
Surrogate Assisted Generation
of Human-Robot Interaction Scenarios

Varun Bhatt, Heramb Nemlekar, Matthew C. Fontaine, Bryon Tjanaka,
Hejia Zhang, Ya-Chuan Hsu, and Stefanos Nikolaidis

University of Southern California
Los Angeles, CA

vsbhatt,nemlekar,mfontain,tjanaka,hejiazha,yachuanh,nikolaid@usc.edu

Abstract: As human-robot interaction (HRI) systems advance, so does the diffi-
culty of evaluating and understanding the strengths and limitations of these sys-
tems in different environments and with different users. To this end, previous
methods have algorithmically generated diverse scenarios that reveal system fail-
ures in a shared control teleoperation task. However, these methods require di-
rectly evaluating generated scenarios by simulating robot policies and human ac-
tions. The computational cost of these evaluations limits their applicability in
more complex domains. Thus, we propose augmenting scenario generation sys-
tems with surrogate models that predict both human and robot behaviors. In the
shared control teleoperation domain and a more complex shared workspace col-
laboration task, we show that surrogate assisted scenario generation efficiently
synthesizes diverse datasets of challenging scenarios. We demonstrate that these
failures are reproducible in real-world interactions.

Keywords: Scenario Generation, Human-Robot Interaction, Quality Diversity

1 Introduction

As the complexity of robotic systems that interact with people increases, it becomes impossible
for designers and end-users to anticipate how a robot will act in different environments and with
different users. For instance, consider a robotic arm collaborating with a user on a package labeling
task, where a user attaches a label while the robot presses a stamp with the goal of completing the
task as fast as possible (Fig. 1). In this task, the arm infers the user’s intended goal object and moves
simultaneously towards a different object to avoid collision. The robot’s motion depends on which
object the user selects to label, how the user moves towards that object, and how all objects are
arranged in the environment. Thus, evaluating the system requires testing it with a diverse range of
user behaviors and object arrangements.

While user studies are essential for understanding how users will interact with a robot, they are lim-
ited in the number of environments and user behaviors they can cover. Algorithmically generating
scenarios with simulated robot and human behaviors in an “Oz of Wizard” paradigm [1] can comple-
ment user studies by finding failures and elucidating a holistic view of the strengths and limitations
of a robotic system’s behavior.

Previous work [2, 3] has formulated algorithmic scenario generation as a quality diversity (QD)
problem and demonstrated the effectiveness of QD algorithms in generating diverse collections of
scenarios in a shared control teleoperation domain. In that domain, a user teleoperates a robotic arm
with a joystick interface, while the robot observes the joystick inputs to infer the user’s goal and
assist the user in reaching their goal. However, these interactions only last a few seconds in con-
trast to collaborative, sequential tasks that last much longer. For instance, completing the package
labeling task (Fig. 1) can take several minutes, making their evaluation expensive. This limits the
applicability of QD algorithms, which require a large number of evaluations [4].

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.



Figure 1: Example scenario in a collaborative package labeling task found by our proposed surrogate
assisted scenario generation framework. The presence of the two objects behind the robot results in
its expected cost-minimizing policy to move towards the object in the front, resulting in a conflict
with the user who is reaching the object at the same time.

Our key insight is that we can train deep neural networks as surrogate models to predict human-
robot interaction outcomes and integrate them into the scenario generation process. In addition
to making scenario evaluations inexpensive, deep neural networks are end-to-end differentiable,
which allows us to integrate state-of-the-art differentiable quality diversity (DQD) algorithms [5] to
efficiently discover scenarios that the surrogate model predicts are challenging with diverse behavior.

We make the following contributions: (1) We introduce using deep neural networks as surrogate
models to predict human-robot interaction outcomes, such as time to task completion, maximum
robot path length, or total waiting time; (2) We integrate surrogate models with differentiable quality
diversity (DQD) algorithms that leverage gradient information backpropagated through the surrogate
model. (3) We show, in the shared control teleoperation domain of previous work [2] and in a shared
workspace collaboration domain [6], that surrogate assisted scenario generation results in significant
benefits in terms of sample efficiency. It also achieves a significant reduction in computational time
in the collaboration domain, where evaluations are particularly expensive.

2 Problem Statement

We model the problem of generating a diverse and challenging dataset of human-robot interaction
scenarios as a quality diversity (QD) problem and adopt the QD definition from prior work [5].

We assume a scenario parameterized by θ ∈ Rn. The scenario parameters could be object posi-
tions and types in the environment, human model parameters, or latent inputs to a generative model
of environments, which is converted to a scenario via a function G(θ). The objective function
f : Rn → R assesses the quality of a scenario θ. Because we wish to find challenging scenarios,
higher quality implies worse team performance, e.g., longer task completion time.

We further assume a set of user-defined measure functions, mi : Rn → R, or as a vector function
m : Rn → Rk, that quantify aspects of the scenario that we wish to diversify, e.g., distance between
objects, noise in user inputs, or human and robot path length. The range of m forms a measure
space S = m(Rn), which we assume is tessellated into M cells, forming an archive.

The QD objective is to maximize the QD-score [7]: maxθi

∑M
i=1 f(θi). Here θi refers to the

scenario with the highest quality in cell i of the archive. If there are no scenarios in a cell, f(θi) is
assumed to be zero.

The differentiable quality diversity (DQD) problem formulation is a special case of QD where the
objective function f and measure functions m are first-order differentiable.

3 Background

Scenario Generation. Algorithmic scenario generation has many applications, which include de-
signing video game levels [8, 9, 10, 11, 12, 13, 14] and testing autonomous vehicles [15, 16, 17, 18,
19, 20, 21], motion planning algorithms [22], and reinforcement learning agents [23, 24, 25, 26]. It
has also been applied to create curricula for robot learning [27, 28, 29, 30] and to co-evolve agents

2



Sample Gradient
Coefficients

Branch Scenarios via 
Surrogate Model Gradients

Generate Scenarios and Evaluate 
on Surrogate Model

Predict System Performance, 
Measures, and Occupancy 

for each Scenario

Update Surrogate Archive
Ascend to Maximize

QD Objective

Simulate Scenarios from 
Surrogate Archive

Label Ground-truth System 
Performance, Measures, and 
Occupancy for each Scenario Update Ground-Truth Archive

Update Scenario 
Dataset

Train the Surrogate Model 
on the Scenario Dataset

Inner Loop

Outer Loop

Self-supervised Robot and Human 
State Occupancy Prediction

A Predict
Human

Occupancy

Predict
Robot

Occupancy

Input Scenario

MIP Repair of Scenarios

A

Figure 2: An overview of our proposed differentiable surrogate assisted scenario generation (DSAS)
algorithm for HRI tasks. The algorithm runs in two stages: an inner loop to exploit a surrogate model
of the human and the robot behavior (red arrows) and an outer loop to evaluate candidate scenarios
and add them to a dataset (blue arrows). See App. A for the complete pseudocode.

and environments for agent generalizability [31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. Most relevant
to our work is prior work [2, 3] in human-robot interaction that applied the MAP-Elites [41] and
CMA-ME [42] quality diversity (QD) algorithms to find robot failures in a shared control teleopera-
tion domain. In this work, we significantly improve sample and wall-clock efficiency by combining
the state-of-the-art QD algorithms CMA-MAE [43] and CMA-MAEGA [43] with surrogate models
that predict human-robot interaction outcomes.

QD Algorithms. QD algorithms, such as MAP-Elites [41] and CMA-MAE [42, 43], solve the QD
problem defined in Sec. 2. They have been used to generate diverse locomotion strategies [41, 44],
video game levels [45], nano-materials [46], and building layouts [47]. Certain prior QD algo-
rithms [4, 48, 49, 23] have leveraged surrogate models based on Gaussian processes or deep neural
networks to guide the search. Most relevant to our work is the Deep Surrogate Assisted Generation
of Environments (DSAGE) [23] algorithm, which exploits a surrogate model with quality diversity
algorithms to generate environments. However, DSAGE has only been applied in single-agent grid-
world game domains. In contrast, this work addresses the much more complex task of human-robot
interaction scenarios, which requires the advances in the surrogate model, QD search, and scenario
generation described in Sec. 4.

4 Surrogate Assisted Scenario Generation

Our method for algorithmically generating diverse collections of HRI scenarios builds upon recent
work in generating single-agent grid-world environments with surrogate models [23]. We briefly de-
scribe the advances necessary to scale these techniques from single-agent grid-world game domains
to the much more complex HRI domains.

Surrogate Models for Human-Robot Interaction. We scale the surrogate model to predict out-
comes of HRI scenarios that include both robot and human behavior and environment parameters.

3



First, we allow both the environment and the human model parameters as inputs to the surrogate
model. Second, we discretize the shared workspace and predict two occupancy grids, one for the
human and one for the robot. We then stack both predictions as inputs to a convolutional neural
network, which predicts the objective and measure functions. App. B provides precise details of our
surrogate model.

Scenario Repair via Mixed Integer Programming. In contrast to previous work [2] that con-
sidered a single workspace, scenarios in our work have disjoint workspaces, with each workspace
imposing constraints on object arrangement, such as boundary and collision avoidance constraints.
Simulating the scenario is impossible if these constraints are not satisfied. We thus adopt a generate-
then-repair approach [50, 51], where we generate unconstrained scenarios and pass them through a
mixed integer program (MIP). We propose a MIP formulation that solves for the minimum cost edit
of object locations – the sum of object displacement distances – that satisfies the constraints for a
valid scenario. See App. C for the complete MIP formulation.

Objective Regularization. The generate-then-repair strategy repairs invalid scenarios by moving
objects placed outside the workspace boundaries to the edge of the workspaces. However, this does
not incentivize the QD algorithm to search the workspace interiors, which can result in the search
diverging away from the workspace areas. To guide the search towards the workspace interiors, we
discount the objective function f of the QD formulation by the cost of the MIP repair. An ablation
study in App. H.3 shows the effects of objective regularization on performance.

DQD with Surrogate Models. The DSAGE algorithm exploits the surrogate model with derivative-
free QD algorithms. A key observation is that the surrogate model is an end-to-end differentiable
neural network. We can take advantage of this by exploiting the surrogate model with differentiable
quality diversity (DQD) algorithms [5], which leverage the gradients of the objective and measure
functions to accelerate QD optimization. Leveraging DQD also lets us scale to higher dimensional
scenario parameter spaces since the search is applied over the objective-measure space (k + 1 di-
mensions) instead of the scenario parameter space (n dimensions).

Algorithm. Fig. 2 provides an overview of the complete algorithm, which consists of an outer
loop (blue arrows) and an inner loop (red arrows). In the inner loop, a QD algorithm searches
for scenarios that are challenging and diverse according to the surrogate model predictions. We
repair the generated scenarios to ensure validity and evaluate each repaired scenario to obtain ground
truth objective and measure values. Based on these values, we add each scenario to a ground-truth
archive and a training dataset for the surrogate model. The surrogate model trains on this dataset,
correcting prediction errors exploited by the QD algorithm. After accumulating enough diverse data,
the surrogate model starts making accurate predictions, and the inner loop produces truly diverse and
challenging scenarios. After multiple outer loop iterations, the ground-truth archive accumulates
diverse and challenging scenarios, testing the HRI system’s strengths and limitations.

The key idea behind the proposed algorithm is that exploiting the surrogate model with QD algo-
rithms produces diverse – with respect to the surrogate model predictions – scenarios. Labeling
these scenarios by evaluating them in a simulator and using them to retrain the surrogate model in
turn improves its predictions in subsequent iterations. Thus, the surrogate model self-improves over
time by training on the diverse data generated according to its predictions.

The proposed improvements result in two versions of our algorithm: (1) Surrogate Assisted Scenario
Generation (SAS), which employs a derivative-free QD algorithm, CMA-MAE, in the inner loop.
(2) Differentiable Surrogate Assisted Scenario Generation (DSAS, Fig. 2), which employs a DQD
algorithm, CMA-MAEGA, in the inner loop. Additional algorithm details and the pseudocode are
given in App. A. Our source code is available at https://github.com/icaros-usc/dsas.

5 Domains

We consider two HRI domains from prior work: shared control teleoperation [52] and shared
workspace collaboration [6] with a 6-DoF Gen2 Kinova JACO arm.

4

https://github.com/icaros-usc/dsas


Shared Control Teleoperation. In shared control teleoperation, a user provides low-dimensional
joystick inputs towards a goal. To aid the user, the robot attempts to infer the human goal and move
towards it autonomously. An optimal policy would correctly infer the human goal and reach the
goal along the shortest path. The robot solves a POMDP with the user’s goal as a latent variable
and updates its belief based on the human input, assuming a noisily-optimal user [52]. With hind-
sight optimization and first-order approximation, this results in the robot’s actions being a weighted
average of the optimal path towards each goal, where the weights are proportional to the respective
goal probabilities. In App. H.1, we test a second robot policy that blends the user’s and the robot’s
actions based on the robot’s confidence in the user’s goal [53]. Scenario parameters include both the
environment, i.e., the coordinates of two goal objects, and the human actions, i.e., a set of human
trajectory waypoints. To search for failures, we set the objective to be the time taken to reach the
correct goal. We diversify scenarios with respect to the noise in human inputs (variation from the
optimal path) and the scene clutter (distance between goals).

Shared Workspace Collaboration. In shared workspace collaboration, the human and the robot
simultaneously execute a sequential task in a shared workspace with disjoint regions [6, 54]. An
optimal robot policy would correctly infer the human’s current goal and move to a different goal
along the shortest path while avoiding collisions with the human. As in the teleoperation task,
the robot models the human goal as a latent variable in a POMDP (but with human hand as its
observation) and uses hindsight optimization and first-order value function approximations to act
in real time. The robot attempts to avoid the goal intended by the human by selecting the nearest
goal from a feasible set of goals different than the user’s, i.e., it maps a human candidate goal to
a different goal-to-go. The robot’s action is a weighted average of the optimal path towards each
goal-to-go, with weights proportional to the probability of the corresponding human goal.

We parameterize the scenario with three goal coordinates and set the objective to be the task com-
pletion time. We select measures based on factors that we expect to affect the team performance:
object arrangement, the accuracy of inference of user’s goal, and the distance required to reach the
goals. We choose two sets of measures: (1) The minimum distance between goal objects and the
maximum probability assigned by the robot to the wrong goal. (2) The robot path length and the
total time for which the human and robot have to wait when reaching the same goal.

In this domain, we model the human as solving a softmax MDP with the maximum entropy formu-
lation [55]. In App. H.2, we include an additional setting in the collaboration domain, where we
search over both environments and human model parameters related to speed and rationality.

Additional details about the domains, the robot policy, the human policy, and the implementation
are provided in App. D, App. F.1, App. F.2, and App. G respectively. In App. E, we provide example
QD formulations for two additional real-world domains, but we do not run experiments on them in
this paper.

6 Experiments

Independent Variables. Our two independent variables are the domain and the algorithm.

Our three domains are: (a) shared control teleoperation with distance between the goals and hu-
man variation as measures; (b) shared workspace collaboration with minimum distance between
the goals and maximum wrong goal probability as measures (collaboration I); (c) shared workspace
collaboration with robot path length and total wait time as measures (collaboration II).

In each domain, we compare five different algorithms: (a) Random Search, where we uniformly
sample scenarios from the valid regions. (b) MAP-Elites [41], as adapted for scenario genera-
tion in previous work [2], with the additional objective regularization described in Sec. 4. (c)
CMA-MAE [43] with objective regularization. (d) SAS: The proposed derivative-free version of
our surrogate assisted scenario generation algorithm. We apply CMA-MAE as the derivative-free
QD algorithm in the inner loop. (e) DSAS: The proposed differentiable surrogate assisted scenario
generation with the DQD algorithm CMA-MAEGA in the inner loop.

5



0 5k 10k
Evaluations

0

12k

24k
QD-score

0 0.9 1.8
Time (Hours)

0

10k

20k
QD-score

(a) Shared control teleoperation

0 5k 10k
Evaluations

0

60k

120k
QD-score

0 6.0 12.0
Time (Hours)

0

50k

100k
QD-score

(b) Collaboration I

0 5k 10k
Evaluations

0

10k

20k
QD-score

0 6.0 12.0
Time (Hours)

0

10k

20k
QD-score

(c) Collaboration II

Figure 3: QD-score attained in the three domains as a function of the number of evaluations (top)
and the wall-clock time (bottom). Algorithms with surrogate models have better sample efficiency
but require more wall-clock time per evaluation compared to other algorithms due to the overhead
of model evaluations and model training. Plots show the mean and standard error of the mean.

Dependent Variable: Following previous work [2], we set QD-score [7] as the dependent vari-
able that summarizes the quality and diversity of solutions. We compute the QD-score at the end
of 10,000 evaluations, averaged over 10 trials of random search, MAP-Elites, CMA-MAE, and –
because of GPU usage constraints (see App. G.3) – 5 trials of SAS and DSAS.

Hypotheses:

H1. We hypothesize that the surrogate assisted QD algorithms SAS and DSAS will outperform
CMA-MAE, MAP-Elites, and random search. We base this hypothesis on previous work, which has
shown the benefit of integrating QD with surrogate models in single-agent domains [49, 23].

H2. We hypothesize that DSAS will outperform SAS. We base this hypothesis on previous work,
which has shown that DQD algorithms perform significantly better than their derivative-free coun-
terparts [5] when the objective and measure gradients are available.

Analysis. A two-way ANOVA test showed a significant interaction effect (F (8.0, 105.0) =
305.79, p < 0.001). Simple main effects analysis on each domain showed a significant effect of the
algorithm on the QD-score (p < 0.001). Pairwise t-tests with Bonferroni corrections showed that
SAS and DSAS performed significantly better than CMA-MAE, MAP-Elites, and random search in
the shared control teleoperation and collaboration I domains (p < 0.001). In the collaboration II do-
main, they outperformed CMA-MAE (p < 0.001) and random search (p < 0.001), while there was
no significant difference with MAP-Elites. We attribute this to the fact that MAP-Elites can easily
obtain diverse robot’s path lengths by making small isotropic perturbations in the object positions
(see App. H). Fig. 3 shows the QD-score as a function of the number of evaluations. We see that
both SAS and DSAS achieve a high QD-score early in the search, indicating high sample efficiency.

The comparison between SAS and DSAS showed mixed results, with SAS better in the collaboration
I domain (p < 0.001), DSAS better in the shared control teleoperation domain (p < 0.001), and
no significance in the collaboration II domain (p = 0.07). Previous work [5, 43] has shown DQD
algorithms improving efficiency in very high-dimensional search spaces by reducing the search from
a high-dimensional solution space to a low-dimensional objective-measure space. We conjecture that
this explains the significant improvement in the shared control teleoperation domain (9-dimensional
solution space as opposed to 6-dimensional one in shared workspace collaboration) and we will
investigate higher-dimensional domains in future work.

Furthermore, in the shared workspace collaboration domains, where scenario evaluations last a cou-
ple of minutes because of the larger task complexity, surrogate assistance showed wall-clock time
efficiency (Fig. 3), unlike prior work [23] that only showed sample efficiency improvements.

6



0.00 0.32
0.000

0.112

H
um

an
 V

ar
ia

tio
n

DSAS

0.00 0.32

SAS

0.00 0.32

CMA-MAE

0.00 0.32

MAP-Elites

0.00 0.32

Random Search

0.0

2.5

5.0

7.5

10.0

Distance Between Goals

Figure 4: Comparison of the final archive heatmaps in the shared control teleoperation domain.

Fig. 4 shows heatmaps of the final archives in the shared control teleoperation domain. The heatmaps
for MAP-Elites and random search match the results from prior work [2]. These heatmaps show the
advantage of QD-score as a comparison metric. A higher QD-score implies the archive is filled more
and with higher quality solutions. For example, SAS and DSAS find failure scenarios in the lower
right corner of the archive (nearly optimal human and a large distance between the goal objects),
whereas MAP-Elites fails to find failures in that region. Thus, a designer would not have information
about the HRI algorithm’s performance in some scenarios if the scenario generation algorithm has a
low QD-score. App. H includes heatmaps in other domains and tabulates the QD-scores.

We provide additional experiments with two different settings in App. H.1 and App. H.2. Addition-
ally, we show the effect of objective regularization in App. H.3 and examples of generated scenarios
with high (as opposed to low) team performance in App. J.

Real World Demo. We wish to demonstrate that the generated failure scenarios are reproducible
in the real world and are not just simulation artifacts. Since the algorithms that we test have been
shown to work robustly in practice [6, 52, 53, 54], and the proposed approach discovers edge-case
failures that are hard to find and rare in practice, a user study where users can freely interact with the
system would need to involve a very large number of subjects to observe these failures. Furthermore,
we would need to account for any safety concerns that arise from the unexpected robot behavior in
the corner cases. We view solving these challenges as beyond the scope of this paper, and here, we
only show that these failures will actually occur in the real world if users act in a certain way.

We recreate four example scenarios from the generated archives with a 6-DoF Gen2 Kinova JACO
arm and by having a user reproduce the motions of the simulated human. We track the human hand
position with a Kinect v1 sensor and the OpenNI package [56]. We discuss two scenarios below and
the other two in App. I. We include videos of all scenarios in the supplementary material.

Incorrect robot motion because of delayed human goal inference (Fig. 5a): We select this scenario
from the archive generated by DSAS in the collaboration II domain. In this scenario, after the human
finishes working on goal G1 and the robot on G3, the robot is closer to G2 than its other remaining
goal, G1. Based on the feasible goal set formulation (Sec. 5), G2 becomes the goal-to-go for human
candidate goals G1 and G3. Given that the combined probability of the human going to either G1 or
G3 is higher than the probability of the human going to G2, the robot moves towards G2. However,
once the robot realizes that the human is actually moving to G2 as well, the robot has to move all
the way back to goal G1, resulting in a significant delay.

Long robot motion with correct human goal inference (Fig. 5c): We additionally wish to find scenar-
ios that result in poor team performance that is not due to incorrect inference. We select a scenario
from a SAS archive in the collaboration I domain that had a low maximum wrong goal probability
of 0.3. The poor performance here is caused by the interaction between the robot’s policy and the
object placement. As the robot moves between the two workspaces following a straight line path, it
reaches a configuration close to self-collision or to joint limits. This prompts the system to re-plan
and move the robot to a different configuration before continuing to move towards the goal. While
re-planning ensures task completion, it induces a significant delay compared to scenarios where the
goals can be reached without re-planning.

7



(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

Figure 5: Example scenarios recreated with a real robot. The purple line shows the simulated human
path. Videos of the simulated and recreated scenarios are included in the supplemental material.

7 Discussion

Limitations. Our approach scales surrogate assisted scenario generation from single-agent grid-
world domains to complex human-robot interaction domains with continuous actions, environment
dynamics, and object locations. However, our evaluation domains consist of objects of the same type
and simple human models. We note that SAS and DSAS are general algorithms and we are excited
about integrating them with more complex models of environments [51] and human actions [57, 58],
as well as leveraging high-fidelity human model simulators [59, 60] to improve realism. Addition-
ally, in our domains we were able to specify good test coverage with low-dimensional measure
spaces. However, domains where we wish to obtain good test coverage over a large number of at-
tributes would require high-dimensional measure spaces. Integrating centroidal Voronoi tessellation
(CVT) based archives [61] or measure space dimensionality reduction methods [62] will allow us to
apply SAS and DSAS to such domains. Furthermore, our system does not explain the reason behind
the observed robot behavior in the generated scenarios, and future work will explore integrating sce-
nario generation with methods for failure explanation [63, 64]. Finally, while we focus on a single
human interacting with a single robot, we believe that our workspace occupancy-based approach for
surrogate model predictions can be extended to multi-human-robot team settings.

Implications. We presented the SAS and DSAS scenario generation algorithms that accelerate
QD scenario generation via surrogate models. Results in a shared control teleoperation domain of
previous work [2] and in a shared workspace collaboration domain show significant improvements
in search efficiency when generating diverse datasets of challenging scenarios.

For the first time in surrogate assisted scenario generation methods, we see improvements not only in
sample efficiency but also in wall-clock time in the shared workspace collaboration domain, where
evaluations last a couple of minutes. On the other hand, the additional computation in the inner
loop of the surrogate assisted algorithms resulted in more time required to match and exceed the
performance of the baselines in the shared control teleoperation domain, where scenario evaluations
last only a few seconds. Thus, for running-time performance, we recommend surrogate assisted
methods in domains with expensive evaluations, in which the additional computation in the inner
loop is offset by the improvement in sample efficiency.

We additionally highlight an unexpected benefit of our system during development. When we tested
the shared workspace collaboration domain, SAS and DSAS discovered failure scenarios that ex-
ploited bugs in our implementation which were subsequently fixed. For instance, some goal loca-
tions were reachable by the robot arm in the real world but unreachable in simulation because of
small errors in the robot’s URDF file, which prompted us to correct it.

Overall, we envision the proposed algorithms as a valuable tool to accelerate the development and
testing of HRI systems before user studies and deployment. We consider this an important step
towards circumventing costly failures and reducing the risk of human injuries, which is a critical
milestone for widespread acceptance and use of HRI systems.

8



Acknowledgments

This work was supported by the NSF CAREER (#2145077), NSF GRFP (#DGE-1842487), and the
Agilent Early Career Professor Award. One of the GPUs used in the experiments was awarded by
the NVIDIA Academic Hardware Grant.

References
[1] A. Steinfeld, O. C. Jenkins, and B. Scassellati. The oz of wizard: Simulating the human for

interaction research. In Proceedings of the 4th ACM/IEEE International Conference on Human
Robot Interaction, HRI, 2009. doi:10.1145/1514095.1514115. URL https://doi.org/10.

1145/1514095.1514115.

[2] M. C. Fontaine and S. Nikolaidis. A quality diversity approach to automatically generating
human-robot interaction scenarios in shared autonomy. In Robotics: Science and Systems,
2021. doi:10.15607/RSS.2021.XVII.036.

[3] M. C. Fontaine and S. Nikolaidis. Evaluating human–robot interaction algorithms in shared
autonomy via quality diversity scenario generation. ACM Transactions on Human-Robot In-
teraction (THRI), 11(3):1–30, 2022.

[4] A. Gaier, A. Asteroth, and J.-B. Mouret. Data-efficient design exploration through surrogate-
assisted illumination. Evolutionary Computation, 2018.

[5] M. C. Fontaine and S. Nikolaidis. Differentiable quality diversity. In Advances in Neural
Information Processing Systems, 2021. URL https://proceedings.neurips.cc/paper/

2021/file/532923f11ac97d3e7cb0130315b067dc-Paper.pdf.

[6] S. Pellegrinelli, H. Admoni, S. Javdani, and S. S. Srinivasa. Human-robot shared workspace
collaboration via hindsight optimization. In Proceedings of the International Conference on
Intelligent Robots and Systems, IROS, 2016. doi:10.1109/IROS.2016.7759147. URL https:

//doi.org/10.1109/IROS.2016.7759147.

[7] J. K. Pugh, L. B. Soros, P. A. Szerlip, and K. O. Stanley. Confronting the challenge of quality
diversity. In Proceedings of the Annual Conference on Genetic and Evolutionary Computation,
2015.

[8] D. Gravina, A. Khalifa, A. Liapis, J. Togelius, and G. N. Yannakakis. Procedural content
generation through quality diversity. In Proceedings of the IEEE Conference on Games (CoG),
2019.

[9] M. C. Fontaine, R. Liu, A. Khalifa, J. Modi, J. Togelius, A. K. Hoover, and S. Niko-
laidis. Illuminating mario scenes in the latent space of a generative adversarial network.
In Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, 2021. URL
https://ojs.aaai.org/index.php/AAAI/article/view/16740.

[10] S. Earle, J. Snider, M. C. Fontaine, S. Nikolaidis, and J. Togelius. Illuminating diverse neural
cellular automata for level generation. CoRR, abs/2109.05489, 2021. URL https://arxiv.

org/abs/2109.05489.

[11] A. Khalifa, S. Lee, A. Nealen, and J. Togelius. Talakat: Bullet hell generation through con-
strained map-elites. In Proceedings of the Genetic and Evolutionary Computation Conference,
2018.

[12] K. Steckel and J. Schrum. Illuminating the space of beatable lode runner levels produced
by various generative adversarial networks. In Proceedings of the Genetic and Evolutionary
Computation Conference, 2021. doi:10.1145/3449726.3459440.

9

http://dx.doi.org/10.1145/1514095.1514115
https://doi.org/10.1145/1514095.1514115
https://doi.org/10.1145/1514095.1514115
http://dx.doi.org/10.15607/RSS.2021.XVII.036
https://proceedings.neurips.cc/paper/2021/file/532923f11ac97d3e7cb0130315b067dc-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/532923f11ac97d3e7cb0130315b067dc-Paper.pdf
http://dx.doi.org/10.1109/IROS.2016.7759147
https://doi.org/10.1109/IROS.2016.7759147
https://doi.org/10.1109/IROS.2016.7759147
https://ojs.aaai.org/index.php/AAAI/article/view/16740
https://arxiv.org/abs/2109.05489
https://arxiv.org/abs/2109.05489
http://dx.doi.org/10.1145/3449726.3459440


[13] J. Schrum, V. Volz, and S. Risi. CPPN2GAN: combining compositional pattern producing
networks and gans for large-scale pattern generation. In Proceedings of the Genetic and Evo-
lutionary Computation Conference, 2020. doi:10.1145/3377930.3389822.

[14] A. Sarkar and S. Cooper. Generating and blending game levels via quality-diversity in the
latent space of a variational autoencoder. In Proceedings of the 16th International Conference
on the Foundations of Digital Games, 2021. doi:10.1145/3472538.3472545.

[15] J. Arnold and R. Alexander. Testing autonomous robot control software using procedural
content generation. In Proceedings of the 32nd International Conference on Computer Safety,
Reliability, and Security, 2013. doi:10.1007/978-3-642-40793-2 4.

[16] G. E. Mullins, P. G. Stankiewicz, R. C. Hawthorne, and S. K. Gupta. Adaptive generation of
challenging scenarios for testing and evaluation of autonomous vehicles. Journal of Systems
and Software, 2018. doi:10.1016/j.jss.2017.10.031.

[17] Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek. Generating adversarial driving scenarios
in high-fidelity simulators. In International Conference on Robotics and Automation, ICRA,
2019. doi:10.1109/ICRA.2019.8793740. URL https://doi.org/10.1109/ICRA.2019.

8793740.

[18] E. Rocklage, H. Kraft, A. Karatas, and J. Seewig. Automated scenario generation for regression
testing of autonomous vehicles. In Proceedings of the 20th IEEE International Conference on
Intelligent Transportation Systems (ITSC), 2017. doi:10.1109/ITSC.2017.8317919.

[19] A. Gambi, M. Mueller, and G. Fraser. Automatically testing self-driving cars with search-
based procedural content generation. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2019. doi:10.1145/3293882.3330566.

[20] D. Sadigh, S. S. Sastry, and S. A. Seshia. Verifying robustness of human-aware autonomous
cars. IFAC-PapersOnLine, 2019.

[21] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-Vincentelli, and S. A. Seshia.
Scenic: a language for scenario specification and scene generation. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation, 2019.

[22] Y. Zhou, S. Booth, N. Figueroa, and J. Shah. RoCUS: robot controller understanding via
sampling. In Proceedings of the Conference on Robot Learning, 2021. URL https:

//proceedings.mlr.press/v164/zhou22a.html.

[23] V. Bhatt, B. Tjanaka, M. C. Fontaine, and S. Nikolaidis. Deep surrogate assisted generation of
environments. Conference on Neural Information Processing (NeurIPS), 2022.

[24] M. Deitke, E. VanderBilt, A. Herrasti, L. Weihs, J. Salvador, K. Ehsani, W. Han, E. Kolve,
A. Farhadi, A. Kembhavi, et al. ProcTHOR: Large-scale embodied AI using procedural gen-
eration. arXiv preprint arXiv:2206.06994, 2022.

[25] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leveraging procedural generation to bench-
mark reinforcement learning. In Proceedings of the International Conference on Machine
Learning, 2020.

[26] S. Risi and J. Togelius. Increasing generality in machine learning through procedural content
generation. Nature Machine Intelligence, 2020.

[27] B. Mehta, M. Diaz, F. Golemo, C. J. Pal, and L. Paull. Active domain randomization. In
Conference on Robot Learning, pages 1162–1176. PMLR, 2020.

[28] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomo-
tion over challenging terrain. Science robotics, 2020.

10

http://dx.doi.org/10.1145/3377930.3389822
http://dx.doi.org/10.1145/3472538.3472545
http://dx.doi.org/10.1007/978-3-642-40793-2_4
http://dx.doi.org/10.1016/j.jss.2017.10.031
http://dx.doi.org/10.1109/ICRA.2019.8793740
https://doi.org/10.1109/ICRA.2019.8793740
https://doi.org/10.1109/ICRA.2019.8793740
http://dx.doi.org/10.1109/ITSC.2017.8317919
http://dx.doi.org/10.1145/3293882.3330566
https://proceedings.mlr.press/v164/zhou22a.html
https://proceedings.mlr.press/v164/zhou22a.html


[29] K. Fang, Y. Zhu, S. Savarese, and L. Fei-Fei. Discovering generalizable skills via automated
generation of diverse tasks. Robotics: Science and Systems, 2021.

[30] K. Fang, T. Migimatsu, A. Mandlekar, L. Fei-Fei, and J. Bohg. Active task randomization:
Learning visuomotor skills for sequential manipulation by proposing feasible and novel tasks.
arXiv preprint arXiv:2211.06134, 2022.

[31] R. Wang, J. Lehman, J. Clune, and K. O. Stanley. Paired open-ended trailblazer (POET): end-
lessly generating increasingly complex and diverse learning environments and their solutions.
CoRR, abs/1901.01753, 2019. URL http://arxiv.org/abs/1901.01753.

[32] R. Wang, J. Lehman, A. Rawal, J. Zhi, Y. Li, J. Clune, and K. O. Stanley. Enhanced POET:
open-ended reinforcement learning through unbounded invention of learning challenges and
their solutions. In Proceedings of the 37th International Conference on Machine Learning,
ICML, 2020. URL http://proceedings.mlr.press/v119/wang20l.html.

[33] T. Gabor, A. Sedlmeier, M. Kiermeier, T. Phan, M. Henrich, M. Pichlmair, B. Kempter,
C. Klein, H. Sauer, R. S. AG, et al. Scenario co-evolution for reinforcement learning on a
grid world smart factory domain. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference, 2019.

[34] D. M. Bossens and D. Tarapore. QED: using quality-environment-diversity to evolve resilient
robot swarms. IEEE Transactions on Evolutionary Computation, 2020.

[35] A. Dharna, J. Togelius, and L. B. Soros. Co-generation of game levels and game-playing
agents. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2020.

[36] A. Dharna, A. K. Hoover, J. Togelius, and L. Soros. Transfer dynamics in emergent evolution-
ary curricula. IEEE Transactions on Games, 2022.

[37] M. Dennis, N. Jaques, E. Vinitsky, A. M. Bayen, S. Russell, A. Critch, and S. Levine. Emer-
gent complexity and zero-shot transfer via unsupervised environment design. In Advances in
Neural Information Processing Systems 33, 2020. URL https://proceedings.neurips.

cc/paper/2020/hash/985e9a46e10005356bbaf194249f6856-Abstract.html.

[38] M. Jiang, E. Grefenstette, and T. Rocktäschel. Prioritized level replay. In Proceedings
of the 38th International Conference on Machine Learning, ICML, 2021. URL http:

//proceedings.mlr.press/v139/jiang21b.html.

[39] M. Jiang, M. Dennis, J. Parker-Holder, J. N. Foerster, E. Grefenstette, and T. Rocktäschel.
Replay-guided adversarial environment design. In Advances in Neural Information Pro-
cessing Systems 34, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/

0e915db6326b6fb6a3c56546980a8c93-Abstract.html.

[40] J. Parker-Holder, M. Jiang, M. Dennis, M. Samvelyan, J. N. Foerster, E. Grefenstette,
and T. Rocktäschel. Evolving curricula with regret-based environment design. CoRR,
abs/2203.01302, 2022. doi:10.48550/arXiv.2203.01302.

[41] J. Mouret and J. Clune. Illuminating search spaces by mapping elites. CoRR, abs/1504.04909,
2015. URL http://arxiv.org/abs/1504.04909.

[42] M. C. Fontaine, J. Togelius, S. Nikolaidis, and A. K. Hoover. Covariance matrix adaptation
for the rapid illumination of behavior space. In Proceedings of the Genetic and Evolutionary
Computation Conference, 2020. doi:10.1145/3377930.3390232.

[43] M. C. Fontaine and S. Nikolaidis. Covariance matrix adaptation map-annealing. arXiv preprint
arXiv:2205.10752, 2022.

11

http://arxiv.org/abs/1901.01753
http://proceedings.mlr.press/v119/wang20l.html
https://proceedings.neurips.cc/paper/2020/hash/985e9a46e10005356bbaf194249f6856-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/985e9a46e10005356bbaf194249f6856-Abstract.html
http://proceedings.mlr.press/v139/jiang21b.html
http://proceedings.mlr.press/v139/jiang21b.html
https://proceedings.neurips.cc/paper/2021/hash/0e915db6326b6fb6a3c56546980a8c93-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/0e915db6326b6fb6a3c56546980a8c93-Abstract.html
http://dx.doi.org/10.48550/arXiv.2203.01302
http://arxiv.org/abs/1504.04909
http://dx.doi.org/10.1145/3377930.3390232


[44] B. Tjanaka, M. C. Fontaine, J. Togelius, and S. Nikolaidis. Approximating gradients for dif-
ferentiable quality diversity in reinforcement learning. CoRR, abs/2202.03666, 2022. URL
https://arxiv.org/abs/2202.03666.

[45] T. Pierrot, V. Macé, F. Chalumeau, A. Flajolet, G. Cideron, K. Beguir, A. Cully, O. Sigaud, and
N. Perrin-Gilbert. Diversity policy gradient for sample efficient quality-diversity optimization.
In Proceedings of the Genetic and Evolutionary Computation Conference, pages 1075–1083,
2022.

[46] Y. Jiang, D. Salley, A. Sharma, G. Keenan, M. Mullin, and L. Cronin. An artificial intelligence
enabled chemical synthesis robot for exploration and optimization of nanomaterials. Science
Advances, 2022.

[47] A. Gaier, J. Stoddart, L. Villaggi, and P. J. Bentley. T-DominO: Exploring multiple criteria
with quality-diversity and the tournament dominance objective. In Proceedings of the 17th
International Conference on Parallel Problem Solving from Nature, 2022.

[48] A. Hagg, D. Wilde, A. Asteroth, and T. Bäck. Designing air flow with surrogate-assisted phe-
notypic niching. In Proceedings of the International Conference on Parallel Problem Solving
from Nature, 2020.

[49] Y. Zhang, M. C. Fontaine, A. K. Hoover, and S. Nikolaidis. Deep surrogate assisted MAP-
Elites for automated hearthstone deckbuilding. CoRR, abs/2112.03534, 2021. URL https:

//arxiv.org/abs/2112.03534.

[50] H. Zhang, M. Fontaine, A. Hoover, J. Togelius, B. Dilkina, and S. Nikolaidis. Video game
level repair via mixed integer linear programming. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, 2020.

[51] M. C. Fontaine, Y. Hsu, Y. Zhang, B. Tjanaka, and S. Nikolaidis. On the importance of
environments in human-robot coordination. In Robotics: Science and Systems, 2021. doi:
10.15607/RSS.2021.XVII.038.

[52] S. Javdani, S. S. Srinivasa, and J. A. Bagnell. Shared autonomy via hindsight optimization.
In Robotics: Science and Systems XI, 2015. doi:10.15607/RSS.2015.XI.032. URL http:

//www.roboticsproceedings.org/rss11/p32.html.

[53] A. D. Dragan and S. S. Srinivasa. Formalizing assistive teleoperation. In Robotics: Science
and Systems VIII, 2012. doi:10.15607/RSS.2012.VIII.010.

[54] S. Javdani, H. Admoni, S. Pellegrinelli, S. S. Srinivasa, and J. A. Bagnell. Shared autonomy via
hindsight optimization for teleoperation and teaming. The International Journal of Robotics
Research, 37(7):717–742, 2018.

[55] B. D. Ziebart, N. D. Ratliff, G. Gallagher, C. Mertz, K. M. Peterson, J. A. Bagnell, M. Hebert,
A. K. Dey, and S. S. Srinivasa. Planning-based prediction for pedestrians. In Proceedings
of the International Conference on Intelligent Robots and Systems, 2009. doi:10.1109/IROS.
2009.5354147. URL https://doi.org/10.1109/IROS.2009.5354147.

[56] M. Liebhardt. OpenNI tracker. http://wiki.ros.org/openni_tracker, 2012.

[57] H. J. Jeon, D. P. Losey, and D. Sadigh. Shared autonomy with learned latent actions. Robotics:
Science and Systems (RSS), 2020.

[58] M. Chen, S. Nikolaidis, H. Soh, D. Hsu, and S. Srinivasa. Trust-aware decision making for
human-robot collaboration: Model learning and planning. ACM Transactions on Human-Robot
Interaction (THRI), 9(2):1–23, 2020.

12

https://arxiv.org/abs/2202.03666
https://arxiv.org/abs/2112.03534
https://arxiv.org/abs/2112.03534
http://dx.doi.org/10.15607/RSS.2021.XVII.038
http://dx.doi.org/10.15607/RSS.2021.XVII.038
http://dx.doi.org/10.15607/RSS.2015.XI.032
http://www.roboticsproceedings.org/rss11/p32.html
http://www.roboticsproceedings.org/rss11/p32.html
http://dx.doi.org/10.15607/RSS.2012.VIII.010
http://dx.doi.org/10.1109/IROS.2009.5354147
http://dx.doi.org/10.1109/IROS.2009.5354147
https://doi.org/10.1109/IROS.2009.5354147
http://wiki.ros.org/openni_tracker


[59] R. Ye, W. Xu, H. Fu, R. K. Jenamani, V. Nguyen, C. Lu, K. Dimitropoulou, and T. Bhattachar-
jee. Rcare world: A human-centric simulation world for caregiving robots. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022.

[60] Z. Erickson, V. Gangaram, A. Kapusta, C. K. Liu, and C. C. Kemp. Assistive gym: A physics
simulation framework for assistive robotics. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), 2020.

[61] V. Vassiliades, K. Chatzilygeroudis, and J. Mouret. Using centroidal voronoi tessellations to
scale up the multidimensional archive of phenotypic elites algorithm. IEEE Transactions on
Evolutionary Computation, 2018. doi:10.1109/TEVC.2017.2735550.

[62] A. Cully. Autonomous skill discovery with quality-diversity and unsupervised descriptors. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO, 2019. doi:
10.1145/3321707.3321804. URL https://doi.org/10.1145/3321707.3321804.

[63] D. Das, S. Banerjee, and S. Chernova. Explainable AI for robot failures: Generating ex-
planations that improve user assistance in fault recovery. In Proceedings of the ACM/IEEE
International Conference on Human-Robot Interaction, 2021. doi:10.1145/3434073.3444657.
URL https://doi.org/10.1145/3434073.3444657.

[64] B. Hayes and J. A. Shah. Improving robot controller transparency through autonomous pol-
icy explanation. In Proceedings of the ACM/IEEE international conference on human-robot
interaction, 2017.

[65] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of
the 3rd International Conference on Learning Representations, ICLR, 2015. URL http://

arxiv.org/abs/1412.6980.

[66] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, et al. PyTorch: an
imperative style, high-performance deep learning library. In Advances in Neural Information
Processing Systems, 2019. URL https://proceedings.neurips.cc/paper/2019/file/

bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

[67] IBM. ILOG CPLEX optimization studio. https://www.ibm.com/products/

ilog-cplex-optimization-studio/cplex-optimizer, 2020.

[68] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch. Human-aware robot navigation: A survey.
Robotics and Autonomous Systems, 2013. doi:10.1016/j.robot.2013.05.007. URL https:

//doi.org/10.1016/j.robot.2013.05.007.

[69] Y. Gao and C. Huang. Evaluation of socially-aware robot navigation. Frontiers in Robotics
and AI, 2021. doi:10.3389/frobt.2021.721317. URL https://doi.org/10.3389/frobt.

2021.721317.

[70] D. Gallenberger, T. Bhattacharjee, Y. Kim, and S. S. Srinivasa. Transfer depends on ac-
quisition: Analyzing manipulation strategies for robotic feeding. In Proceedings of the
14th ACM/IEEE International Conference on Human-Robot Interaction, HRI, 2019. doi:
10.1109/HRI.2019.8673309. URL https://doi.org/10.1109/HRI.2019.8673309.

[71] R. Diankov and J. Kuffner. OpenRAVE: A planning architecture for autonomous robotics.
Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-08-34, 2008.

[72] S. Javdani. Shared autonomy via hindsight optimization code. https://github.com/

personalrobotics/ada_assistance_policy, 2016.

[73] B. Tjanaka, M. C. Fontaine, D. H. Lee, T. T. M. Vu, Y. Zhang, S. Sommerer, N. Dennler,
and S. Nikolaidis. pyribs: A bare-bones python library for quality diversity optimization.
https://github.com/icaros-usc/pyribs, 2021.

13

http://dx.doi.org/10.1109/TEVC.2017.2735550
http://dx.doi.org/10.1145/3321707.3321804
http://dx.doi.org/10.1145/3321707.3321804
https://doi.org/10.1145/3321707.3321804
http://dx.doi.org/10.1145/3434073.3444657
https://doi.org/10.1145/3434073.3444657
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
http://dx.doi.org/10.1016/j.robot.2013.05.007
https://doi.org/10.1016/j.robot.2013.05.007
https://doi.org/10.1016/j.robot.2013.05.007
http://dx.doi.org/10.3389/frobt.2021.721317
https://doi.org/10.3389/frobt.2021.721317
https://doi.org/10.3389/frobt.2021.721317
http://dx.doi.org/10.1109/HRI.2019.8673309
http://dx.doi.org/10.1109/HRI.2019.8673309
https://doi.org/10.1109/HRI.2019.8673309
https://github.com/personalrobotics/ada_assistance_policy
https://github.com/personalrobotics/ada_assistance_policy
https://github.com/icaros-usc/pyribs


A Algorithm: Differentiable Surrogate Assisted Scenario Generation

The improvements proposed in Sec. 4 result in two versions of our algorithm. In Algorithm 1,
we present DSAS with the state-of-the-art DQD algorithm CMA-MAEGA in the inner loop. SAS
follows a similar structure but with CMA-MAE in the inner loop. Fig. 6 shows a version of Fig. 2
with the inner loop and the outer loop split into two figures.

On each iteration of the outer loop, we initialize a new surrogate archive to store solutions that the
surrogate model predicts are high performing and diverse (line 3). Then, we begin the inner loop
(line 5). On line 6, we evaluate the current solution point θ with the surrogate model to obtain
the predicted objective f̂ , measures m̂, and the branching gradients ∇f̂ and ∇m̂. We then add
the solution θ to the surrogate archive (line 8) based on the predicted evaluations, after applying
the regularization penalty (line 7). Next, we generate a batch of solutions based on the branching
gradients (line 9). For each solution, we sample gradient coefficients, which, combined with the
gradients, produce a new candidate solution (lines 10-12). We evaluate each new candidate solution
θ′
i with the surrogate model (line 13), apply the regularization penalty (line 14), and add the solution

to the surrogate archive (line 15). After processing a batch, we update the search parameters of
CMA-MAEGA to move the search towards maximizing the QD objective (line 17).

After completing an inner loop, we select a subset of solutions from the surrogate archive to label
(line 19). For each set of scenario parameters θ, we generate-and-repair a scenario (line 21), evaluate
the robotic system on the scenario (line 22), update our dataset by adding the scenario labeled with
the true objective f , measures m, robot occupancy grid yr, and human occupancy grid yh (line 23),
and finally add the scenario to our ground-truth archive (line 24). After updating the training data
with newly labeled scenarios, we train the occupancy predictor for both the robot (line 27) and
human (line 28), then train the surrogate model to predict the objectives and measures (line 29). The
inner loop in future iterations exploits the more accurate surrogate model to produce better scenarios.

B Surrogate Model Details

Our surrogate model follows a two-stage prediction process by first predicting the robot and the
human occupancy grids given the scenario parameters as input, followed by a downstream prediction
of the objective and measures.

The occupancy predictor (blue arrows in Fig. 7) consists of deconvolution layers followed by batch
normalization and ReLU that treat the scenario parameters as a 1 × 1 image with the number of
channels equal to the solution size and expand it into a 32× 32 image. In the shared control teleop-
eration domain, there is only one occupancy grid since only the robot arm is moving. In the shared
workspace collaboration domain, there are two occupancy grids (stacked into two channels) corre-
sponding to the robot and the human motion. We pass each channel in the final output through a
softmax operator and minimize the KL divergence loss between the predicted and the true occupancy
grids.

The downstream predictor (red arrows in Fig. 7) consists of a fully connected network with linear
layers followed by batch normalization and ReLU to extract features from the scenario parameters.
It also consists of convolutional layers followed by batch normalization and leaky ReLU to extract
features from the occupancy grids. We pass the features through a linear layer and minimize the
mean squared error (MSE) between the predicted and the true objective and measures.

The losses for the occupancy predictor and the downstream predictor have different scales and hence,
are hard to balance. Thus, we separately train both networks on data obtained from ground-truth
evaluations for 100 epochs in each outer iteration using Adam [65] optimizer with a learning rate
of 0.0001 and batch size of 64. We first train the occupancy predictor, freeze the weights, and then
train the downstream predictor by leveraging occupancy predictions from the occupancy predictor.
We implement and train the networks with the PyTorch library [66].

14



Algorithm 1: Differentiable Surrogate Assisted Scenario Generation (DSAS).
Input: N : Maximum number of evaluations, Nexploit: Number of iterations in the model

exploitation phase, θ0: Initial solution for CMA-MAEGA, B: Batch size for
CMA-MAEGA

Output: Final version of the ground-truth archive Agt

1 Initialize the ground-truth archive Agt, the dataset D, robot occupancy predictor smr, human
occupancy predictor smh, objective and measure predictor sm

2 while evals < N do
3 Initialize CMA-MAEGA with the surrogate archive Asurr and initialize solution θ to θ0
4 Initialize CMA-ES parameters µ, Σ
5 for itr ∈ {1, 2, . . . , Nexploit} do
6 f̂ ,∇f̂ , m̂,∇m̂ ← sm(θ, smr(θ), smh(θ))

7 f̂ ← f̂ − reg(θ)

8 Asurr ← add solution(Asurr, (θ, f̂ , m̂))
9 for i ∈ {1, 2, . . . , B} do

10 c ∼ N (µ,Σ)

11 ∇i ← c0∇f̂ +Σk
j=1

(
cj∇m̂j

)
12 θ′

i ← θ +∇i

13 f̂ ′, ∗, m̂′, ∗ ← sm(θ′
i, smr(θ

′
i), smh(θ

′
i))

14 f̂ ′ ← f̂ ′ − reg(θ′
i)

15 Asurr ← add solution(Asurr, (θ
′
i, f̂

′, m̂′))
16 end
17 Update θ, µ, Σ via CMA-MAEGA update rules
18 end
19 Θ← select solutions(Asurr)
20 for θ ∈ Θ do
21 scenario← G(θ)
22 f,m,yr,yh ← evaluate(scenario)
23 D ← D ∪ (θ, f,m,yr,yh)
24 Agt ← add solution(Agt, (θ, f,m))
25 evals← evals+ 1
26 end
27 smr.train(D)
28 smh.train(D)
29 sm.train(D, smr, smh)
30 end

Sample Gradient
Coefficients

Branch Scenarios via 
Surrogate Model Gradients

Generate Scenarios and Evaluate 
on Surrogate Model

Predict System Performance, 
Measures, and Occupancy 

for each Scenario

Update Surrogate Archive
Ascend to Maximize

QD Objective

(a) Inner loop

Surrogate Archive

Simulate Scenarios from 
Surrogate Archive

Label Ground-truth System 
Performance, Measures, and 
Occupancy for each Scenario

Update Scenario 
Dataset

Train the Surrogate Model 
on the Scenario Dataset

MIP Repair of Scenarios

(b) Outer loop

Figure 6: An overview of our proposed differentiable surrogate assisted scenario generation (DSAS)
algorithm for HRI tasks. (a) The inner loop, where a QD algorithm exploits a surrogate model to
obtain scenarios that are predicted to be challenging and diverse. (b) The outer loop, where the
scenarios are labeled after repairing and evaluating them in a simulator. This data is leveraged to
train and improve the surrogate model for subsequent iterations.

15



32 4

16 8

Deconv(4,1,0)
Batch Norm

ReLU

Deconv(4,2,1)
Batch Norm

ReLU

Linear
Batch Norm

ReLU

Linear
Batch Norm

ReLU

Linear
Batch Norm

ReLU

Deconv(4,2,1)
Batch Norm

ReLU

Deconv(4,2,1)
Batch Norm

Softmax

Scenario 
Parameters Measures

Objective1

2

8 16 Occupancy
Grids

16 16

32 8

64 4

12
8

25
6

25
6

Conv(4,2,1)
Batch Norm
Leaky ReLU

Conv(4,2,1)
Batch Norm
Leaky ReLU

Conv(4,2,1)
Batch Norm
Leaky ReLU

Conv(4,2,1)
Batch Norm
Leaky ReLU

Figure 7: Architecture of the surrogate model including the occupancy predictor (blue arrows) and
the downstream predictor (red arrows).

0.05 0.32
Min Distance Between Goals

0.35

1.00

M
ax

 W
ro

ng
 G

oa
l B

el
ie

f P
ro

b

Surrogate Archive

65

70

75

80

85

0.05 0.32
Min Distance Between Goals

0.35

1.00

M
ax

 W
ro

ng
 G

oa
l B

el
ie

f P
ro

b

Ground-Truth Archive

55

60

65

70

75

80

85

90

95

Figure 8: Comparison between the surrogate archive (left) after an inner loop and the corresponding
ground-truth archive (right) after evaluating the solutions in the surrogate archive.

B.1 Evaluating the Surrogate Model Predictions

We evaluate the predictions of the surrogate model similar to DSAGE [23] by taking the dataset
generated in one trial of an algorithm and treating it as the test set for the trained surrogate model
from another trial of the same algorithm. Table 1 shows the mean absolute error (MAE) in all three
domains for the surrogate models trained as a part of both DSAS and SAS. Note that Measure 1 and
Measure 2 columns in the table correspond to the respective measures in each domain described in
Sec. 5.

The surrogate model is able to accurately predict the measures in the shared control teleoperation
domain since they can be calculated directly from the solution and do not depend on the robot policy.
In contrast, measures that depend on the robot policy such as the maximum wrong goal probability
(Measure 2 in the collaboration I domain) have a comparatively higher error, with predictions being
off by around 9% on average.

Table 1: Mean absolute error of the objective and measure predictions by the surrogate models.
DSAS SAS

Domain Objective
MAE

Measure
1 MAE

Measure
2 MAE

Objective
MAE

Measure
1 MAE

Measure
2 MAE

Shared Control
Teleoperation 0.35 0.01 0.01 0.64 0.02 0.01

Collaboration I 3.41 0.02 0.09 3.47 0.02 0.08
Collaboration II 3.22 0.27 0.56 3.39 0.29 0.59

16



Furthermore, we observe that the percentage of predictions landing in their true archive cell is only
around 2-4% in all domains. Nonetheless, the predictions are close to their true archive cell as evi-
dent in the MAEs. We also confirm this by computing the average Manhattan distance between the
predicted archive cell and the true archive cell for each solution. In the shared control teleoperation
domain, the average Manhattan distance was 6.48 and 11.26 for DSAS and SAS respectively. The
average Manhattan distances for DSAS and SAS were 11.26 and 9.88 in the collaboration I domain,
and 6.89 and 7.20 in the collaboration II domain, indicating that the predicted archive cells are only
a few cells away from the true archive cells on average.

Thus, despite inaccuracies in placing the solutions into their true archive cells, the solutions in
the surrogate archive are diverse with respect to the true measure functions. Hence, when these
solutions are evaluated, they occupy different parts of the ground-truth archive and rapidly improve
the QD-score. Fig. 8 shows the surrogate archive after one inner loop and the corresponding ground-
truth archive obtained by evaluating the solutions in the surrogate archive in the collaboration I
domain.

C Mixed Integer Program for Repairing Scenarios

To ensure that the objects in the scenario generated by QD search satisfy the object arrangement
constraints in the shared workspace collaboration domain, we adopt a generate-then-repair strategy.
We formulate a mixed integer program (MIP) with constraints to ensure that the objects in the
scenario are inside the workspace boundaries and not in collision with each other. Since we wish the
repaired scenario to be as close as possible to the generated scenario, we set the MIP objective to be
the L2 distance between the original position and the repaired position of the objects. The quadratic
objective makes the MIP a mixed integer quadratic program (MIQP).

C.1 Variables and MIP Objective

We treat the x and y coordinates of each object as the MIP variables. Let x′
i and y′i be the coordinates

of object i in the generated scenario and let xi, and yi be the corresponding coordinates after MIP
repair. We set the objective to be:

minΣi(xi − x′
i)

2 + (yi − y′i)
2 (1)

C.2 Constraints

Let x(min)
r , x(max)

r , y(min)
r , and y

(max)
r be the minimum and maximum allowed x and y values

respectively for objects in a rectangular workspace region r. For each workspace region, we need
to construct a binary variable z

(in)
ir , which resolves to true if object i occupies workspace r. We

create four auxiliary decision variables z(up)ir , z(dn)ir , z(lt)ir , and z
(rt)
ir , representing the four boundary

constraints of the rectangle. Specifically, z(up)ir represents if object i occupies ⟨xi, yi⟩ coordinates
below the top of the bounding rectangle for region r. The variables z

(dn)
ir , z(lt)ir , and z

(rt)
ir satisfy

the same conditions for the bottom, left, and right of the bounding rectangle, respectively. For each
pair of object i and region r, we add the following constraints to the MIP to resolve the decision
variables:

x(min)
r ≤ xi +∞(1− z

(lt)
ir ) (2)

xi ≤ x(max)
r +∞(1− z

(rt)
ir ) (3)

y(min)
r ≤ yi +∞(1− z

(dn)
ir ) (4)

yi ≤ y(max)
r +∞(1− z

(up)
ir ) (5)

In the above constraints, the∞ value represents a sufficiently large constant (e.g., the maximum of
the width and height of a global bounding box) that causes the constraint to always be satisfied. For
example, in Eq. 2, the inequality is always satisfied if the binary decision variable z

(lt)
ir is false as

17



we do not need to put any constraints if we do not occupy region r with object i. However, if the
variable is true, we require that the coordinate xi is to the right of the x-boundary x

(min)
r . We create

an equivalent constraint for the remaining three rectangular constraints (see Eq. 3-Eq. 5).

Finally, we add a constraint that resolves the decision variable z
(in)
ir to true if all four rectangular

constraints hold:
4 ≤ z

(lt)
ir + z

(rt)
ir + z

(dn)
ir + z

(up)
ir +∞(1− z

(in)
ir ) (6)

Once again, if z(in)ir is false, the inequality holds as we do not need to satisfy the rectangle inclusion
constraints if our object i is not in region r. Otherwise, all four inclusion variables must be true, by
summing to four, to indicate that the object i occupies region r.

We then add an additional constraint to ensure that each object occupies at least one region:

∀i,Σrz
(in)
ir >= 1 (7)

Next, we ensure that all pairs of objects in the scene do not overlap. To do this, we constrain the
bounding boxes of each object to not overlap. Let ai be half of the side length of the bounding box
of object i. There are four ways a pair of objects with axis-aligned bounding rectangles can avoid
overlapping: object i is left of object j, object i is right of object j, object i is above object j, or
object i is below object j. We create indicator variables representing these conditions as c(lt)ij , c(rt)ij ,

c
(up)
ij , c(dn)ij , respectively. Next, we add the following constraints to the MIP to correctly set the

collision indicator variables:

(xi + ai) ≤ (xj − aj) +∞(1− c
(lt)
ij ) (8)

(xj + aj) ≤ (xi − ai) +∞(1− c
(rt)
ij ) (9)

(yi + ai) ≤ (yj − aj) +∞(1− c
(dn)
ij ) (10)

(yj + aj) ≤ (yi − ai) +∞(1− c
(up)
ij ) (11)

If there is no collision between i and j, at least one of the four indicator variables must be true.
Hence, we set an additional constraint to ensure no collision:

∀i,j , c(lt)ij + c
(rt)
ij + c

(dn)
ij + c

(up)
ij >= 1 (12)

We solve the MIP problem with IBM’s CPLEX optimization library [67].

D Domains

The following subsections provide a brief description of the search space, objective, and measure
functions in our domains.

D.1 Shared Control Teleoperation

A teleoperation task involves a user providing joystick inputs to a robot arm with the intention of
reaching a goal in the environment (Fig. 9a). It is generally hard for users to teleoperate a 6-DoF
robot arm to the correct configuration [52]. Thus, in shared control teleoperation, the robot attempts
to infer the human goal from a set of candidate goals by observing the low-dimensional joystick
inputs provided by the user.

Following the shared control teleoperation framework from previous work [52], the robot solves a
POMDP with the user’s goal as a latent variable while it updates its belief about the goal based on
the human input trajectory assuming a noisily-optimal user. To enable real-time decision-making,
the robot performs hindsight optimization to approximate the POMDP and assumes a first-order
approximation of the value function. This results in the robot’s actions being a weighted average
of the optimal path towards each goal, where the weights are proportional to the respective goal
probabilities.

18



(a) Shared Control Teleoperation (b) Shared Workspace Collaboration

Figure 9: Example scenarios from the two domains being executed in the real world (figure for
shared control teleoperation taken from prior work [2]).

To formalize the scenario generation problem in the shared teleoperation domain, we follow the
QD formulation of prior work [2, 3]. The environment parameters are the positions of the two
goal objects in a bounded workspace, constrained to be reachable by the robot arm. The simulated
human provides a trajectory of joystick inputs towards their goal object, parameterized by a set
of waypoints. The human model parameters are disturbances to these waypoints. The scenario
parameters θ include the environment and human model parameters. The objective function f in
the QD search is the time taken to reach the correct goal, with a maximum time limit of 10 seconds
if the robot fails to reach the goal. The search aims to find scenarios that are diverse with respect to
the noise in human inputs and the scene clutter, thus the measures m are the human variation from
the optimal path and the distance between goals.

D.2 Shared Workspace Collaboration

We consider a package labeling task (Fig. 9b), which instantiates the human-robot shared workspace
collaboration domain of previous work [6, 54]. The human and the robot have different actions, i.e.,
the human labels a package while the robot presses a stamp, and they share a set of goals, i.e., boxes
to perform the task. The human and the robot cannot work simultaneously on the same object and
the task finishes when all boxes are labeled and stamped.

We assume that the human picks a label for an object from a starting point and moves towards that
object. Different boxes require different labels, thus we model the human as attempting to reach the
box corresponding to the label they picked up, regardless of the robot’s actions. On the other hand,
the robot can switch its goal while moving, since stamping can be performed on any goal object
with the same tool. This domain is more complex than the shared control teleoperation task because
it includes manipulating a sequence of objects, rather than reaching a single object, and the objects
are in disjoint workspace regions.

As in the shared control teleoperation task, the robot reasons over the human goal by treating the
human as noisily-optimal. However, unlike in shared control teleoperation, the robot attempts to
avoid the goal intended by the human.

The scenario parameters consist of the locations of three goal objects in a larger, disconnected
workspace. We set the workspace boundaries to the quadrants of the L-shaped table in Fig. 1 that are
reachable by both the human and the robot arm. We model the human as moving to their goal while
avoiding obstacles by solving a softmax MDP. The objective f is again the time to task completion
since we wish to find challenging scenarios.

We choose two sets of measures m described below:

Minimum distance between goal objects and maximum wrong goal probability: We adopt the
minimum distance measure from the shared control teleoperation domain in previous work [2].
Furthermore, one of the failure scenarios found in that work was caused by incorrect inference of

19



the human goal by the robot. Thus, we set as our second measure the maximum probability that is
assigned to the wrong goal by the robot during the task, to search for potential failures in which the
robot actually infers the human goal correctly.

Robot path length and total wait time: In the shared workspace collaboration task that we con-
sider, there are two main sources of delay: the robot needing to move across the two workspaces to
reach different goals, and the wait time caused due to both the human and the robot wanting to work
on the same goal. Hence, we choose the path length of the robot and the total wait time as the two
measures to see how the team performance changes as these are varied.

E Additional Example QD Formulations

While we consider two domains in our paper: shared control teleoperation and shared workspace
collaboration, the QD formulation and our algorithms can be extended to other HRI domains as well.
We discuss example QD formulations for two alternative domains below.

Robot navigation around pedestrians [68, 69]. The robot’s objective here would be to minimize
the time required to reach its goal while avoiding collisions with pedestrians. To find failures, the QD
objective could be to maximize the time taken by the robot to reach the goal. Measures could include
the number and size of obstacles in the scene, the robot’s goal location, the minimum distance
between the mobile robot and the pedestrians during navigation, the average speed of pedestrians,
the curvature of the pedestrian trajectories, the total number of seconds the robot remained idle
during the task, etc.

Assistive Feeding [70]. The robot’s objective here would be to successfully transfer all bites on a
plate to the user. To find failures, the QD objective could be to maximize the number of failed bite
transfers. Measures could include aspects of the user’s capability (e.g., how far the user can reach to
receive a bite, how long the user takes to receive a bite), physical user characteristics such as their
height, time spent by the user being idle waiting for a bite, etc.

F Human and Robot Policies

F.1 Robot Policy

We adopt the robot policy defined in prior HRI works [52, 6] that introduced the domains considered
in this paper. In both domains in this paper, the robot solves a POMDP with human goal as the latent
variable. As in prior work [52], the robot assumes that the human is stochastically optimal and
updates its belief based on observed human actions. It performs hindsight optimization to calculate
the values and update the belief in real-time, followed by a first-order approximation to select the
optimal action that maximizes the Q-value. In both domains, we follow the cost function definition in
the corresponding prior work [52, 6], which makes the resulting optimal value function proportional
to the distance to the goal and the optimal policy a straight line.

We briefly discuss the specifics of the robot policy in the two domains below. In both domains,
the robot action is computed as the twist that should be applied to its end effector, which is then
converted to the required joint velocities by inverse kinematics computation.

F.1.1 Shared Control Teleoperation

In shared control teleoperation, the human provides an input action to the robot. The Q-value of this
action is defined as the sum of the cost incurred while executing the action and the value at the new
position after action execution. The robot’s belief is then updated based on the difference between
the value and the Q-value at the current position corresponding to each goal.

Hindsight optimization followed by first-order approximation results in the robot’s assistive action
being a weighted average of the straight-line paths to each goal, weighted by the corresponding
probabilities assigned to them in the belief.

20



In App. H.1, we consider a different robot policy called policy blending [53]. The robot fully follows
the user inputs while updating its belief like before. Once the probability assigned to a goal is higher
than a threshold, the robot takes over and moves to the predicted goal.

F.1.2 Shared Workspace Collaboration

In shared workspace collaboration, the human acts independently. Hence, we maintain two sets
of value functions - one for the human and one for the robot. We calculate the human Q-value as
the sum of the cost of executing the current action and the value at the new position after action
execution, similar to the shared control teleoperation domain. The robot’s belief is updated based
on the difference between human value and human Q-value at the current position corresponding to
each goal.

We track the constraints on the robot’s goals with the feasible goal-set formulation from prior
work [6]. For each potential human goal, the robot maintains a set of goals that it has not worked on
and is different from the human goal. The goal set can be empty for some candidate human goals
if the robot has finished working on all other goals. The robot then treats all the goals that it has
not worked on as the feasible goal set corresponding to that human goal. For action calculation, the
robot creates a mapping from each human goal to a corresponding goal-to-go, which is the goal with
minimum value (the closest goal) in the corresponding feasible goal set.

The robot’s action is based on the robot’s value functions. Since we assume that the robot acts
optimally, we do not explicitly calculate these values and simply assume a straight-line path to each
goal. Hindsight optimization followed by first-order approximation once again results in the robot’s
action being a weighted average of optimal actions towards each goal-to-go.

Specifically, let b(g) be the probability assigned to goal g and let F (g) be the goal-to-go correspond-
ing to human goal g. Then, the weight corresponding to goal g′ is given by Σg:F (g)=g′b(g).

F.2 Human Policy

F.2.1 Shared Control Teleoperation

In shared control teleoperation, we search for human policy parameters in the form of noise added
to the waypoints from the starting location to the intended goal location. The human policy keeps
track of the waypoints and computes the waypoint-to-go and the corresponding velocity based on
the current position of the robot arm.

F.2.2 Shared Workspace Collaboration

In shared workspace collaboration, the human moves independently towards the goal and avoids
obstacles on the way. We model the human policy through a softmax MDP whose values are pre-
computed before simulating the scenario.

First, we discretize the space in which the human can move into a grid with cell sizes equal to the
size of the goal object so that each goal is in one cell. We treat these cells as the states of the MDP
and allow the human to move to any neighboring cell, receiving a reward of either−0.01 for moving
to an orthogonally adjacent cell, −0.01

√
2 for moving to a diagonally adjacent cell, −1 for moving

into an obstacle, or 1 for moving into a goal cell. We set the discount factor to 0.9999 and perform
softmax value iteration [55] with a softmax temperature of 0.001 to compute the Q-values for each
state-action pair.

Since we have three goals in a scenario, we compute three sets of Q-values, one corresponding to
each goal. Each value iteration instantiation treats the scenario’s other goals as obstacles.

During simulation, the human policy converts the current location of the human into the grid cell it
belongs to, chooses the next grid cell based on the Q-values corresponding to the current goal, and
returns the velocity required to move to the center of the next cell.

21



In App. H.2, we consider a new setting in which we search over two human model parameters: the
inverse of softmax temperature (higher values result in a more rational human) and a multiplier to
the velocity (higher multiplier makes the human move faster).

G Implementation Details

We implement surrogate assisted scenario generation in a server-client framework. The server sim-
ulates a given scenario in OpenRAVE [71] while the client executes QD search to generate new
scenarios.

G.1 Scenario Simulation

We adapt the scenario simulation code from the open-source implementation of shared autonomy
via hindsight optimization [72] to include the feasible goal set formulation for the shared workspace
collaboration domain (described in App. F.2) and to simulate generated scenarios instead of a fixed
one.

We start a flask server that waits for the client to run QD search and send solutions to evaluate. Once
we receive a candidate solution, we pass it through the MIP solver and instantiate the objects, the
robot, and the human in the OpenRAVE simulator.

We discretize the simulation into ticks, with each tick being divided into three phases that are ex-
ecuted in sequence: human action selection, robot action selection, and environment simulation.
Human action selection and robot action selection follow the policy given in App. F.2 and App. F.1
respectively. In the environment simulation phase, the actions are executed, moving the human and
the robot to a new state.

The shared control teleoperation task executes these phases in a loop until the robot reaches the
intended human goal or the time limit of 10 seconds is reached.

Since the shared workspace collaboration task consists of multiple steps, the human and the robot
policies are wrapped into state machines. The human state machine has five states: a) moving to
a goal; b) waiting for space; c) working on a goal; d) resetting; e) done. The human is initially
in moving to goal state and simply selects actions according to the human policy. Once a goal is
reached, the human waits till the goal is free to work on (waiting for space) and then starts working
on the goal (working on a goal). Once the work is complete, the human switches to the terminal
state, done, if that was the last goal or moves back to the initial position (resetting). To simulate
working on the goal and moving back to the initial position, we simply pause the human for a
specified amount of time. After the reset, the human starts moving to the next goal (moving to goal).

The robot state machine has six states: a) moving to a goal; b) replanning; c) waiting for space; d)
working on a goal; e) resetting; f) done. The state transitions are similar to those of the human state
machine, except for the moving to a goal state. Since the robot can get into configurations close to
self-collision or joint limits when following a straight line path, it needs to replan back to the start
before moving again. We simulate this by switching to replanning state, moving the robot back to
its initial position, and then switching back to moving to a goal state.

The shared workspace collaboration task ends either after 100 seconds or after both the human and
the robot reach the done state.

G.2 QD Search

We implement QD search on the client by modifying the pyribs library [73] and the open-source
code for DSAGE [23] to match Algorithm 1.

We implement the inner loop through a pyribs scheduler that interfaces a QD algorithm via two
functions: ask, which outputs candidate solutions from the algorithm, and tell, which accepts the
corresponding objective and measures, adds them to the archive, and updates the algorithm param-

22



eters. The scheduler interfaces CMA-MAEGA and CMA-MAE for DSAS and SAS respectively.
The inner loop runs fully on the client, exploiting the surrogate model described in App. B.

We then select a set of solutions from the surrogate archive and send it to the simulation server for
evaluation. The objective and measures obtained from the simulation are returned by the server,
which we add to the ground-truth archive and the dataset.

For baselines, we use the existing implementation of CMA-MAE and MAP-Elites in pyribs. Addi-
tionally, for ease of execution, we implement Random Search similar to a QD algorithm in the pyribs
framework. It simply returns a batch of uniformly randomly sampled candidate solutions whenever
requested. Since these baselines do not leverage a surrogate model, the candidate solutions are
always sent to the simulation server for evaluation.

To include objective regularization, we maintain two archives, the final archive that retains solutions
maximizing the unregularized objective, and the training archive, which maintains scenarios that
maximize the regularized objective to guide the QD search. The pyribs scheduler interfaces with
the training archive, while solutions are directly added to the final archive. For surrogate assisted
algorithms, the surrogate archive acts as the training archive while the ground-truth archive acts as
the final archive.

We include the search details specific to the domains below.

G.2.1 Shared Control Teleoperation

In shared control teleoperation, we search over the ⟨x, y⟩ coordinates of two goal objects and five
noise variables that define the human path towards the goal, creating a 9-dimensional search space.

We define the measures as the distance between the goals
√
(x1 − x2)2 + (y1 − y2)2, and the vari-

ation in human input
√
Σ5

i=1θh,i, where θh refers to the five noise parameters in the generated
solution. Following prior work [2], we assume the ranges of the measures to be [0, 0.32] for the
distance and [0, 0.112] for variation, and create an archive with 25× 100 cells.

We adopt the hyperparameters for MAP-Elites from prior work [2], setting the standard deviation
of perturbation, σ, to 0.01 for parameters corresponding to the goal coordinates and 0.005 for those
corresponding to the human noise. For CMA-MAE, SAS, and DSAS, we set the initial standard de-
viation for CMA-ES, σ0, to 0.01, archive learning rate, α, to 0.1, and minimum acceptance threshold,
minf , to 0. We set all other hyperparameters to their default values defined in pyribs.

G.2.2 Shared Workspace Collaboration

In shared workspace collaboration, we search over the ⟨x, y⟩ coordinates of three goal objects, cre-
ating a 6-dimensional search space.

The four measure functions in our experiments are defined as follows:

1. Minimum distance between goal objects (archive range [0.05, 0.32]; discretized into 27
archive cells): mini̸=j

√
(xi − xj)2 + (yi − yj)2

2. Maximum wrong goal probability (archive range [0.35, 1]; discretized into 65 archive
cells): Let b(max)(t) be a function that returns the highest probability assigned by the robot
to a goal other than the true human goal at time t. Maximum wrong goal probability is
defined as the maximum value attained by b(max)(t) during the scenario: maxt b

(max)(t).

3. Robot path length (archive range [1, 5]; discretized into 20 archive cells): Let the robot’s
trajectory in the scenario be a function τ : [0, 1] → R2, with τ(0) and τ(1) denoting the
coordinates of the start and end-points respectively. The robot path length is defined as the
length of this trajectory:

∫ 1

0
∥dτ∥2.

4. Total wait time (archive range [0, 5]; discretized into 50 archive cells): Let w(t) be a func-
tion that returns 1 when either the robot or the human state machine is in waiting for space

23



Table 2: QD-score at the end of 10,000 evaluations.

Shared Autonomy Collaboration I Collaboration II

DSAS 21,400.33± 45.91 106, 874.93± 844.00 19,261.95± 182.57
SAS 21, 043.49± 40.08 112,962.22± 572.96 18,733.82± 182.40
CMA-MAE 17, 972.31± 74.71 87, 399.75± 1, 085.14 15, 612.29± 284.34
MAP-Elites 11, 757.84± 358.31 67, 731.48± 576.30 18,435.18± 398.87
Random Search 9, 647.24± 24.94 62, 376.62± 200.68 13, 856.14± 156.67

0.05 0.32
0.35

1.00

M
ax

 W
ro

ng
 G

oa
l B

el
ie

f P
ro

b DSAS

0.05 0.32

SAS

0.05 0.32

CMA-MAE

0.05 0.32

MAP-Elites

0.05 0.32

Random Search

0

25

50

75

100

Min Distance Between Goals

Figure 10: Comparison of the final archive heatmaps in the collaboration I domain.

state (see App. G.1) and 0 otherwise. Total wait time is defined as
∫ T

0
w(t)dt, where T is

the total scenario time.

Note that we approximate the integrals with discrete sums of the corresponding values at each sim-
ulation tick.

We tuned the initial standard deviation for CMA-ES, σ0, in the case of CMA-MAE, SAS, and DSAS
and set it to 1. We also tuned the perturbation standard deviation, σ, for MAP-Elites and set it to 0.1.
We set α = 0.1, minf = 0, and all other hyperparameters to the default values provided in pyribs.

In the new setting described in App. H.2, we add two additional parameters to the search: the
inverse of softmax temperature (higher values result in a more rational human) and the coefficient
of velocity (higher coefficient makes the human move faster). We limit these parameters to ensure
that the scenarios are not bottlenecked by an unrealistically slow or irrational human.

G.3 Computational Resources

Experiments for this paper were run on two local machines and a shared high-performance clus-
ter. The local machines had AMD Ryzen Threadripper with a 64-core (128 threads) CPU and an
NVIDIA GeForce RTX 3090/RTX A6000 GPU. 16 CPU cores were allocated for each run on the
cluster. One V100 GPU was additionally allocated for runs with a surrogate model.

The total time for each run was between 2 to 10 hours in the shared control teleoperation domain
and between 12 - 24 hours in the shared workspace collaboration domain.

H Additional Results

We tabulate the results from our experiments in Table 2. We also show the final archives in the
collaboration I (Fig. 10) and collaboration II (Fig. 11) domains.

We observe that the archives generated by DSAS and SAS are more densely packed compared to
other algorithms in collaboration I. In collaboration II, we see that CMA-MAE, SAS, and DSAS find
fewer solutions in the bottom left part of the archive compared to MAP-Elites and random search,
but find more and higher quality solutions in other parts of the archive which requires placing the
goals in multiple regions. This is due to the bottom left part mostly corresponding to all goal objects

24



1 5
0

5

To
ta

l W
ai

t T
im

e

DSAS

1 5

SAS

1 5

CMA-MAE

1 5

MAP-Elites

1 5

Random Search

0

25

50

75

100

Robot Path Length

Figure 11: Comparison of the final archive heatmaps in the collaboration II domain.

Table 3: QD-score at the end of 10,000 evaluations.

Teleoperation (Policy Blending) Collaboration I (Human Policy Search)

DSAS 41,249.88± 205.56 106, 573.18± 1, 461.34
SAS 40, 726.15± 300.61 120,789.83± 1,378.82
CMA-MAE 33, 797.07± 1, 455.82 120,687.02± 2,959.76
MAP-Elites 24, 151.97± 836.97 81, 006.04± 2, 483.23
Random Search 19, 850.68± 184.97 65, 513.84± 334.12

in one workspace region and low wait time which allows MAP-Elites to add small perturbations to
the goal locations and easily obtain different robot path lengths. However, maintaining a high wait
time (the top part of the archive) while adjusting the robot path lengths is harder since even small
perturbations in goal positions could make it easy for the robot to infer the human’s goal and go to
a different goal.

H.1 Additional Setting: Shared Control Teleoperation with Policy Blending

The QD formulation for scenario generation is independent of the robot and human policies. Here,
we show scenario generation with a new robot policy, policy blending (App. F.1), in the shared
control teleoperation domain without any modifications to the QD hyperparameters or the surrogate
model architecture.

Table 3 shows the QD-score at the end of 10,000 evaluations. We see that the surrogate assisted
algorithms outperform other algorithms, showing that these algorithms can work across multiple
robot policies. Note that the maximum time for a scenario was set to 20s, so the QD-scores are
around twice as large as in the main shared teleoperation experiments.

H.2 Additional Setting: Shared Workspace Collaboration with Human Policy Search

In the main shared workspace collaboration experiments, the scenario was only parameterized by
object locations. However, as described in our problem formulation, scenario parameters can also
include parameters of the human model. Here, we perform an additional experiment in which we
search for human model parameters in addition to the object locations to find failures in the collab-
oration I domain. We add two more scenario parameters related to human speed and rationality as
described in App. G.2 and run the QD algorithms with no other changes to the hyperparameters.

We tabulate the QD-scores in Table 3. We see a small increase in the QD-scores of all algorithms
compared to the main experiments (Table 2), since the QD search can now control the human policy
to cause failures. Surprisingly, CMA-MAE performs similar to SAS. We hypothesize that this is
caused by the sensitivity of the scenario outcomes to the human model parameters: Changes to
human speed or rationality affect the human trajectory much more than changes to goal locations.
Hence, predicting the trajectory and scenario outcomes is much harder in this setting compared to

25



the main experiments. Thus, CMA-MAE, a model-free QD algorithm, performs as well as SAS and
outperforms DSAS.

However, the failures broadly fell into the same categories as those found in the main experiment.
We hypothesize that this results from the bounds of the human policy parameters. Rational and
fast human actions allow the robot to accurately predict the human’s goal, leading to fast scenario
completion. On the other hand, we have set the bounds on the parameters to not allow QD search to
make the human unrealistically slow or irrational. Hence, the failures found in this experiment are
similar to those found with a fixed human policy.

H.3 Ablation: Effect of Objective Regularization

In Sec. 4, we proposed objective regularization as a way to guide QD search towards valid workspace
configurations. While objective regularization benefits general QD search, we note that surrogate
assisted methods like DSAGE inherit additional benefits. As the surrogate model makes predictions
for all possible scenarios, and not only scenarios satisfying the workspace constraints, the QD search
that exploits the surrogate model can move towards high-magnitude inputs in invalid regions of the
scenario space when these inputs result in high objective values. Objective regularization helps pre-
vent QD algorithms from exploiting errors in the surrogate model at extreme regions of the scenario
parameter space.

To test the effect of objective regularization on performance, we choose the collaboration I domain
and run 10 trials of DSAS, SAS, CMA-MAE, and MAP-Elites without objective regularization.
Hence, due to numerical errors resulting from exploiting errors in the surrogate model, none of the
SAS or DSAS runs without objective regularization could be completed.

We compare the results of MAP-Elites and CMA-MAE runs with their corresponding runs from the
previous section that included objective regularization. Pairwise t-tests showed that MAP-Elites per-
formed similarly with and without regularization, while CMA-MAE performed significantly worse
without objective regularization (t = −7.08, p < 0.001). We attribute this to the fact that perturba-
tions of existing solutions in MAP-Elites are not guided by the objective values. On the other hand,
CMA-MAE guides the search based on the objective improvements of the sampled solutions; hence
objective regularization has a significant effect on performance.

I Additional Real World Scenarios

Incorrect human goal inference with limited effect on robot motion (Fig. 5b): We select a scenario
from the archive generated by SAS with a relatively average scenario time of 77s and a very high
maximum wrong goal probability of 0.9.

The human finishes working on G1 and the robot on G2. As the human moves towards G2, the robot
incorrectly thinks that the human is moving to G3, which is near the optimal path to G2, causing
the robot to slow down in anticipation of the human motion. After the human reaches G2, the robot
continues moving to G3. Hence, the incorrect prediction does not affect the overall scenario time
much.

Long wait time due to both teammates needing to work on the same goal (Fig. 5d): Finally, we select
a scenario from a DSAS archive in the collaboration II domain that has a high human and robot wait
time.

This scenario was simple, albeit unanticipated. The human goes to G1, followed by G2, while the
robot goes to G2, followed by G1. The team coordinates smoothly until both agents need to work
on G3 to finish the task, causing a delay.

26



(a) High Team Performance Scenario 1 (b) High Team Performance Scenario 2

Figure 12: Examples of scenarios with high team performance. The purple line shows the simulated
human path.

J Scenarios with High Team Performance

In addition to finding failures, QD scenario generation can also find scenarios that are ideal for
human-robot collaboration. As an example, we modified the objective function in the collaboration
I domain to 100−T , with T being the scenario completion time that has a maximum value of 100s.
We ran SAS, which performed the best in this domain, and visualized example scenarios. We found
two main types of success scenarios:

Objects placed far apart to avoid confusion (Fig. 12a): The first type of success involved placing
the objects far apart to allow accurate goal inference. However, placing them too far would require
the human and the robot to move a lot, delaying completion. This scenario balanced these trade-offs,
leading to a relatively short robot path length of 1.7m, a low maximum wrong goal probability of
0.4, and a fast completion time of 38s. The resulting goal completion order also avoided the failure
found in Fig. 5d.

Objects placed close together to quickly change goals (Fig. 12b): The second type of success ignored
making goal inference easier but instead made it easier for the robot to correct itself if required.
Since the goals are close to each other, the robot can start moving towards them irrespective of
human actions. Once the human starts working on a goal, the robot can quickly switch to a different
goal. Despite having a high maximum wrong goal probability of 0.8, this scenario only took 31s to
complete.

27


	Introduction
	Problem Statement
	Background
	Surrogate Assisted Scenario Generation
	Domains
	Experiments
	Discussion
	Algorithm: Differentiable Surrogate Assisted Scenario Generation
	Surrogate Model Details
	Evaluating the Surrogate Model Predictions

	Mixed Integer Program for Repairing Scenarios
	Variables and MIP Objective
	Constraints

	Domains
	Shared Control Teleoperation
	Shared Workspace Collaboration

	Additional Example QD Formulations
	Human and Robot Policies
	Robot Policy
	Shared Control Teleoperation
	Shared Workspace Collaboration

	Human Policy
	Shared Control Teleoperation
	Shared Workspace Collaboration


	Implementation Details
	Scenario Simulation
	QD Search
	Shared Control Teleoperation
	Shared Workspace Collaboration

	Computational Resources

	Additional Results
	Additional Setting: Shared Control Teleoperation with Policy Blending
	Additional Setting: Shared Workspace Collaboration with Human Policy Search
	Ablation: Effect of Objective Regularization

	Additional Real World Scenarios
	Scenarios with High Team Performance

