
Specifying Goals to Deep Neural Networks with Answer Set Programming

Forest Agostinelli,1, 2 Rojina Panta, 1, 2 Vedant Khandelwal 1, 2

1 AI Institute, University of South Carolina, Columbia, South Carolina, USA
2 Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina, USA

foresta@cse.sc.edu, rpanta@email.sc.edu, vedant@mailbox.sc.edu

Abstract

The ability to easily and unambiguously specify a goal to
a planner is fundamental to human-AI collaboration and
knowledge discovery. Recently, deep reinforcement learn-
ing has been used to train deep neural networks (DNNs)
as heuristic functions for planning problems. While DNNs
can be powerful function approximators that, combined with
reinforcement learning, require little to no domain-specific
knowledge to learn, there is no formal way to specify goals
to DNNs. We introduce a method of training DNN heuris-
tic functions to estimate the distance between a given state
and a goal, where a goal is represented as a set of atoms
in first-order logic. We then use answer set programming to
specify goals, where a set of atoms representing a goal is ob-
tained from the stable model of an answer set program. The
DNN heuristic function is then combined with search to reach
goals. In our experiments with the Rubik’s cube and Sokoban,
we show that we can specify and reach a variety of differ-
ent goals without any need to re-train the DNN. Furthermore,
since the specification language is first-order logic, one can
specify a goal without having to know what states meet that
specification, beforehand. Therefore, our approach can also
be used to discover states that meet a given specification.

Introduction
Deep reinforcement learning algorithms (Sutton and Barto
2018), such as DeepCubeA (McAleer et al. 2019;
Agostinelli et al. 2019) and Retro* (Chen et al. 2020), have
successfully trained DNNs (Schmidhuber 2015) to be infor-
mative heuristic functions. Combined with search methods
such as A* search (Hart, Nilsson, and Raphael 1968), Q*
search (Agostinelli et al. 2021), or Monte Carlo Tree Search
(Kocsis and Szepesvári 2006), these learned heuristic func-
tions can solve puzzles, perform retrosynthesis, as well as
for compile quantum algorithms (Zhang et al. 2020). How-
ever, these DNNs do not generalize across goals where, in
this context, a goal is a set of states in the state space that
are considered goal states. Instead, these DNNs are either
trained for a pre-determined goal or use methods such as
hindsight experience replay (Andrychowicz et al. 2017) to
generalize across pairs of start and goal states. As a result,
specifying a goal to a DNN requires either training a DNN
for that specific goal or obtaining the heuristic values for
every goal state in the set of goal states and taking the mini-
mum heuristic value. This computationally burdensome pro-

cess significantly reduces the practicality of DNNs for solv-
ing planning problems with dynamic goals.

To address this issue, we present an approach for specify-
ing goals to a DNN using first-order logic. The DNN takes
as input a start state and a set of ground atoms that repre-
sents what should hold true in a goal state, but does not as-
sume that ground atoms that are not in this set are false. A
conversion process then translates these logical atoms to a
representation that is convenient for the DNN. To specify a
goal, any specification language that can be translated to a
set of ground atoms can be used. We choose answer set pro-
gramming (ASP) (Brewka, Eiter, and Truszczyński 2011),
a form of first-order logic programming, as the specification
language because one can obtain stable models (Gelfond and
Lifschitz 1988), also known as answer sets, for a given spec-
ification (answer set program) where each stable model is a
set of ground atoms. We also handle the case where the use
of negation as failure introduces non-monotonic behavior.
That is, conclusions that were previously derived can be re-
tracted by adding new knowledge.

To train the DNN, we generate pairs of states and goals for
training by starting from a given start state and taking a ran-
dom walk to obtain a goal state. Given a process to convert
a state to a set of ground atoms that represents what holds
true in that state, we then obtain a set of goal states that
contains the given goal state by converting the given goal
state to a set of ground atoms and simply removing atoms
from the set. We then update the estimated cost-to-go with
Q-learning. When searching for a path to the goal we em-
ploy Q* search (Agostinelli et al. 2021). We evaluate this
approach on the Rubik’s cube and Sokoban (Dor and Zwick
1999) and results show that one can specify diverse goals to
a DNN with simple answer set programs and reach them by
combining the DNN with search. Furthermore, the training
process is agnostic to the goals that will be specified at test
time. An overview of our approach is described in Figure
1. In the Future Work Section, we will discuss handling un-
reachable goals and representing goals to DNNs using lifted
representations.

Preliminaries
Our method builds on the DeepCubeA algorithm
(Agostinelli et al. 2019) that was used to train a DNN
as a heuristic function using approximate value iteration

(Puterman and Shin 1978; Bertsekas and Tsitsiklis 1996).
This heuristic function was then used in a batched version
of weighted A* search (Pohl 1970) to solve puzzles such
as the Rubik’s cube and Sokoban. Recently, research has
shown that Deep Q-Networks (DQNs) (Mnih et al. 2015)
can be used in a modified version of A* search, called Q*
search (Agostinelli et al. 2021), to significantly reduce time
and memory requirements of search by calculating the sum
of the transition costs and heuristic values of the children
of a node with a single forward pass through a DQN. For
specifying goals, we use ASP. In this section, we will
describe the background of Q-learning and Q* Search, as
well as the background of ASP. We also describe the basics
of the Rubik’s cube.

Q-learning
In the context of deterministic, finite-horizon, shortest path
problems, Q-learning is a reinforcement learning (Sutton
and Barto 2018) algorithm to learn a function, known as an
action-value function,Q(s, a), that maps a state s and action
a to the estimated cost-to-go when in state s and taking ac-
tion a. In this setting, we can write Q(s, a) in terms of the
transition cost and the cost-to-go from s′, which is the state
that results from applying action a to state s, to a closest goal
state:

Q(s, a) = ga(s, s′) + h(s′) (1)
where ga(s, s′) is the cost to transition from state s to state
s′ using action a and h(s′) is the cost-to-go from state
s′ to a closest goal state and, also, h(s′) is equivalent to
mina′ Q(s′, a′). The optimal action-value function, q∗(s, a),
represents the cost of a shortest path when in state s and tak-
ing action a. The Q-learning algorithm (Watkins and Dayan
1992) takes a given Q and updates it according to Equation
2, where α is the learning rate.

Q(s, a) = Q(s, a) +α(ga(s, s′) + min
a′

Q(s′, a′)−Q(s, a))

(2)
In the tabular setting, Q-learning has been shown to con-

verge to q∗ as time goes to infinity (Watkins and Dayan
1992). However, for domains with large state spaces, such as
the Rubik’s cube, we do not have enough memory, or time,
to do tabular Q-learning. Therefore, we represent Q(s, a)
with a parameterized function qφ(s, a) with parameters φ.
The parameters of the function are trained to minimize the
loss function in Equation 3, where φ− are parameters of a
target function that remains fixed for a certain number of
training iterations and is periodically updated to φ. This has
been shown to make the training process more stable be-
cause the target remains stationary for extended periods of
time (Mnih et al. 2015).

L(φ) = (ga(s, s′) + min
a′

qφ−(s′, a′)− qφ(s, a))2 (3)

The structure of DQNs is typically one where the input is
the state, s, and the output is a vector the size of the action
space that represents qφ(s, a) for every action a. This allows

one to compute the sum of the transition cost and cost-to-go
for all possible next states of s with a single forward pass
through the DQN, which, in turn, allows for faster heuristic
search with the Q* search algorithm.

Q* Search
Q* search (Agostinelli et al. 2021) is a heuristic search al-
gorithm inspired by A* search (Hart, Nilsson, and Raphael
1968) that uses DQNs to do heuristic search. Unlike A*
search, Q* search does not need to fully expand nodes by
applying every action to it and obtaining the resulting state.
Instead, it stores tuples of nodes and actions (node action
tuples) in the priority queue. When removing a node action
tuple from the priority queue, Q* search then applies the ac-
tion to the corresponding node to obtain the current node.
The DQN is then applied to the current node to obtain the
estimate of the sum of the transition cost and cost-to-go for
all of its children. Then, for all actions, a node action tuple
containing the current node and an action is then pushed to
the priority queue with its priority set to its path cost plus the
corresponding output of the DQN for that action. The only
aspect of this algorithm that directly depends on the size of
the action space is pushing node action tuples to the priority
queue. Due to this, results have shown that Q* search can be
orders of magnitude faster and more memory efficient than
A* search while maintaining similar performance in terms
of path cost.

Answer Set Programming
Answer set programming (ASP) (Brewka, Eiter, and
Truszczyński 2011) is a form of logic programming that is
built on the stable model semantics (Gelfond and Lifschitz
1988) which describes when a set of ground atoms, M , is
a stable model, also known as an answer set, of a program,
Π. Program Π is restricted to be a set of rules in first-order
logic of the form:

A← B1, ..., Bm,¬C1, ...,¬Cn (4)
whereA,Bi, andCi are atoms in first-order logic.A is in the
“head”, or the consequent, and Bi and Ci are in the “body”,
or the antecedent. In this notation, ¬ represents negation, a
comma represents conjunction, and ← represents implica-
tion. Since all literals in the body are connected with con-
junction, the body is true if and only if all literals in the body
are true. Since the head has just has one atom, the head is
true if and only if A is true. Since the head and the body are
connected by implication, the entire logical sentence is true
if and only if one of the two following conditions are met: 1)
the body is false; 2) the body is true and the head is true. If
there are no literals in the body (also known as “facts”), then
semantics dictate that the body is always true; therefore, the
head must also always be true. If there are no atoms in the
head (also known as “headless” rules), then semantics dic-
tate that the head is always false; therefore, the body must
also always be false. In practice, headless rules are used as
constraints and are implicitly represented with a literal,A, in
the head and a literal, ¬A, in the body that is in conjunction
with the rest of the body literals. Therefore, headless rules
are actually rules with negation in the body.

To determine if M is a stable model of Π, we first must
consider the grounded program of Π, which we will de-
note Πg . To obtain Πg , for all rules, R, in Π, every possi-
ble grounded version of R, Rg , is obtained and added to Πg .
A ground rule, Rg , is obtained from a rule, R, by substi-
tuting all variables in R for a ground term appearing in Π.
If there are no rules in Πg with negation, then there is one
unique minimal stable model of Πg (Van Emden and Kowal-
ski 1976; Gelfond and Lifschitz 1988) which corresponds to
all atoms that are derivable from Πg . An atom is derivable if
it is in the head of a rule with a body that is true. If there are
rules with negation in Πg , then we can check if a given set of
ground atoms, M , is a stable model of Πg by first comput-
ing the reduct (Marek and Truszczyński 1999) of Πg with
respect to M , which we will denote ΠM

g . ΠM
g is obtained

by starting with Πg and deleting all rules that have a nega-
tive literal, ¬Ci, in the body if Ci is in M and then delet-
ing all negative literals in the body of the remaining rules.
ΠM
g is now a negation free program, which means that it

has one unique minimal stable model. If this stable model of
ΠM
g is equivalent to M , then M is a stable model of Π. It

should be noted that Π can have multiple stable models if it
contains negation. Furthermore, some ASP solvers, such as
clingo (Gebser et al. 2022, 2014), allow for the use of dis-
junction, which can result in more than one stable model,
even if negation is not present.

In ASP, choice rules may also be employed. Choice rules
have a conjunction of literals in the body and a set of ground
atoms in the head. If the body is true, then zero or more
ground atoms in the head may be added to the stable model.
For example for the following choice rule, if the body is
true, then no ground atoms in the head may be added, one
of the ground atoms in the head may be added, or both of
the ground atoms in the head may be added (‘:-’ indicates
implication):
{a1(c,d); a2(d,c)} :- B_1, B_2, B_3

The Rubik’s Cube
The Rubik’s cube is a three dimensional cube where each
face of the cube consists of a 3 x 3 grid of stickers, which 54
stickers in total. Each sticker can be one of six colors: white,
yellow, orange, red, blue, or green. These stickers combine
where the faces intersect to form cubelets, where center
cubelets have 1 sticker, edge cubelets have 2 stickers, and
corner cubelets have 3 stickers. There are 6 center cubelets,
12 edge cubelets, and 8 corner cubelets. While the canonical
goal state for the Rubik’s cube is one where all stickers on
each face have the same color, there are many other patterns
that interest the Rubik’s cube community (Ferenc n.d.).

Methods
Learning Heuristic Functions for Goals
To learn a function that estimates the distance between a
state, s, and a goal, G, we must explicitly add the speci-
fied goal as an input to the action-value function. Therefore,
the action-value function now becomes Q(s, a,G), that rep-
resents the cost to go from s to a closest state in G when
taking action a. In our implementation, we use a DQN with

parameters φ whose input is s and G and whose output is a
vector representing qφ(s, a,G) for all actions, a. We assume
a function G(s) that converts states to a set of ground atoms
and some process to convert G to a representation suitable
for the DQN. To train the DQN, we must first have the abil-
ity to sample state and goal pairs. From these pairs, we can
then compute the loss using Q-learning.

To sample state and goal pairs, the agent starts at a ran-
domly generated state, s0. The agent then takes t actions,
where t is drawn from a random uniform distribution be-
tween 0 and a given number T . Each action is sampled ac-
cording to a random uniform distribution1. The last observed
state, st, is then selected to create a goal, G, by first obtaining
G(st). Since any G(st) that is a superset of a goal, G, also
represents a goal, we can simply randomly remove atoms
from G(st) to create G such that G ⊆ G(st) and; therefore,
st is a member of the set of goal states.

After obtaining state and goal pairs, we must select an ac-
tion to update before computing the loss. While we could
select the random uniformly selected action that was taken
from state s0 when generating the goal, we would like to
prioritize more promising actions over less promising ac-
tions during learning to ensure the estimate of the cost-
to-go h(s) = mina qφ(s, a,G) is not biased towards less
promising actions. Therefore, we select actions according
to a Boltzmann distribution where each action a is selected
with probability according to Equation 5, where |A| is the
size of action space and T is the temperature.

e(−qφ(s,a,G)/T)∑|A|
a′=1 e

(−qφ(s,a′,G)/T)
(5)

After action selection, the loss for the DQN is computed ac-
cording to Equation 6. The parameters of the target network,
φ−, are periodically updated to φ. This training procedure is
outline in Figure 1.

L(φ) = (ga(s, s′) + min
a′

qφ−(s′, a′,G)− qφ(s, a,G))2 (6)

Specifying Goals with Answer Set Programming
A logic program Π used to specify a goal contains back-
ground knowledge, B, which is a set of rules that describes
relevant domain knowledge, a goal specification, H , which
is a set of rules with the atom goal in the head, a headless
rule, :- not goal, that ensures goal must be true in all
stable models, and a choice rule with an empty body that
contains the set of all possible ground atoms, K, that can
be used to represent a set of states. Given a stable model M
of Π, the subset of M in K, MK , represents a set of states.
With this, we can define goal states and goal models:
Definition 0.1 (Goal state). Given a program Π, a state, s,
is a goal state if and only if G(s) is a subset of some stable
model of Π.
Definition 0.2 (Goal model). Given a program Π, a set of
ground atoms, M , is a goal model if and only if M is a

1Future work could use intrinsic motivation (Barto et al. 2004)
to encourage the exploration of diverse states.

Algorithm 1: Reaching a Specified Goal

Input: Program Π, DQN qφ, start state s0, number of it-
erations N
for i in range(0, N) do

Sample stable model M of Π
while M is not None do
sg = Q*Search(s0, M , qφ)
if sg is not None andG(sg) is a subset of some stable
model of Π then

return sg
end if
Find M ′ such that M ′ is a stable model of Π and
MK ⊂M ′K
M = M ′

end while
end for
return failure

stable model of Π and for every state, s, such that G(s) is a
superset of MK , s is a goal state.

If M is indeed a goal model, then MK represents a set
of goal states. However, it is not the case that all stable
models of Π are goal models since, in general, logic pro-
grams in ASP can exhibit non-monotonic behavior due to
the closed world assumption. That is, a logic program is
non-monotonic if some atoms that were previously derived
can be retracted by adding new knowledge. To handle this,
we will combine sampling and iteratively looking for larger
models in an attempt to reduce the number of stable mod-
els that are not goal models. We will use the clingo (Gebser
et al. 2014, 2022) ASP software package to specify goals.

Reaching Goals with Q* Search
Given a DQN trained to estimate the distance between a state
and a goal, where a goal is represented as a set of ground
atoms, as well as a specification in the form of a logic pro-
gram, Π, we can now describe how goals are reached. We
first start by finding a stable model M of Π. Since M is not
guaranteed to be a goal model, it is possible that the terminal
state along some path toM is not a goal state. Therefore, we
will use the DQN with Q* search to find one or more paths to
M . If none of the terminal states along these paths are goal
states, we will refine M by searching for a stable model that
contains a strict superset of MK . This corresponds to find-
ing a new stable model, M ′, where M ′K represents a subset
of the states represented by MK . To accomplish this, MK

are added to Π as facts and a new stable model,M ′, is found
with the constraint that the size of M ′K must be bigger than
MK . This process is outlined in Algorithm 1.

Similar to previous work (Agostinelli et al. 2019, 2021),
to take advantage of the parallelism of graphics processing
units (GPUs), we do a batched version of Q* search that
removes more multiple nodes from the priority queue at each
iteration. In addition, we use weighted Q* search that puts a
weight between 0 and 1 on the path cost as, in practice, this
leads to shorter solve times and less memory usage.

Experiments
Representation and Training
We investigate goal specification for the Rubik’s cube. To
specify a set of states, we use a predicate, at_idx, of ar-
ity 2, that holds when a given color is at a given index.
For example at_idx(red,12) holds if red is at index
12 on the Rubik’s cube. at_idx is derived from predicate
at_idx_cbl of arity 3 that holds when the color on a
given cubelet is at a given index. This is a conditional lit-
eral that can have zero to as many combinations of cubelets,
colors, and indices as possible. Below we show how we de-
fine colors, cubelets, what color stickers the cubelets have,
and at_idx:

color(w). color(y). ... color(g).
white(w). yellow(y). ... green(g).

center_cbl(w_c). center_cbl(y_c). ...
center_cbl(g_c).
edge_cbl(wo_c). edge_cbl(wg_c). ...
edge_cbl(rb_c).
corner_cbl(wog_c). corner_cbl(wob_c).
... corner_cbl(yrg_c).

cubelet(Cbl) :- center_cbl(Cbl).
cubelet(Cbl) :- edge_cbl(Cbl).
cubelet(Cbl) :- corner_cbl(Cbl).

has_col(w_c, w). has_col(y_c, y).
...has_col(g_c, g).
has_col(wo_c, w). has_col(wo_c, o). ...
has_col(rb_c, b).
has_col(wog_c, w). has_col(wog_c, o).
... has_col(yrg_c, g).

index(0..54).
{ at_idx_cbl(Cbl, Col, I) :
cubelet(Cbl), color(Col), index(I) }.
at_idx(Col, I) :- at_idx_cbl(_, Col,
I).

In addition, we define directions (clockwise, counter-
clockwise, and opposite), faces, their colors (the same as the
center cubelet), and their relation to one another (for exam-
ple, the blue face is a clockwise turn away from the orange
face with respect to the white face). We also describe what
it means for a cubelet to have a sticker on a face as well as
for a cubelet to be “in place” (all colors matching the center
cubelet).

We add constraints to the program to prune stable models
that represent impossible states. Some constraints used are
shown below:

% different stickers from the same
cubelet cannot be on the same face
:- onface(Cbl, Col0, F), onface(Cbl,
Col1, F), dif_col(Col0, Col1).

% cannot have a sticker color from same
cubelet be on more than one face

DNN

𝑠! 𝑠"𝑎! 𝑎" … 𝑠#

State to ground atoms
To DNN representation

𝒢ℎ$(𝑠!, 𝒢)

Specification
Language

Human Input

Specification to
ground atoms

Reinforcement
Learning Update

𝐺(𝑠#)

Subsample

Training steps

Both

Specification steps

Figure 1: The figure outlines our training procedure as well as the goal specification procedure. Steps involving training are
solid black lines, steps involving human goal specification are dashed black lines, and steps common to both are grey lines.
The DNN is trained with Q-learning and hindsight experience replay. Pairs of start and goal states are obtained by selecting a
random start state, taking t steps where t for each training example is randomly distributed between 0 and T , and converting
the state at time step t to a set of logical atoms. A subset of the logical atoms is taken to obtain a goal which represents a set
of states. After training, a human then describes a start state and a goal, where the goal is then converted to a set of logical
atoms and, subsequently, given to the DNN. Note that, given a method to convert the specification to a set of logical atoms, the
specification language is independent of the training procedure.

:- onface(Cbl, Col, F0), onface(Cbl,
Col, F1), dif_face(F0, F1).

% cannot say a color of a cubelet is on
a face if it does not have that color
:- onface(Cbl, Col, _), not
has_col(Cbl, Col).

% cannot have two stickers from same
cbl on opposite faces
:- onface(Cbl, Col0, F0), onface(Cbl,
Col1, F1), face_rel(_, F0, F1, op).

% cannot have two different colors at
the same index
:- at_idx(Col0, I), at_idx(Col1, I),
dif_col(Col0, Col1).
We also make sure the stable model as the fewest number of
atoms as possible to obtain the most general stable models
possible using the optimization functionality of clingo:

count_at_idx(C) :- #count{V0, V1:
at_idx(V0,V1) }=C.
#minimize {C: count_at_idx(C)}.

To represent a stable model to the DQN, we use a vector of
length 54 to represent each sticker. We then set colors values
of 0 through 5 based on the at_idx predicate. Unspecified
indices in the vector are set to 6. We then use a one-hot rep-
resentation of this vector as the input to the DQN. The start

state is also represented with a one-hot representation, ex-
cept every sticker is specified, removing the need for the ad-
ditional value of 6. The architecture of the DQN we use and
the optimization procedure is the same as that described in
Agostinelli et al. (2021). However, Agostinelli et al. (2021)
only trains the DQN for a predetermined goal state. Our
training procedure, described in the Methods Section, sam-
ples state and goal pairs for training. To randomly generate
start states, for each state, we start from the canonical goal
state and randomly take between 100 and 200 actions. The
temperature, T , for action selection is set to 1/3. We train
and test using two NVIDIA Tesla V100 32 GB GPUs and
48 2.4 GHz Intel Xeon Platinum CPUs.

Specifying and Reaching Goals
Rubik’s Cube To test our method, we draw from Ferenc
(n.d.) to come up with goals that combine different Rubik’s
cube patterns shown in Figure 2. We also test our method
with the canonical solved state for the Rubik’s cube where
all faces have a uniform color. All patterns are described us-
ing clingo. Given the background knowledge, many patterns
only require a few lines of code, as shown below. Note that
the training procedure is not told of these patterns and is not
aware that these patterns will be used for testing.

% cross
cross(F, CrossCol) :- face(F),
color(CrossCol), #count{Cbl:

(a) Cross (b) X (c) Cup (d) Spot

Figure 2: Examples of patterns that are combined to create
goals.

edge_cbl(Cbl), onface(Cbl, CrossCol,
F)} = 4.

% X
x(F, XCol) :- face(F), color(XCol),
#count{Cbl: corner_cbl(Cbl),
onface(Cbl, XCol, F)} = 4.

% cup
cup(F1, F2, CCol) :- dif_face(F1, F2),
face_col(F1, F1Col), dif_col(F1Col,
CCol), edge_cbl(ECbl), onface(ECbl,
_, F2), onface(ECbl, F1Col, F1),
#count{Cbl: edge_or_corner(Cbl),
onface(Cbl, CCol, F1)} = 7.

% spot
spot(F, BCol) :- color(BCol), face(F),
face_col(F, FCol), dif_col(FCol, BCol),
#count{Cbl: onface(Cbl, BCol, F),
edge_or_corner(Cbl)} = 8.

% canonical solved state
face_same(F) :- face_col(F, FCol),
#count{Cbl : onface(Cbl, FCol, F)}=9.
canon_solved :- #count{F :
face_same(F)}=6.

(a) Example 1 (b) Example 2

Figure 3: Reached goal of having a cross on all 6 faces where
the center cubelet and cross are the same color.

(a) Example 1 (b) Example 2

Figure 4: Reached goal of having cups on red, green, blue,
and orange faces.

(a) Example 1 (b) Example 2

Figure 5: Reached goal of having a cup adjacent to a spot.

(a) Example 1 (b) Example 2

Figure 6: Reached goal of having two checkerboards on op-
posite faces with all of the other faces the same.

In addition to the canonical goal, we specify four other
goals: (1) all faces have a cross where the cross is the same
color as the center piece; (2) the red, green, blue, and orange
faces have a cup on them (3) there is a spot adjacent to a
cup with the opening of the cup facing the spot; (4) there are
two checkerboard patterns (a cross combined with an X) on
opposite faces and all other faces have uniform color. Given
a logic program, we use clingo (Gebser et al. 2014, 2022) to
find stable models. To reach goals, we sample up to 10 stable
models of the answer set program that represent the goal and
find a path to 100 goal states by randomly generating start
states and using batch weighted Q* search to find a path
from these start states to a goal state. We use a batch size
of 10,000 and a weight of 0.6 when doing batch weighted
Q* search. Each randomly generated start state is a given a
budget of 50 iterations. If a goal is not found in that time,
then a new start state is generated. Visualizations of reached
goals for the four non-canonical goals are shown in Figures
3, 4, 5, and 6. A table summarizing the time it takes to find
stable models, find 100 goals, as well as the average path
cost is shown in Table 1.

Table 1: The time it takes to find stable models for each goal,
the time it takes to find 100 goal states, and the average path
cost from the start states to the goal states.

Stable Model
Time (secs)

Solve Time
(secs)

Path Cost

Canon 0.33 625.62 23.82
Cross6 0.35 218.45 11.50
Cup4 11.17 1622.39 24.44
CupSpot 123.04 291.25 14.7
Checkers 0.44 602.03 24.00

Sokoban We also test our method on the Sokoban domain.
This domain presents a unique challenge because many sta-
ble models can be found for a specification that are not
reachable. This is because, unlike the Rubik’s cube, Sokoban
is not a reversible environment. This is also because the start
state determines ground atoms that will be present in a goal

state. In particular, in the Sokoban domain, the walls cannot
be modified; therefore, the specification of a goal must also
take this into account. To address the fact that many stable
models are not reachable, for a given start state, we find 10
goal models and simultaneously find a path from the start
state to all goal models. To address the dependence of the
goal on the start state, we add the location of the walls to the
specification. We discuss more robust potential solutions to
these problems in the Future Work Section.

The given background knowledge includes the dimen-
sions of the grid, the relations of coordinates in terms of up,
down, left, and right, what it means for a box to be immov-
able, what it means for a box to be at the edge of the grid,
as well as basic constraints that state that two objects can-
not share the same location. The predicates agent(X,Y),
box(X,Y), and wall(X,Y) hold if an agent, box, or wall
is at coordinates (X,Y). We investigate the following goals:
(1) all boxes are immovable; (2) all boxes form a larger box;
(3) the four boxes occupy the four corners next to the agent.
Visualizations of reached goals are shown in Figures 7, 8,
and 9. Snippets of code used to specify these goals are shown
below:

box_stuck(X,Y) :- box(X,Y), manhat(D1),
immovable_edge_d(X,Y,D1), adj(D1,D2),
immovable_edge_d(X,Y,D2).
box_stuck_4 :- #count{X,Y:
box_stuck(X,Y)}=4.

box_of_boxes :- box(X,Y), box(X+1,Y),
box(X,Y-1), box(X+1,Y-1).

agent_box_corners :- agent(X,Y),
box(X+1,Y+1), box(X+1,Y-1),
box(X-1,Y+1), box(X-1,Y-1).

(a) Example 1 (b) Example 2

Figure 7: Reached goal where all boxes are immoveable.

(a) Example 1 (b) Example 2

Figure 8: Reached goal where all boxes form a larger box.

(a) Example 1 (b) Example 2

Figure 9: Reached goal where four boxes are at the four cor-
ners of the agent.

Discussion
To illustrate the power of specifying a set of states as a goal
instead of pre-determined states, we note that the Cross6
goal contains the canonical goal state in the set of states that
it represents. However, finding the canonical goal state takes
about three times as long and has a path cost that is about
twice as long when compared to the Cross6 goal. This in-
dicates that this method has the potential to allow us to dis-
cover more efficient plans as well as to discover new knowl-
edge by achieving unanticipated goal states that even hu-
mans have not yet considered. For example, in a domain
such as chemical synthesis, this could allow practitioners to
discover new synthesis routes as well as learn more about
chemistry by examining the properties of the unanticipated
molecules that meet their specifications.

When examining solve time and path cost in Table 1, the
Cross6 goal takes the least amount of time and has the short-
est average path cost. The CupSpot goal is also comparable
along these same metrics. This could be because Cross6 and
CupSpot need to consider fewer stickers than other goals.
However, the Cup4 goal takes the longest to reach out of all
the goals even though it also needs to consider fewer stick-
ers than both the canonical goal and the Checkers goal. One
indication of the cause of this is that Q* search frequently
went over its budget of 50 iterations for the Cup4 goal. This
could be because some of the stable models actually repre-
sent sets of states that are not reachable. We discuss ways to
overcome this in the Future Work Section.

When examining the time it takes to find stable models
in Table 1, the CupSpot goal takes the longest out of all the
goals. This could be due to having many constraints to con-
sider when finding the stable models. However, dealing with
the constraints when solving for the stable models could lead
to faster solve times as fewer stable models will represent
unreachable goals. It could also be the case that certain con-
straints could be expressed in a more concise manner.

Related Work
Planning languages such as the Planning Domain Definition
Language (PDDL) specify goals using formal logic. Further-
more, a planning problem can be described to a wide vari-
ety of planners and heuristics can be computed to guide the
planning process. However, when using heuristic functions
represented by DNNs, there is no formal way to represent
what the goal of the planning problem is. Our approach of

obtaining stable models from logic programs could be ex-
tended to descriptions of goals in PDDL. Furthermore, in
the Future Work Section, we discuss ways goals can be rep-
resented with logic, itself, without having to solve for stable
models.

Learning from partial interpretations (Fensel et al. 1995;
De Raedt 1997) is a setting in inductive logic programming
(Muggleton 1991; De Raedt 2008; Cropper and Dumančić
2022) where the training examples are not fully specified.
This setting has also been applied to learning answer set
programs from partial stable models (Law, Russo, and Broda
2014). This work has parallels with our work, except, instead
of learning an answer set program as in Law, Russo, and
Broda (2014), the specification is given in the form of an an-
swer set program. Furthermore, instead of being given par-
tial stable models as examples as in Law, Russo, and Broda
(2014), the goal specification produces partial stable models
that are then used by the DNN to reach the goal.

Research on training deep neural networks to generalize
over both states and goals has mainly focused on goals that
are represented by a single state. In reinforcement learn-
ing, Universal Value Function Approximators (Schaul et al.
2015) were proposed to learn a value function with an ad-
ditional input of a goal state. Hindsight Experience Replay
(Andrychowicz et al. 2017) built on this approach to learn
from failures by using states observed during an episode as
goal states, even if they were not the intended goal state.
This approach has enabled learning in sparse reward envi-
ronments, such as those involving object manipulation, and
has shown to generalize to goal states not seen during train-
ing. After training, one can then specify what the goal state
is, provided the practitioner has the ability to fully specify
a goal state. However, this approach becomes impractical in
cases where there are a diverse set of acceptable goal states
that the agent could possibly reach or where only high-level
qualities of a goal are known, but the low-level details are
not.

Future Work
In this work, we investigated the Rubik’s cube, which is a
domain in which every state is reachable from every other
state. However, in domains such as Sokoban, this is not the
case. As a result, not all goals will be reachable from every
possible start state. In these cases, the training process could
be augmented with mining for “negative” goals (Tian et al.
2021) that cannot be reached. The DQN should then give
a very high cost-to-go when a goal is not reachable from
a given start state. We can then sample start and goal state
pairs that are below some threshold. This sampling proce-
dure could also be imbued with a learned heuristic to guide
the ASP solver towards reachable stable models.

In addition to unreachable goals, one could specify goals
that only represent impossible states or have some stable
models that only represent impossible states. For example,
one could specify a Rubik’s cube state with two adjacent
faces that are entirely white. This is impossible for multiple
reasons: 1) There cannot be more than one center cubelet of
the same color; 2) Since the faces are adjacent, there would

have to be cubelets with two white stickers, which is im-
possible because no cubelet has two stickers of the same
color; 3) There would be more than nine stickers of the same
color. While these constraints could be manually added to
the program, we also want to strive for a system that discov-
ers new constraints that even humans have not yet discov-
ered. Given a specification, one could use a generality rela-
tionship, such as entailment or theta subsumption (Plotkin
1972), to find the most general specification that represents
impossible states and add this to the background knowledge
as a constraint. Such an approach would build on literature
from inductive logic programming.

Our approach of using ground atoms to represent a goal
comes with the advantage of being agnostic to the specifi-
cation language as long as it can produce a set of ground
atoms. Therefore, in the case of using ASP as the specifi-
cation language, changes can be made to the predicates or
even the ASP software used without having to re-train the
DNN. However, this comes with the computational cost of
having to solve for a set of ground atoms given a specifica-
tion. One could instead train the heuristic function to esti-
mate the distance between a state and a lifted specification
that either implicitly or explicitly contains variables. This
could be done for any kind of specification, such as first-
order logic or even natural language, given the ability to go
from a state to a specification representing a set of states
of which that state is a member. For example, the specifi-
cation given to the heuristic function could be a sentence in
first-order logic describing the goal. One could obtain train-
ing examples by obtaining a goal state and then searching
for a first-order logic sentence that represents a set of states
of which that goal state is a member. The downside to this
approach is that any change in the vocabulary of the specifi-
cation may require re-training of the DNN.

Conclusion
We have formalized a method for specifying goals to heuris-
tic functions represented by DNNs using a specification lan-
guage that is accessible to humans. This goal specification
is done without any need to re-train the DNN for that partic-
ular goal. Furthermore, the language used to specify goals
only needs to be able to be translated into a set of ground
atoms, which makes the DNN agnostic to the specification
language. Using answer set programming, one can easily
specify properties that a goal state should have without hav-
ing to specify any goal state in particular. Therefore, this
method has the ability to discover novel goal states and;
therefore, facilitate the discovery of new knowledge.

References
Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s cube with deep reinforcement
learning and search. Nature Machine Intelligence, 1(8):
356–363.
Agostinelli, F.; Shmakov, A.; McAleer, S.; Fox, R.; and
Baldi, P. 2021. A* search without expansions: Learning
heuristic functions with deep Q-networks. arXiv preprint
arXiv:2102.04518.

Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, O. P.; and
Zaremba, W. 2017. Hindsight experience replay. In Ad-
vances in Neural Information Processing Systems, 5048–
5058.
Barto, A. G.; Singh, S.; Chentanez, N.; et al. 2004. Intrinsi-
cally motivated learning of hierarchical collections of skills.
In Proceedings of the 3rd International Conference on De-
velopment and Learning, volume 112, 19. Citeseer.
Bertsekas, D. P.; and Tsitsiklis, J. N. 1996. Neuro-dynamic
programming. Athena Scientific. ISBN 1-886529-10-8.
Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. Communications of the ACM,
54(12): 92–103.
Chen, B.; Li, C.; Dai, H.; and Song, L. 2020. Retro*: learn-
ing retrosynthetic planning with neural guided A* search.
In International Conference on Machine Learning, 1608–
1616. PMLR.
Cropper, A.; and Dumančić, S. 2022. Inductive logic pro-
gramming at 30: a new introduction. Journal of Artificial
Intelligence Research, 74: 765–850.
De Raedt, L. 1997. Logical settings for concept-learning.
Artificial Intelligence, 95(1): 187–201.
De Raedt, L. 2008. Logical and relational learning.
Springer Science & Business Media.
Dor, D.; and Zwick, U. 1999. SOKOBAN and other motion
planning problems. Computational Geometry, 13(4): 215–
228.
Fensel, D.; Zickwolff, M.; Wiese, M.; et al. 1995. Are sub-
stitutions the better examples? Learning complete sets of
clauses with Frog. In Proceedings of the 5th International
Workshop on Inductive Logic Programming, 453–474. Cite-
seer.
Ferenc, D. n.d. Pretty Rubik´s Cube patterns with algo-
rithms. Accessed March 28, 2023. https://ruwix.com/the-
rubiks-cube/rubiks-cube-patterns-algorithms/.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2014. Clingo= ASP+ control: Preliminary report. arXiv
preprint arXiv:1405.3694.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2022. Answer set solving in practice. Springer Nature.
Gelfond, M.; and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In ICLP/SLP, volume 88,
1070–1080. Cambridge, MA.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics, 4(2): 100–107.
Kocsis, L.; and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In European conference on machine learn-
ing, 282–293. Springer.
Law, M.; Russo, A.; and Broda, K. 2014. Inductive learning
of answer set programs. In Logics in Artificial Intelligence:
14th European Conference, JELIA 2014, Funchal, Madeira,
Portugal, September 24-26, 2014. Proceedings 14, 311–325.
Springer.

Marek, V. W.; and Truszczyński, M. 1999. Stable models
and an alternative logic programming paradigm. The Logic
Programming Paradigm: a 25-Year Perspective, 375–398.
McAleer, S.; Agostinelli, F.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s Cube with Approximate Policy
Iteration. In International Conference on Learning Repre-
sentations.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533.
Muggleton, S. 1991. Inductive logic programming. New
generation computing, 8: 295–318.
Plotkin, G. 1972. Automatic methods of inductive inference.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial intelligence, 1(3-4): 193–204.
Puterman, M. L.; and Shin, M. C. 1978. Modified policy
iteration algorithms for discounted Markov decision prob-
lems. Management Science, 24(11): 1127–1137.
Schaul, T.; Horgan, D.; Gregor, K.; and Silver, D. 2015. Uni-
versal value function approximators. In International Con-
ference on Machine Learning, 1312–1320.
Schmidhuber, J. 2015. Deep learning in neural networks:
An overview. Neural networks, 61: 85–117.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Tian, S.; Nair, S.; Ebert, F.; Dasari, S.; Eysenbach, B.; Finn,
C.; and Levine, S. 2021. Model-Based Visual Planning with
Self-Supervised Functional Distances. In International Con-
ference on Learning Representations.
Van Emden, M. H.; and Kowalski, R. A. 1976. The seman-
tics of predicate logic as a programming language. Journal
of the ACM (JACM), 23(4): 733–742.
Watkins, C. J.; and Dayan, P. 1992. Q-learning. Machine
learning, 8(3-4): 279–292.
Zhang, Y.-H.; Zheng, P.-L.; Zhang, Y.; and Deng, D.-L.
2020. Topological Quantum Compiling with Reinforcement
Learning. Physical Review Letters, 125(17): 170501.

