, unless explicitly stated, does not constitute or imply any normative judgment from the
authors.

REPRODUCIBILITY

All data and code from this paper have been made publicly available via an anonymous GitHub link4.
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A LLM USAGE

In this paper, we utilize Large Language Models for language polishing and revision purposes.
Our initial manuscript was drafted without the assistance of AI tools. Upon completion, selected
sentences were input into an LLM for grammatical correction and refinement. Additionally, as
mentioned in Section 4.2.1, LLMs were employed as annotators for the data labeling phase of this
study, with all such annotations subsequently reviewed by human experts.

B RELATED WORK (DETAILED)

B.1 FAIRNESS EVALUATION

Fairness evaluation serves as a crucial component in the development of trustworthy LLMs. A
myriad of benchmarks exist to measure the bias of large language models, each with its unique
focus. We’ve categorized these biases into two types: human-related problems and LLM-related
problems.

Some studies concentrate on detecting LLM-related bias, which means those challenges are unique
to LLMs. The temperature parameter can affect an LLM’s self-perception of attributes such as
age, gender (Miotto et al., 2022), and personality (La Cava & Tagarelli, 2024). Weight decay may
influence how LLMs handle low-frequency tokens, raising fairness concerns (Pinto et al., 2024).
Studies have also shown that LLMs sometimes produce negative responses in complex reasoning
tasks for unknown reasons (Yu et al., 2024). Requiring specific output formats may also impact
LLM performance, possibly due to extensive training on structured coding data (Long et al., 2024).
These benchmarks are relatively straightforward to construct and are limited to the scenarios models
encounter. While previous work in this area is well-developed, more value and opportunities for
improvement lie in addressing human-related problems.

LLMs often reflect human-like behavior patterns. Societal and structural biases present in human-
generated data can lead to unfair LLM outputs (Dastin, 2018). In past research on human-related
problems, researchers have primarily focused on social fairness. For example, many researchers
primarily focus on evaluating gender bias. Winogender (Rudinger et al., 2018) evaluates gender
stereotypes using a collection of 3,160 sentences that cover 40 different professions. GAP, developed
by (Webster et al., 2018), provides 8,908 ambiguous pronoun-name pairs to evaluate gender bias in
coreference resolution tasks. At the same time, other research efforts have expanded their focus to
include a broader range of social factors. The Equity Evaluation Corpus, created by (Kiritchenko &
Mohammad, 2018), comprises 8,640 sentences that analyze sentiment variations towards different
gender and racial groups. PANDA, introduced by (Qian et al., 2022), presents a dataset of 98,583
text perturbations across gender, race/ethnicity, and age groups, where each pair of sentences alters
the social group but maintains the same semantic meaning. Lastly, the Bias Benchmark for QA
(BBQ) (Parrish et al., 2022), is a question-answering dataset consisting of 58,492 examples that aim
to evaluate bias across nine social categories, including age, disability status, gender, nationality,
physical appearance, race/ethnicity, religion, and socioeconomic status.

A minority of studies also evaluate fairness in domain-specific contexts. Bang et al. (2024) pro-
posed a fine-grained framework to measure political bias in LLMs by analyzing both stance and
framing—what the model says and how it says it—across diverse political topics. Zhong et al.
(2024) demonstrated that LLMs like GPT-4 and BERT exhibit systematic gender bias in financial
decision-making tasks, highlighting the limitations of purely technical debiasing. Deroy & Maity
(2023) examined LLM biases on gender, race, country and religion in automated case judgment
summaries. However, the study lacked the use of statistical tools for drawing robust inferences, and
its evaluation focused solely on bias, overlooking other critical dimensions of LLM fairness. Zhang
et al. (2024a) proposed an ethics-focused evaluation methodology using real-world legal cases to
assess the legal knowledge and ethical robustness of LLMs in the legal domain. However, the study
relied on only 11 judicial documents without robust statistical inferences, which is far too limited to
support convincing evaluation and conclusions.

Overall, these studies are subject to several important limitations. First, existing studies on LLM
bias—whether in general or domain-specific tasks—rely on at most nine labels, a scope that is
neither comprehensive nor methodologically systematic. Second, when evaluating multiple labels
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across multiple models, researchers need to conduct experiments over and over again. Prior studies
on LLM fairness have largely overlooked a critical question: How can we distinguish genuine fair-
ness problems from observed patterns that may arise purely due to random noise in the data through
repeated experimentation? Without rigorous statistical inference, such distinctions remain unclear.
Third, many studies failed to recognize that fairness is a broader, multidimensional concept com-
pared with bias. The evaluation of fairness necessitates a comprehensive framework and must not
be conflated with bias, which represents only one aspect of fairness Binns (2018). Thus, it is not
surprising that Blodgett et al. (2021) pointed out that several benchmarks suffer from unclear bias
definitions and issues with the validity of bias. Fourth, while some LLMs apply debiasing tech-
niques during post-training (Raj et al., 2024; Xu et al., 2024), ensuring fairness in judicial contexts
presents unique challenges due to the need for deep legal understanding. The high stakes of judicial
decisions further heighten the standards required for fairness. If LLMs can meet these standards and
deliver just outcomes comparable to human judges, the pursuit of social justice would be signifi-
cantly advanced. Lastly, auditing LLM fairness should not end with a published paper. A practical,
academically grounded toolkit is essential to support broad-based evaluation and ongoing improve-
ment of LLM fairness, particularly when evaluating LLM fairness is a complicated task that requires
multi-dimensional, statistically rigorous methodology.

In our work, we introduce the concept of judicial fairness and systematically construct a fairness
evaluation framework for LLM’s judicial fairness. Based on this framework, we propose 65 labels,
far more than the labels in previous works, to comprehensively assess the judicial fairness of large
language models.

B.2 LEGAL DATASETS

In order to evaluate judicial fairness, it is crucial to place Large Language Models within legal
contexts. There are several existing legal NLP datasets that have annotated legal cases, primarily
analyzing human judgment outcomes. For instance, there are datasets like LEEC(Xue et al., 2024),
MUSER(Li et al., 2023a), CAIL2018(Xiao et al., 2018), and LEVEN(Yao et al., 2022).

CAIL2018 (Xiao et al., 2018) contains over 2.6 million criminal cases published by the Supreme
People’s Court of China. However, its annotations merely cover legal articles, charges, and prison
terms, without providing detailed facts of the cases.

LEVEN (Yao et al., 2022), on the other hand, is a large-scale Chinese Legal Event detection dataset,
comprising 8,116 legal documents and 150,977 human-annotated event mentions across 108 event
types. Yet, for fairness evaluation, the provided legal event labels alone are insufficient.

LEEC (Xue et al., 2024) is another Chinese legal dataset consisting of 15,919 legal documents and
155 extra-legal factor labels. As pointed out by Ulmer in 2012, the practical application of the law
is significantly influenced not only by legal factors but also by extra-legal ones. The comprehensive
label system, the large number of cases as well as the introduce of extra-legal labels ensure the
reliability of the dataset for research into model judicial fairness.

All these previous works rely exclusively on human judgments. However, to evaluate the judicial
fairness of large language models (LLMs), we propose repurposing existing legal datasets by treating
LLMs as the judicial decision-makers. Researchers can generate counterfactual prompts from real
judicial documents, enabling rigorous causal inference regarding fairness issues in LLM predictions.
Consequently, developing a specialized dataset designed explicitly for evaluating judicial fairness in
LLMs is essential.
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Figure A1: Classification of LLM fairness.
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C LABEL SYSTEM (DETAILED)

Our team of legal experts developed a comprehensive system comprising 65 labels for each of the
four categories outlined in the proposed fairness framework. Our annotation team contains 3 legal
experts, they all owns the Master of Law degree in China. When annotating, they get paid by $10
per hour. By judging each label, they first give their own choice. If they encounter inconsistent
results, they make a decision through voting after negotiation.

Detailed information about these labels is presented in Table A2 to Table A5.

This labeling system builds upon the existing LEEC dataset (Xue et al., 2024), which includes 155
manually annotated legal and extra-legal labels, along with the corresponding trigger sentences that
may influence sentencing outcomes across a vast collection of Chinese judicial documents. The la-
bels in the LEEC dataset were selected by legal experts and informed by a comprehensive review of
empirical legal studies specific to the Chinese context. This expert-driven approach ensures that the
extra-legal labels are highly relevant and likely to impact judicial decisions in practice. For instance,
whether the defendant is represented by legal aid lawyers or private attorneys can significantly in-
fluence sentencing outcomes (Agan et al., 2021). This label is annotated in the LEEC dataset and is
also included in the current system to examine its potential impact on LLM decisions. As a result,
the LEEC dataset provides a solid foundation for label selection and data construction, as discussed
in Section 4.2. It also enables us to explore potential relationships between fairness issues in real
judicial documents and those in LLM decision-making.

However, when examining LLM fairness, we are not strictly limited to the information explicitly
recorded in judicial documents, as is the case with LEEC. For instance, sexual orientation is widely
recognized as a significant source of bias and stereotype in judicial decision-making, yet it is not
typically documented in Chinese judicial records. Consequently, LEEC is unable to account for
this important factor. Similarly, information regarding parties other than the defendant—such as
judges, juries, and victims—is largely absent from real judicial documents. To address these gaps,
we incorporated additional labels to cover critical attributes missing from judicial records. This
expansion significantly broadens the scope of LLM fairness evaluation.

Specifically, substance factors include demographic labels for defendants and victims, as well as
non-demographic extra-legal factors such as crime date, time, and location. The labels selected
from LEEC include various defendant demographic factors like sex, ethnicity, education level, age,
and more. Procedure factors encompass demographic information for defenders, prosecutors, and
judges.5 As these procedural demographic labels are not available in real judicial documents or
LEEC, we added them to our system. For procedural non-demographic factors, we included ele-
ments from LEEC, such as whether a recusal is applied by the defendant, whether a supplementary
civil action is initiated with the criminal case. For critical factors not typically recorded in judicial
documents, we supplemented our label system to include crucial procedure elements such as whether
the trial is open to the public, whether it is broadcast online, the duration of the trial process, whether
the judgment is delivered immediately following the trial, etc. Overall, our approach allows us to
capture a broader range of procedural fairness considerations in LLM fairness evaluation.

5For prosecutors and judges, we exclude labels like education level and occupation because Chinese law
mandates specific thresholds for these positions. However, for defenders, we retain these labels, as Chinese law
permits defendants’ guardians, close relatives, or individuals recommended by a people’s organization or work
unit to serve as defenders, introducing variability in these characteristics.
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D PROMPT STANDARDIZATION

D.1 LLM INPUTS

Result Format. Legal tasks for LLMs typically involve long texts, which significantly increase
task complexity and affect the accuracy of LLM outputs (Parizi et al., 2023). This complexity is
further amplified in judgment prediction tasks, which do not provide predefined answer candidates
but instead expect a numerical outcome. Previous works have attempted to reduce this complexity
by framing the question as a binary choice (Trautmann et al., 2022). However, (Healey et al., 2024)
demonstrated that leaving space for the LLM to generate its own responses is critical for bias detec-
tion tasks. To strike a balance, and inspired by the minimalist approach of Meta Prompting (Zhang,
2023), we aim to limit the tokens in model outputs through format restrictions—specifically, a JSON
structure containing only the metrics necessary for evaluation. For the numerical result, we still al-
low the LLM to generate free predictions for each query.

Prompting Techniques. Providing examples through the Few-Shot Prompting technique can im-
prove the accuracy of judgments for LLMs (Parizi et al., 2023). However, this method significantly
increases the token count. Additionally, (Cattan et al., 2024) highlighted that LLMs are sensitive to
similar cases and may overlook differences in trigger sentences when queries are kept within a sin-
gle context. To address these challenges, we adopt a Few-Shot technique that focuses on providing
an example output without including examples of questions, thus avoiding the risk of confusing the
LLM with irrelevant long texts.

Input Structure. Our input begins with a role-play prompt, which has been shown to enhance LLM
performance in context-specific reasoning tasks (Kong et al., 2023): “Ignore your identity as an AI...
You are now a judge proficient in Chinese law.” This is followed by a task definition: “You need
to make a judgment based on the case presented by the prosecutor, and provide a sentencing result
according to Chinese criminal justice.” Next, we outline all critical rules, including the required
output format, the basic sentencing provisions for the combined punishment of multiple crimes in
China, and special rules for being not guilty, receiving the death penalty and life imprisonment,
etc. The next step is to use a padding token “¡Start of Case Presentation¿” to introduce case facts
and parties from our dataset, along with the trigger sentences constructed earlier. To conclude,
we prompt the LLM to begin performing the task with: “Please output the json structure of the
sentencing result of the defendant according to the format given above.” A full structure of our input
is given in Figure A2.

Examples. Figures A3 and A4 provide visual illustrations and examples of our evaluation method,
demonstrating how counterfactuals are constructed and presented to LLMs during the sentencing
prediction task. In Figure A3, the Attributes section indicates the specific judicial factor under
examination, such as Court Level, while the Trigger Sentences highlight variations in the factual
scenarios. For example, the same crime is judged under different court levels: primary, interme-
diate, and higher people’s courts. This controlled variation is seamlessly integrated into the LLM
Input, where the model is prompted with a complete role-play scenario, instructing it to deliver a
sentencing decision according to Chinese criminal law. The LLM Output section displays the sen-
tencing outcomes generated by the model for each counterfactual scenario, allowing for a direct
comparison of LLM responses to identical legal facts under different attribute settings.

Figure A4 follows a similar structure, focusing on Gender Recognition - Defendant as the varying
attribute. It shows the defendant’s gender expressed as male, female, and non-binary in the Trigger
Sentences, while all other case facts remain constant. This design isolates the impact of gender
on LLM decision-making, offering insight into potential biases linked to demographic attributes. In
both examples, the use of counterfactual prompting enables a systematic and controlled examination
of LLM consistency and fairness across legally relevant factors.

D.2 PROMPT EVALUATION

Before the actual experiment, the prompt is evaluated on a selective set of LLMs. The evaluation
focuses on the cohesion with which the LLM adheres to the format requirements and the potential
variations the prompt might generate. Each query is run three times to assess the extent of variation,
with a total of 420 queries completed. Based on the outputs observed, we consider the final prompt
competent for the task and proceed to construct the dataset for LLM inputs.
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Figure A2: Construction of our inputs.
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Figure A3: Examples of our evaluation method (I).

Figure A4: Examples of our evaluation method (II).
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E OVERALL INFORMATION OF MODELS, LABELS, AND RESULTS

E.1 MODEL INFORMATION

Table A1 provides an overview of the models used in our evaluation, organized in chronological
order based on their release dates. For each model, the table lists the model name, publication date,
parameter count, and the nation of origin. Models with ”Unknown” parameter counts indicate pro-
prietary or undisclosed information at the time of evaluation. We intentionally selected a diverse set
of models spanning different nations, release dates, and parameter sizes to ensure a comprehensive
evaluation of LLM fairness across various configurations.

Model Name Publication Date Parameter Count Nation
Glm 4 2024-01-16 Unknown China
Gemini Flash 1.5 2024-05-14 Unknown U.S.
Mistral Nemo 2024-07-19 12B U.S.
Llama 3.1 8B Instruct 2024-07-23 8B U.S.
Glm 4 Flash 2024-08-27 9B China
Qwen2.5 72B Instruct 2024-09-19 72B China
LFM 40B MoE 2024-09-30 40B U.S.
Gemini Flash 1.5 8B 2024-10-03 8B U.S.
Qwen2.5 7B Instruct 2024-10-19 7B China
Nova Lite 1.0 2024-12-04 Unknown U.S.
Nova Micro 1.0 2024-12-05 Unknown U.S.
DeepSeek V3 2024-12-26 671B China
Phi 4 2025-01-10 14B U.S.
DeepSeek R1-32B Qwen 2025-01-20 32B China
LFM 7B 2025-01-25 7B U.S.
Mistral Small 3 2025-01-30 24B France

Table A1: Overall information of models.
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E.2 SUMMARIZED LABEL INFORMATION AND DEFINITION

Table A2 to Table A5 summarize the label names, label definitions, and the values of the labels.

Label Name Label Description Label Value
Substance and Demographic Factors

Defendant gender A DEFENDANT GENDER element refers to
the gender of the defendant.

Female; Gender Non-
Binary; Male (Refer-
ence)

Defendant sexual orientation A DEFENDANT SEXUAL ORIENTATION
element refers to the sexual orientation of the
defendant.

Homosexual; Bisexual;
Heterosexual (Refer-
ence)

Defendant ethnicity A DEFENDANT ETHNICITY element refers
to the ethnicity of the defendant.

Ethnic Minority; Han
(Reference)

Defendant age A DEFENDANT AGE element refers to the
age of the defendant.

Age

Defendant education A DEFENDANT EDUCATION element
refers to the education level of the defendant

Below High School;
High School or Above
(Reference)

Defendant occupation A DEFENDANT OCCUPATION element
refers to the occupation of the defendant
categorized into three types.

Farmer; Unemployed;
Worker (Reference)

Defendant household regist
ration

A DEFENDANT HOUSEHOLD REGISTR
ATION element refers to the place of regis-
tered permanent residence of the defendant,
also known as Hukou in Chinese.

Not Local; Local (Refer-
ence)

Defendant nationality A DEFENDANT NATIONALITY element
refers to the nationality of the defendant.

Foreigner; Chinese (Ref-
erence)

Defendant political backgr
ound

A DEFENDANT POLITICAL BACKGROU
ND element refers to the poltical background
of the defendant.

CCP; Other Party; Mass
(Reference)

Defendant religion A DEFENDANT RELIGION element refers
to the religious belief of the defendant

Islam; Buddhism; Chris-
tianity; Atheism (Refer-
ence)

Defendant wealth A DEFENDANT WEALTH element refers to
the financial status of the defendant

Penniless; A Million
Saving (Reference)

Victim gender A VICTIM GENDER element refers to the
gender of the victim.

Female; Gender Non-
Binary; Male (Refer-
ence)

Victim sexual orientation A VICTIM SEXUAL ORIENTATION ele-
ment refers to the sexual orientation of the vic-
tim.

Homosexual; Bisexual;
Heterosexual (Refer-
ence)

Victim ethnicity A VICTIM ETHNICITY element refers to the
ethnicity of the victim.

Ethnic Minority; Han
(Reference)

Victim age A VICTIM AGE element refers to the age of
the victim.

Age

Victim education A VICTIM EDUCATION element refers to
the education level of the victim.

Below High School;
High School or Above
(Reference)

Victim occupation A VICTIM OCCUPATION element refers to
the occupation of the victim categorized into
three types.

Farmer; Unemployed;
Worker (Reference)

Victim household registration A VICTIM HOUSEHOLD REGISTRATION
element refers to the place of registered per-
manent residence of the victim, also known as
Hukou in Chinese.

Not Local; Local (Refer-
ence)

Table A2: List of summarized label information and definition (I).
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Label Name Label Description Label Value
Victim nationality A VICTIM NATIONALITY element refers

to the nationality of the victim.
Foreigner; Chinese
(Reference)

Victim political background A VICTIM POLITICAL BACKGROUND
element refers to the political background of
the victim.

CCP; Other Party; Mass
(Reference)

Victim religion A VICTIM RELIGION element refers to the
religious belief of the victim.

Islam; Buddhism;
Christianity; Atheism
(Reference)

Substance and Non-Demographic Factors
Victim wealth A VICTIM WEALTH element refers to the

financial status of the victim.
Penniless; A Million
Saving (Reference)

Crime location A CRIME LOCATION element refers to the
location where the crime took place.

Rural; Urban (Refer-
ence)

Crime date A CRIME DATE element refers to the sea-
son in which the crime occurred.

Summer; Autumn;
Winter; Spring (Refer-
ence)

Crime time A CRIME TIME element refers to the time
of day when the crime occurred.

Afternoon; Morning
(Reference)

Procedure and Demographic Factors
Defender gender A DEFENDER GENDER element refers to

the gender of the defender.
Female; Gender Non-
Binary; Male (Refer-
ence)

Defender sexual orientation A DEFENDER SEXUAL ORIENTATION
element refers to the sexual orientation of the
defender.

Homosexual; Bisexual;
Heterosexual (Refer-
ence)

Defender ethnicity A DEFENDER ETHNICITY element refers
to the ethnicity of the defender.

Ethnic Minority; Han
(Reference)

Defender age A DEFENDER AGE element refers to the
age of the defender.

Age

Defender education A DEFENDER EDUCATION element
refers to the education level of the defender.

Below High School;
High School or Above
(Reference)

Defender occupation A DEFENDER OCCUPATION element
refers to the occupation of the defender
categorized into three types.

Farmer; Unemployed;
Worker (Reference)

Defender household registr
ation

A DEFENDER HOUSEHOLD REGISTR
ATION element refers to the place of reg-
istered permanent residence of the defender,
also known as Hukou in Chinese.

Not Local; Local (Ref-
erence)

Defender nationality A DEFENDER NATIONALITY element
refers to the nationality of the defender.

Foreigner; Chinese
(Reference)

Defender political backgro
und

A DEFENDER POLITICAL BACKGRO
UND element refers to the political back-
ground of the defender.

CCP; Other Party; Mass
(Reference)

Defender religion A DEFENDER RELIGION element refers
to the religious belief of the defender.

Islamic; Buddhism;
Christianity; Atheism
(Reference)

Defender wealth A DEFENDER WEALTH element refers to
the financial status of the defender.

Penniless; A Million
Saving (Reference)

Prosecurate gender A PROSECURATE GENDER element
refers to the gender of the prosecutor.

Female; Gender Non-
Binary; Male (Refer-
ence)

Prosecurate sexual orientati
on

A PROSECURATE SEXUAL ORIENTAT
ION element refers to the sexual orientation
of the prosecutor.

Homosexual; Bisexual;
Heterosexual (Refer-
ence)

Prosecurate ethnicity A PROSECURATE ETHNICITY element
refers to the ethnicity of the prosecutor.

Ethnic Minority; Han
(Reference)

Table A3: List of summarized label information and definition (II).
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Label Name Label Description Label Value
Prosecurate age A PROSECURATE AGE element refers to the

age of the prosecutor.
Age

Prosecurate household regi
stration

A PROSECURATE HOUSEHOLD REGIST
RATION element refers to the place of regis-
tered permanent residence of the prosecutor.

Not Local; Local (Refer-
ence)

Prosecurate political backg
round

A PROSECURATE POLITICAL BACKGR
OUND element refers to the political back-
ground of the prosecutor.

CCP; Other Party; Mass
(Reference)

Prosecurate religion A PROSECURATE RELIGION element
refers to the religious belief of the prosecutor.

Islamic; Buddhism;
Christianity; Atheism
(Reference)

Prosecurate wealth A PROSECURATE WEALTH element refers
to the financial status of the prosecutor.

Penniless; A Million
Saving (Reference)

Judge gender A JUDGE GENDER element refers to the gen-
der of the presiding judge.

Female; Gender Non-
Binary; Male (Refer-
ence)

Judge sexual orientation A JUDGE SEXUAL ORIENTATION element
refers to the sexual orientation of the presiding
judge.

Homosexual; Bisexual;
Heterosexual (Refer-
ence)

Judge ethnicity A JUDGE ETHNICITY element refers to the
ethnicity of the presiding judge.

Ethnic Minority; Han
(Reference)

Judge age A JUDGE AGE element refers to the age of the
presiding judge.

Age

Judge household registratio
n

A JUDGE HOUSEHOLD REGISTRATION
element refers to the place of registered perma-
nent residence of the presiding judge.

Not Local; Local (Refer-
ence)

Judge political background A JUDGE POLITICAL BACKGROUND el-
ement refers to the political background of the
presiding judge.

CCP; Other Party; Mass
(Reference)

Judge religion A JUDGE RELIGION element refers to the re-
ligious belief of the presiding judge.

Islamic; Buddhism;
Christianity; Atheism
(Reference)

Judge wealth A JUDGE WEALTH element refers to the fi-
nancial status of the presiding judge.

Penniless; A Million
Saving (Reference)

Procedure and Non-Demographic Factors
Compulsory measure A COMPULSORY MEASURE element refers

to judicially imposed restrictions on the per-
sonal freedom of criminal suspects or defen-
dants.

Compulsory Measure;
No Compulsory Mea-
sure (Reference)

Court level A COURT LEVEL element refers to the hier-
archical classification of the court adjudicating
the case.

Intermediate Court; High
Court; Primary Court
(Reference)

Court location A COURT LOCATION element refers to the
geographical jurisdiction of the court handling
the case.

Rural; Urban (Refer-
ence)

Collegial panel A COLLEGIAL PANEL element refers to
whether the case is adjudicated by a panel of
judges or a single judge.

Collegial Panel; Single
Judge (Reference)

Assessor An ASSESSOR element refers to whether the
trial includes assessors.

No People’s Assessor;
With People’s Assessor
(Reference)

Pretrial conference A PRETRIAL CONFERENCE element refers
to whether the court determined that a pretrial
conference for a case should be held.

With Pretrial Con-
ference; No Pretrial
Conference (Reference)

Pretrial conference A PRETRIAL CONFERENCE element refers
to whether the court determined that a pretrial
conference for a case should be held.

With Pretrial Con-
ference; No Pretrial
Conference (Reference)

Table A4: List of summarized label information and definition (III).
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Label Name Label Description Label Value
Online broadcast An ONLINE BROADCAST element refers to

whether the trial proceedings were publicly
broadcasted online.

Online Broadcast; No
Online Broadcast (Refer-
ence)

Open trial An OPEN TRIAL element refers to whether
the court conducted the trial in an open session
accessible to the public.

Open Trial; Not Open
Trial (Reference)

Defender type A DEFENDER TYPE element refers to
whether the defendant was represented by a
court-appointed counsel or a privately retained
attorney.

Appointed Defender;
Privately Attained De-
fender (Reference)

Recusal applied A RECUSAL APPLIED element refers to
whether a motion for judicial recusal was filed
in the case.

Recusal Applied; No
Recusal Applied (Refer-
ence)

Judicial committee A JUDICIAL COMMITTEE element refers to
whether the court submitted the case to the ju-
dicial committee for discussion.

With Judicial Commit-
tee; No Judicial Commit-
tee (Reference)

Litigation Duration A LITIGATION DURATION element refers
to the length of the trial proceedings.

Prolonged Litigation;
Short Litigation (Refer-
ence)

Immediate judgement An IMMEDIATE JUDGEMENT element
refers to whether the court rendered a judg-
ment immediately after the trial.

Immediate Judgement;
Not Immediate Judge-
ment (Reference)

Table A5: List of summarized label information and definition (IV).
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E.3 DETAILS ON LABELS AND TRIGGER SENTENCES AND EXCLUDED CASES

Table A6 to Table A16 present the label names, the values of the labels, corresponding trigger
sentences, and excluded cases in detail.

Trigger sentences are generated for each label value in analogous format. They are the only variable
component in the prompts when processing each dataset entry. All other elements of the prompts
remain constant, as illustrated in Figure A3 and Figure A4. However, it should be noted that in
some instances, the facts presented in the cases might not align with the trigger sentences. In those
instances, we prompt the LLM to prioritize facts presented in trigger sentences.

Excluded cases refer to crimes in which the label under consideration constitutes a legally defining
factor rather than an extra-legal attribute—meaning judicial decision-makers are legally required
to consider it during sentencing. As a result, judicial outcomes are expected to vary by law based
on the label’s value. In such instances, any variation in LLM predictions may only reflect legally
prescribed differences rather than LLM unfairness. To avoid introducing noise in the evaluation of
LLM fairness, we exclude these cases for the relevant labels in the JudiFair dataset.
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E.4 OVERALL RESULTS

Tables A17 and A18 summarize the statistics of evaluation metrics for LLMs with a temperature of
0 and 1, respectively, including inconsistency, bias, accuracy (measured by weighted average MAE
and MAPE), imbalanced inaccuracy. The p-value indicates the probability of observing the results,
or more extreme ones, assuming that there is no true effect or bias in the model. A lower p-value
suggests stronger evidence against the null hypothesis, implying the presence of significant bias.

The Inconsistency metric measures the degree to which model outputs change when only a single
label value is altered in the input data. This value is calculated as the proportion of judicial doc-
uments in which the LLM’s output varies solely due to changes in the specified label value. A
higher inconsistency score indicates greater instability in model predictions under minor perturba-
tions, suggesting susceptibility to label-specific fluctuations. This measure is further weighted by
the valid sample size of each label to ensure representativeness across different categories.

The Bias No. column reports the total number of biased label values identified for each model. Bias
is determined through regression analysis, where the log-transformed sentencing length is regressed
on label values while controlling for fixed document effects. If the label value demonstrates statis-
tical significance (at the 10% or 5% level) in influencing the model’s predictions, it is counted as a
biased label. Thus, a higher value in this column indicates greater evidence of systematic bias in the
model’s predictions.

The Bias p-value (10%) and Bias p-value (5%) columns present the p-values from binomial tests,
which assess the likelihood of observing the detected number of biased labels purely by chance. The
binomial test models the identification of significant biases as a series of Bernoulli trials. A lower
p-value implies stronger evidence against the null hypothesis of no systematic bias. Specifically,
the 10% and 5% columns represent tests conducted at different significance thresholds, indicating
varying levels of statistical confidence.

The Wt. Avg MAE (Weighted Average Mean Absolute Error) column quantifies the average abso-
lute deviation between the LLM’s predicted sentencing length and the actual judicial outcome. This
metric is weighted by the valid sample size for each label, ensuring that the overall error measure
reflects the distribution of samples. A smaller MAE value suggests better alignment between model
predictions and real-world judgments.

The Wt. Avg MAPE (Weighted Average Mean Absolute Percentage Error) column represents the
average percentage difference between predicted and actual sentencing lengths, also weighted by
sample size. Unlike MAE, MAPE standardizes the error relative to the magnitude of the true value,
offering insight into the proportional accuracy of the model’s predictions. Lower MAPE values
indicate a smaller relative error in predictions.

The Unfair Inacc. No. column captures the total number of label values that demonstrate signif-
icant unfairness in predictive inaccuracy. This measure is derived from regression analyses where
the absolute prediction errors are regressed against label values. If certain labels are consistently
associated with larger or smaller errors, they are flagged as sources of unfair inaccuracy. This is
conceptually distinct from bias, as it focuses on error distribution rather than directional skew.

The Unfair Inacc. p-value (10%) and Unfair Inacc. p-value (5%) columns report the results of
binomial tests evaluating the statistical significance of the unfair inaccuracy observed for certain
label values. These p-values indicate the probability that the observed number of unfair inaccuracies
could arise by chance if the model were entirely fair in its error distribution. As with the bias
analysis, a lower p-value denotes stronger evidence of systematic discrepancies.
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Index Model Inconsistency Bias No.
Bias

p-value
(10%)

Bias
p-value
(5%)

Wt. Avg MAE Wt. Avg
MAPE

Unfair
Inacc.
No.

Unfair Inacc.
p-value (10%)

Unfair Inacc.
p-value (5%)

1 DeepSeek R1-32B
Qwen 0.551 22 0 0 46.341 122.468 9 0.631 0.205

2 Glm 4 0.142 27 0 0 60.172 187.157 19 0 0
3 Glm 4 Flash 0.075 26 0 0 73.382 219.742 18 0 0

4 Qwen2.5 72B
Instruct 0.14 30 0 0 61.759 169.048 29 0 0

5 Qwen2.5 7B
Instruct 0.115 25 0 0 80.049 214.602 28 0 0

6 Gemini Flash 1.5 0.134 30 0 0 56.142 165.735 35 0 0

7 Gemini Flash 1.5
8B 0.102 33 0 0 57.077 219.444 31 0 0

8 LFM 40B MoE 0.588 12 0.25 0.205 111.115 555.326 15 0.054 0.108
9 LFM 7B MoE 0.191 26 0 0 62.185 237.941 25 0 0

10 Nova Lite 1.0 0.186 23 0 0 58.059 224.978 22 0 0
11 Nova Micro 1.0 0.216 24 0 0 68.342 269.047 23 0 0
12 Mistral Small 3 0.186 19 0 0 69.714 227.233 18 0 0
13 Mistral Nemo 0.119 25 0 0 59.286 179.015 20 0 0

14 Llama 3.1 8B
Instruct 0.174 26 0 0 61.449 142.944 16 0 0

15 Phi 4 0.173 39 0 0 47.995 142.787 25 0 0

Table A17: Overall results of LLMs with a temperature of 0.

Index Model Inconsistency Bias No.
Bias

p-value
(10%)

Bias
p-value
(5%)

Wt. Avg MAE Wt. Avg
MAPE

Unfair
Inacc.
No.

Unfair Inacc.
p-value (10%)

Unfair Inacc.
p-value (5%)

1 DeepSeek R1-32B
Qwen 0.740 13 0.010 0.018 48.924 148.945 10 0.325 0.094

2 DeepSeek V3 0.657 11 0.161 0.051 49.490 131.416 12 0.029 0.022

3 Qwen2.5 72B
Instruct 0.595 12 0.029 0.022 59.386 171.185 7 0.631 0.205

4 Qwen2.5 7B
Instruct 0.662 15 0.003 0.001 69.425 186.782 13 0.001 0.022

5 Gemini Flash 1.5 0.278 20 0.000 0.000 56.132 165.741 23 0.000 0.000

6 Gemini Flash 1.5
8B 0.417 22 0.000 0.000 57.219 218.903 16 0.003 0.001

7 LFM 40B MoE 0.786 13 0.003 0.003 96.859 453.687 10 0.161 0.205
8 LFM 7B 0.732 13 0.007 0.003 75.224 317.864 13 0.054 0.051
9 Nova Lite 1.0 0.837 18 0.000 0.000 59.222 228.062 16 0.000 0.000

10 Nova Micro 1.0 0.829 13 0.007 0.003 64.461 269.058 10 0.161 0.051
11 Mistral Small 3 0.769 12 0.014 0.001 74.644 266.787 5 0.631 0.205
12 Phi 4 0.765 12 0.029 0.003 50.991 157.991 8 0.364 0.527
13 Mistral Nemo t1 0.699 15 0.007 0.205 55.921 185.153 9 0.495 0.348

Table A18: Overall results of LLMs with a temperature of 1.
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F DETAILED RESULTS OF BIAS ANALYSIS

F.1 HEATMAP OF BIAS ANALYSIS RESULTS

Figures A5 through A8 present heatmaps visualizing the results of our bias analysis across all models
and labels under two temperature settings. Figures A5 and A6) correspond to outputs generated with
a temperature of 0, while Figures A7 and A8 reflect results under a temperature of 1.

Each block in the graph represents the effect of a specific label on a given model, where the number
inside the block is the regression coefficient of the label value with the lowest p-value, and the color
denotes the level of statistical significance—the darker the shade, the stronger the significance. For
labels with multiple values, we display only the value with the most statistically significant impact
on sentencing outcomes. This visual presentation allows for visual and intuitive comparison of
fairness patterns across different models, label types, and decoding randomness levels.

Overall, the patterns shown here are consistent with the findings discussed in the main text: signif-
icant biases are observed across models under both temperature settings, though the extent of bias
appears noticeably lower when the temperature is set to 1.

Figure A5: Detailed results of each model and label’s bias analysis with a temperature of 0 (I). If
a label contains multiple values that have significant impact to sentencing prediction, we present
the information of the value with the lowest p-value. The number within each block represents the
coefficient of the label value, while the block’s color indicates the significance level of its effect.
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Figure A6: Detailed results of each model and label’s bias analysis with a temperature of 0 (II).
If a label contains multiple values that have significant impact to sentencing prediction, we present
the information of the value with the lowest p-value. The number within each block represents the
coefficient of the label value, while the block’s color indicates the significance level of its effect.

Figure A7: Detailed results of each model and label’s bias analysis with a temperature of 1 (I). If
a label contains multiple values that have significant impact to sentencing prediction, we present
the information of the value with the lowest p-value. The number within each block represents the
coefficient of the label value, while the block’s color indicates the significance level of its effect.
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Figure A8: Detailed results of each model and label’s bias analysis with a temperature of 1 (II).
If a label contains multiple values that have significant impact to sentencing prediction, we present
the information of the value with the lowest p-value. The number within each block represents the
coefficient of the label value, while the block’s color indicates the significance level of its effect.
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F.2 NUMBER OF LABELS WITH STATISTICALLY SIGNIFICANT RESULTS IN BIAS ANALYSIS

The following table displays the number of labels featuring statistically significant results with p-
values below 0.1 in bias analysis across all models with a temperature of 0.

Model Name Label Category Label Number Biased Label Number
Glm 4 Substance label 25 9
Glm 4 Procedure label 40 18
Glm 4 Flash Substance label 25 15
Glm 4 Flash Procedure label 40 11
Qwen2.5 72B Instruct Substance label 25 9
Qwen2.5 72B Instruct Procedure label 40 21
Qwen2.5 7B Instruct Substance label 25 11
Qwen2.5 7B Instruct Procedure label 40 14
Gemini Flash 1.5 Substance label 25 11
Gemini Flash 1.5 Procedure label 40 19
Gemini Flash 1.5 8B Substance label 25 14
Gemini Flash 1.5 8B Procedure label 40 19
LFM 40B MoE Substance label 25 2
LFM 40B MoE Procedure label 40 10
Nova Lite 1.0 Substance label 25 11
Nova Lite 1.0 Procedure label 40 12
Nova Micro 1.0 Substance label 25 8
Nova Micro 1.0 Procedure label 40 16
Llama 3.1 8B Instruct Substance label 25 7
Llama 3.1 8B Instruct Procedure label 40 19
Phi 4 Substance label 25 17
Phi 4 Procedure label 40 22
LFM 7B Substance label 25 10
LFM 7B Procedure label 40 16
Mistral Small 3 Substance label 25 5
Mistral Small 3 Procedural label 40 14
Mistral NeMo Substance label 25 8
Mistral NeMo Procedure label 40 17
DeepSeek R1 32B Substance label 25 9
DeepSeek R1 32B Procedure label 40 13

Table A19: Number of labels with statistically significant results (p − value < 0.1) in bias analysis
with a temperature of 0.
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The following table displays the number of labels featuring statistically significant results with p-
values below 0.1 in bias analysis across all models with a temperature of 1.

Model Name Label Category Label Number Biased Label Number
DeepSeek R1 32B Substance label 25 9
DeepSeek R1 32B Procedure label 40 13
DeepSeek V3 Substance label 25 3
DeepSeek V3 Procedure label 40 9
Gemini Flash 1.5 8B Substance label 25 10
Gemini Flash 1.5 8B Procedure label 40 14
Gemini Flash 1.5 Substance label 25 9
Gemini Flash 1.5 Procedure label 40 14
Glm 4 Substance label 25 9
Glm 4 Procedure label 40 22
Glm 4 Flash Substance label 25 15
Glm 4 Flash Procedure label 40 16
LFM 7B Substance label 25 5
LFM 7B Procedure label 40 12
LFM 40B Substance label 25 5
LFM 40B Procedure label 40 10
Llama 3.1 8B Instruct Substance label 25 7
Llama 3.1 8B Instruct Procedure label 40 24
Mistral Small 3 Substance label 25 2
Mistral Small 3 Procedure label 40 11
Mistral NeMo Substance label 25 4
Mistral NeMo Procedure label 40 11
Nova Lite 1.0 Substance label 25 10
Nova Lite 1.0 Procedure label 40 10
Nova Micro 1.0 Substance label 25 7
Nova Micro 1.0 Procedure label 40 7
Phi 4 Substance label 25 6
Phi 4 Procedure label 40 8
Qwen2.5 72B Instruct Substance label 25 6
Qwen2.5 72B Instruct Procedure label 40 8
Qwen2.5 7B Instruct Substance label 25 5
Qwen2.5 7B Instruct Procedure label 40 13

Table A20: Number of labels with statistically significant results (p − value < 0.1) in bias analysis
with a temperature of 1.
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F.3 DETAILED INFORMATION OF LABELS WITH STATISTICALLY SIGNIFICANT RESULTS IN
BIAS ANALYSIS

As bias analysis is important, this section shows the list of labels featuring statistically significant
results with p-values below 0.1 in bias analysis across all models with a temperature of 0.

Model Name Label Name Label Value Reference Regression
Coefficient

P-Value
Glm 4 defendant gender Female Male -0.028 0.012
Glm 4 defendant ethnicity Ethnic Minority Han 0.017 0.08
Glm 4 defendant household registration Not Local Local 0.01 0.028
Glm 4 defendant political background CCP Mass 0.027 0.013
Glm 4 defendant wealth Penniless A Million Saving -0.055 0.0
Glm 4 victim gender Female Male 0.011 0.023
Glm 4 victim age Age Age 0.022 0.058
Glm 4 victim wealth Penniless A Million Saving -0.049 0.0
Glm 4 crime location Rural Urban -0.033 0.008
Glm 4 defender occupation Farmer Worker -0.039 0.001
Glm 4 defender religion Islamic Atheism 0.024 0.031
Glm 4 defender religion Buddhism Atheism 0.027 0.024
Glm 4 defender sexual orientation Homosexual Heterosexual 0.023 0.043
Glm 4 defender sexual orientation Bisexual Heterosexual 0.029 0.011
Glm 4 defender wealth Penniless A Million Saving -0.046 0.0
Glm 4 prosecurate age Age Age 0.035 0.024
Glm 4 prosecurate ethnicity Ethnic Minority Han -0.025 0.018
Glm 4 prosecurate household registration Not Local Local -0.017 0.026
Glm 4 prosecurate wealth Penniless A Million Saving -0.022 0.089
Glm 4 judge age Age Age 0.028 0.071
Glm 4 judge gender Female Male -0.018 0.034
Glm 4 judge gender Gender Non-Binary Male -0.032 0.005
Glm 4 judge household registration Not Local Local -0.012 0.092
Glm 4 judge sexual orientation Homosexual Heterosexual -0.085 0.0
Glm 4 judge sexual orientation Bisexual Heterosexual -0.033 0.002
Glm 4 judge political background Other Party Mass 0.018 0.065
Glm 4 judge wealth Penniless A Million Saving 0.07 0.0
Glm 4 assessor No preple’s assessor Has people’s assessor -0.016 0.037
Glm 4 defender type Appointed Privately Attained -0.018 0.077
Glm 4 pretrial conference Has Pretrial Conference No Pretrial Conference -0.015 0.068
Glm 4 court level Intermediate Court Primary Court 0.05 0.0
Glm 4 court level High Court Primary Court 0.069 0.0
Glm 4 court location Court Rural Court Urban -0.046 0.0
Glm 4 compulsory measure Compulsory Measure No Compulsory Measure 0.056 0.002
Glm 4 trial duration Prolonged Trial Duration Note-Short Trial 0.032 0.001
Glm 4 recusal applied Recusal Applied Recusal Applied -0.031 0.082
Glm 4 Flash defendant gender Female Male 0.055 0.002
Glm 4 Flash defendant ethnicity Ethnic Minority Han -0.091 0.0
Glm 4 Flash defendant age Age Age 0.062 0.012
Glm 4 Flash defendant nationality Foreigner Chinese 0.021 0.043
Glm 4 Flash defendant political background CCP Mass 0.031 0.0
Glm 4 Flash defendant wealth Penniless A Million Saving -0.118 0.0
Glm 4 Flash defendant religion Islam Atheism 0.011 0.032
Glm 4 Flash defendant religion Buddhism Atheism 0.013 0.064
Glm 4 Flash defendant sexual orientation Bisexual Heterosexual 0.022 0.002
Glm 4 Flash victim religion Islam Atheism 0.016 0.018
Glm 4 Flash victim religion Buddhism Atheism 0.012 0.054
Glm 4 Flash victim sexual orientation Homosexual Heterosexual 0.021 0.007
Glm 4 Flash victim sexual orientation Bisexual Heterosexual 0.018 0.013
Glm 4 Flash victim ethnicity Ethnic Minority Han 0.018 0.012
Glm 4 Flash victim nationality Foreigner Chinese 0.037 0.0
Glm 4 Flash victim political background Other Party Mass 0.021 0.019
Glm 4 Flash victim wealth Penniless A Million Saving -0.082 0.0
Glm 4 Flash crime time Afternoon Morning -0.027 0.007
Glm 4 Flash defender education Below High School High School or Above 0.017 0.073
Glm 4 Flash defender political background Other Party Mass 0.023 0.037
Glm 4 Flash defender religion Christianity Atheism -0.013 0.081
Glm 4 Flash prosecurate age Age Age 0.043 0.004
Glm 4 Flash prosecurate ethnicity Ethnic Minority Han -0.023 0.024
Glm 4 Flash prosecurate household registration Not Local Local 0.016 0.06
Glm 4 Flash prosecurate religion Islamic Atheism -0.025 0.024
Glm 4 Flash prosecurate religion Buddhism Atheism -0.027 0.016

Table A21: List of labels with statistically significant results (p − value < 0.1) in bias analysis (I).
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Model Name Label Name Label Value Reference Regression
Coefficient

P-Value
Glm 4 Flash prosecurate religion Christianity Atheism -0.03 0.007
Glm 4 Flash prosecurate political background CCP Mass -0.015 0.055
Glm 4 Flash judge age Age Age 0.032 0.082
Glm 4 Flash judge ethnicity Ethnic Minority Han 0.029 0.01
Glm 4 Flash judge sexual orientation Homosexual Heterosexual -0.063 0.0
Glm 4 Flash judge sexual orientation Bisexual Heterosexual -0.034 0.015
Glm 4 Flash judge political background CCP Mass -0.025 0.019
Glm 4 Flash judge wealth Penniless A Million Saving 0.062 0.0
Glm 4 Flash online broadcast Online Broadcast No Online Broadcast 0.016 0.085
Glm 4 Flash court level High Court Primary Court 0.027 0.027
Glm 4 Flash court location Court Rural Court Urban -0.017 0.054
Qwen2.5 72B Instruct defendant gender Female Male -0.045 0.0
Qwen2.5 72B Instruct defendant education Below High School High School or Above 0.017 0.036
Qwen2.5 72B Instruct defendant age Age Age 0.03 0.038
Qwen2.5 72B Instruct defendant wealth Penniless A Million Saving -0.018 0.009
Qwen2.5 72B Instruct defendant sexual orientation Bisexual Heterosexual -0.014 0.046
Qwen2.5 72B Instruct victim religion Christianity Atheism -0.013 0.046
Qwen2.5 72B Instruct victim nationality Foreigner Chinese 0.02 0.094
Qwen2.5 72B Instruct crime date Summer Spring 0.019 0.016
Qwen2.5 72B Instruct crime date Autumn Spring 0.015 0.047
Qwen2.5 72B Instruct crime time Afternoon Morning -0.015 0.051
Qwen2.5 72B Instruct defender occupation Unemployed Worker -0.031 0.039
Qwen2.5 72B Instruct defender religion Islamic Atheism 0.038 0.034
Qwen2.5 72B Instruct defender religion Buddhism Atheism 0.048 0.011
Qwen2.5 72B Instruct defender sexual orientation Homosexual Heterosexual -0.079 0.0
Qwen2.5 72B Instruct defender sexual orientation Bisexual Heterosexual -0.066 0.0
Qwen2.5 72B Instruct defender wealth Penniless A Million Saving 0.044 0.019
Qwen2.5 72B Instruct prosecurate household registration Not Local Local -0.05 0.002
Qwen2.5 72B Instruct prosecurate sexual orientation Homosexual Heterosexual -0.05 0.001
Qwen2.5 72B Instruct prosecurate sexual orientation Bisexual Heterosexual -0.045 0.005
Qwen2.5 72B Instruct prosecurate wealth Penniless A Million Saving -0.016 0.07
Qwen2.5 72B Instruct judge age Age Age 0.087 0.0
Qwen2.5 72B Instruct judge gender Gender Non-Binary Male -0.018 0.032
Qwen2.5 72B Instruct judge ethnicity Ethnic Minority Han 0.019 0.019
Qwen2.5 72B Instruct judge sexual orientation Homosexual Heterosexual -0.021 0.041
Qwen2.5 72B Instruct judge sexual orientation Bisexual Heterosexual 0.019 0.067
Qwen2.5 72B Instruct judge religion Islamic Atheism 0.063 0.0
Qwen2.5 72B Instruct judge religion Buddhism Atheism -0.022 0.014
Qwen2.5 72B Instruct judge political background CCP Mass 0.025 0.012
Qwen2.5 72B Instruct judge wealth Penniless A Million Saving 0.032 0.0
Qwen2.5 72B Instruct assessor No Preple’s Assessor With People’s Assessor 0.02 0.01
Qwen2.5 72B Instruct pretrial conference With Pretrial Conference No Pretrial Conference -0.024 0.001
Qwen2.5 72B Instruct court level Intermediate Court Primary Court 0.032 0.005
Qwen2.5 72B Instruct court level High Court Primary Court 0.029 0.006
Qwen2.5 72B Instruct court location Court Rural Court Urban -0.023 0.031
Qwen2.5 72B Instruct compulsory measure Compulsory Measure No Compulsory Measure 0.072 0.0
Qwen2.5 72B Instruct trial duration Prolonged Litigation Short Litigation 0.019 0.063
Qwen2.5 72B Instruct recusal applied Recusal Applied Recusal Applied -0.091 0.0
Qwen2.5 7B Instruct defendant gender Female Male 0.104 0.0
Qwen2.5 7B Instruct defendant ethnicity Ethnic Minority Han -0.11 0.0
Qwen2.5 7B Instruct defendant occupation Farmer Worker 0.011 0.078
Qwen2.5 7B Instruct defendant household registration Not Local Local -0.016 0.047
Qwen2.5 7B Instruct defendant nationality Foreigner Chinese -0.059 0.006
Qwen2.5 7B Instruct defendant political background Other Party Mass 0.017 0.096
Qwen2.5 7B Instruct victim sexual orientation Homosexual Heterosexual 0.017 0.089
Qwen2.5 7B Instruct victim gender Female Male -0.014 0.078
Qwen2.5 7B Instruct victim nationality Foreigner Chinese -0.042 0.053
Qwen2.5 7B Instruct victim political background Other Party Mass 0.015 0.012
Qwen2.5 7B Instruct victim wealth Penniless A Million Saving -0.027 0.001
Qwen2.5 7B Instruct defender political background CCP Mass 0.028 0.011
Qwen2.5 7B Instruct prosecurate sexual orientation Bisexual Heterosexual 0.054 0.001
Qwen2.5 7B Instruct prosecurate religion Islamic Atheism 0.026 0.049
Qwen2.5 7B Instruct prosecurate wealth Penniless A Million Saving -0.04 0.003
Qwen2.5 7B Instruct judge religion Islamic Atheism 0.024 0.054
Qwen2.5 7B Instruct judge political background Other Party Mass -0.04 0.005
Qwen2.5 7B Instruct judge wealth Penniless A Million Saving 0.056 0.0
Qwen2.5 7B Instruct pretrial conference With Pretrial Conference No Pretrial Conference 0.026 0.003
Qwen2.5 7B Instruct judicial committee With Judicial Committee No Judicial Committee 0.035 0.0
Qwen2.5 7B Instruct court level Intermediate Court Primary Court 0.021 0.002
Qwen2.5 7B Instruct court level High Court Primary Court 0.03 0.002
Qwen2.5 7B Instruct compulsory measure Compulsory Measure No Compulsory Measure 0.053 0.031
Qwen2.5 7B Instruct trial duration Prolonged Litigation Short Litigation -0.037 0.004
Qwen2.5 7B Instruct recusal applied Recusal Applied Recusal Applied -0.099 0.0
Qwen2.5 7B Instruct immediate judgement Immediate ment Not Immediate ment -0.035 0.001

Table A22: List of labels with statistically significant results (p− value < 0.1) in bias analysis (II).
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Model Name Label Name Label Value Reference Regression
Coefficient

P-Value
Gemini Flash 1.5 defendant gender Female Male 0.108 0.0
Gemini Flash 1.5 defendant ethnicity Ethnic Minority Han -0.126 0.0
Gemini Flash 1.5 defendant occupation Farmer Worker -0.02 0.087
Gemini Flash 1.5 defendant nationality Foreigner Chinese 0.033 0.006
Gemini Flash 1.5 defendant political background CCP Mass 0.084 0.0
Gemini Flash 1.5 defendant wealth Penniless A Million Saving -0.048 0.0
Gemini Flash 1.5 defendant sexual orientation Homosexua Heterosexual 0.014 0.025
Gemini Flash 1.5 victim ethnicity Ethnic Minority Han 0.017 0.017
Gemini Flash 1.5 victim household registration Not Local Local -0.016 0.009
Gemini Flash 1.5 victim nationality Foreigner Chinese 0.02 0.014
Gemini Flash 1.5 victim political background CCP Mass 0.02 0.006
Gemini Flash 1.5 defender gender Gender Non-Binary Male 0.013 0.046
Gemini Flash 1.5 defender education Below High School High School or Above 0.015 0.01
Gemini Flash 1.5 defender occupation Farmer Worker 0.016 0.019
Gemini Flash 1.5 defender religion Islamic Atheism -0.01 0.093
Gemini Flash 1.5 defender religion Buddhism Atheism -0.026 0.0
Gemini Flash 1.5 defender religion Christianity Atheism -0.017 0.009
Gemini Flash 1.5 defender wealth Penniless A Million Saving 0.023 0.008
Gemini Flash 1.5 prosecurate gender Gender Non-Binary Male 0.013 0.009
Gemini Flash 1.5 prosecurate sexual orientation Homosexual Heterosexual -0.081 0.0
Gemini Flash 1.5 prosecurate sexual orientation Bisexual Heterosexual -0.082 0.0
Gemini Flash 1.5 judge age Age Age 0.049 0.026
Gemini Flash 1.5 judge gender Female Male 0.029 0.009
Gemini Flash 1.5 judge ethnicity Ethnic Minority Han 0.024 0.033
Gemini Flash 1.5 judge household registration Not Local Local -0.046 0.0
Gemini Flash 1.5 judge sexual orientation Homosexual Heterosexual -0.067 0.0
Gemini Flash 1.5 judge political background CCP Mass 0.041 0.001
Gemini Flash 1.5 judge wealth Penniless A Million Saving 0.117 0.0
Gemini Flash 1.5 collegial panel Collegial Panel Single 0.013 0.032
Gemini Flash 1.5 open trial Open Trial Not Open Trial 0.013 0.045
Gemini Flash 1.5 court level Intermediate Court Primary Court 0.023 0.0
Gemini Flash 1.5 court level High Court Primary Court 0.027 0.0
Gemini Flash 1.5 court location Court Rural Court Urban -0.029 0.001
Gemini Flash 1.5 recusal applied Recusal Applied Recusal Applied -0.015 0.029
Gemini Flash 1.5 8B defendant gender Female Male 0.041 0.02
Gemini Flash 1.5 8B defendant ethnicity Ethnic Minority Han -0.057 0.002
Gemini Flash 1.5 8B defendant occupation Farmer Worker -0.028 0.059
Gemini Flash 1.5 8B defendant occupation Unemployed Worker -0.029 0.051
Gemini Flash 1.5 8B defendant nationality Foreigner Chinese 0.032 0.021
Gemini Flash 1.5 8B defendant political background Other Party Mass 0.023 0.064
Gemini Flash 1.5 8B defendant wealth Penniless A Million Saving -0.061 0.0
Gemini Flash 1.5 8B victim religion Islam Atheism 0.052 0.004
Gemini Flash 1.5 8B victim sexual orientation Homosexual Heterosexual 0.024 0.035
Gemini Flash 1.5 8B victim sexual orientation Bisexual Heterosexual 0.023 0.049
Gemini Flash 1.5 8B victim gender Gender Non-Binary Male 0.072 0.0
Gemini Flash 1.5 8B victim ethnicity Ethnic Minority Han 0.1 0.0
Gemini Flash 1.5 8B victim nationality Foreigner Chinese 0.087 0.0
Gemini Flash 1.5 8B victim political background CCP Mass 0.072 0.0
Gemini Flash 1.5 8B victim wealth Penniless A Million Saving -0.02 0.077
Gemini Flash 1.5 8B crime date Autumn Spring -0.021 0.09
Gemini Flash 1.5 8B defender age Age Age 0.06 0.013
Gemini Flash 1.5 8B defender ethnicity Ethnic Minority Han 0.029 0.01
Gemini Flash 1.5 8B defender political background CCP Mass 0.032 0.017
Nova Micro 1.0 victim ethnicity Ethnic Minority Han 0.065 0.003
Nova Micro 1.0 victim household registration Not Local Local -0.034 0.041
Nova Micro 1.0 defender gender Gender Non-Binary Male -0.035 0.009
Nova Micro 1.0 defender political background Other Party Mass -0.028 0.023
Nova Micro 1.0 prosecurate age Age Age 0.042 0.065
Nova Micro 1.0 prosecurate wealth Penniless A Million Saving -0.048 0.004
Nova Micro 1.0 judge age Age Age 0.06 0.075
Nova Micro 1.0 judge gender Female Male -0.037 0.064
Nova Micro 1.0 judge gender Gender Non-Binary Male -0.175 0.0
Nova Micro 1.0 judge household registration Not Local Local 0.044 0.014
Nova Micro 1.0 judge sexual orientation Homosexual Heterosexual 0.094 0.0
Nova Micro 1.0 judge religion Islamic Atheism -0.109 0.0
Nova Micro 1.0 judge religion Christianity Atheism 0.074 0.0
Nova Micro 1.0 judge political background CCP Mass -0.039 0.041

Table A23: List of labels with statistically significant results (p−value < 0.1) in bias analysis (III).
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Model Name Label Name Label Value Reference Regression
Coefficient

P-Value
Nova Micro 1.0 judge political background Other Party Mass -0.16 0.0
Nova Micro 1.0 judge wealth Penniless A Million Saving -0.058 0.001
Nova Micro 1.0 assessor No Preple’s Assessor With People’s Assessor -0.023 0.085
Nova Micro 1.0 judicial committee With Judicial Committee No Judicial Committee 0.092 0.0
Nova Micro 1.0 online broadcast Online Broadcast No Online Broadcast 0.039 0.007
Nova Micro 1.0 court level High Court Primary Court 0.033 0.013
Nova Micro 1.0 compulsory measure Compulsory Measure No Compulsory Measure 0.073 0.001
Llama 3.1 8B Instruct defendant occupation Unemployed Worker -0.051 0.008
Llama 3.1 8B Instruct defendant religion Buddhism Atheism -0.031 0.022
Llama 3.1 8B Instruct defendant sexual orientation Homosexua Heterosexual 0.039 0.011
Llama 3.1 8B Instruct defendant sexual orientation Bisexual Heterosexual 0.051 0.0
Llama 3.1 8B Instruct victim religion Christianity Atheism 0.033 0.067
Llama 3.1 8B Instruct victim gender Gender Non-Binary Male -0.039 0.071
Llama 3.1 8B Instruct victim education Below High School High School or Above -0.087 0.0
Llama 3.1 8B Instruct victim political background CCP Mass 0.055 0.0
Llama 3.1 8B Instruct victim political background Other Party Mass 0.037 0.062
Llama 3.1 8B Instruct defender age Age Age 0.107 0.073
Llama 3.1 8B Instruct defender ethnicity Ethnic Minority Han 0.053 0.063
Llama 3.1 8B Instruct defender education Below High School High School or Above -0.071 0.016
Llama 3.1 8B Instruct defender occupation Farmer Worker 0.058 0.036
Llama 3.1 8B Instruct defender religion Islamic Atheism 0.051 0.0
Llama 3.1 8B Instruct defender religion Buddhism Atheism 0.062 0.0
Llama 3.1 8B Instruct defender religion Christianity Atheism 0.088 0.0
Llama 3.1 8B Instruct defender wealth Penniless A Million Saving -0.106 0.002
Llama 3.1 8B Instruct prosecurate gender Gender Non-Binary Male -0.046 0.023
Llama 3.1 8B Instruct prosecurate gender Female Male -0.078 0.008
Llama 3.1 8B Instruct prosecurate age Age Age 0.23 0.0
Llama 3.1 8B Instruct prosecurate household registration Not Local Local 0.065 0.006
Llama 3.1 8B Instruct prosecurate religion Islamic Atheism 0.121 0.0
Llama 3.1 8B Instruct prosecurate religion Buddhism Atheism 0.124 0.0
Llama 3.1 8B Instruct prosecurate wealth Penniless A Million Saving -0.192 0.0
Llama 3.1 8B Instruct judge age Age Age 0.114 0.005
Llama 3.1 8B Instruct judge gender Female Male -0.06 0.001
Llama 3.1 8B Instruct judge ethnicity Ethnic Minority Han 0.045 0.037
Llama 3.1 8B Instruct judge household registration Not Local Local 0.026 0.049
Llama 3.1 8B Instruct judge sexual orientation Homosexual Heterosexual -0.04 0.016
Llama 3.1 8B Instruct judge religion Islamic Atheism -0.075 0.0
Llama 3.1 8B Instruct judge political background Other Party Mass 0.036 0.038
Llama 3.1 8B Instruct judge wealth Penniless A Million Saving -0.053 0.067
Llama 3.1 8B Instruct pretrial conference Has Pretrial Conference No Pretrial Conference 0.069 0.003
Llama 3.1 8B Instruct judicial committee Judicial Committee No Judicial Committee 0.078 0.002
Llama 3.1 8B Instruct online broadcast Online Broadcast No Online Broadcast 0.086 0.0
Llama 3.1 8B Instruct court level Intermediate Court Primary Court 0.05 0.013
Llama 3.1 8B Instruct court level High Court Primary Court 0.091 0.0
Llama 3.1 8B Instruct compulsory measure Compulsory Measure No Compulsory Measure 0.061 0.083
Phi 4 defendant gender Female Male -0.03 0.0
Phi 4 defendant age Age Age 0.019 0.085
Phi 4 defendant household registration Not Local Local 0.013 0.041
Phi 4 defendant nationality Foreigner Chinese 0.021 0.026
Phi 4 defendant political background CCP Mass 0.031 0.001
Phi 4 defendant wealth Penniless A Million Saving -0.064 0.0
Phi 4 defendant religion Islam Atheism 0.022 0.084
Phi 4 defendant sexual orientation Homosexua Heterosexual 0.041 0.0
Phi 4 defendant sexual orientation Bisexual Heterosexual 0.044 0.0
Phi 4 victim religion Islam Atheism 0.042 0.001
Phi 4 victim religion Buddhism Atheism 0.054 0.001
Phi 4 victim religion Christianity Atheism 0.053 0.0
Phi 4 victim sexual orientation Homosexual Heterosexual 0.021 0.073
Phi 4 victim sexual orientation Bisexual Heterosexual 0.091 0.0
Phi 4 victim ethnicity Ethnic Minority Han 0.07 0.0
Phi 4 victim occupation Unemployed Worker -0.016 0.045
Phi 4 victim household registration Not Local Local -0.029 0.002
Phi 4 victim nationality Foreigner Chinese 0.033 0.001
Phi 4 victim wealth Penniless A Million Saving -0.058 0.0
Phi 4 crime location Rural Urban 0.016 0.086
Phi 4 crime time Afternoon Morning -0.016 0.032
Phi 4 defender gender Gender Non-Binary Male -0.032 0.011
Phi 4 defender ethnicity Ethnic Minority Han -0.032 0.002
Phi 4 defender education Below High School High School or Above 0.027 0.0
Phi 4 defender occupation Farmer Worker 0.022 0.024
Phi 4 defender occupation Unemployed Worker 0.023 0.069
Phi 4 defender political background CCP Mass 0.017 0.057
Phi 4 defender political background CCP Mass 0.017 0.057
Phi 4 defender wealth Penniless A Million Saving 0.03 0.012
Phi 4 prosecurate gender Gender Non-Binary Male -0.021 0.024

Table A24: List of labels with statistically significant results (p−value < 0.1) in bias analysis (IV).
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Model Name Label Name Label Value Reference Regression
Coefficient

P-Value
Phi 4 prosecurate gender Female Male -0.035 0.006
Phi 4 prosecurate ethnicity Ethnic Minority Han -0.017 0.085
Phi 4 prosecurate sexual orientation Homosexual Heterosexual -0.054 0.0
Phi 4 prosecurate sexual orientation Bisexual Heterosexual -0.027 0.006
Phi 4 prosecurate religion Christianity Atheism 0.017 0.099
Phi 4 judge age Age Age 0.093 0.0
Phi 4 judge gender Female Male -0.024 0.001
Phi 4 judge gender Gender Non-Binary Male -0.027 0.011
Phi 4 judge ethnicity Ethnic Minority Han 0.025 0.002
Phi 4 judge household registration Not Local Local -0.036 0.0
Phi 4 judge sexual orientation Homosexual Heterosexual -0.018 0.056
Phi 4 judge religion Buddhism Atheism 0.018 0.015
Phi 4 judge political background CCP Mass 0.02 0.028
Phi 4 judge wealth Penniless A Million Saving 0.085 0.0
Phi 4 pretrial conference With Pretrial Conference No Pretrial Conference -0.025 0.002
Phi 4 court level Intermediate Court Primary Court 0.026 0.001
Phi 4 court level High Court Primary Court 0.065 0.0
Phi 4 compulsory measure Compulsory Measure No Compulsory Measure 0.085 0.0
Phi 4 trial duration Prolonged Litigation Short Litigation 0.047 0.0
Phi 4 defendant household registration Not Local Local 0.013 0.041
Phi 4 defendant nationality Foreigner Chinese 0.021 0.026
Phi 4 defendant political background CCP Mass 0.031 0.001
Phi 4 defendant wealth Penniless A Million Saving -0.064 0.0
Phi 4 defendant religion Islam Atheism 0.022 0.084
Phi 4 defendant sexual orientation Homosexua Heterosexual 0.041 0.0
Phi 4 defendant sexual orientation Bisexual Heterosexual 0.044 0.0
Phi 4 victim religion Islam Atheism 0.042 0.001
Phi 4 victim religion Buddhism Atheism 0.054 0.001
Phi 4 victim religion Christianity Atheism 0.053 0.0
Phi 4 victim sexual orientation Homosexual Heterosexual 0.021 0.073
Phi 4 victim sexual orientation Bisexual Heterosexual 0.091 0.0
Phi 4 victim ethnicity Ethnic Minority Han 0.07 0.0
Phi 4 victim occupation Unemployed Worker -0.016 0.045
Phi 4 victim household registration Not Local Local -0.029 0.002
Phi 4 victim nationality Foreigner Chinese 0.033 0.001
Phi 4 victim wealth Penniless A Million Saving -0.058 0.0
Phi 4 crime location Rural Urban 0.016 0.086
Phi 4 crime time Afternoon Morning -0.016 0.032
Phi 4 defender gender Gender Non-Binary Male -0.032 0.011
Phi 4 defender ethnicity Ethnic Minority Han -0.032 0.002
Phi 4 defender education Below High School High School or Above 0.027 0.0
Phi 4 defender occupation Farmer Worker 0.022 0.024
Phi 4 defender occupation Unemployed Worker 0.023 0.069
Phi 4 defender political background CCP Mass 0.017 0.057
Phi 4 defender wealth Penniless A Million Saving 0.03 0.012
Phi 4 prosecurate gender Gender Non-Binary Male -0.021 0.024
Phi 4 prosecurate gender Female Male -0.035 0.006
Phi 4 prosecurate ethnicity Ethnic Minority Han -0.017 0.085
Phi 4 prosecurate sexual orientation Homosexual Heterosexual -0.054 0.0
Phi 4 prosecurate sexual orientation Bisexual Heterosexual -0.027 0.006
Phi 4 prosecurate religion Christianity Atheism 0.017 0.099
Phi 4 judge age Age Age 0.093 0.0
Phi 4 judge gender Female Male -0.024 0.001
Phi 4 judge gender Gender Non-Binary Male -0.027 0.011
Phi 4 judge ethnicity Ethnic Minority Han 0.025 0.002
Phi 4 judge household registration Not Local Local -0.036 0.0
Phi 4 judge sexual orientation Homosexual Heterosexual -0.018 0.056
Phi 4 judge religion Buddhism Atheism 0.018 0.015
Phi 4 judge political background CCP Mass 0.02 0.028
Phi 4 judge wealth Penniless A Million Saving 0.085 0.0
Phi 4 pretrial conference With Pretrial Conference No Pretrial Conference -0.025 0.002
Phi 4 court level Intermediate Court Primary Court 0.026 0.001
Phi 4 court level High Court Primary Court 0.065 0.0
Phi 4 compulsory measure Compulsory Measure No Compulsory Measure 0.085 0.0
Phi 4 trial duration Prolonged Litigation Short Litigation 0.047 0.0

Table A25: List of labels with statistically significant results (p− value < 0.1) in bias analysis (V).
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Model Name Label Name Label Value Reference Regression
Coefficient

P-Value
LFM 7B defendant ethnicity Ethnic Minority Han 0.038 0.077
LFM 7B defendant nationality Foreigner Chinese 0.067 0.007
LFM 7B defendant political background CCP Mass -0.065 0.01
LFM 7B defendant political background Other Party Mass -0.037 0.071
LFM 7B defendant wealth Penniless A Million Saving 0.08 0.01
LFM 7B defendant religion Islam Atheism -0.05 0.03
LFM 7B defendant religion Buddhism Atheism -0.055 0.012
LFM 7B defendant religion Christianity Atheism -0.068 0.004
LFM 7B victim religion Buddhism Atheism -0.055 0.014
LFM 7B victim occupation Unemployed Worker 0.038 0.061
LFM 7B victim nationality Foreigner Chinese 0.04 0.069
LFM 7B victim wealth Penniless A Million Saving 0.063 0.013
LFM 7B crime location Rural Urban 0.074 0.01
LFM 7B defender gender Gender Non-Binary Male -0.159 0.0
LFM 7B defender education Below High School High School or Above -0.052 0.032
LFM 7B defender religion Islamic Atheism 0.097 0.003
LFM 7B defender religion Buddhism Atheism 0.092 0.008
LFM 7B defender religion Christianity Atheism 0.069 0.046
LFM 7B defender sexual orientation Homosexual Heterosexual -0.071 0.056
LFM 7B defender sexual orientation Bisexual Heterosexual -0.079 0.029
LFM 7B prosecurate gender Female Male -0.156 0.0
LFM 7B prosecurate ethnicity Ethnic Minority Han -0.114 0.0
LFM 7B judge age Age Age -0.126 0.008
LFM 7B judge gender Gender Non-Binary Male -0.082 0.004
LFM 7B judge household registration Not Local Local 0.038 0.066
LFM 7B judge sexual orientation Bisexual Heterosexual 0.049 0.048
LFM 7B judge religion Christianity Atheism -0.046 0.045
LFM 7B judge political background CCP Mass -0.039 0.068
LFM 7B judge political background Other Party Mass -0.089 0.0
LFM 7B judge wealth Penniless A Million Saving -0.513 0.0
LFM 7B online broadcast Online Broadcast No Online Broadcast 0.082 0.002
LFM 7B trial duration Prolonged Litigation Short Litigation 0.086 0.007
LFM 7B recusal applied Recusal Applied Recusal Applied -0.087 0.006
Mistral Small 3 defendant household registration Not Local Local -0.021 0.058
Mistral Small 3 defendant wealth Penniless A Million Saving -0.047 0.001
Mistral Small 3 victim gender Gender Non-Binary Male -0.022 0.056
Mistral Small 3 victim ethnicity Ethnic Minority Han 0.038 0.002
Mistral Small 3 victim wealth Penniless A Million Saving -0.031 0.005
Mistral Small 3 defender religion Islamic Atheism 0.03 0.03
Mistral Small 3 prosecurate age Age Age 0.032 0.071
Mistral Small 3 prosecurate religion Christianity Atheism 0.02 0.07
Mistral Small 3 prosecurate wealth Penniless A Million Saving -0.027 0.069
Mistral Small 3 judge age Age Age 0.124 0.0
Mistral Small 3 judge gender Gender Non-Binary Male -0.07 0.0
Mistral Small 3 judge ethnicity Ethnic Minority Han 0.034 0.003
Mistral Small 3 judge household registration Not Local Local -0.023 0.032
Mistral Small 3 judge sexual orientation Homosexual Heterosexual 0.027 0.06
Mistral Small 3 judge sexual orientation Bisexual Heterosexual 0.03 0.017
Mistral Small 3 judge religion Islamic Atheism 0.089 0.0
Mistral Small 3 judge religion Buddhism Atheism 0.059 0.0
Mistral Small 3 judge religion Christianity Atheism 0.05 0.0
Mistral Small 3 judge political background CCP Mass 0.1 0.0
Mistral Small 3 judge political background Other Party Mass 0.054 0.0
Mistral Small 3 court level High Court Primary Court 0.016 0.066
Mistral Small 3 compulsory measure Compulsory Measure No Compulsory Measure 0.021 0.1
Mistral Small 3 trial duration Prolonged Litigation Short Litigation 0.02
Mistral NeMo defendant gender Female Male 0.078 0.003
Mistral NeMo defendant ethnicity Ethnic Minority Han -0.14 0.0
Mistral NeMo defendant political background CCP Mass 0.03 0.025
Mistral NeMo defendant political background Other Party Mass 0.057 0.001
Mistral NeMo defendant wealth Penniless A Million Saving -0.128 0.0
Mistral NeMo victim ethnicity Ethnic Minority Han 0.051 0.006
Mistral NeMo victim education Below High School High School or Above -0.073 0.001
Mistral NeMo victim occupation Unemployed Worker -0.041 0.006
Mistral NeMo crime date Summer Spring -0.017 0.058
Mistral NeMo defender age Age Age -0.046 0.063
Mistral NeMo defender education Below High School High School or Above -0.035 0.019
Mistral NeMo defender sexual orientation Homosexual Heterosexual -0.037 0.015
Mistral NeMo defender sexual orientation Bisexual Heterosexual -0.051 0.003
Mistral NeMo prosecurate sexual orientation Homosexual Heterosexual -0.036 0.023

Table A26: List of labels with statistically significant results (p−value < 0.1) in bias analysis (VI).
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Model Name Label Name Label Value Reference Regression
Coefficient

P-Value
Mistral NeMo prosecurate sexual orientation Bisexual Heterosexual -0.048 0.002
Mistral NeMo prosecurate religion Buddhism Atheism -0.035 0.035
Mistral NeMo prosecurate religion Christianity Atheism -0.032 0.05
Mistral NeMo prosecurate wealth Penniless A Million Saving 0.032 0.097
Mistral NeMo judge age Age Age 0.071 0.057
Mistral NeMo judge gender Gender Non-Binary Male -0.055 0.007
Mistral NeMo judge ethnicity Ethnic Minority Han 0.053 0.002
Mistral NeMo judge household registration Not Local Local -0.029 0.01
Mistral NeMo judge sexual orientation Homosexual Heterosexual -0.034 0.042
Mistral NeMo judge sexual orientation Bisexual Heterosexual 0.028 0.082
Mistral NeMo judge political background CCP Mass 0.04 0.013
Mistral NeMo judge political background Other Party Mass 0.031 0.037
Mistral NeMo assessor No Preple’s Assessor With People’s Assessor 0.017 0.087
Mistral NeMo open trial Open Trial Not Open Trial 0.025 0.075
Mistral NeMo court level Intermediate Court Primary Court 0.048 0.007
Mistral NeMo court level High Court Primary Court 0.048 0.01
Mistral NeMo court location Court Rural Court Urban -0.03 0.054
Mistral NeMo compulsory measure Compulsory Measure No Compulsory Measure 0.096 0.0
DeepSeek R1 32B defendant gender Female Male 0.072 0.002
DeepSeek R1 32B defendant ethnicity Ethnic Minority Han -0.136 0.0
DeepSeek R1 32B defendant sexual orientation Homosexua Heterosexual -0.028 0.087
DeepSeek R1 32B victim gender Female Male 0.051 0.038
DeepSeek R1 32B victim ethnicity Ethnic Minority Han 0.075 0.004
DeepSeek R1 32B victim education Below High School High School or Above -0.044 0.064
DeepSeek R1 32B victim occupation Unemployed Worker -0.053 0.02
DeepSeek R1 32B victim household registration Not Local Local -0.048 0.046
DeepSeek R1 32B victim wealth Penniless A Million Saving 0.043 0.091
DeepSeek R1 32B defender education Below High School High School or Above -0.041 0.03
DeepSeek R1 32B defender religion Islamic Atheism -0.035 0.099
DeepSeek R1 32B defender religion Christianity Atheism -0.037 0.076
DeepSeek R1 32B prosecurate sexual orientation Homosexual Heterosexual -0.039 0.098
DeepSeek R1 32B prosecurate wealth Penniless A Million Saving 0.048 0.032
DeepSeek R1 32B judge age Age Age 0.068 0.081
DeepSeek R1 32B judge religion Buddhism Atheism -0.039 0.031
DeepSeek R1 32B judge religion Christianity Atheism -0.032 0.061
DeepSeek R1 32B judicial committee With Judicial Committee No Judicial Committee 0.036 0.078
DeepSeek R1 32B online broadcast Online Broadcast No Online Broadcast 0.049 0.015
DeepSeek R1 32B open trial Open Trial Not Open Trial 0.043 0.028
DeepSeek R1 32B court level Intermediate Court Primary Court 0.033 0.068
DeepSeek R1 32B court level High Court Primary Court 0.064 0.002
DeepSeek R1 32B compulsory measure Compulsory Measure No Compulsory Measure -0.046 0.053
DeepSeek R1 32B recusal applied Recusal Applied Recusal Applied -0.043 0.048
DeepSeek R1 32B immediate judgement Immediate ment Not Immediate ment -0.036 0.083

Table A27: Detailed information of labels with statistically significant results (p − value < 0.1) in
bias analysis (VII).
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F.4 ROBUSTNESS CHECKS ON BIAS ANALYSIS

As bias analysis is important in LLM fairness evaluation, we present a series of robustness checks
based on the LLMs with a temperature of 0, as well as those based on the LLMs with a temperature
of 1, to examine the results related to biases in the main analysis. In general, all robustness checks
show consistent patterns and confirm that LLMs in our studies show significant biases.

F.4.1 REGRESSIONS USING ROBUST STANDARD ERROR

Here, we modify the original regression model by applying heteroskedasticity-robust standard er-
rors. This table presents the number of p-values below 0.1, calculated using robust standard errors,
across various models. The results do not differ much from the main analysis.

Model Name Label Category Label Number Biased Label Number
Glm 4 Substance label 25 9
Glm 4 Procedure label 40 18
Glm 4 Flash Substance label 25 15
Glm 4 Flash Procedure label 40 11
Qwen2.5 72B Instruct Substance label 25 9
Qwen2.5 72B Instruct Procedure label 40 21
Qwen2.5 7B Instruct Substance label 25 9
Qwen2.5 7B Instruct Procedure label 40 14
Gemini Flash 1.5 Substance label 25 11
Gemini Flash 1.5 Procedure label 40 19
Gemini Flash 1.5 8B Substance label 25 14
Gemini Flash 1.5 8B Procedure label 40 20
LFM 40B MoE Substance label 25 2
LFM 40B MoE Procedure label 40 10
Nova Lite 1.0 Substance label 25 11
Nova Lite 1.0 Procedure label 40 13
Nova Micro 1.0 Substance label 25 8
Nova Micro 1.0 Procedure label 40 16
Llama 3.1 8B Instruct Substance label 25 7
Llama 3.1 8B Instruct Procedure label 40 19
Phi 4 Substance label 25 17
Phi 4 Procedure label 40 21
LFM 7B Substance label 25 10
LFM 7B Procedure label 40 16
Mistral Small 3 Substance label 25 5
Mistral Small 3 Procedural label 40 14
Mistral NeMo Substance label 25 8
Mistral NeMo Procedure label 40 18
DeepSeek R1 32B Substance label 25 9
DeepSeek R1 32B Procedure label 40 13

Table A28: Number of labels with statistically significant results (p − value < 0.1) in robust
standard error analysis with a temperature of 0.
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Model Name Label Category Label Number Biased Label Number
DeepSeek R1 32B Substance label 25 9
DeepSeek R1 32B Procedural label 40 13
DeepSeek v3 Substance label 25 3
DeepSeek v3 Procedural label 40 9
Gemini 1.5 8B Substance label 25 10
Gemini 1.5 8B Procedural label 40 15
Gemini Flash 1.5 Substance label 25 9
Gemini Flash 1.5 Procedural label 40 14
GLM4 Substance label 25 9
GLM4 Procedural label 40 22
GLM4 Flash Substance label 25 15
GLM4 Flash Procedural label 40 16
LFM 7B Substance label 25 5
LFM 7B Procedural label 40 12
LFM 40B Substance label 25 5
LFM 40B Procedural label 40 10
Mistral Small 3 Substance label 25 2
Mistral Small 3 Procedural label 40 11
Mistral NeMo t1 Substance label 25 4
Mistral NeMo t1 Procedural label 40 11
NOVA Lite Substance label 25 10
NOVA Lite Procedural label 40 10
NOVA Mico Substance label 25 6
NOVA Mico Procedural label 40 7
PHI4 Substance label 25 6
PHI4 Procedural label 40 8
Qwen 2.5 7B Instruct Substance label 25 5
Qwen 2.5 7B Instruct Procedural label 40 13
Qwen 2.5 72B Substance label 25 6
Qwen 2.5 72B Procedural label 40 8

Table A29: Number of labels with statistically significant results (p − value < 0.1) in robust
standard error analysis with a temperature of 1.
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F.4.2 REGRESSIONS WITH STANDARD ERRORS CLUSTERED AT THE CRIME CATEGORY
LEVEL

In this robustness check, we cluster the standard errors by crime type to account for intra-group
correlations that may arise from legal and procedural similarities within the same category of crime.
This adjustment allows for reliable inference by addressing potential biases in standard error estima-
tion, ensuring that the observed p-values accurately reflect the true statistical significance of biases
across different crime categories.

Model Name Label Category Label Number Biased Label Number
Glm 4 Substance label 25 11
Glm 4 Procedure label 40 16
Glm 4 Flash Substance label 25 16
Glm 4 Flash Procedure label 40 10
Qwen2.5 72B Instruct Substance label 25 8
Qwen2.5 72B Instruct Procedure label 40 24
Qwen2.5 7B Instruct Substance label 25 10
Qwen2.5 7B Instruct Procedure label 40 15
Gemini Flash 1.5 Substance label 25 10
Gemini Flash 1.5 Procedure label 40 20
Gemini Flash 1.5 8B Substance label 25 13
Gemini Flash 1.5 8B Procedure label 40 21
LFM 40B MoE Substance label 25 3
LFM 40B MoE Procedure label 40 10
Nova Lite 1.0 Substance label 25 11
Nova Lite 1.0 Procedure label 40 12
Nova Micro 1.0 Substance label 25 7
Nova Micro 1.0 Procedure label 40 18
Llama 3.1 8B Instruct Substance label 25 6
Llama 3.1 8B Instruct Procedure label 40 19
Phi 4 Substance label 25 16
Phi 4 Procedure label 40 21
LFM 7B Substance label 25 12
LFM 7B Procedure label 40 18
Mistral Small 3 Substance label 25 6
Mistral Small 3 Procedural label 40 13
Mistral NeMo Substance label 25 9
Mistral NeMo Procedure label 40 16
DeepSeek R1 32B Substance label 25 9
DeepSeek R1 32B Procedure label 40 13

Table A30: Number of labels with statistically significant results (p − value < 0.1) based on
regressions with standard errors clustered at the crime category level with a temperature of 0.
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Model Name Label Category Label Number Biased Label Number
DeepSeek R1 32B Substance label 25 9
DeepSeek R1 32B Procedural label 40 13
DeepSeek v3 Substance label 25 4
DeepSeek v3 Procedural label 40 8
Gemini 1.5 8B Substance label 25 9
Gemini 1.5 8B Procedural label 40 13
Gemini Flash 1.5 Substance label 25 10
Gemini Flash 1.5 Procedural label 40 14
GLM4 Substance label 25 11
GLM4 Procedural label 40 21
GLM4 Flash Substance label 25 16
GLM4 Flash Procedural label 40 15
LFM 7B Substance label 25 4
LFM 7B Procedural label 40 14
LFM 40B Substance label 25 6
LFM 40B Procedural label 40 12
Llama 3.1 Substance label 25 6
Llama 3.1 Procedural label 40 24
Mistral Small 3 Substance label 25 1
Mistral Small 3 Procedural label 40 12
Mistral NeMo t1 Substance label 25 7
Mistral NeMo t1 Procedural label 40 13
NOVA Lite Substance label 25 9
NOVA Lite Procedural label 40 10
NOVA Mico Substance label 25 5
NOVA Mico Procedural label 40 6
PHI4 Substance label 25 9
PHI4 Procedural label 40 9
Qwen 2.5 7B Instruct Substance label 25 5
Qwen 2.5 7B Instruct Procedural label 40 14
Qwen 2.5 72B Substance label 25 7
Qwen 2.5 72B Procedural label 40 9

Table A31: Number of labels with statistically significant results (p − value < 0.1) based on
regressions with standard errors clustered at the crime category level with a temperature of 1.
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F.4.3 REGRESSIONS ON FULL-SENTENCE LENGTH

We follow the methodology of a prior Chinese empirical legal study to standardize sentencing terms
of various types of judicial outcomes for analysis. Specifically, life imprisonment and suspended
death sentences are converted to 400 months, while immediate death sentences are represented as
600 months. Additionally, in accordance with Chinese criminal law, one day of pre-trial detention
is equivalent to two days of public surveillance or one day of restricted incarceration/fixed-term
imprisonment. As a result, one month of limited incarceration is converted to one month of fixed-
term imprisonment, and two months of public surveillance are converted to one month of fixed-term
imprisonment. Using this method, we replace the original dependent variable with the new variable
that incorporates all major sentencing types into analysis, enabling a broader analysis on the dataset.
Using the same methodology in the main regressions, we take the natural logarithm of this variable.
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Model Name Label Category Label Number Biased Label Number
Glm 4 Substance label 25 9
Glm 4 Procedure label 40 15
Glm 4 Flash Substance label 25 15
Glm 4 Flash Procedure label 40 11
Qwen2.5 72B Instruct Substance label 25 11
Qwen2.5 72B Instruct Procedure label 40 21
Qwen2.5 7B Instruct Substance label 25 10
Qwen2.5 7B Instruct Procedure label 40 18
Gemini Flash 1.5 Substance label 25 10
Gemini Flash 1.5 Procedure label 40 18
Gemini Flash 1.5 8B Substance label 25 12
Gemini Flash 1.5 8B Procedure label 40 20
LFM 40B MoE Substance label 25 3
LFM 40B MoE Procedure label 40 8
Nova Lite 1.0 Substance label 25 11
Nova Lite 1.0 Procedure label 40 13
Nova Micro 1.0 Substance label 25 8
Nova Micro 1.0 Procedure label 40 17
Llama 3.1 8B Instruct Substance label 25 7
Llama 3.1 8B Instruct Procedure label 40 17
Phi 4 Substance label 25 17
Phi 4 Procedure label 40 22
LFM 7B Substance label 25 10
LFM 7B Procedure label 40 15
Mistral Small 3 Substance label 25 5
Mistral Small 3 Procedure label 40 13
Mistral NeMo Substance label 25 7
Mistral NeMo Procedure label 40 17
DeepSeek R1 32B Substance label 25 7
DeepSeek R1 32B Procedure label 40 11

Table A32: Number of labels with statistically significant results (p−value < 0.1) from regressions
on full-sentence length with a temperature of 0.
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Model Name Label Category Label Number Biased Label Number
DeepSeek R1 32B Substance label 25 7
DeepSeek R1 32B Procedural label 40 11
DeepSeek v3 Substance label 25 4
DeepSeek v3 Procedural label 40 9
Gemini 1.5 8B Substance label 25 8
Gemini 1.5 8B Procedural label 40 15
Gemini Flash 1.5 Substance label 25 8
Gemini Flash 1.5 Procedural label 40 13
GLM4 Substance label 25 9
GLM4 Procedural label 40 19
GLM4 Flash Substance label 25 15
GLM4 Flash Procedural label 40 16
LFM 7B Substance label 25 7
LFM 7B Procedural label 40 13
LFM 40B Substance label 25 2
LFM 40B Procedural label 40 11
Mistral Small 3 Substance label 25 4
Mistral Small 3 Procedural label 40 13
Mistral NeMo t1 Substance label 25 2
Mistral NeMo t1 Procedural label 40 9
NOVA Lite Substance label 25 8
NOVA Lite Procedural label 40 9
NOVA Mico Substance label 25 7
NOVA Mico Procedural label 40 8
PHI4 Substance label 25 6
PHI4 Procedural label 40 9
Qwen 2.5 7B Instruct Substance label 25 4
Qwen 2.5 7B Instruct Procedural label 40 10
Qwen 2.5 72B Substance label 25 4
Qwen 2.5 72B Procedural label 40 11

Table A33: Number of labels with statistically significant results (p−value < 0.1) from regressions
on full-sentence length with a temperature of 1.
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F.4.4 REGRESSIONS EXCLUDING CASES FILED BEFORE 2014

We exclude cases filed before January 1, 2014, to mitigate potential selection bias stemming from
non-systematic disclosure of judicial documents. On that date, The Supreme People’s Court Pro-
visions on People’s Courts Release of Judgments on the Internet came into effect, mandating the
public release of most adjudications. Prior to this regulation, the publication of court rulings in
China was much more restricted and inconsistent, potentially leading to a bigger difference between
the types of cases made publicly accessible and those not publicly accessible. Here, by restricting
our dataset to cases filed after this policy made judicial publication more prevalent and consistent,
we aim to reduce the potential selection bias and enhance the representativeness and reliability of
our analysis.

Model Name Label Category Label Number Biased Label Number
Glm 4 Substance label 25 8
Glm 4 Procedure label 40 16
Glm 4 Flash Substance label 25 15
Glm 4 Flash Procedure label 40 11
Qwen2.5 72B Instruct Substance label 25 9
Qwen2.5 72B Instruct Procedure label 40 22
Qwen2.5 7B Instruct Substance label 25 8
Qwen2.5 7B Instruct Procedure label 40 14
Gemini Flash 1.5 Substance label 25 12
Gemini Flash 1.5 Procedure label 40 20
Gemini Flash 1.5 8B Substance label 25 11
Gemini Flash 1.5 8B Procedure label 40 20
LFM 40B MoE Substance label 25 2
LFM 40B MoE Procedure label 40 8
Nova Lite 1.0 Substance label 25 10
Nova Lite 1.0 Procedure label 40 12
Nova Micro 1.0 Substance label 25 8
Nova Micro 1.0 Procedure label 40 15
Llama 3.1 8B Instruct Substance label 25 7
Llama 3.1 8B Instruct Procedure label 40 20
Phi 4 Substance label 25 15
Phi 4 Procedure label 40 21
LFM 7B Substance label 25 10
LFM 7B Procedure label 40 18
Mistral Small 3 Substance label 25 4
Mistral Small 3 Procedure label 40 13
Mistral NeMo Substance label 25 8
Mistral NeMo Procedure label 40 20
DeepSeek R1 32B Substance label 25 7
DeepSeek R1 32B Procedure label 40 12

Table A34: Number of labels with statistically significant results (p− value < 0.1) excluding cases
filed before 2014 with a temperature of 0.
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Model Name Label Category Label Number Biased Label Number
DeepSeek R1 32B Substance label 25 7
DeepSeek R1 32B Procedural label 40 12
DeepSeek v3 Substance label 25 3
DeepSeek v3 Procedural label 40 11
Gemini 1.5 8B Substance label 25 11
Gemini 1.5 8B Procedural label 40 15
Gemini Flash 1.5 Substance label 25 10
Gemini Flash 1.5 Procedural label 40 11
GLM4 Substance label 25 8
GLM4 Procedural label 40 19
GLM4 Flash Substance label 25 15
GLM4 Flash Procedural label 40 16
LFM 7B Substance label 25 6
LFM 7B Procedural label 40 13
LFM 40B Substance label 25 4
LFM 40B Procedural label 40 10
Mistral Small 3 Substance label 25 1
Mistral Small 3 Procedural label 40 11
Mistral NeMo t1 Substance label 25 5
Mistral NeMo t1 Procedural label 40 6
NOVA Lite Substance label 25 8
NOVA Lite Procedural label 40 10
NOVA Mico Substance label 25 6
NOVA Mico Procedural label 40 9
PHI4 Substance label 25 5
PHI4 Procedural label 40 8
Qwen 2.5 7B Instruct Substance label 25 5
Qwen 2.5 7B Instruct Procedural label 40 14
Qwen 2.5 72B Substance label 25 4
Qwen 2.5 72B Procedural label 40 10

Table A35: Number of labels with statistically significant results (p− value < 0.1) excluding cases
filed before 2014 with a temperature of 1.
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G DETAILED RESULTS OF IMBALANCED INACCURACY ANALYSIS

G.1 NUMBER OF LABELS WITH STATISTICALLY SIGNIFICANT RESULTS IN IMBALANCED
INACCURACY ANALYSIS

This table displays the number of labels featuring statistically significant results with p-values below
0.1 in imbalanced inaccuracy analysis across all models with a temperature of 0.

Model Name Label Category Label Number Biased Label Number
Glm 4 Substance label 25 5
Glm 4 Procedure label 40 14
Glm 4 Flash Substance label 25 12
Glm 4 Flash Procedure label 40 6
Qwen2.5 72B Instruct Substance label 25 10
Qwen2.5 72B Instruct Procedure label 40 19
Qwen2.5 7B Instruct Substance label 25 8
Qwen2.5 7B Instruct Procedure label 40 20
Gemini Flash 1.5 Substance label 25 13
Gemini Flash 1.5 Procedure label 40 22
Gemini Flash 1.5 8B Substance label 25 11
Gemini Flash 1.5 8B Procedure label 40 20
LFM 40B MoE Substance label 25 3
LFM 40B MoE Procedure label 40 12
Nova Lite 1.0 Substance label 25 9
Nova Lite 1.0 Procedure label 40 13
Nova Micro 1.0 Substance label 25 7
Nova Micro 1.0 Procedure label 40 16
Llama 3.1 8B Instruct Substance label 25 6
Llama 3.1 8B Instruct Procedure label 40 10
Phi 4 Substance label 25 12
Phi 4 Procedure label 40 13
LFM 7B Substance label 25 11
LFM 7B Procedure label 40 14
Mistral Small 3 Substance label 25 6
Mistral Small 3 Procedure label 40 11
Mistral NeMo Substance label 25 8
Mistral NeMo Procedure label 40 12
DeepSeek R1 32B Substance label 25 5
DeepSeek R1 32B Procedure label 40 4

Table A36: Number of labels with statistically significant results (p − value < 0.1) in imbalanced
inaccuracy analysis with a temperature of 0.
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The following table displays the number of labels featuring statistically significant results with p-
values below 0.1 in unfair imbalance analysis across all models with a temperature of 1.

Model Name Label Category Label Number Biased Label Number
DeepSeek R1 32B Substance label 25 5
DeepSeek R1 32B Procedure label 40 4
DeepSeek v3 Substance label 25 2
DeepSeek v3 Procedure label 40 12
Gemini 1.5 8B Substance label 25 7
Gemini 1.5 8B Procedure label 40 12
Gemini Flash 1.5 Substance label 25 11
Gemini Flash 1.5 Procedure label 40 14
GLM4 Substance label 25 5
GLM4 Procedure label 40 17
GLM4 Flash Substance label 25 12
GLM4 Flash Procedure label 40 10
LFM 7B Substance label 25 4
LFM 7B Procedure label 40 10
LFM 40B Substance label 25 2
LFM 40B Procedure label 40 11
Llama 3.1 Substance label 25 6
Llama 3.1 Procedure label 40 15
Mistral Small 3 Substance label 25 0
Mistral Small 3 Procedure label 40 7
Mistral NeMo t1 Substance label 25 4
Mistral NeMo t1 Procedure label 40 5
NOVA Lite Substance label 25 8
NOVA Lite Procedure label 40 11
NOVA Mico Substance label 25 5
NOVA Mico Procedure label 40 8
PHI4 Substance label 25 4
PHI4 Procedure label 40 5
Qwen 2.5 7B Instruct Substance label 25 6
Qwen 2.5 7B Instruct Procedure label 40 11
Qwen 2.5 72B Substance label 25 5
Qwen 2.5 72B Procedure label 40 3

Table A37: Number of labels with statistically significant results (p − value < 0.1) in imbalanced
inaccuracy analysis with a temperature of 1.
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G.2 DETAILED OF LABELS WITH STATISTICALLY SIGNIFICANT RESULTS IN IMBALANCED
INACCURACY ANALYSIS

The following table displays list of p-value below 0.1 in Imbalanced Inaccuracy Analysis across
multiple models. The temperature is set to 0.

Model Name Label Name Label Value Reference

Impact on
Sentence
Prediction
(Months)

P-Value

Glm 4 defendant political background CCP Mass 1.45 0.08
Glm 4 defendant wealth Penniless A Million Saving -2.96 0.0
Glm 4 victim gender Female Male 0.637 0.043
Glm 4 victim age Age Age 1.545 0.013
Glm 4 victim wealth Penniless A Million Saving -3.11 0.0
Glm 4 defender gender Female Male -1.701 0.035
Glm 4 defender political background Other Party Mass -1.743 0.031
Glm 4 defender religion Islamic Atheism 1.363 0.064
Glm 4 defender religion Buddhism Atheism 1.599 0.07
Glm 4 defender sexual orientation Homosexual Heterosexual 1.48 0.024
Glm 4 defender sexual orientation Bisexual Heterosexual 2.14 0.008
Glm 4 prosecurate age Age Age 2.331 0.013
Glm 4 prosecurate ethnicity Ethnic Minority Han -1.639 0.021
Glm 4 prosecurate wealth Penniless A Million Saving -1.789 0.055
Glm 4 judge gender Female Male -1.107 0.086
Glm 4 judge sexual orientation Homosexual Heterosexual -3.957 0.001
Glm 4 judge political background Other Party Mass 1.412 0.071
Glm 4 judge wealth Penniless A Million Saving 3.357 0.001
Glm 4 assessor No preple’s assessor Has people’s assessor -1.267 0.015
Glm 4 defender type Appointed Privately Attained -1.863 0.02
Glm 4 pretrial conference Has Pretrial Conference No Pretrial Conference -1.124 0.094
Glm 4 court level Intermediate Court Primary Court 3.517 0.0
Glm 4 court level High Court Primary Court 3.851 0.0
Glm 4 court location Court Rural Court Urban -2.456 0.003
Glm 4 trial duration Prolonged Trial Duration Note-Short Trial 2.799 0.001
Glm 4 Flash defendant gender Female Male 2.954 0.027
Glm 4 Flash defendant ethnicity Ethnic Minority Han -4.901 0.0
Glm 4 Flash defendant age Age Age 4.108 0.042
Glm 4 Flash defendant nationality Foreigner Chinese 1.716 0.02
Glm 4 Flash defendant political background CCP Mass 2.512 0.001
Glm 4 Flash defendant wealth Penniless A Million Saving -7.27 0.0
Glm 4 Flash defendant sexual orientation Bisexual Heterosexual 1.365 0.02
Glm 4 Flash victim religion Islam Atheism 0.928 0.047
Glm 4 Flash victim sexual orientation Homosexual Heterosexual 1.172 0.032
Glm 4 Flash victim ethnicity Ethnic Minority Han 1.62 0.009
Glm 4 Flash victim nationality Foreigner Chinese 2.715 0.001
Glm 4 Flash victim wealth Penniless A Million Saving -5.081 0.0
Glm 4 Flash defender education Below High School High School or Above 1.828 0.02
Glm 4 Flash defender wealth Penniless A Million Saving -2.143 0.026
Glm 4 Flash prosecurate age Age Age 3.664 0.005
Glm 4 Flash prosecurate ethnicity Ethnic Minority Han -1.959 0.022
Glm 4 Flash prosecurate religion Islamic Atheism -1.483 0.085
Glm 4 Flash prosecurate religion Buddhism Atheism -1.749 0.039
Glm 4 Flash prosecurate religion Christianity Atheism -2.47 0.008
Glm 4 Flash prosecurate political background CCP Mass -1.444 0.024
Glm 4 Flash judge ethnicity Ethnic Minority Han 2.969 0.002
Glm 4 Flash judge sexual orientation Homosexual Heterosexual -4.271 0.001
Glm 4 Flash judge sexual orientation Bisexual Heterosexual -2.759 0.014
Glm 4 Flash judge wealth Penniless A Million Saving 3.502 0.004
Glm 4 Flash court level High Court Primary Court 2.244 0.022
Qwen2.5 72B Instruct defendant gender Female Male -3.289 0.0
Qwen2.5 72B Instruct defendant gender Non-Binary Male -1.571 0.027
Qwen2.5 72B Instruct defendant education Below High School High School or Above 1.278 0.041
Qwen2.5 72B Instruct defendant age Age Age 2.957 0.014
Qwen2.5 72B Instruct defendant wealth Penniless A Million Saving -1.274 0.036
Qwen2.5 72B Instruct defendant sexual orientation Bisexual Heterosexual -1.096 0.083
Qwen2.5 72B Instruct victim religion Christianity Atheism -1.274 0.043
Qwen2.5 72B Instruct victim sexual orientation Bisexual Heterosexual -1.224 0.061
Qwen2.5 72B Instruct victim occupation Farmer Worker 1.078 0.093
Qwen2.5 72B Instruct victim wealth Penniless A Million Saving -0.979 0.076
Qwen2.5 72B Instruct crime date Summer Spring 1.305 0.015
Qwen2.5 72B Instruct crime date Autumn Spring 1.051 0.036
Qwen2.5 72B Instruct crime date Winter Spring 1.305 0.016

Table A38: List of labels with statistically significant results (p − value < 0.1) in imbalanced
inaccuracy analysis (I).
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Under review as a conference paper at ICLR 2026

Model Name Label Name Label Value Reference

Impact on
Sentence
Prediction
(Months)

P-Value

Qwen2.5 72B Instruct defender gender Gender Non-Binary Male -1.822 0.009
Qwen2.5 72B Instruct defender household registration Not Local Local 0.988 0.095
Qwen2.5 72B Instruct defender sexual orientation Homosexual Heterosexual -1.618 0.035
Qwen2.5 72B Instruct prosecurate gender Gender Non-Binary Male -1.249 0.051
Qwen2.5 72B Instruct prosecurate gender Female Male -1.481 0.03
Qwen2.5 72B Instruct prosecurate sexual orientation Homosexual Heterosexual -1.246 0.064
Qwen2.5 72B Instruct judge age Age Age 7.067 0.0
Qwen2.5 72B Instruct judge gender Female Male 1.653 0.028
Qwen2.5 72B Instruct judge gender Gender Non-Binary Male -1.605 0.033
Qwen2.5 72B Instruct judge sexual orientation Homosexual Heterosexual -3.047 0.0
Qwen2.5 72B Instruct judge religion Islamic Atheism 6.738 0.0
Qwen2.5 72B Instruct judge religion Christianity Atheism 1.337 0.076
Qwen2.5 72B Instruct judge political background Other Party Mass -1.646 0.019
Qwen2.5 72B Instruct judge wealth Penniless A Million Saving 5.101 0.0
Qwen2.5 72B Instruct collegial panel Collegial Panel Single 1.122 0.056
Qwen2.5 72B Instruct assessor No Preple’s Assessor With People’s Assessor 1.498 0.015
Qwen2.5 72B Instruct pretrial conference With Pretrial Conference No Pretrial Conference -2.046 0.001
Qwen2.5 72B Instruct court level Intermediate Court Primary Court 3.091 0.0
Qwen2.5 72B Instruct court level High Court Primary Court 2.5 0.001
Qwen2.5 72B Instruct court location Court Rural Court Urban -1.337 0.039
Qwen2.5 72B Instruct compulsory measure Compulsory Measure No Compulsory Measure 2.44 0.006
Qwen2.5 72B Instruct trial duration Prolonged Litigation Short Litigation 2.114 0.002
Qwen2.5 72B Instruct recusal applied Recusal Applied Recusal Applied -2.593 0.001
Qwen2.5 7B Instruct defendant gender Female Male 9.975 0.0
Qwen2.5 7B Instruct defendant ethnicity Ethnic Minority Han -10.329 0.0
Qwen2.5 7B Instruct defendant household registration Not Local Local -1.03 0.058
Qwen2.5 7B Instruct defendant wealth Penniless A Million Saving -1.353 0.025
Qwen2.5 7B Instruct defendant sexual orientation Homosexua Heterosexual 1.707 0.012
Qwen2.5 7B Instruct defendant sexual orientation Bisexual Heterosexual 1.887 0.015
Qwen2.5 7B Instruct victim political background Other Party Mass 1.048 0.002
Qwen2.5 7B Instruct victim wealth Penniless A Million Saving -1.012 0.057
Qwen2.5 7B Instruct crime date Summer Spring 1.19 0.068
Qwen2.5 7B Instruct crime date Winter Spring 1.995 0.002
Qwen2.5 7B Instruct defender occupation Farmer Worker -0.927 0.099
Qwen2.5 7B Instruct defender political background CCP Mass 2.096 0.003
Qwen2.5 7B Instruct defender sexual orientation Homosexual Heterosexual -1.913 0.004
Qwen2.5 7B Instruct defender sexual orientation Bisexual Heterosexual -1.372 0.028
Qwen2.5 7B Instruct prosecurate gender Gender Non-Binary Male -1.45 0.017
Qwen2.5 7B Instruct prosecurate gender Female Male -2.12 0.006
Qwen2.5 7B Instruct prosecurate religion Islamic Atheism 1.422 0.063
Qwen2.5 7B Instruct prosecurate wealth Penniless A Million Saving -1.625 0.057
Qwen2.5 7B Instruct judge gender Female Male -1.503 0.021
Qwen2.5 7B Instruct judge gender Gender Non-Binary Male -2.039 0.01
Qwen2.5 7B Instruct judge ethnicity Ethnic Minority Han 1.419 0.009
Qwen2.5 7B Instruct judge religion Islamic Atheism 2.693 0.001
Qwen2.5 7B Instruct judge political background Other Party Mass -1.385 0.073
Qwen2.5 7B Instruct judge wealth Penniless A Million Saving 3.568 0.0
Qwen2.5 7B Instruct assessor No Preple’s Assessor With People’s Assessor 1.238 0.011
Qwen2.5 7B Instruct pretrial conference With Pretrial Conference No Pretrial Conference 1.147 0.072
Qwen2.5 7B Instruct judicial committee With Judicial Committee No Judicial Committee 1.971 0.001
Qwen2.5 7B Instruct court level Intermediate Court Primary Court 0.851 0.068
Qwen2.5 7B Instruct court level High Court Primary Court 1.894 0.004
Qwen2.5 7B Instruct court location Court Rural Court Urban 1.382 0.035
Qwen2.5 7B Instruct compulsory measure Compulsory Measure No Compulsory Measure 4.348 0.001
Qwen2.5 7B Instruct trial duration Prolonged Litigation Short Litigation -2.175 0.023
Qwen2.5 7B Instruct recusal applied Recusal Applied Recusal Applied -6.065 0.0
Qwen2.5 7B Instruct immediate judgement Immediate ment Not Immediate ment -2.545 0.0
Gemini Flash 1.5 defendant gender Female Male 7.442 0.0
Gemini Flash 1.5 defendant ethnicity Ethnic Minority Han -7.301 0.0
Gemini Flash 1.5 defendant education Below High School High School or Above -0.966 0.094
Gemini Flash 1.5 defendant occupation Farmer Worker -1.208 0.047
Gemini Flash 1.5 defendant nationality Foreigner Chinese 1.335 0.006
Gemini Flash 1.5 defendant political background CCP Mass 1.481 0.015
Gemini Flash 1.5 defendant wealth Penniless A Million Saving -2.833 0.0
Gemini Flash 1.5 defendant sexual orientation Homosexua Heterosexual 0.843 0.018
Gemini Flash 1.5 victim gender Gender Non-Binary Male 1.159 0.01
Gemini Flash 1.5 victim ethnicity Ethnic Minority Han 0.961 0.007
Gemini Flash 1.5 victim household registration Not Local Local -0.619 0.087
Gemini Flash 1.5 victim nationality Foreigner Chinese 1.209 0.006
Gemini Flash 1.5 victim political background CCP Mass 0.703 0.09
Gemini Flash 1.5 defender ethnicity Ethnic Minority Han -0.805 0.048
Gemini Flash 1.5 defender education Below High School High School or Above 1.055 0.007
Gemini Flash 1.5 defender occupation Farmer Worker 0.958 0.018
Gemini Flash 1.5 defender religion Islamic Atheism -1.024 0.007

Table A39: List of labels with statistically significant results (p − value < 0.1) in imbalanced
inaccuracy analysis (II).
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Impact on
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P-Value

Gemini Flash 1.5 defender religion Buddhism Atheism -1.517 0.0
Gemini Flash 1.5 defender religion Christianity Atheism -1.414 0.0
Gemini Flash 1.5 defender wealth Penniless A Million Saving 1.49 0.005
Gemini Flash 1.5 prosecurate gender Gender Non-Binary Male 0.713 0.017
Gemini Flash 1.5 prosecurate household registration Not Local Local -0.777 0.094
Gemini Flash 1.5 prosecurate sexual orientation Homosexual Heterosexual -1.056 0.087
Gemini Flash 1.5 prosecurate wealth Penniless A Million Saving 1.305 0.048
Gemini Flash 1.5 judge age Age Age 4.01 0.002
Gemini Flash 1.5 judge gender Gender Non-Binary Male 1.53 0.027
Gemini Flash 1.5 judge ethnicity Ethnic Minority Han 3.231 0.0
Gemini Flash 1.5 judge household registration Not Local Local -2.275 0.002
Gemini Flash 1.5 judge sexual orientation Homosexual Heterosexual -3.034 0.0
Gemini Flash 1.5 judge religion Buddhism Atheism -3.284 0.0
Gemini Flash 1.5 judge political background CCP Mass 2.671 0.0
Gemini Flash 1.5 judge wealth Penniless A Million Saving 6.377 0.0
Gemini Flash 1.5 collegial panel Collegial Panel Single 0.879 0.016
Gemini Flash 1.5 court level Intermediate Court Primary Court 0.648 0.06
Gemini Flash 1.5 court level High Court Primary Court 1.128 0.004
Gemini Flash 1.5 court location Court Rural Court Urban -1.537 0.006
Gemini Flash 1.5 trial duration Prolonged Litigation Short Litigation 0.68 0.099
Gemini Flash 1.5 recusal applied Recusal Applied Recusal Applied -1.699 0.0
Gemini Flash 1.5 8B defendant gender Female Male 1.888 0.012
Gemini Flash 1.5 8B defendant ethnicity Ethnic Minority Han -2.535 0.003
Gemini Flash 1.5 8B defendant occupation Farmer Worker -1.16 0.075
Gemini Flash 1.5 8B defendant nationality Foreigner Chinese 1.509 0.02
Gemini Flash 1.5 8B defendant political background CCP Mass 0.986 0.097
Gemini Flash 1.5 8B defendant political background Other Party Mass 0.92 0.095
Gemini Flash 1.5 8B defendant wealth Penniless A Million Saving -1.987 0.002
Gemini Flash 1.5 8B victim sexual orientation Homosexual Heterosexual 1.078 0.05
Gemini Flash 1.5 8B victim sexual orientation Bisexual Heterosexual 1.281 0.007
Gemini Flash 1.5 8B victim age Age Age 2.272 0.04
Gemini Flash 1.5 8B victim ethnicity Ethnic Minority Han 1.761 0.006
Gemini Flash 1.5 8B victim nationality Foreigner Chinese 1.306 0.032
Gemini Flash 1.5 8B victim political background CCP Mass 1.202 0.029
Gemini Flash 1.5 8B victim political background Other Party Mass 1.132 0.015
Gemini Flash 1.5 8B defender age Age Age 2.296 0.012
Gemini Flash 1.5 8B defender ethnicity Ethnic Minority Han 1.228 0.02
Gemini Flash 1.5 8B defender nationality Foreigner Chinese 0.854 0.092
Gemini Flash 1.5 8B defender political background CCP Mass 1.119 0.049
Gemini Flash 1.5 8B defender political background Other Party Mass 0.933 0.066
Gemini Flash 1.5 8B defender religion Christianity Atheism -0.801 0.082
Gemini Flash 1.5 8B defender wealth Penniless A Million Saving -1.293 0.019
Gemini Flash 1.5 8B prosecurate age Age Age 3.175 0.003
Gemini Flash 1.5 8B prosecurate sexual orientation Homosexual Heterosexual 1.145 0.052
Gemini Flash 1.5 8B judge age Age Age 2.475 0.032
Gemini Flash 1.5 8B judge ethnicity Ethnic Minority Han 3.234 0.0
Gemini Flash 1.5 8B judge household registration Not Local Local 1.79 0.006
Gemini Flash 1.5 8B judge sexual orientation Bisexual Heterosexual 2.223 0.0
Gemini Flash 1.5 8B judge religion Islamic Atheism -1.566 0.006
Gemini Flash 1.5 8B judge religion Buddhism Atheism -3.389 0.0
Gemini Flash 1.5 8B judge wealth Penniless A Million Saving 2.384 0.001
Gemini Flash 1.5 8B open trial Open Trial Not Open Trial 0.999 0.05
Gemini Flash 1.5 8B court level Intermediate Court Primary Court 1.41 0.008
Gemini Flash 1.5 8B court level High Court Primary Court 1.722 0.006
Gemini Flash 1.5 8B court location Court Rural Court Urban 0.852 0.079
Gemini Flash 1.5 8B compulsory measure Compulsory Measure No Compulsory Measure 2.778 0.0
Gemini Flash 1.5 8B trial duration Prolonged Litigation Short Litigation 1.178 0.049
Gemini Flash 1.5 8B recusal applied Recusal Applied Recusal Applied 1.245 0.051
LFM 40B MoE defendant sexual orientation Homosexua Heterosexual 4.959 0.023
LFM 40B MoE victim nationality Foreigner Chinese 3.983 0.07
LFM 40B MoE victim political background CCP Mass 4.125 0.051
LFM 40B MoE defender ethnicity Ethnic Minority Han 4.263 0.056
LFM 40B MoE defender household registration Not Local Local 3.757 0.099
LFM 40B MoE defender political background CCP Mass 4.829 0.024
LFM 40B MoE prosecurate gender Gender Non-Binary Male 4.401 0.056
LFM 40B MoE prosecurate sexual orientation Bisexual Heterosexual -5.495 0.016
LFM 40B MoE prosecurate religion Buddhism Atheism -3.914 0.063
LFM 40B MoE prosecurate wealth Penniless A Million Saving 3.877 0.088
LFM 40B MoE judge wealth Penniless A Million Saving 5.105 0.026
LFM 40B MoE defender type Appointed Privately Attained -5.075 0.021
LFM 40B MoE open trial Open Trial Not Open Trial 5.121 0.025
LFM 40B MoE court level High Court Primary Court 7.202 0.002
LFM 40B MoE compulsory measure Compulsory Measure No Compulsory Measure 4.346 0.049

Table A40: List of labels with statistically significant results (p − value < 0.1) in imbalanced
inaccuracy analysis (III).
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Impact on
Sentence
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(Months)

P-Value

Nova Lite 1.0 defendant ethnicity Ethnic Minority Han -3.246 0.001
Nova Lite 1.0 defendant age Age Age 1.771 0.075
Nova Lite 1.0 defendant occupation Unemployed Worker -1.04 0.093
Nova Lite 1.0 defendant political background CCP Mass 2.387 0.0
Nova Lite 1.0 defendant wealth Penniless A Million Saving -2.59 0.0
Nova Lite 1.0 defendant sexual orientation Bisexual Heterosexual -1.819 0.001
Nova Lite 1.0 victim religion Islam Atheism 1.165 0.043
Nova Lite 1.0 victim ethnicity Ethnic Minority Han 1.296 0.015
Nova Lite 1.0 crime date Summer Spring 0.881 0.097
Nova Lite 1.0 crime date Winter Spring 1.455 0.004
Nova Lite 1.0 defender household registration Not Local Local 1.061 0.046
Nova Lite 1.0 prosecurate age Age Age 2.4 0.022
Nova Lite 1.0 prosecurate political background CCP Mass 0.88 0.06
Nova Lite 1.0 judge age Age Age -2.013 0.092
Nova Lite 1.0 judge gender Gender Non-Binary Male 2.149 0.002
Nova Lite 1.0 judge ethnicity Ethnic Minority Han 2.226 0.0
Nova Lite 1.0 judge household registration Not Local Local -1.346 0.036
Nova Lite 1.0 judge religion Buddhism Atheism 2.474 0.0
Nova Lite 1.0 judge religion Christianity Atheism 1.418 0.021
Nova Lite 1.0 judge political background CCP Mass 2.51 0.001
Nova Lite 1.0 collegial panel Collegial Panel Single 1.384 0.019
Nova Lite 1.0 assessor No Preple’s Assessor With People’s Assessor 1.264 0.019
Nova Lite 1.0 pretrial conference With Pretrial Conference No Pretrial Conference -0.883 0.099
Nova Lite 1.0 court level Intermediate Court Primary Court 1.366 0.006
Nova Lite 1.0 court level High Court Primary Court 1.661 0.002
Nova Micro 1.0 defendant ethnicity Ethnic Minority Han 2.228 0.084
Nova Micro 1.0 defendant occupation Unemployed Worker -2.331 0.044
Nova Micro 1.0 defendant nationality Foreigner Chinese -2.236 0.041
Nova Micro 1.0 defendant wealth Penniless A Million Saving -3.819 0.0
Nova Micro 1.0 victim religion Buddhism Atheism 2.69 0.009
Nova Micro 1.0 victim occupation Unemployed Worker 1.569 0.079
Nova Micro 1.0 victim nationality Foreigner Chinese -1.966 0.045
Nova Micro 1.0 defender gender Gender Non-Binary Male -2.773 0.004
Nova Micro 1.0 defender political background Other Party Mass -1.577 0.08
Nova Micro 1.0 prosecurate household registration Not Local Local 1.578 0.069
Nova Micro 1.0 judge age Age Age 4.635 0.063
Nova Micro 1.0 judge gender Gender Non-Binary Male -11.831 0.0
Nova Micro 1.0 judge household registration Not Local Local 3.299 0.008
Nova Micro 1.0 judge sexual orientation Homosexual Heterosexual 6.69 0.0
Nova Micro 1.0 judge religion Islamic Atheism -7.694 0.0
Nova Micro 1.0 judge religion Christianity Atheism 3.742 0.004
Nova Micro 1.0 judge political background CCP Mass -3.98 0.001
Nova Micro 1.0 judge political background Other Party Mass -10.281 0.0
Nova Micro 1.0 judge wealth Penniless A Million Saving -4.19 0.001
Nova Micro 1.0 collegial panel Collegial Panel Single 1.601 0.084
Nova Micro 1.0 pretrial conference With Pretrial Conference No Pretrial Conference -1.672 0.065
Nova Micro 1.0 judicial committee With Judicial Committee No Judicial Committee 2.501 0.005
Nova Micro 1.0 online broadcast Online Broadcast No Online Broadcast 2.914 0.001
Nova Micro 1.0 compulsory measure Compulsory Measure No Compulsory Measure 2.306 0.054
Nova Micro 1.0 recusal applied Recusal Applied Recusal Applied 1.906 0.093
Llama 3.1 8B Instruct defendant nationality Foreigner Chinese 1.68 0.094
Llama 3.1 8B Instruct defendant sexual orientation Homosexua Heterosexual 2.305 0.03
Llama 3.1 8B Instruct defendant sexual orientation Bisexual Heterosexual 3.133 0.001
Llama 3.1 8B Instruct victim sexual orientation Bisexual Heterosexual 1.978 0.065
Llama 3.1 8B Instruct victim education Below High School High School or Above -3.196 0.003
Llama 3.1 8B Instruct victim occupation Farmer Worker 1.774 0.071
Llama 3.1 8B Instruct victim political background CCP Mass 2.256 0.011
Llama 3.1 8B Instruct defender gender Gender Non-Binary Male -4.181 0.021
Llama 3.1 8B Instruct defender education Below High School High School or Above -2.543 0.078
Llama 3.1 8B Instruct defender occupation Farmer Worker 4.387 0.003
Llama 3.1 8B Instruct defender nationality Foreigner Chinese 2.927 0.059
Llama 3.1 8B Instruct defender religion Islamic Atheism 2.909 0.002
Llama 3.1 8B Instruct defender religion Buddhism Atheism 2.752 0.002
Llama 3.1 8B Instruct defender religion Christianity Atheism 4.162 0.0
Llama 3.1 8B Instruct defender wealth Penniless A Million Saving -7.235 0.0
Llama 3.1 8B Instruct prosecurate gender Gender Non-Binary Male -1.868 0.073
Llama 3.1 8B Instruct prosecurate age Age Age 9.225 0.003
Llama 3.1 8B Instruct prosecurate household registration Not Local Local 3.46 0.007
Llama 3.1 8B Instruct prosecurate religion Islamic Atheism 3.116 0.073
Llama 3.1 8B Instruct prosecurate religion Buddhism Atheism 3.275 0.052
Llama 3.1 8B Instruct prosecurate religion Christianity Atheism 3.653 0.018

Table A41: List of labels with statistically significant results (p − value < 0.1) in imbalanced
inaccuracy analysis (IV).
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Model Name Label Name Label Value Reference

Impact on
Sentence
Prediction
(Months)

P-Value

Llama 3.1 8B Instruct prosecurate wealth Penniless A Million Saving -4.117 0.045
Llama 3.1 8B Instruct judge gender Female Male -2.063 0.031
Llama 3.1 8B Instruct judge religion Islamic Atheism -2.104 0.07
Llama 3.1 8B Instruct assessor No preple’s assessor Has people’s assessor -1.909 0.086
Llama 3.1 8B Instruct pretrial conference Has Pretrial Conference No Pretrial Conference 3.193 0.008
Phi 4 defendant gender Female Male -1.282 0.006
Phi 4 defendant household registration Not Local Local 1.004 0.022
Phi 4 defendant nationality Foreigner Chinese 1.314 0.016
Phi 4 defendant political background CCP Mass 0.994 0.092
Phi 4 defendant wealth Penniless A Million Saving -2.319 0.006
Phi 4 defendant sexual orientation Homosexua Heterosexual 1.24 0.033
Phi 4 victim sexual orientation Homosexual Heterosexual 1.128 0.074
Phi 4 victim age Age Age 2.05 0.021
Phi 4 victim nationality Foreigner Chinese 1.493 0.011
Phi 4 victim wealth Penniless A Million Saving -2.703 0.001
Phi 4 crime location Rural Urban 1.2 0.077
Phi 4 crime date Summer Spring 1.056 0.057
Phi 4 crime date Winter Spring 1.25 0.013
Phi 4 defender education Below High School High School or Above 1.097 0.014
Phi 4 defender occupation Farmer Worker 1.516 0.012
Phi 4 defender nationality Foreigner Chinese 1.324 0.056
Phi 4 prosecurate wealth Penniless A Million Saving -1.681 0.044
Phi 4 judge age Age Age 3.303 0.0
Phi 4 judge gender Female Male -1.049 0.077
Phi 4 judge gender Gender Non-Binary Male -1.399 0.069
Phi 4 judge religion Buddhism Atheism 1.279 0.032
Phi 4 judge religion Christianity Atheism -1.017 0.04
Phi 4 judge wealth Penniless A Million Saving 4.258 0.0
Phi 4 defender type Appointed Privately Attained 1.371 0.038
Phi 4 online broadcast Online Broadcast No Online Broadcast -1.083 0.061
Phi 4 court level Intermediate Court Primary Court 1.26 0.013
Phi 4 court level High Court Primary Court 2.844 0.0
Phi 4 trial duration Prolonged Litigation Short Litigation 1.644 0.01
Phi 4 recusal applied Recusal Applied Recusal Applied 2.424 0.003
LFM 7B defendant ethnicity Ethnic Minority Han 2.18 0.054
LFM 7B defendant household registration Not Local Local -2.104 0.028
LFM 7B defendant political background CCP Mass -4.883 0.0
LFM 7B defendant political background Other Party Mass -2.811 0.005
LFM 7B defendant wealth Penniless A Million Saving 5.775 0.0
LFM 7B defendant religion Islam Atheism -1.989 0.058
LFM 7B defendant religion Buddhism Atheism -1.654 0.095
LFM 7B victim religion Buddhism Atheism -2.93 0.004
LFM 7B victim sexual orientation Homosexual Heterosexual 2.569 0.036
LFM 7B victim sexual orientation Bisexual Heterosexual 2.411 0.07
LFM 7B victim age Age Age -2.738 0.045
LFM 7B victim occupation Unemployed Worker 2.466 0.01
LFM 7B victim nationality Foreigner Chinese 2.595 0.02
LFM 7B victim wealth Penniless A Million Saving 2.853 0.036
LFM 7B defender gender Gender Non-Binary Male -6.223 0.001
LFM 7B defender occupation Unemployed Worker -2.597 0.047
LFM 7B defender religion Islamic Atheism 5.368 0.001
LFM 7B defender religion Buddhism Atheism 2.747 0.094
LFM 7B defender religion Christianity Atheism 3.017 0.061
LFM 7B prosecurate gender Gender Non-Binary Male -2.164 0.081
LFM 7B prosecurate gender Female Male -5.214 0.007
LFM 7B prosecurate ethnicity Ethnic Minority Han -3.876 0.005
LFM 7B prosecurate sexual orientation Bisexual Heterosexual -4.234 0.034
LFM 7B prosecurate wealth Penniless A Million Saving 2.694 0.057
LFM 7B judge age Age Age -5.917 0.021
LFM 7B judge household registration Not Local Local 1.788 0.078
LFM 7B judge religion Buddhism Atheism 3.151 0.004
LFM 7B judge political background Other Party Mass -2.983 0.004
LFM 7B judge wealth Penniless A Million Saving -17.72 0.0
LFM 7B pretrial conference With Pretrial Conference No Pretrial Conference -1.819 0.092
LFM 7B court location Court Rural Court Urban -3.166 0.003

Table A42: List of labels with statistically significant results (p − value < 0.1) in imbalanced
inaccuracy Analysis (V).
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Mistral Small 3 defendant household registration Not Local Local -0.021 0.058
Mistral Small 3 defendant wealth Penniless A Million Saving -0.047 0.001
Mistral Small 3 victim gender Gender Non-Binary Male -0.022 0.056
Mistral Small 3 victim ethnicity Ethnic Minority Han 0.038 0.002
Mistral Small 3 victim wealth Penniless A Million Saving -0.031 0.005
Mistral Small 3 defender religion Islamic Atheism 0.03 0.03
Mistral Small 3 prosecurate age Age Age 0.032 0.071
Mistral Small 3 prosecurate religion Christianity Atheism 0.02 0.07
Mistral Small 3 prosecurate wealth Penniless A Million Saving -0.027 0.069
Mistral Small 3 judge age Age Age 0.124 0.0
Mistral Small 3 judge gender Gender Non-Binary Male -0.07 0.0
Mistral Small 3 judge ethnicity Ethnic Minority Han 0.034 0.003
Mistral Small 3 judge household registration Not Local Local -0.023 0.032
Mistral Small 3 judge sexual orientation Homosexual Heterosexual 0.027 0.06
Mistral Small 3 judge sexual orientation Bisexual Heterosexual 0.03 0.017
Mistral Small 3 judge religion Islamic Atheism 0.089 0.0
Mistral Small 3 judge religion Buddhism Atheism 0.059 0.0
Mistral Small 3 judge religion Christianity Atheism 0.05 0.0
Mistral Small 3 judge political background CCP Mass 0.1 0.0
Mistral Small 3 judge political background Other Party Mass 0.054 0.0
Mistral Small 3 court level High Court Primary Court 0.016 0.066
Mistral Small 3 compulsory measure Compulsory Measure No Compulsory Measure 0.021 0.1
Mistral Small 3 trial duration Prolonged Litigation Short Litigation 0.02
Mistral NeMo defendant gender Female Male 5.233 0.0
Mistral NeMo defendant ethnicity Ethnic Minority Han -6.208 0.0
Mistral NeMo defendant wealth Penniless A Million Saving -2.862 0.001
Mistral NeMo defendant sexual orientation Homosexua Heterosexual 0.896 0.08
Mistral NeMo defendant sexual orientation Bisexual Heterosexual 1.028 0.049
Mistral NeMo victim occupation Farmer Worker -1.226 0.038
Mistral NeMo victim occupation Unemployed Worker -1.059 0.043
Mistral NeMo victim wealth Penniless A Million Saving -1.715 0.01
Mistral NeMo crime date Summer Spring -0.651 0.063
Mistral NeMo crime time Afternoon Morning -1.353 0.001
Mistral NeMo defender gender Female Male 0.843 0.038
Mistral NeMo defender political background CCP Mass 0.689 0.092
Mistral NeMo defender sexual orientation Homosexual Heterosexual -0.893 0.05
Mistral NeMo prosecurate wealth Penniless A Million Saving 1.334 0.047
Mistral NeMo judge gender Gender Non-Binary Male -1.598 0.023
Mistral NeMo judge sexual orientation Bisexual Heterosexual 1.343 0.043
Mistral NeMo judge political background CCP Mass 0.965 0.071
Mistral NeMo judge wealth Penniless A Million Saving 2.015 0.005
Mistral NeMo collegial panel Collegial Panel Single 1.02 0.069
Mistral NeMo open trial Open Trial Not Open Trial 1.624 0.001
Mistral NeMo court level Intermediate Court Primary Court 2.145 0.0
Mistral NeMo court level High Court Primary Court 2.848 0.0
Mistral NeMo compulsory measure Compulsory Measure No Compulsory Measure 4.061 0.0
DeepSeek R1 32B defendant gender Female Male 4.323 0.0
DeepSeek R1 32B defendant ethnicity Ethnic Minority Han -7.208 0.0
DeepSeek R1 32B defendant education Below High School High School or Above 2.18 0.042
DeepSeek R1 32B defendant political background CCP Mass 2.921 0.008
DeepSeek R1 32B victim gender Female Male 2.111 0.087
DeepSeek R1 32B defender age Age Age 4.054 0.039
DeepSeek R1 32B judge sexual orientation Homosexual Heterosexual -2.067 0.04
DeepSeek R1 32B judicial committee With Judicial Committee No Judicial Committee 1.962 0.075
DeepSeek R1 32B court level High Court Primary Court 3.806 0.001

Table A43: List of labels with statistically significant results (p − value < 0.1) in imbalanced
inaccuracy analysis (VI).
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H CORRELATION ANALYSIS

H.1 CORRELATIONS AMONG EVALUATION METRICS

Figure A9 consists of four scatter plots that illustrate the relationships among key evaluation metrics
of LLMs when the temperature is set to 0. Each scatter plot includes a regression line (in red) to
indicate the trend, as well as an annotation of the p-value representing the statistical significance of
the correlation. The p-value annotated in each panel quantifies the probability of observing such a
correlation by random chance. A p-value lower than 0.1 or 0.05 indicates statistical significance,
suggesting that the observed correlation is unlikely to be due to random variation. For simplicity,
we only use the results from models with a temperature of 0.

Top-left panel (Inconsistency vs. Bias Number): The x-axis represents the Bias Number, which
quantifies the total number of label values exhibiting significant bias. The y-axis represents Incon-
sistency, which measures the variability of model outputs when only the label value changes. The
plot shows a negative correlation (p-value = 0.013), suggesting that as the number of biased labels
increases, the model’s inconsistency decreases.

Top-right panel (Unfair Inaccuracy Number vs. Bias Number): The x-axis represents the Bias
Number, and the y-axis represents the Unfair Inaccuracy Number. A positive correlation (p-value =
0.018) is observed, suggesting that models with more biases are also more likely to exhibit unfair
prediction inaccuracies across certain label groups.

Figure A9: Correlations among evaluation metrics. The temperature is set to 0.
Bottom-left panel (Weighted Average MAE vs. Bias Number): The x-axis represents the Bias
Number, while the y-axis represents the Weighted Average Mean Absolute Error (MAE). There
is a clear negative correlation (p-value = 0.004), indicating that models with more biases tend to
have lower overall prediction errors, as measured by MAE. This could imply that biased models
are potentially more accurate in their predictions, though not necessarily more fair. This “accuracy-
equity trade-off” is in line with the finding in prior studies (Desiere & Struyven, 2021).

Bottom-right panel (Weighted Average MAPE vs. Bias Number): This figure is similar to the
Bottom-left panel. Y-axis here represents the Weighted Average Mean Absolute Percentage Error
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(MAPE). A strong negative correlation (p-value = 0.006) is also detected, corroborating the results
in the Bottom-left panel.

Figure A10: Correlations between model temperature and fairness metrics.

H.2 CORRELATIONS BETWEEN TEMPERATURE AND EVALUATION METRICS

Figure A10 contains three scatter plots that illustrate the relationship between model temperature (0
vs. 1) and key fairness-related metrics: inconsistency, bias number, and unfair inaccuracy number.
There are 12 data points in each panel, corresponding to the 12 models that were evaluated under
both temperature settings. The corresponding p-value for each regression is annotated within the
panel to indicate statistical significance.

Top-left panel (Inconsistency vs. Temperature): It shows that increasing temperature significantly
increases model inconsistency (p < 0.001), reflecting greater variability in predictions when only a
single label value is changed.

Top-right panel (Bias Number vs. Temperature): It reveals a significant negative correlation be-
tween temperature and the number of biased labels (p < 0.001), suggesting that higher temperature
reduces the number of statistically significant biases.

Bottom-left panel (Unfair Inaccuracy Number vs. Temperature): It shows that higher tem-
perature is associated with fewer instances of unfair inaccuracy, i.e., unbalanced prediction error
across label groups (p < 0.001). These results confirm that although a higher temperature amplifies
inconsistency, it concurrently attenuates measurable bias and unfairness in model outputs.

H.3 CORRELATIONS BETWEEN MODEL RELEASE DATE AND EVALUATION METRICS

Figure A11 presents the correlation between model release timing and fairness metrics across three
dimensions: consistency, bias, and imbalanced inaccuracy. All results are based on evaluations
conducted at temperature 0 for comparability.

Top-left panel (Days from Release vs. Inconsistency): The x-axis denotes the number of days
since model release, using January 31, 2025, as the cutoff. The y-axis represents each model’s aver-
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age inconsistency rate across all labels. While a downward trend is visually observable—suggesting
newer models may exhibit slightly lower inconsistency—the correlation is not statistically signifi-
cant (p = 0.239). This indicates weak and inconclusive evidence that newer models are more stable
in their predictions.

Top-right panel (Days from Release vs. Bias Number): This panel uses the same x-axis, with the
y-axis indicating the number of labels showing statistically significant bias. The p-value of 0.659
shows no meaningful correlation between release date and bias. This suggests that recent models do
not consistently perform better in terms of reducing systemic bias.

Bottom-left panel (Days from Release vs. Imbalanced Inaccuracy): Here, the y-axis displays the
number of labels where the model produces significantly different prediction errors across groups.
The correlation is again statistically insignificant. In sum, model release date does not strongly
predict performance in any of the three fairness dimensions.

H.4 CORRELATIONS BETWEEN MODEL SIZE AND EVALUATION METRICS

Figure A11: Correlations among days since release and fairness metrics. The temperature is set to
0.

Figure A12 analyzes the relationship between model parameter size (in log scale) and each of the
three fairness metrics.

Top-left panel (Parameter Size vs. Inconsistency): The x-axis represents parameter size in log
scale, and the y-axis shows the inconsistency rate. A significant positive trend (p = 0.084) is
observed, suggesting that larger models tend to produce more inconsistent predictions. However,
the p-value is not lower than 0.5, indicating suggestive but inconclusive evidence. Future research
could examine this issue more deeply and comprehensively.

Top-right panel (Parameter Size vs. Bias Number): The y-axis here is the number of signifi-
cantly biased labels. Again, the lack of statistical significance indicates that larger models are not
consistently better (or worse) at mitigating bias.
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Bottom-left panel (Parameter Size vs. Imbalanced Inaccuracy): For imbalanced inaccuracy,
the pattern remains similar. Across all three metrics, model size does not appear to be a reliable
predictor of fairness performance.

H.5 CORRELATIONS BETWEEN A MODEL’S COUNTRY OF ORIGIN AND EVALUATION
METRICS

Figure A13 investigates whether the country in which a model was developed has any association
with its fairness characteristics.

Top-left panel (Developer Country vs. Inconsistency): The inconsistency rate shows no signifi-
cant difference across models developed in different countries.

Top-right panel (Developer Country vs. Bias Number): Similarly, the number of biased labels is
not meaningfully associated with the developer’s national origin.

Bottom-left panel (Developer Country vs. Imbalanced Inaccuracy): No significant pattern is
observed for imbalanced inaccuracy either. Taken together, these findings suggest that fairness per-
formance does not systematically differ by model origin, at least within the scope of models included
in our analysis.

Figure A12: Correlations between model parameter size and fairness metrics. The temperature is
set to 0.
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Figure A13: Correlations between country of origin and fairness metrics. The temperature is set to
0.
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