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Abstract

The computational challenges of LLM inference
remain a significant barrier to their widespread de-
ployment, especially as prompt lengths continue
to increase. Due to the quadratic complexity of
the attention computation, it takes 30 mins for
an 8B LLM to process a prompt of 1M tokens
(i.e., the pre-filling stage) on a single A100 GPU.
Existing methods for speeding up pre-filling of-
ten fail to maintain acceptable accuracy or effi-
ciency when applied to long-context LLMs. To ad-
dress this gap, we introduce MInference (Million-
tokens Inference), a sparse calculation method de-
signed to accelerate pre-filling of long-sequence
processing. Specifically, we identify three unique
patterns in long-context attention matrices—the
A-shape, Vertical-Slash, and Block-Sparse—that
can be leveraged for efficient sparse computation
on GPUs. We determine the optimal pattern for
each attention head offline and dynamically build
sparse indices based on the assigned pattern dur-
ing inference. With the pattern and sparse indices,
we perform efficient sparse attention calculations
via our optimized GPU kernels to significantly
reduce the latency in the pre-filling stage of long-
context LLMs. Our proposed technique can be di-
rectly applied to existing LLMs without any mod-
ifications to the pre-training setup or additional
fine-tuning. By evaluating a wide range of down-
stream tasks, including InfiniteBench, RULER,
PG-19, and Needle In A Haystack, and models
including LLaMA-3-1M, GLM-4-1M, Yi-200K,
Phi-3-128K, and Qwen2-128K, we demonstrate
that MInference effectively reduces inference la-
tency by up to 10× for pre-filling on an A100,
while maintaining accuracy. Our code is available
at https://aka.ms/MInference.
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Figure 1. Attention weights, especially in long-context, exhibit
up to 96.8% sparsity in 128K. We propose MInference, which
uses dynamic sparse attention to accelerate the pre-filling stage of
long-context LLM inference. It achieves up to 10x speedup for 1M
contexts on an A100, as shown in (b), and maintains or outperforms
baselines, as demonstrated by the Needle In A Haystack (Kamradt,
2023) in (a) on LLaMA-3-8B-1M (Gradient, 2024).

1. Introduction
Large language models (LLMs) have entered the era of long-
context processing, with some of them supporting context
windows ranging from 128K to 10M tokens (Gradient, 2024;
Reid et al., 2024; Liu et al., 2024b; Young et al., 2024; Abdin
et al., 2024; DeepSeek-AI, 2024). These extended context
windows enable LLMs to unlock a multitude of complex
real-world applications, such as repository-level code under-
standing (Bairi et al., 2023; Jimenez et al., 2023; Park et al.,
2023), long-document question-answering (Caciularu et al.,
2023; Li et al., 2024a), extreme-label in-context learning (Li
et al., 2024a), and long-horizon agent tasks (Weng, 2023).
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However, due to the quadratic complexity of attention, it
can take several minutes for the model to process the input
prompt (i.e., the pre-filling stage) and then start to produce
the first token, which leads to unacceptable Time To First
Token experience, thus greatly hinders the wide application
of long-context LLMs. As shown in Fig. 2a, when serv-
ing LLaMA-3-8B on a single A100 machine, the model
would keep users waiting for 6 minutes to finish the pre-
filling stage given a prompt of 300K tokens, and this number
increases to 30 minutes for a prompt of 1M tokens. The
overhead of self-attention computation exceeds 90% of the
total pre-filling latency, which makes it the major bottleneck
in long-context processing of LLMs. Previous research has
shown that the attention matrices are highly sparse (Liu
et al., 2022; Deng et al., 2024), which has led to the de-
velopment of fixed sparse attention methods such as Long-
former (Beltagy et al., 2020) and BigBird (Zaheer et al.,
2020). However, prior studies have also noted that attention
distributions vary significantly across different inputs (Liu
et al., 2022; Likhosherstov et al., 2021). This dynamic na-
ture prevents prior sparse methods from being used directly
on long-context LLMs without expensive training or fine-
tuning. But if the dynamic sparse attention patterns could be
efficiently predicted online, the pre-filling latency of long-
context LLMs could be significantly reduced by calculating
only the most important part of the attention weights.

Building upon this idea, we present MInference, a tech-
nique that reduces 95% of FLOPs in the attention com-
putation to significantly accelerate the pre-filling stage of
long-context LLM inference via dynamic sparse attention.
Unlike existing dynamic sparse attention methods that in-
troduce large computational overhead to estimate attention
patterns with low-rank hidden dimensions (Liu et al., 2022;
Ribar et al., 2024), our method is designed specifically for
long-context scenarios with minimal overhead in estimation.
Specifically, we conduct extensive analysis and identify
three general patterns of sparse attention in long-context
LLMs: A-shape pattern, Vertical-Slash pattern, and Block-
Sparse pattern. Based on these findings, we introduce a
kernel-aware search method to assign the optimal attention
pattern for each head. Importantly, instead of fixed attention
masks in prior studies, we perform an efficient online ap-
proximation to build a dynamic sparse mask for each head
according to their assigned pattern and particular inputs.
For example, to build a dynamic sparse mask for a specific
prompt on one Vertical-Slash head, we use a partial of at-
tention weight consisting of the last last_q query and key
vectors to estimate the most important indices of the vertical
and slash lines globally on the attention matrix. For Block-
Sparse heads, we perform mean pooling on both query and
key vectors in blocks of 64 and calculate the block-level
attention weights to determine the most important blocks
and thereby obtain a block-sparse dynamic mask. After

obtaining the dynamic sparse mask, three optimized GPU
kernels are used, which we developed for the above three
sparse patterns. These kernels are based on the dynamic
sparse compilers PIT (Zheng et al., 2023), Triton (Tillet
et al., 2019) and FlashAttention (Dao, 2024), which enable
extremely efficient computation of dynamic sparse attention.

Extensive experiments are conducted on various Long-
context LLMs, including LLaMA-3-1M (Gradient, 2024),
GLM-4-1M (GLM et al., 2024), and Yi-200K (Young
et al., 2024), across benchmarks with context lengths over
1M tokens, such as InfiniteBench (Zhang et al., 2024a),
RULER (Hsieh et al., 2024), Needle In A Haystack (Kam-
radt, 2023), and PG-19 (Rae et al., 2020). Needle In A
Haystack was also tested on Phi-3-Mini-128K (Abdin et al.,
2024) and Qwen-2-128K (Yang et al., 2024). Results show
that MInference speeds up the pre-filling stage by up to
10× for 1M contexts with LLaMA-3-8B on a single A100,
reducing latency from 30 minutes to 3 minutes per prompt,
while maintaining or improving accuracy.

2. Attention Heads: Dynamic, Sparse, and
Characteristic
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Figure 2. (a) Latency breakdown of the pre-filling stage. (b) How
much attention scores can top-k (k=4096) columns cover in a 128k
context. (c) Less attention scores are retrieved when reusing the
top-k indices from another examples, indicating its dynamic nature.
Visualizations are based on LLaMa-3-8B with a single A100.

2.1. Attention is Dynamically Sparse

The sparsity of attention weights in pre-trained LLMs,
especially in long-context scenarios, has been well-
documented (Liu et al., 2022; Ribar et al., 2024; Liu et al.,
2023b; Xiao et al., 2024b). As shown in Fig. 2b, for an
attention matrix of size 128k× 128k, retaining only the top
4k columns recalls 96.8% of the total attention. In other
words, each token is attending to a limit number of tokens
despite the long sequence it is processing.

On the other hand, although the sparse nature of attention
matrices is shared across different inputs, the exact distri-
butions of sparse pattern are highly dynamic. That is to
say, although a token in a specific position only attends to a
limited number of tokens in self-attention, the exact tokens
attended to vary significantly across different prompts. This
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dynamism has been mathematically demonstrated in prior
studies (Likhosherstov et al., 2021; 2023). As depicted in
Fig. 2c, if we take the top 4k columns found in Fig. 2b and
apply it on another prompt of 128k length, the recall of
attention would drop largely to 83.7%.

2.2. Attention Sparsity Exhibits Patterns

Table 1. Comparison of different sparse patterns.
Patterns A-shape Vertical-Slash Block-Sparse Top-K

Spatial Distribution Static structured Dynamic structured Dynamic structured Dynamic fine-grained
Latency on GPU Low Medium Low High
Time to build the index Zero Small Small High

Although the sparsity distribution of attention matrix is dy-
namic, previous works (Xiao et al., 2024b; Han et al., 2024)
have shown that they exhibit certain patterns in the two-
dimensional space such as spatial clustering. Through our
analysis of long-context prompts of various lengths and
tasks, we have categorized such attention sparse patterns
into the A-shape, Vertical-Slash (VS), and Block-Sparse pat-
terns, as shown in Fig. 4a and Fig. 3. Table 1 details the
characteristics and differences between these three patterns.

A-shape pattern The attention weights of these types of
heads are concentrated on initial tokens and local win-
dows (Xiao et al., 2024b; Han et al., 2024), exhibiting rela-
tively higher stability.

Vertical-Slash (VS) pattern The attention weights are con-
centrated on specific tokens (vertical lines) and tokens at
fixed intervals (slash lines). The positions of vertical and
slash lines dynamically change with the context content
and exhibit a certain sparsity, making them difficult to be
encompassed by local windows and A-shape patterns.

Block-Sparse pattern This sparsity pattern is the most dy-
namic, exhibiting a more dispersed distribution. Despite
its dynamism, the attention weights are spatial clustered,
which we identify as the block-sparse pattern. We analyzed
the distances between non-zero attention weights and their
top-k nearest non-zero neighbors within a 128k prompt as
shown in Fig. 4b. The results indicate that across layers and
heads, the distances between nearest non-zero values are
generally concentrated around 5, suggesting a strong spatial
clustering of the attention weights.

The point of these three patterns is that we can leverage
them to perform highly efficient sparse computing for the
attention matrix in long-context LLMs. In Fig. 4c, we test
how efficient is our indentified patterns retrieving attention
scores with limit computing cost on GPU (FLOPs). First,
attention heads are labeled with one of the sparse pattern
(detail see §3.1). Then we demonstrate our patterns are sig-
nificantly more efficient compared to other sparse methods
(Ribar et al., 2024; Xiao et al., 2024b; Pagliardini et al.,
2024). Specifically, with the same amount of FLOPs, our
patterns achieve a notable higher recall on attention scores,

which can potentially lead to better accuracy. For example,
on attention heads with Block-Sparse pattern, previous Top-
K methods (Ribar et al., 2024; Xiao et al., 2024b; Pagliardini
et al., 2024) fail to capture attention scores efficiently as
they are focusing on specific (Top-K) tokens globally, but
our pattern is promising in retrieve attention score efficiently
and accurately. We example how we use these patterns on
long-context LLMs and how we implement optimized GPU
kernels for these patterns in §3.

3. MInference
Following the analysis in §2, we propose MInference to
accelerate the pre-filling stage of long-context LLMs, in-
cluding: 1) Offline attention pattern identification for each
head; 2) Dynamic build of sparse indices w.r.t. the pattern;
3) Sparse attention calculation with optimized GPU kernels.

Dynamic

Λ-shape head vertical-slash head block-sparse head

Approximate
by last q

Sparse 
Calculation

Approximate
by block Matul 

Figure 3. The three sparse methods in MInference.

3.1. Speedup of Long-context LLM Inference via
Dynamic Sparse Attention

Kernel-Aware Optimal Sparse Pattern Search To
achieve the best accuracy with limited FLOPs budget, we
propose an offline Kernel-Aware Optimal Sparse Pattern
Search method. In this step, we determine which sparse
pattern will be used for each head, and the optimal setting
for the pattern in real calculation (e.g., the number of verti-
cal/slash lines in VS pattern; or the number of top-k blocks
in BS patterns). As shown in Algorithm 1, we first create
the search space based on a target FLOPs for each pattern,
ensuring all potential candidates (i.e., different patterns with
different settings) have similar computational cost. Kernel-
aware here indicates the computational cost reflects the real
FLOPs in GPU kernels, instead of conceptual estimations,
which is crucial to achieve the optimal acceleration.

Next, we go through the search space with a reference ex-
ample to decide the optimal pattern and setting. Specifically,
we use recall of the attention output as the objective cri-
terion when searching for the best pattern. This approach
leverages FlashAttention (Dao, 2024) to reduce GPU mem-
ory overhead and incorporates the information from the V
matrix, enabling end-to-end selection of the best pattern,
which further enhances performance.

Sparsity Indices Approximation and Dynamic Sparse
Attention Calculation During the inference stage, we
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will perform an online estimation on the attention matrix
to dynamically determine the spatial distribution our sparse
indices, based on the assigned patterns and the exact input.
After that, we conduct the sparse attention computations
with our optimized GPU kernels. The implementation de-
tails of our kernels can be found in Appendix C.5. Noted
that the sparse mask is static for A-shape heads, so there is
no overhead in building the dynamic masks, and only sparse
calculation is required.

(i) Vertical-Slash head. As shown in Algorithm 2, due to
the continuity of vertical and slash lines, we matmul the
last query vector Q[−last_q:] and key vector K to produce
the estimated attention matrix Â, which, in turn, is used to
determine the indices for the vertical iv and slash is lines.
After obtaining the sparse indices for the vertical and slash
lines, we convert them into a sparse format ivs. Using these
sparse indices, we perform block-sparse calculations of the
attention weights and attention output.

(ii) Block-Sparse head. Per Algorithm 3, mean pooling is
applied on Q and K to obtain Q̂ and K̂, respectively. The
two matrices are multiplied to get the estimated block-level
attention weights Â. Since the mean pooling and matrix
multiplication operations are commutative, the resulting
attention weights are approximately equivalent to the actual
attention weights after mean pooling. This allows us to
approximate the actual block-sparse pattern with minimal
overhead. Similarly, we build a sparse index ib and use it to
compute the sparse attention weights and attention output.

4. Experiments
In this section, we investigate two questions: (i) How effec-
tive is MInference? We evaluate our method on three gen-
eral long-context benchmarks: InfiniteBench (Zhang et al.,
2024a), RULER (Hsieh et al., 2024), and the Needle In A
Haystack (Kamradt, 2023), as well as the long-context lan-
guage modeling task (Rae et al., 2020). These benchmarks
cover long-context QA, multi-hop QA, math reasoning, ag-
gregation tasks, summarization, retrieval tasks, and code
debugging, allowing us to assess MInference’s effectiveness
across a wide range of long-context scenarios. (ii) How effi-
cient is MInference? We delve into the end-to-end latency
and its breakdown to evaluate the efficiency of MInference.
Additional experimental, latency results, and analysis can
be found in Appendix D, F, and G.

InfiniteBench As shown in Table 2, MInference achieves
the best overall performance compared to baselines on In-
finiteBench. Remarkably, MInference matches or even
slightly surpasses the performance of the original full atten-
tion baseline on some tasks, despite the significant acceler-
ation it provided. From the perspective of different tasks,
our method not only performs well in natural language tasks

Table 2. Performance of different methods with different base mod-
els on InfiniteBench (Zhang et al., 2024a).
Methods En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find Retr.PassKey Retr.Number Retr.KV Avg.

LLaMA-3-8B-262K 20.2 12.4 67.3 6.0 12.9 22.1 26.6 100.0 100.0 14.4 38.2
StreamingLLM 21.0 8.2 40.2 10.0 10.4 25.9 30.0 86.8 5.1 0.8 23.8
StreamingLLM w/ dilated 20.1 9.4 44.5 15.5 11.2 20.5 27.5 5.0 87.5 0.5 24.2
StreamingLLM w/ strided 17.3 8.2 27.5 14.5 11.2 19.5 27.5 4.0 2.1 1.0 13.3
InfLLM 24.1 7.8 45.0 6.0 11.4 19.5 32.9 100.0 100.0 1.2 34.8
Ours w/ static 19.9 8.6 43.2 3.5 8.9 20.6 25.1 92.4 96.3 0.2 31.9
Ours 20.5 12.9 65.9 7.5 12.5 22.3 33.1 100.0 100.0 12.8 38.8

Yi-9B-200K 8.2 10.6 64.2 1.0 17.3 21.3 23.4 99.8 100.0 28.8 37.5
StreamingLLM 5.4 14.2 38.0 4.0 18.8 18.8 22.3 39.2 6.1 1.6 16.8
StreamingLLM w/ dilated 5.7 4.2 15.0 0.0 18.2 0.0 2.9 0.0 0.0 0.0 4.2
StreamingLLM w/ strided 6.1 4.5 9.8 0.0 16.9 0.0 3.1 1.5 0.0 0.0 4.6
InfLLM 6.3 13.0 45.9 2.5 21.5 20.6 34.6 85.3 88.1 1.4 31.9
Ours w/ static 5.8 12.6 48.5 3.0 12.6 20.8 25.1 60.9 38.5 1.0 22.9
Ours 7.9 11.2 64.2 1.0 17.9 24.1 23.1 99.5 100.0 27.6 37.7

such as summarization, QA, and code, but also maintains
the original model’s performance on retrieval-related tasks.
Baseline methods such as StreamingLLM, on the contrary,
struggle with these retrieval tasks. Additionally, on tasks
such as dialogue QA, using local attention mechanisms can
better handle these tasks, while our performance is closer to
the original results, indicating that our method is not solely
based on local windows. Extending the local windows’ in-
tervals in StreamingLLM, i.e., w/ dilated and w/ strided,
hardly affects the model’s performance.

Table 3. Performance of different models and different methods on
RULER (Hsieh et al., 2024) evaluated at lengths from 4k to 128k.

Methods Claimed Effective 4K 8K 16K 32K 64K 128K Avg.

LLaMA-3-262K 262K 16K 97.2 91.8 87.3 80.8 77.4 72.2 84.4
StreamingLLM - 4K 97.2 38.1 37.5 17.2 14.2 9.4 35.0
StreamingLLM w/ dilated - <4K 23.4 0.7 1.4 18.8 16.5 15.6 12.7
StreamingLLM w/ strided - <4K 2.0 0.7 0.6 0.6 0.7 1.3 1.0
InfLLM - 4K 89.4 79.8 70.1 55.6 43.0 39.5 62.9
Ours - 32K 97.7 91.2 88.5 85.0 82.3 77.6 87.0

Yi-200K 200K 8K 91.9 90.2 78.8 76.3 68.1 62.9 78.1
StreamingLLM - 4K 91.9 37.8 33.9 18.6 13.0 12.8 34.3
StreamingLLM w/ dilated - <4K 44.8 42.8 38.5 29.8 26.8 23.9 34.4
StreamingLLM w/ strided - <4K 2.6 0.7 0.6 0.6 1.2 0.5 1.1
InfLLM - <4K 80.3 83.9 60.7 45.2 38.6 30.2 56.5
Ours - 8K 92.3 89.7 79.0 73.8 64.7 56.9 74.7

RULER We evaluate MInference with the state-of-the-
art long-context challenge, RULER. As shown in Table 3,
our method effectively maintains the long-context perfor-
mance even in complex multi-hop or aggregation tasks in
RULER. It even outperforms the original full attention when
the testing length beyond 32K. LLaMA-3 achieves a 32K
effective context window (context with performance over
85% is considered effective (Hsieh et al., 2024)) with our
method which is double than the original full attention.

5. Conclusion
This paper proposes MInference, a method that accelerates
the pre-filling stage of long-context LLMs by leveraging
dynamic sparse attention with spatial aggregation patterns.
We categorize attention heads into three types: A-shape,
Vertical-Slash, and Block-Sparse, and utilize a fast approxi-
mation and optimal dynamic sparse attention kernel to speed
up inference. Experimental results on long-context bench-
marks demonstrate that our method maintains LLM capabil-
ities while achieving up to a 10x speedup, reducing latency
from 30 mins to 3 mins per prompt for 1M token prompts
on a single A100 GPU.
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Figure 4. (a) Visualization of attention weights from different attention heads. For different prompts and tasks, the pattern of the same
head is relatively consistent, but the sparse indices are dynamically changing.(b) Distance of the top-10 nearest non-zero element in the
attention matrix. (c) Attention recall distribution using our identified patterns, where FLOPs in the kernel refer to the real FLOPs required
for sparse attention computing using on GPUs. Here, a 1x64 block size is used for the Vertical-Slash pattern, and a 64x64 block size is
used for others on GPUs. All visualization are based on LLaMA-3-8B-Instruct-262K.

B. Additional Methodology Details
B.1. Problem Formulation

When accelerating the pre-filling stage of long-context LLMs with sparse attention computing, the attention matrix can be
formulated as follows:

A(M) = Softmax(
1√
d
QK⊤ − c(1−M)), (1)

where Mi,j ∈ {0, 1} represents the dynamic sparse mask for item i, j of the attention matrix. Here, c is a large constant,
such as 1e5, ensuring that the less important attention weights for which Mi,j = 0 have values approaching zero after the
softmax, i.e., Ai,j ≈ 0.

The goal of the dynamic sparse attention system is to achieve greater speedup with minimal overhead while retaining as
much of the attention weights as possible. Formally, this can be expressed as:

min |A(M)−Adense|,
min tsparse(M) + toverhead(M),

(2)

where tsparse and toverhead represent the time spent on dynamic sparse attention computation and estimation of the approximate
dynamic sparse pattern, respectively.

B.2. Kernel-Aware Optimal Sparse Pattern Search Algorithm

B.3. Sparsity Indices Approximation and Dynamic Sparse Attention Calculation Algorithm

C. Experiment Details
C.1. Dataset Details

We use the provided metrics and scripts from the following benchmarks for evaluation.

InfiniteBench (Zhang et al., 2024a) includes 10 tasks designed to test various aspects of long-context processing.
Specifically, these tasks cover entire novel summarization, open-form question answering based on novels, multiple-choice
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Algorithm 1 Kernel-Aware Sparse Pattern Search

Input: Q,K,V ∈ RS×dh , patterns p, search space ρ,
target FLOPs t, initialized search space σ

# Build kernel-aware search space
for i← 1 to |σ| do
ti ← FLOPs_in_kernel(σi)
while |ti − t| > ϵ do

σi ← ChangeSpace(σi, pi)
ti ← FLOPs_in_kernel(σi)

end while
ρ← ρ ∪ σi

end for
# Search for optimal head pattern
pbest ← ϕ
y ← Softmax(QK⊤/

√
d)

for i← 1 to |ρ| do
yi ← SparseAttention(QK⊤/

√
d, ρi)

pbest ← argmin(yi − y, pbest)
end for
return pbest

question answering on novels, question answering on long drama scripts, question answering on Chinese texts, debugging
large code repositories, identifying the largest/smallest number in arrays, and retrieval tasks with varying pattern lengths.
The average token length for these tasks is 214k, and they include 3,992 examples.

RULER (Hsieh et al., 2024) is a recent synthetic benchmark suite for long-context evaluation with 13 complex tasks
across four categories. The retrieval category includes Single Needle-in-a-Haystack (S-NIAH), where a single key-value pair
is inserted into noisy text, and the model must retrieve the value. Multi-keys Needle-in-a-Haystack (MK-NIAH) involves
multiple keys, and the model retrieves one specific value among hard distractors. The Multi-values Needle-in-a-Haystack
(MV-NIAH) task requires retrieving all values associated with a single key, while the Multi-queries Needle-in-a-Haystack
(MQ-NIAH) task involves retrieving values for multiple keys. The Multi-hop Tracing category includes Variable Tracking
(VT), where the model traces and returns all variable names pointing to the same value through variable bindings. The
aggregation category introduces Common Words Extraction (CWE), where the model identifies the top-K common words
from a mixture of common and uncommon words, and Frequent Words Extraction (FWE), where the model identifies
the most frequent words from a Zeta distribution. The Question Answering (QA) category extends existing short-context
QA datasets by adding distracting paragraphs, challenging the model to answer questions based on relevant information
surrounded by distractors. These tasks provide a comprehensive evaluation of long-context modeling capabilities, covering
multi-hop reasoning, aggregation, and complex question answering. Following (Hsieh et al., 2024), we test models on 4K,
8K, 16K, 32K, 64K, and 128K context lengths, including 2,600 examples per length.

Needle In A Haystack task (Kamradt, 2023) evaluates the performance of retrieval-augmented generation (RAG)
systems by embedding specific, targeted information (the "needle") within a large, complex body of text (the "haystack").
The test assesses a language model’s ability to identify and utilize this specific piece of information amidst a vast amount of
data. Both RULER and the needle test iterate over various context lengths and document depths (where the ground-truth is
placed in the prompt) to measure the long-context performance. Here we scale the Needle In A Haystack task to 1M context
length, including 750 examples.

PG-19 (Rae et al., 2020) The perplexity on long text is also often used by researchers to evaluate the language modeling
performance of long-context LLMs. PG-19 is a suitable test set for this task, as it includes texts as long as 500K tokens.
Perplexity is used as the metric indicating how well a model predicts the next token in a sequence. Our experiments are
conducted on 1,000 random samples from PG-19 that are longer than 100K tokens.
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Algorithm 2 Vertical-Slash Head

Input: Q,K,V ∈ RS×dh , kv, ks ∈ N
# Approximate vertical and slash pattern (last_q = 64)
Â← softmax

(
Q[−last_q:]K

⊤/
√
d+mcasual

)
# Indices of top kv vertical line, sum in vertical
iv ← argtopk

(
sumv(Â), kv

)
# Indices of top ks slash line, sum in slash
is ← argtopk

(
sums(Â), ks

)
# Build sparse attention index
ivs ← sparseformat(iv, is)

# Final dynamic sparse attention scores (only index block)
A← softmax

(
sparse(QK⊤, ivs)/

√
d
)

# Sparse mixed scores and values
y ← sparse(AV , ivs)
return y

Algorithm 3 Block-Sparse Head

Input: Q,K,V ∈ RS×dh , kb ∈ N
# Approximate block-sparse pattern (block_size = 64)
Q̂← MeanPooling(Q, block_size)
K̂ ← MeanPooling(K, block_size)

Â← softmax
(
Q̂K̂⊤/

√
d+mcasual

)
# Indices of top k blocks
ib ← argtopk

(
Â, kb

)
# Build sparse attention index
ib ← sparseformat(ib)

# Final dynamic sparse attention scores (only index block)
A← softmax

(
sparse(QK⊤, ib)/

√
d
)

# Sparse mixed scores and values
y ← sparse(AV , ib)
return y

C.2. Baselines

We include five training-free sparse attention approaches as our baselines: 1) StreamingLLM (Xiao et al., 2024b), which
corresponds to the A-shape pattern. We use 1k global tokens and 4k local windows in all our experiments; 2) StreamingLLM
w/ dilated (Beltagy et al., 2020), which sets dilated local windows with intervals in the local windows direction. We use
1k global tokens and 8k dilated attention windows with an interval of 1; 3) StreamingLLM w/ strided (Child et al., 2019),
which retains local windows while adding dilated attention. We use 1k global tokens, 2k local windows, and 4k dilated
attention windows with an interval of 1; 4) InfLLM (Xiao et al., 2024a), which uses a memory unit to process streaming long
sequences. Following the paper, we set 128 global tokens and 8k local windows in all experiments; 5) Ours w/ static, which
utilizes static sparse indices in the Vertical-Slash and Block-Sparse heads. For all baselines, we perform sparse computation
only during the pre-filling stage, while retaining dense computation during the decoding stage.

C.3. Implementation Details

Our experiments are based on a number of state-of-the-art long-context LLMs: 1) LLaMA-3-8B-Instruct-262k† is a
LLaMA-3 variant with further NTK-aware interpolation and minimal fine-tuning with Ring Attention, which achieved SOTA
results on long-context assessments such as the Needle In A Haystack test; 2) LLaMA-3-8B-Instruct-1048k‡ is similar to
LLaMA-3-8B-Instruct-262k, but supports context lengths up to 1M tokens; 3) Yi-9B-200K (Young et al., 2024) is a SOTA
LLM that balances long-context performance with general capabilities; 4) Phi-3-Mini-128K (Abdin et al., 2024) a small but
powerful language model that offers capabilities equivalent to models ten times its size with up to 128K context window
powered by LongRoPE (Ding et al., 2024); 5) Qwen2-7B-128K (Yang et al., 2024) is a recently release update of Qwen
series model with up to 128K context window that achieve superior or comparable performance compared to LLaMA-3; 6)
GLM-4-9B-1M (GLM et al., 2024) has been improved from its predecessor in terms of a 1M context window, performance
on downstream tasks and inference efficiency. To guarantee stable results, we use greedy decoding in all tests. Our kernel
implementations are developed and optimized based on the dynamic sparse compiler PIT (Zheng et al., 2023) in the Triton
language (Tillet et al., 2019). The latency experiments are done on a single Nvidia A100 GPU using bfloat16. We provide a
simple custom implementation of attention in PyTorch, building on FlashAttention and Triton.

We set the target FLOPs t to be the same as 1k global tokens and 4k local window tokens in the A-shape pattern. The
step size of ChangeSpace is set to 50, with the corresponding search space shown in Table 4. Additionally, we use
only one sample as our validation set from KV retrieval synthetic data with 30k token inputs, which exhibits strong
generalization and stability across different lengths and domains. The search time is approximately 15 minutes on a single

†https://huggingface.co/gradientai/Llama-3-70B-Instruct-Gradient-262k
‡https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k
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A100. Additionally, we use the same optimal sparse pattern configuration for both the LLaMA-3-8B-Instruct-262K model
and the LLaMA-3-8B-Instruct-1M model. The specific distribution is shown in Fig. 9.

Table 4. Kernal-aware optimal head pattern search space. In this context, A-shape represents the global tokens and local window number,
Vertical-Slash represents the Top-K number of vertical and diagonal lines, and Block-Sparse represents the Top-K number of blocks
retained.

Patterns Search Space

A-shape {(1024, 4096)}
Vertical-Slash {(30, 2048), (100, 1800), (500, 1500), (3000, 200)}
Block-Sparse {100}

C.4. Single A100 Implementation Details

The original PyTorch implementation§ of the LLaMA model causes an out-of-memory error on a single A100 (80G) when
the prompt exceeds 50k tokens. To enable running 1M prompt inference on a single A100, we implemented the following
optimizations:

1. Tensor Splitting: We split the Attention by head and the MLP by sequence dimension. In long-context scenarios,
where computation is the bottleneck, this splitting keeps GPU utilization at 100%, and the overhead of splitting is
negligible;

2. Reduction of Intermediate Variables: We minimized the allocation of intermediate variables by removing the
Attention Mask and implementing the causal mask logic within the kernel;

3. Elimination of Unnecessary Computations: In long-context scenarios, only the logits corresponding to the last token
in the prompt phase are meaningful. Thus, we only retain the computation of the LM Head Linear layer for the last
token.

C.5. Kernel Implementation

C.5.1. BLOCK-SPARSE FLASH ATTENTION

Our Block-Sparse kernel implementation is based on the Triton version of the FlashAttention kernel (tri, 2023). With the
selected block index as an additional input, each thread block loops through the top-K blocks in a row. As discussed in
FlashAttention (Dao, 2024), the latency of the block-sparse FlashAttention kernel is linearly related to the number of blocks,
and the speedup ratio (compared to the dense FlashAttention kernel) is approximately as,

sp =
S

2B × kb
(3)

C.5.2. VERTICAL-SLASH ATTENTION

The Vertical-Slash attention includes two custom kernels: the Vertical-Slash sparse index kernel and the Vertical-Slash
sparse FlashAttention kernel.

The Vertical-Slash sparse index kernel in Algorithm 4 builds the index for each row of blocks. Since a slash line segment can
be masked by a square block, our attention mask is a mix of blocks and columns, as shown in Fig. 5. We apply a point-range
two-way merge algorithm where vertical indexes are treated as points and slash indexes are converted to ranges given the
row index. The output consists of two parts: merged ranges and separate column indexes, where the ranges are represented
by block indexes. The time complexity to build an index for a row is O(kv + ks).

The Vertical-Slash sparse FlashAttention kernel in Algorithm 5 is a mix of the block-sparse attention kernel and the
PIT (Zheng et al., 2023) sparse attention kernel. PIT is a technology that loads sparse data into dense compute blocks via a
Permutation Invariant Transformation. A thread block first loops through the block indexes as described in the previous
section (block part) and then loops through the column indexes grouped by block size (PIT part). The latency of this hybrid
kernel is linearly related to the total area of blocks and columns.

§https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
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Figure 5. The dynamic sparse mask in the kernel of the vertical-slash pattern schematic using LLaMA-3-8B in the summarization
task (Zhang et al., 2024a), where the yellow areas indicate the parts actually involved in computation. The slash lines are covered using
64× 64 block sizes, while the vertical lines are covered using 1× 64 block sizes.

Table 5. Performance of different methods with GLM-4-9B-1M (GLM et al., 2024) on InfiniteBench (Zhang et al., 2024a).

Methods En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find Retr.PassKey Retr.Number Retr.KV Avg.

GLM-4-9B-1M 28.3 9.7 68.6 39.5 12.1 29.4 38.9 100.0 100.0 41.0 46.7
StreamingLLM 27.7 6.4 40.2 12.5 10.8 27.7 21.1 97.1 25.6 0.6 27.0
InfLLM 28.0 7.3 45.0 14.0 10.7 27.9 39.4 98.0 100.0 2.6 37.3
Ours 28.8 9.6 68.6 38.5 12.0 30.7 39.1 100.0 100.0 43.0 47.0

D. Additional Experiment Results
D.1. InfiniteBench

D.2. RULER

D.3. Language Modeling

Following the approach of StreamingLLM (Xiao et al., 2024b) and H2O (Zhang et al., 2024b), we evaluate our methods
against baselines on the language modeling task based on the PG-19 dataset (Rae et al., 2020). As shown in 6, our method
yields best results compared to other sparse approaches, and exhibits minimal divergence compared to the full attention
baseline. For prompts of 100K token, our perplexity is only 0.2 higher than the full attention, but lower than StreamingLLM
for 0.25 and 0.75 on the Yi-9B-200K and LLaMA-3-262K models respectively.

D.4. Needle In A Haystack

Comparing Fig. 1a to 7, our method effectively retains the ability to process information at different positions across
various context windows, ranging from 1k to 1M tokens. In contrast, methods like StreamingLLM (Xiao et al., 2024b) and
InfLLM (Xiao et al., 2024a), while effective in reducing latency, experience a rapid decline in performance once the critical

Table 6. Performance (%) of different models and different methods on RULER (Hsieh et al., 2024) evaluated at lengths from 4k to 128k.

Methods Claimed Effective 4K 8K 16K 32K 64K 128K Avg.

GLM-4-9B-1M 1M 64K 93.8 91.6 89.3 87.4 85.2 80.8 88.0
StreamingLLM - 4K 93.8 66.9 58.5 51.4 45.9 39.1 59.3
InfLLM - 8K 94.7 89.5 76.4 66.5 56.8 53.5 72.9
Ours - 64K 94.6 93.1 91.0 89.6 85.5 84.0 89.6
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Figure 6. Perplexity results on PG-19 (Rae et al., 2020) using different models and methods.
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Figure 7. Needle In A Haystack (Kamradt, 2023) results using LLaMA-3-8B-Instruct-1M (Gradient, 2024).

information exceeds the range of global tokens and local windows.

In addition to the Needle In A Haystack results for LLaMA-3-Instruct-1M shown in §4, we also present the results for
GLM-4-9B-1M, Yi-9B-200K, Phi-3-Mini-128K, and Qwen2-7B-128K, shown in Fig. 12. Compared to Full Attention,
using MInference has minimal impact on the ability to understand semantic information across different context windows
and needle depths. There is even a slight performance improvement around the 100k context length using Yi-9B-200K and
Phi-3-Mini-128K.

D.5. Ablation Study

To evaluate the contributions of different components in MInference, we introduce six variants for the ablation study: (1)
Ours w/ static, which uses a static sparse mask in the Vertical-Slash and Block-Sparse patterns; (2) Ours w/ only A-shape,
which is equivalent to StreamingLLM; (3) Ours w/ only block-sparse, which uses only the Block-Sparse pattern in the
dynamic sparse calculation. (4) Ours w/ only vertical-slash, which uses only the Vertical-Slash pattern in the dynamic sparse
calculation. (5) Ours w/ only vertical, which only uses vertical lines and the top-1 slash line in Vertical-Slash pattern. (6)
Ours w/ only slash, which only uses slash lines and the top-1 vertical line in Vertical-Slash pattern. The corresponding top-K
quantities are set after converting based on FLOPs in kernel.

Table 7. Performance of different ablation methods using LLaMA-3-8B-Instruct-262K on InfiniteBench (Zhang et al., 2024a).
Methods En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find Retr.PassKey Retr.Number Retr.KV Avg.

Ours 20.5 12.9 65.9 7.5 12.5 22.3 33.1 100.0 100.0 12.8 38.8
Ours w/ only block-sparse 12.4 3.4 5.7 6.0 3.1 12.2 24.0 59.5 60.3 0.0 18.7
Ours w/ only vertical-slash 19.6 12.0 62.1 9.5 11.7 21.6 29.1 100.0 100.0 5.0 37.1

Tables 2, 3, and 7 present the ablation results. It first proves that using static indices significantly degrades LLM performance,
especially in highly dynamic tasks like KV retrieval, where accuracy nearly drops to zero. This highlight the necessity of
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our dynamic strategy and the effectiveness of our dynamically built sparse indices. Additionally, remove any pattern from
the three leads to varying degrees of performance degradation. Specifically, "only A-shape" can only capture information
within local windows. The "only block-sparse" variant using only the BS pattern, also results in significant performance
declines. On the other hand, "only vertical-slash" manages to preserve most of the performance due to its balance between
dynamicity and the StreamingLLM pattern, but still fall behind the full version of our method. And using only vertical
lines results in a significant performance drop, especially in retrieval tasks, where performance is similar to only using
block-sparse. In contrast, using only slash lines retains most of the performance, but in highly dynamic tasks such as KV
retrieval, performance further decreases, with an average performance drop of 2.9% compared to Ours.

D.6. Latency and Latency Breakdown

Fig. 1b and 8 shows the latency and breakdown of MInference across different context windows on a single A100. At 100K,
300K, 500K, and 1M tokens, our method achieves speedups of 1.8×, 4.1×, 6.8×, and 10×, respectively. It reduces the
pre-filling latency from 30 mins to 3 mins on a single A100 for a prompt of 1M token. By further utilizing tensor parallel (Lin
et al., 2024) and context parallel (Liu et al., 2023a; Jacobs et al., 2023), this latency can be reduced to 40 seconds on 8x
A100 GPUs. This significantly lowers the deployment cost of long-context LLMs and enhances user experience. And since
our kernel is implemented based on Triton, it can be easily ported to other devices and achieve similar speedups, such as on
the H100. Additionally, analyzing the latency breakdown, we found about 5%-20% of the overhead is spent on dynamic
sparse index building, while the remaining time is spent on dynamic sparse calculation.
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Figure 8. The latency breakdown of a single attention kernel for three patterns and FlashAttention (Dao, 2024) across different context
windows in a single A100, including the index time for dynamic sparse approximation and building dynamic sparsity. At 10k tokens, the
latency of the four kernels is very close and all are less than 1ms. At 1M tokens, the latency for A-shape is 164ms.

Fig. 8 shows the micro-benchmark results of the three attention patterns proposed in this paper, as well as FlashAttention.
It can be seen that Vertical-Slash is the slowest among the three patterns, but it still achieves a 13x speedup compared to
FlashAttention under 1M context windows. A-shape is slightly faster than Vertical-Slash, but at 1M, A-shape is 50% slower
than Vertical-Slash. Block-Sparse is the fastest, achieving a 30x speedup over FlashAttention under 1M context windows.
The estimation and index-building time for the dynamic sparse pattern accounts for approximately 5%-15% and 25% of the
total time for Vertical-Slash and Block-Sparse patterns, respectively. The index-building overhead is higher for Block-Sparse
mainly due to the time-consuming MeanPooling and block-level matmul computations. Additionally, the memory overhead
for sparse indexing is relatively small, remaining within 160MB for a LLaMA-3-8B model in 1M context.

D.7. Integrate with KV cache compression methods

We also combined MInference with a state-of-the-art KV cache compression method SnapKV (Li et al., 2024b), as shown
in Table 8. This proves our method is compatible with KV cache compression techniques. For most tasks, performance
remains nearly unchanged, with the average score even showing a slight increase, which further demonstrates the potential
practical value of our method as an optimization for serving long-context LLMs.
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Table 8. Performance of different methods on InfiniteBench (Zhang et al., 2024a) using SnapKV (Li et al., 2024b) in the decoding stage.

Methods En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find Retr.PassKey Retr.Number Retr.KV Avg.

LLaMA-3 w/ SnapKV 18.0 11.8 65.5 2.5 12.0 21.3 26.6 100.0 100.0 1.8 36.0
Ours w/ SnapKV 18.9 11.7 66.4 6.5 12.1 21.8 33.1 100.0 100.0 2.0 37.3

E. Related Works
Sparse Attention Due to the quadratic complexity of the attention mechanism, many previous works have focused on
sparse attention to improve the efficiency of Transformers. These methods include static sparse patterns, cluster-based
sparse approaches, and dynamic sparse attention. Static sparse patterns include techniques such as sliding windows (Jiang
et al., 2023a; Abdin et al., 2024), dilated attention (Child et al., 2019; Shi et al., 2021; Ding et al., 2023), and mixed
sparse patterns (Beltagy et al., 2020; Zaheer et al., 2020; Lagunas et al., 2021). Cluster-based sparse methods include
hash-based (Kitaev et al., 2020) and kNN-based (Roy et al., 2021; Nawrot et al., 2024) methods. All of the above methods
require pre-training the model from scratch, which makes them infeasible to be directly used as a plugin for reay-to-use
LLMs. Recently, there has been work (Dao & Gu, 2024; Zimerman et al., 2024) to unify state space models (Gu et al., 2022;
Gu & Dao, 2023; Dao & Gu, 2024), and linear attention (Katharopoulos et al., 2020; Sun et al., 2023) into structured masked
attention. Additionally, some works (Wang et al., 2021; Liu et al., 2022; Ribar et al., 2024) leverage the dynamic nature of
attention to predict sparse patterns dynamically. However, these approaches often focus on low-rank hidden states during
the dynamic pattern approximation or use post-statistical methods to obtain the sparse mask, which introduce substantial
overhead in the estimation step, making them less useful for long-context LLMs.

Scaling Context Windows of LLMs Recent research has focused on expanding the context window of pre-trained LLMs,
that enables LLMs to handle more complex real-life applications (Jimenez et al., 2023; Park et al., 2023). These methods
can be categorized into: 1) Staged pre-training (Nijkamp et al., 2023; Fu et al., 2024); 2) Modifying or interpolating position
embeddings (Press et al., 2022; Chen et al., 2023; Peng et al., 2024; Ding et al., 2024); 3) Utilizing external memory modules
for context storage (Bertsch et al., 2023; Tworkowski et al., 2023; Xiao et al., 2024a); 4) Expanding computations across
multiple devices in a distributed manner (Liu et al., 2023a). However, these methods do not alleviate the high inference
costs in long-context processing.

Long-Context LLM Inference Recent studies (Fu, 2024) have tackled the high computational cost of attention and
substantial KV cache storage in long-context scenarios from two angles: pre-filling and decoding. Pre-filling optimizations
are primarily categorized as State Space Models (Gu et al., 2022; Gu & Dao, 2023), linear attention methods (Sun et al.,
2023; Peng et al., 2023), memory-based methods (Munkhdalai et al., 2024), hybrid methods (Lieber et al., 2024; Ho et al.,
2024; Ren et al., 2024), and prompt compression methods (Li et al., 2023; Jiang et al., 2023b; 2024; Pan et al., 2024).
However, these approaches require training from scratch or additional overhead and are difficult to implement directly in
pretrained long-context LLMs. Recently, some studies (Mao et al., 2024; Xiao et al., 2024a) have focused on using kNN or
cluster-based sparse attention to accelerate LLM inference. However, these methods often lead to reduced accuracy, limited
speedup, or are restricted to CPU scenarios.

In contrast, optimizations for the decoding stage are divided into: 1) Reusing attention KV to reduce KV cache stor-
age (Shazeer, 2019; Ainslie et al., 2023; Sun et al., 2024b; DeepSeek-AI, 2024); 2) Static KV cache compression pat-
terns (Xiao et al., 2024b; Han et al., 2024); 3) Dynamic KV cache compression patterns, including completely discarding
the KV cache after compression (Anagnostidis et al., 2024; Zhang et al., 2024b; Liu et al., 2024c; Ge et al., 2024; Oren
et al., 2024), and offloading-based methods (Ribar et al., 2024; Li et al., 2024b; Dai et al., 2024); 4) Cluster-based KV cache
compression methods (Nawrot et al., 2024; Tang et al., 2024); 5) Methods for restoring performance loss due to KV cache
compression (Adnan et al., 2024; Dong et al., 2024); 6) Hierarchical speculative decoding methods (Sun et al., 2024a).
Nevertheless, these methods do not address the heavy computational burden of the attention in the pre-filling stage.

F. Pattern Distribution
Fig. 9 shows the distribution of the optimal head configuration obtained through our search. Firstly, most of the patterns
are the Vertical-Slash pattern (>90%). However, according to the ablation study, using only the Vertical-Slash pattern
significantly impacts performance in highly dynamic tasks like KV retrieval. Secondly, the Block-Sparse pattern is primarily
distributed in several intermediate to later layers, while the A-shape pattern is found in the middle layers. Although the
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Figure 9. Distribution of three sparse head patterns in different models. We use the same optimal sparse pattern configuration for both
LLaMA-3-8B-Instruct-262K and LLaMA-3-8B-Instruct-1M.

optimal patterns vary slightly across different models, they generally align with these observations.

Additionally, we used the same configuration for two versions of LLaMA in our experiments, and the results show that the
1M model also performs very well, with nearly perfect results in the Needle In A Haystack task. This demonstrates the
generalizability of the optimal sparse pattern.

G. Sparsity in Kernel Distribution
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Figure 10. The distribution of sparsity in the kernel across different context windows refers to the proportion of the kernel that is actually
computed after block coverage, compared to the sparsity rate when using FlashAttention with a causal mask.

As shown in Fig. 10, the sparsity distribution of the three patterns during the actual kernel computation process is displayed.
It can be seen that when the context windows exceed 200k, the actual sparsity of all three patterns surpasses 90%. Even
considering a 20% index-building overhead, this ensures that the kernel achieves a speedup of over 8×. Furthermore, when
the context windows exceed 500k, the sparsity relative to FlashAttention exceeds 95%, with a theoretical speedup of over
15×.
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Figure 11. The sparse pattern in T5-style Encoder Attention using Flan-UL2 (Tay et al., 2023) on the Summarization (Zhang et al., 2024a).

H. Does This Dynamic Sparse Attention Pattern Exist Only in Auto-Regressive LLMs or
RoPE-Based LLMs?

Similar vertical and slash line sparse patterns have been discovered in BERT (Shi et al., 2021) and multi-modal LLMs (Wan
et al., 2024). Additionally, as shown in Fig. 11, we analyzed the distribution of attention patterns in T5 across different
heads. It is evident that there are vertical and slash sparse patterns even in bidirectional attention.

Recent studies (Wan et al., 2024) have analyzed sparse attention patterns in multi-modal LLMs, revealing the presence of
vertical and slash patterns in models like LLaVA (Liu et al., 2024a) and InternVL (Chen et al., 2024). Using MInference for
pre-filling stage inference acceleration holds great promise.

I. Case Study
Table 9 presents a comparison of the generation performance for various methods on the EN.SUM task (200K input length)
from InfiniteBench based on the LLaMA-3-8B-262K model. The original summary provides a comprehensive and coherent
narrative, detailing the Bronwyn family’s trip to the Kindergarten and touching on themes such as nostalgia, loss, and the
passage of time. StreamingLLM’s summary, although looks coherent, introduces elements that are not present in the original
story, leading to serious factual errors. For example, it mentions a boat trip to a school for boys and specific details like
fishermen, sandwiches, and a spot where men were drowned. These details deviate from the original story, which is about
the Bronwyn family preparing for a trip to the Kindergarten. In addition, the summaries generated by StreamingLLM
with dilated and strided techniques are largely incoherent, consisting primarily of repetitive and nonsensical characters,
indicating a failure to produce meaningful content. In stark contrast, the summary generated by our proposed method offers
a detailed and coherent narrative, comparable to the original, with a clear depiction of the story’s main events and themes.
This includes the preparation of the Bronwyn family for their trip, the characterization of family members and guests, and
the exploration of deeper themes such as love, marriage, and the search for meaning. The results demonstrate the superiority
of our proposed method in generating high-quality, human-like summaries over the baseline methods.

Table 10 compares the performance of various methods on the Retrieve.KV task (200K input length) using the LLaMA-3-8B-
262K model. The original method demonstrates perfect retrieval, correctly predicting the exact strings of the ground truth for
both examples. StreamingLLM, again, generates predictions that looks coherent and real, but factually incorrect. In addition,
StreamingLLM with dilated and strided techniques, and our method with a static pattern, fail significantly, producing outputs
that are either repetitive sequences of characters or nonsensical strings, indicating their inability to accurately retrieve the
required key-value pairs. Our method, however, performs on par with the original, accurately retrieving and predicting
the exact key-value pairs for both examples. This demonstrates the superior capability of our method in handling KV
retrieval tasks, providing precise and reliable outputs consistent with the ground truth. The results highlight our method’s
effectiveness and robustness compared to the baselines, making it a reliable choice for such tasks.
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Figure 12. Needle In A Haystack (Kamradt, 2023) results using GLM-4-9B-1M (GLM et al., 2024), Yi-9B-200K (Young et al., 2024),
Phi-3-Mini-128K (Abdin et al., 2024), and Qwen2-7B-128K (Yang et al., 2024).
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Algorithm 4 Vertical-Slash Index

Input: vertical indexes iv ∈ Nkv , slash indexes is ∈ Nks

# Sort vertical and slash indexes
iv ← IncrementalSort (iv)
is ← DescendingSort (is)

# Calculate block number (block_size B)
N ← ⌈ S

B
⌉

# Initialize outputs
block count cblk ∈ NN , block index iblk ∈ NN×ks , column count
ccolNN , column index icol ∈ NN×kv

# Parallelized in GPU
for i← 1 to N do

jv ← 1

# Find the first slash line that crosses the row
js ← biset_left(is, i×B)

# Define the range by slash index
rstart ← (i− 1)×B − ijss
rend ← i×B − ijss

# Merge points (vertical indexes) and ranges (slash indexes)
while sv ≤ ks do

if jv ≤ kv and ijvv < rend then
# Record the point if not in the range
if ijvv < rstart then

cicol ← cicol + 1, ii,c
i
col

col ← ijvv
end
jv ← jv + 1

else
sv ← sv + 1

# Update the range
if (i− 1)×B − ijss > rend then

# Record the last range
s← rstart
while s < rend do

ciblk ← ciblk + 1

i
i,ciblk
blk ← s
s← s+B

end while
# Calculate the new range
rstart ← (i− 1)×B − ijss
rend ← i×B − ijss

else
# Extend the range
rend ← rend +B

end
end

end while
# Record the last range
s← rstart
while s < rend do

ciblk ← ciblk + 1

i
i,ciblk
blk ← s, s← s+B

end while
end for
return cblk, iblk, ccol, icol

Algorithm 5 Vertical-Slash Flash Attention

Input: Q,K,V ∈ RS×dh , block count cblk ∈ NN ,
block index iblk ∈ NN×ks , column count ccol ∈ NN ,
column index icol ∈ NN×kv

Scale τ ←
√

1
dh

Initialize O ← (0)S×dh ∈ RS×dh

# Parallelized in GPU
for i← 1 to N do

Load Qchip ← Qi×B:(i+1)×B ∈ RB×dh

Initialize Ochip ← (0)B×dh ∈ RB×dh

Initialize m← (− inf)B ∈ RB

Initialize l← (0)B ∈ RB

# Loop through block indexes: block sparse flash attention
for j ← 1 to ciblk do

Block start s← ii,jblk

Load Kchip ←Ks:s+B ∈ RB×dh

Load Vchip ← V s:s+B ∈ RB×dh

S ← τQchipK
T
chip

S ← mask(S)
mi

new ← max(mi, rowmax(S)) ∈ RB

S ← S −mi
new

P ← exp(S)
linew ← rowsum(S))
α← exp(mi −mi

new)
li ← αli + linew

Ochip ← αOchip + PVchip
end for
# Loop through column indexes : PIT sparse flash attention
j ← 0
while j < cjcol do

cols← ii,j:j+B
col ∈ NB

Load Kchip ←Kcols ∈ RB×dh

Load Vchip ← V cols ∈ RB×dh

S ← τQchipK
T
chip

S ← mask(S)
mi

new ← max(mi, rowmax(S)) ∈ RB

S ← S −mi
new

P ← exp(S)
linew ← rowsum(S))
α← exp(mi −mi

new)
li ← αli + linew

Ochip ← αOchip + PVchip
j ← j +B

end while
# Write outputs
Ochip ← diag(li)−1Ochip
Save Oi ← Ochip

end for
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Table 9. Comparison of generated results by different methods using LLaMA-3-8B-Instruct-262K in summarization task (Zhang et al.,
2024a).

Methods Summary

Original The story follows the Bronwyn family and their guests as they prepare for a day
trip to the Kindergarten, a mysterious destination that holds great significance
for them. The story is told from multiple perspectives, including that of Pete
Lucy, who is staying with the family and is struggling to find her place in their
lives. As the day progresses, the family members prepare for their trip, and Pete
reflects on her own past experiences with the Bronwyns. The story ends with the
family setting off on their journey, leaving Pete alone on the lawn to contemplate
her own feelings and the meaning of life. The Kindergarten is a symbol of the
family’s past and their memories, and the story explores themes of nostalgia,
loss, and the passage of time. Ultimately, the story suggests that even though the
past cannot be changed, it can still be celebrated and remembered.

StreamingLLM The story follows a family on a boat trip to the Kindergarten, a school for boys.
The father, Mr Bronwyn, is reading a book and seems to be in a trance. The
children, Seb and Annalisa, are excited about the trip but also a little scared.
They pass by a group of fishermen and Mr Bronwyn shares out sandwiches. They
come across a spot where three men were drowned and Mr Bronwyn takes out
his watch, making a calculation. They reach the Kindergarten and Mr Bronwyn
jumps out of the boat, holding a parcel. The story ends with Pete Lucy, who has
been watching the family from the shore, feeling relieved that the trip is over and
that Mr Bronwyn has reached his destination. The story is told from multiple
perspectives, including Pete Lucy’s, who is watching the family from the shore
and reflecting on his own life and relationships.

StreamingLLM
w/ dilated

A ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (
( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (
( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (
( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (
( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (

StreamingLLM
w/ strided

The GraphicsUnit36.OOAKA new ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (
( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (
( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (
( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (

Ours w/ static def solverome2 def solverome2 def solverome2 def solverome2 def
solverome2 def solverome2 def solverome2 def solverome2 def solverome2 def
solverome2 def solverome2 def solverome2 def

Ours The story follows the Bronwyn family and their guests as they prepare for a trip
to the Kindergarten, a remote island off the coast of Scotland. The family is
made up of Mr. Bronwyn, a philosopher, and his wife, Mrs. Bronwyn, who is
known for her beauty and her ability to surround and protect her family. The
guests include Kevin Emma, a young man who is studying for a fellowship, and
Castor Kiki, a botanist who is also a widower. The story explores themes of love,
marriage, and the search for meaning in life. It also touches on the idea of the
other, or the person who is different from oneself and cannot be understood or
judged by conventional standards. Ultimately, the story is about the search for
truth and the desire to connect with others on a deeper level.
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Table 10. Comparison of generated results by different methods using LLaMA-3-8B-Instruct-262K in KV Retrieval task (Zhang et al.,
2024a).

Methods Summary

Original 1. Ground Truth: 5e6b7b90-710d-4953-9b18-3e96b2cadbf2
Prediction: "5e6b7b90-710d-4953-9b18-3e96b2cadbf2"

2. Ground Truth: f1ec3dd8-b6e7-4af5-a589-fda0b7693f93
Prediction: "f1ec3dd8-b6e7-4af5-a589-fda0b7693f93" (a string of length 32).

StreamingLLM 1. Ground Truth: 5e6b7b90-710d-4953-9b18-3e96b2cadbf2
Prediction: 2b114db0-d87e-42d2-9b4c-0b1f115976ad.assistant

2. Ground Truth: bbf3fa73-6217-4e6e-923c-8349bd286c3d
Prediction: "d829ce18-6339-4f77-8c04-31fc7ec33619".

StreamingLLM
w/ dilated

1. Ground Truth: 5e6b7b90-710d-4953-9b18-3e96b2cadbf2
Prediction: 5 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (

2. Ground Truth: f1ec3dd8-b6e7-4af5-a589-fda0b7693f93
Prediction: "def solverome2 def solverome2 def solverome2 def solverome2 def
solverome2 def solverome2 def solverome2 def solverome2 def solverome2 def
solverome2

StreamingLLM
w/ strided

1. Ground Truth: 5e6b7b90-710d-4953-9b18-3e96b2cadbf2
Prediction: "def solverome2 def solverome2 def solverome2 def solverome2 def
solverome2

2. Ground Truth: f1ec3dd8-b6e7-4af5-a589-fda0b7693f93
Prediction: "0 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (

Ours w/ static 1. Ground Truth: 5e6b7b90-710d-4953-9b18-3e96b2cadbf2
Prediction: "def solverome2 def solverome2 def solverome2 def solverome2 def

2. Ground Truth: f1ec3dd8-b6e7-4af5-a589-fda0b7693f93
Prediction: "def solverome2 def solverome2 def solverome2 def solverome2 def

Ours 1. Ground Truth: 5e6b7b90-710d-4953-9b18-3e96b2cadbf2
Prediction: "5e6b7b90-710d-4953-9b18-3e96b2cadbf2"

2. Ground Truth: f1ec3dd8-b6e7-4af5-a589-fda0b7693f93
Prediction: "f1ec3dd8-b6e7-4af5-a589-fda0b7693f93" (a string of length 32).
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