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ABSTRACT

Understanding if and how instance segmentation models generalize to novel
appearances of objects is crucial to many challenging real-world problems such
as occlusion or in low-resource domains. In this study we contribute a compre-
hensive baseline regarding the object-centric robustness of deep learning models.
Inspired by work on texture bias in CNNs, we introduce a novel negative test
and simulate the out-of-distribution appearance of familiar objects with a stylized
version of MS COCO and two counterfactual variants. In addition, we carefully
control for potentially confounding corruptions that can lead to disappearing ob-
jects in the extreme. The result is a causally well motivated sensitivity analysis.
We evaluate a broad range of frameworks including Cascade and Mask R-CNN,
Swin Transformer, BMask, YOLACT(++), DETR, BCNet, SOTR and SOLOv2.
We find that YOLACT(++), SOTR and SOLOv2 are significantly more robust to
corruptions and novel texture compared to competitive models (∼ 10 − 30%).
In general, we show that deeper and dynamic architectures improve robustness
whereas training schedules, data augmentation and pre-training have only a minor
impact. In summary we evaluate 68 models on 61 versions of COCO for a total of
4148 evaluations.

1 INTRODUCTION

In this study, we want to learn how deep learning models for instance segmentation generalize to
novel appearances of familiar objects. Despite their remarkable success in computer vision, deep
neural networks still struggle in challenging real-world scenarios (Yuille & Liu, 2018; Michaelis
et al., 2019; Recht et al., 2019; Madan et al., 2021). Consider for instance a pedestrian with an
unconventionally textured dress or a rare horse statue made from bronze. The model might have
seen many pedestrians or natural horses during training but still fails to detect these unseen and out
of context examples, often with high confidence. Generalizing to such naturally adversarial objects
is typically described as out-of-distribution robustness in the literature (Hendrycks et al., 2021;
Lau et al., 2021). Interestingly, Hendrycks et al. (2021) suggest that improvements in this direction
are more likely to come from computer vision architectures than from existing data augmentation or
additional public datasets. With the ever increasing number of competitive models, our objective is
therefore to contribute an extensive comparison of instance segmentation models to unveil promising
future research directions. The perspective we take is inspired by the work of Baker et al. (2018) and
Geirhos et al. (2019) on texture bias in classification models. More precisely, both groups found that
when compared to humans, convolutional neural networks (CNNs) mostly ignore object shapes, i.e.
ignore the defining structure of an object. In fact, Brendel & Bethge (2019) have further shown that
CNNs can robustly classify objects in texturized images where the global appearance of objects is
fully mixed up. In summary, these findings indicate that a revision of contemporary deep learning
architectures is a much needed contribution on the pathway to more systematic generalization. To
compare the robustness of instance segmentation models, we introduce a novel negative test in
the form of an object-centric sensitivity analysis. More precisely, we investigate the impact of
increasingly novel object texture while controlling for the effect of corrupted color, shape and
contour features. By object-centric, we mean that the appearance of visual objects is changed in a
semantics preserving and causally plausible way, i.e. is controlled at the instance level.

Since we generally expect that segmentation performance will degrade under novel textures and
increasing corruptions, our benchmark can be understood as a negative test, i.e. if a specific model
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Figure 1: Left: Simplified creation process of the Stylized COCO dataset. Style images are randomly chosen
from Kaggles Painter by Numbers dataset. Right: We use mask annotations to create counterfactual, object-
centric versions of Stylized COCO. We append more examples of the creation process in the Appendix.

appears to be significantly more robust than others, we can consider it a promising candidate for
more in depth research on generalization. To simulate novel appearances of familiar objects we
utilize a stylized version of MS COCO (Lin et al., 2014) as shown Figure 1 left. As can be seen,
the AdaIN method (Huang & Belongie, 2017) effectively replaces local texture cues but preserves
the global shape of objects. In addition, we create two object-centric versions of the stylized COCO
dataset as displayed in Figure 1 right. By comparing the performance on all three datasets we can
control for spurious correlations that might have been introduced in the fully stylized dataset. Note
that the style masking encodes ground truth information from the test set in the data which could
potentially be exploited by the models. While this would be an interesting finding in itself, we do
not see this to happen in practice. A limitation of our approach is the use of artistic style images.
This leads to novel object appearances that can not be found in real-life directly. However, we
compromise on this choice since it ensures that textures are truly novel and not biased which could
happen with natural style images. We discuss more alternatives to our simulation method in the
related work section.

A closely related perspective on segmentation robustness can be found in work that acknowledges
the inherent long-tail distribution of real-world data. In such settings, the challenge is to become
robust against the bias of extreme class imbalance in existing datsets. Common approaches to re-
solve this issue are re-sampling (Wang et al., 2020b; Chang et al., 2021) and regularization strategies
(Tang et al., 2020; Pan et al., 2021; Hsieh et al., 2021; Wang et al., 2021b). The long-tail problem
can also be understood as a low resource setting where data collection is expensive or class labels are
missing. In such cases, the challenge is to efficiently adapt to novel objects or uncommon appear-
ances in a semi-supervised manner (Hu et al., 2018b; Fan et al., 2020). A particular instantiation of
this problem is object occlusion. Since objects can occlude each other in almost infinitely different
ways, a common strategy is to model object features more explicitly, i.e. to decouple shape and
appearance for instance (Chen et al., 2015; Cheng et al., 2020; Ke et al., 2021; Fan et al., 2020). The
idea is to learn representations that generalize more systematically and we expect these methods
to be strong contenders in our comparison. We hope that our comprehensive benchmark motivates
more research in this direction which we believe, will lead to improvements in all of the related
problem spaces.

2 METHODS

In this section we describe the datasets, frameworks and models that are used in this study. The code
to reproduce our results, as well as ≈ 1.5TB of detection and evaluation data can be found here:
link-to-project-page-when-published.

2.1 AN OBJECT-CENTRIC CAUSAL VERSION OF STYLIZED COCO

Stylized COCO as shown in Figure 1 left is an adaptation of Stylized-ImageNet by Geirhos et al.
(2019). It was first used by Michaelis et al. (2019)1 as data augmentation technique during training
to improve robustness of detection models against common corruption types such as gaussian noise
or motion blur. We instead use a stylized version of the val2017 subset to test instance segmen-
tation models on this data directly. By manual inspection of Stylized COCO, we found that strong

1
Stylized Datasets: https://github.com/bethgelab/stylize-datasets
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stylization can sometimes lead to images where the object contour starts to vanish, up to the point
where objects and their boundaries dissolve completely. This effect depends on the style image used
in the creation process but affects objects of all scales alike. As shown in Figure 2, we resolve this
issue by using the ground truth mask annotations to limit the style transfer to the actual objects or
the background. This not only ensures that object contours are preserved but also controls for global
stylization as a confounding variable. By assuming an object-centric causal model, Stylized COCO
allows us to ask interventional questions regarding the original COCO dataset, e.g. “What happens
if we change the texture of images?”. By masking the style transfer to objects or background, we
can also ask counterfactual questions such as “Was it actually the object that caused the change in
performance?”, “What if we change the background instead?”. We will refer to the different dataset
versions as Stylized COCO (l), Stylized Objects (s) and Stylized Background (n).

Stylized COCOCOCO instances Stylized Objects Stylized Background

Figure 2: Depending on the style
image, object boundaries can van-
ish due to strong stylization. The
Stylized Objects and Background
versions of Stylized COCO resolve
this issue.

A related, second problem that remains after masking is that shape information within the object can
also be lost due to strong stylization. We address this issue by controlling the strength of the AdaIN
style transfer. This can be done with an α parameter that acts as a mixing coefficient between
the content and style image. More precisely, AdaIN employs a pre-trained VGG encoder f on
both images, performs an interpolation step between the resulting feature maps and produces the
final output with a learned decoder network g. In summary, a stylized image t is produced by
T (c, s, α) = g((1− α)f(c) + αAdaIN(f(c), f(s))) where c and s are the content and style images
respectively. We will refer to this method as blending in feature space. The top row of Figure 3
shows two examples of the extreme points α = 0 and α = 1. Note that at α = 0, the image colors
are mostly preserved but the algorithm has already introduced artifacts in the form of subtle texture
and shape changes. In response we create a control group where we perform alpha blending between
the pixel values of the original content image c and the fully stylized image tα=1: P (c, tα=1, α) =
((1− α) ∗ c+ α ∗ tα=1). We will refer to this method as blending in pixel space. In contrast to the
feature space sequence, the control group should preserve textures and object shape over a longer
range. The idea is to compare models on both sequences in order to attribute performance changes
to either color and texture or shape, depending on the objects size. In contrast to Geirhos et al.
(2019) who used a fixed style strength to modify ImageNet features (α = 1), we produce the full
alpha-range α ∈ (0.0, 0.1, 0.2, ..., 1.0) for both blending spaces. Note that every alpha value depicts
a separate and complete version of the accordingly styled COCO val2017 subset. The qualitative
differences can be inspected in Figure 3 bottom left (zoom in for better visibility).

coco image style α = 0 style α = 1

blending alpha
0.5 0.90.80.70.60.0 0.40.30.20.1 1.0

coco image style α = 0 style α = 1

0 32 64 96 128 160 192 224 256
0.0 %

0.5 %

1.0 %

1.5 %

0 32 64 96 128 160 192 224 256
0.0 %

0.5 %

1.0 %

1.5 %

0 32 64 96 128 160 192 224 256
0.0 %

0.5 %

1.0 %

1.5 %

Image gradients (Sobel on grayscale) and RGB histogram per image.

Figure 3: Top row: Comparison of COCO and Stylized COCO at different alphas. The AdaIN method in-
troduces subtle artifacts even at α = 0 (no style). Bottom left: We control the style strength in feature space
(yellow to pink) and pixel space (blue to pink). Note that every alpha value in these sequences depicts a separate
and complete version of the accordingly styled COCO val2017 subset. Bottom right: Comparison of image
gradients and color histograms at different alphas.

We also went for quantitive measures to validate our subjective impression of Stylized COCO.
Figure 3 bottom right shows a comparison of image gradients and RGB histograms at the extreme
points. Compared to the original image we can see the subtle shape changes in the gradient map of
α = 0 and a significantly different color histogram at α = 1. To describe this effect over the full
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alpha range, we compute the structural similarity index (SSIM) (Wang et al., 2004) between gradi-
ent images of corresponding image pairs. Between RGB histograms we compute the Wasserstein
distance alike. We always compare against the original COCO data and report the mean distance
averaged over the full dataset at a specific alpha. In addition to the image-to-image scores we also
include an instance level comparison for the COCO scales S,M and L. Instances have been cropped
based on bbox information. This addition was added after we observed that small objects appear
to be more affected by the AdaIN artifacts compared to medium and large instances. Figure 4 dis-
plays the results and confirms our assumption. Structural similarity depends on object size and is
in fact, almost constant over the full feature space range for small objects. Furthermore, the con-
trol group preserves structural similarity over a longer range as intended. Color distance in contrast
converges at around α = 0.3. Based on these insights, we feel confident to better attribute potential
performance dips and subsequently, determine the relative importance of each feature type.
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Figure 4: Left: Average structural
similarity between image gradients
in relation to COCO (a score of 1
means that there is no difference
between images). Right: Wasser-
stein distance between RGB his-
tograms (reversed y-axis).

2.2 MODEL SELECTION

To contribute a comprehensive overview on model robustness, we opted for a broad comparison of
popular frameworks and architectures. The dimensions we consider to be impactful are framework,
architecture and pre-training. The selected models can be found in Table 1.

Frameworks for instance segmentation can be categorized in different ways. A first distinction
can be made between methods that solve the detection problem as a refinement process of box pro-
posals (multi stage) and methods that predict bounding boxes directly (one stage). We include the
popular multi-stage frameworks Mask R-CNN (He et al., 2017) and Cascade Mask R-CNN (Cai &
Vasconcelos, 2018) that uses multiple refinement stages instead of one. Both frameworks formulate
instance segmentation as a pixel-wise classification problem. Since this rather naive extension to
Faster R-CNN (Ren et al., 2015) can ignore object boundaries and shapes, we include the boundary-
preserving mask head alternative (Cascade-) BMask (Cheng et al., 2020) for comparison. A remain-
ing challenge to boundary detection are overlapping objects that occlude the ground truth contour
of other instances. We therefore include the Bilayer Convolutional Network (BCNet) (Ke et al.,
2021) as another mask head alternative. In BCNet, the occluded and occluding object are separately
detected and modeled explicitly in a layered representation. The mask head can then ”consider the
interaction between [the decoupled boundaries] during mask regression (Ke et al., 2021).” A second
distinction between frameworks concerns the use of predefined anchor boxes. Anchor based meth-
ods predict relative transformations on these priors whereas anchor free methods predict absolute
bounding boxes. We include YOLACT(++) (Bolya et al., 2019; 2020) as a one-stage, anchor based
framework. YOLACT is a real-time method that solves instance segmentation without explicit lo-
calization (feature pooling). Instead, it generates prototype masks over the entire image which are
combined with per-instance mask coefficients to form the final output. The (++) version improves
by adding a mask re-scoring branch (Huang et al., 2019a) and deformable convolutions (v2) (Dai
et al., 2017; Zhu et al., 2019). We include DETR (Carion et al., 2020) as a one-stage, anchor free
framework that formulates object detection as a set prediction problem over image features. Note
that it was not primarily designed for instance segmentation but offers a corresponding extension
that we use in our study. Based on model availability we include BCNet in the FCOS (Tian et al.,
2019) variant (F-BCNet). FCOS is a fully convolutional, one-stage, anchor-free alternative to Faster
R-CNN that ”solves object detection in a per-pixel prediction fashion, analogue to semantic segmen-
tation (Tian et al., 2019).” Finally, we distinguish between top down frameworks where detection
precedes segmentation and bottom up methods where bounding boxes are derived from mask pre-
dictions. We include the bottom-up methods SOLOv2 (Wang et al., 2020d) and SOTR (Guo et al.,
2021). SOLO (Wang et al., 2020c) divides the input into a fixed grid and predicts a semantic cat-
egory and corresponding instance mask at each location. The final segmentation is obtained with
non-maximum-suppression on the gathered grid results to resolve similar predictions of adjacent
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grid cells. SOLOv2 improves by introducing dynamic convolutions to the mask prediction branch,
i.e. an additional input dependent branch that dynamically predicts the convolution kernel weights.
A similar idea was used by Tian et al. (2020b). SOTR uses a twin attention mechanism (Huang
et al., 2019b) to model global and semantic dependencies between encoded image patches. The
final result is obtained by patch wise classification and a multi-level upsampling module with dy-
namic convolution kernels for mask predictions, similar to SOLOv2. For completeness, we also
include YOLO(v3,4 and scaled v4) to our comparison since detection is a vital sub-task of top down
frameworks (Redmon & Farhadi, 2018; Bochkovskiy et al., 2020; Wang et al., 2021a).

Table 1: Overview of frameworks, backbones and neck methods. (*) Swin Transformer use hierarchical repre-
sentations similar to FPN necks in CNNs. RegNetY is similar to RegNetX but implements the Squeeze-and-
Excitation operation (Hu et al., 2018a). Yolo consists of darknet (D), spatial pyramid pooling (SSP) (He et al.,
2014) and a Path Aggregation Network (PAN) (Liu et al., 2018) in varying combinations with CSPNet (C)
(Wang et al., 2020a).

Backbone Framework
CNN multi stage one stage
GCN anchor based anchor free

Hybrid top down (bbox→segm) bottom up (segm→bbox)
ViT Mask R-CNN BMask Cascade YOLO(v3,4,s4) YOLACT(++) DETR FCOS BCNet SOTR SOLOv2

R50 FPN, C4, DC5, DCN FPN FPN - FPN, DCN FPN, DC5 - - FPN
R101 FPN, C4, DC5, FPN DCN - FPN, DCN FPN FPN FPN, DCN FPN
X101 FPN - - - - - - - -
X151 - - FPN, DCN - - - - - -

RegNetX FPN - - - - - - - -
RegNetY FPN - - - - - - - -
Swin-T FPN* - FPN* - - - - - -
Swin-S FPN* - FPN* - - - - - -
Swin-B - - FPN* - - - - - -

D53 - - - FPN - - - - -
CD53 - - - (C)PAN, SPP - - - - -

Architectures used in instance segmentation can be divided into backbone, neck and functional
heads. The latter output the final results and are framework specific. Backbones and necks however
are typically chosen from a pool of established models which allows for a controlled comparison.
The role of backbone networks is to extract meaningful feature representations from the input, i.e.
to encode the input. The neck modules define which representations are available to the functional
heads, i.e. define the information flow. We include the CNN backbones ResNet (He et al., 2016),
ResNext (Xie et al., 2017) and RegNet (Radosavovic et al., 2020), a network found with meta ar-
chitecture search that outperforms EfficientNet (Tan & Le, 2019). Note that BCNet utilizes a Graph
Convolutional Network (GCN) (Kipf & Welling, 2017) within its mask heads to model long-range
dependencies between pixels (to evade local occlusion). Furthermore, DETR and SOTR are hybrid
frameworks that use transformer architectures to process the encoded backbone features. With Swin
Transformer (Liu et al., 2021) we also include a convolution free backbone alternative based on the
Vision Transformer approach (ViT) (Dosovitskiy et al., 2021). The most popular neck choice is the
Feature Pyramid Network (FPN) (Lin et al., 2017). It builds a hierarchical feature representation
from intermediate layers to improve performance at different scales, e.g. small objects. For compar-
ison we also include a ResNet conv4 neck (C4) as used in Ren et al. (2015) and a ResNet conv5 neck
with dilated convolution (DC5) as used by Dai et al. (2017). Finally we abbreviate FPN models that
use deformable convolutions as DCN (Dai et al., 2017; Zhu et al., 2019). Similar to dynamic con-
volutions which predict kernel weights, DCNs learn to dynamically transform the sampling location
of the otherwise fixed convolution filters.

Pre-training of backbone networks is commonly done as supervised learning on ImageNet (IN).
Due to the recent success of self supervised learning (SSL) in classification, we are interested in
how these representations perform in terms of object-centric robustness. In particular we are in-
terested in the contrastive learning framework that seeks to learn “representations with enough in-
variance to be robust to inconsequential variations (Tian et al., 2020a)”. Based on availability we
include the methods InstDis (Wu et al., 2018), MoCo (He et al., 2020; Chen et al., 2020), PIRL
(Misra & van der Maaten, 2020) and InfoMin (Tian et al., 2020a). Note that pre-trained backbones
were only used as initialization for a supervised training on COCO. As a final comparison we include
models that have been trained with random initialization and Large Scale Jittering (LSJ) (Ghiasi
et al., 2021) data augmentation as an alternative to pre-training.

The complete list of models can be inspected in Figure 5. From the overview in Table 1 we can see
that our selection allows for a fair comparison of frameworks as long as we fix the backbone and
neck architecture to ResNet+FPN. Vice versa we can compare backbone and neck combinations
within a fixed framework, in particular Mask R-CNN. Note that we also compared different learning
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schedules but did not include this dimension more prominent in the categorization after finding it to
be the least significant factor in our evaluation.

3 RELATED WORK

The classical understanding of robustness is concerned with corruptions that stem from signal
processing errors such as gaussian or salt and pepper noise etc. (Hendrycks & Dietterich, 2019;
Michaelis et al., 2019; Kamann & Rother, 2021; Mummadi et al., 2021). A popular alternative is to
understand robustness by comparing model performance and failure cases against humans (Geirhos
et al., 2018; 2019; 2020; 2021; Shankar et al., 2020; Tuli et al., 2021). Geirhos et al. (2021) and
Tuli et al. (2021) for instance find that Transformer models perform more consistent to humans than
CNNs. Madan et al. (2021) on the other hand report that both model types are prone to small in-
distribution changes in 3D perspective and lighting. We contribute to this matter by including both
architectures in our comparison. A third perspective is given by work that aims to compensate for the
long-tail distribution in real-world data. In this case, robustness can be understood as the ability to
adapt to novel object classes or uncommon appearances in a data efficient transfer learning process
(Hu et al., 2018b; Fan et al., 2020). The approach we take is more direct and measures robustness
in a challenging zero-shot generalization setting. As an alternative to our sensitivity benchmark,
Islam et al. (2021) analyze feature importance in latent representations and Cao & Johnson (2021)
use feature visualization to understand object detectors. Both leverage style transfer to simulate
novel object appearances. The closest real-life alternative is the Natural Adversarial Objects (NAO)
dataset (Lau et al., 2021). It poses a more realistic long-tail setting but does not allow to control for
pose and perspective, i.e. to observe the exact same object with varying textures for instance. Other
alternatives are the 3DB framework (Leclerc et al., 2021), a rendering engine that enables artifact
free texture transfer on synthetic objects and SI-Score (Yung et al., 2021), a dataset for analyzing
robustness to rotation, location and size.

4 RESULTS

In this section we present the evaluation results on Stylized COCO, Objects and Background. Each
dataset version contains 20 copies of the accordingly styled COCO val2017 subset. As a reference
point, we first report the absolute Average Precision (AP) on the original val2017 subset for all
models in Figure 5. As can be seen, training schedule, data augmentation and architecture choice
have the biggest impact within a framework. Overall, RegNets trained with LSJ and Swin Trans-
former models perform best. Note that SOTR and SOLO have worse APs but significantly better
APm and APl compared to other frameworks (see Appendix).
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Figure 5: Absolute performances on COCO val2017. Training schedules in epochs have been appended to
model names. Note that Yolo is bbox AP which is not directly comparable but included for model completeness.
Methods that do not report scores for val2017 have been validated on test-dev2017 first.

We now present the results of our object-centric sensitivity analysis. We first provide a general
overview of the full blending sequences and then focus on the extreme points α = 0 and α = 1 in
more detailed comparisons. In total we tested 68 pre-trained models 2 on 61 datasets which sums up
to 4148 subset evaluations. To select models for grouping in the overview and reporting in the de-
tailed comparisons, we calculated the distance matrix between all models for each dataset. These can
be found in the Appendix together with more metrics and the corresponding bounding box scores.

2
See Appendix for the complete list of code projects and weight sources.
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Note that we focus primarily on the AP score for segmentation and the scale dependent COCO met-
rics APs, APm and APl due to our object-centric perspective. To quantify object-centric robustness,
we report the relative performance in comparison to the uncorrupted data. For every dataset version,
blending space and alpha value we calculate: rPα = Pα/Pcoco;P ∈ {AP,APs,APm,APl}.
Note that we release the exact numerical values together with our code since reporting this amount
of data in the form of tables is not expedient.

Figure 6 displays the average relative performance per framework and stylized COCO version
for the feature space blending sequence (dark) and the pixel space control group (light, always
starting from 100%). We can immediately see that YOLACT(++) is consistently more robust (rAP)
than all other frameworks due to its strong performance on small objects (rAPs). Similarly, the
bottom-up frameworks SOTR and SOLOv2 are significantly more robust on medium (rAPm) and
large objects (rAPl). Within the Cascade and Mask R-CNN frameworks, Swin Transformer are
slightly more robust than their CNN based counterparts. To our surprise, the advanced BMask and
BCNet models do not consistently improve robustness but rather closely follow the performance of
the naive mask head designs. We investigate this not expectable ranking in more detail in Figure 7
and provide some further explanation in our discussion.

Mask R-CNN BMask Cascade Swin Yolo Yolact Yolact++ DETR F-BCNet SOTR SOLOv2
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Figure 6: General overview of model robustness
(zoom in for better visibility). Masking the style
transfer effect to ground truth objects results in im-
proved relative performance without changing the
overall trend. Structural similarity as displayed in
Figure 4 seems highly predictive for the low al-
pha range but can not explain the further decreas-
ing robustness values. We also like to point out
the small performance dip of the control group at
α = 0.1 that seems to be induced by color shift.
Surprisingly, increasing the style strength on back-
ground features appears to have a positive effect for
large objects (rAPl). Swin Transformer are display
as a separate group due to their convolution free
backbone architecture. Yolo is bounding box rAP
which is not directly comparable but included for
model completeness. Note that absolute metrics re-
sult in different ordering due to varying base per-
formance. We append this version together with the
corresponding bbox variants in the Appendix.

Note that our object-centric sensitivity approach allows to validate these findings in a causally rig-
orous way for the first time. More precisely, it allows us to distinguish between the impact of
stylization artifacts (artificial signal noise) and novel object appearances (out of distribution tex-
ture). This is not possible with only single style strength tests as typically done. In general, it can be
expected that all models will degrade in performance with increasing style strength at some point.
We can see however that after an initial performance loss at α = 0 (subtle corruptions of original
shapes and textures), models are fairly robust until actual out of distribution texture from the style
image is introduced (starting around α = 0.4). This effect applies to medium and large but not small
objects where the performance appears to be fully dominated by the artifacts of the AdaIN method.
As a result, we can respect these insights in our conclusions. For instance, we now understand that
for medium and large objects, texture is more important to instance segmentation models than ob-
ject shape or subtle corruptions. From the gap between the pixel space control group and the feature
space blending sequence we can further tell that subtle shape and texture corruptions are more severe
than color changes. In addition, we can validate that our findings can be attributed to actual objects
by comparing the performance on Stylized Objects and Background. In general, models are heavily
relying on context information for small objects but not for medium and large instances. Again, this
could be assumed but not be proven with the scientific evidence of only one, fully stylized dataset.
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Finally, we like to point out that models perform significantly better on Stylized Objects than on the
fully Stylized COCO. Within the limitation of our data creation process, we conclude that instance
segmentation models do indeed consider object contour as a predictive feature.

For a fair comparison between frameworks we fix the backbone and neck to ResNet-50 and FPN.
Figure 7 displays the results from the feature blending sequence at α = 0 and α = 1. We can
again observe that object-centric stylization is important but does not change the general ranking.
Similarly, small objects are more directly affected by shape and texture artifacts whereas medium
and large objects degrade due to texture transfer. Between Cascade and Mask R-CNN as well as
BMask and BCNet we find only minor differences. YOLACT(++) performs consistently better
across all scales and SOLO and SOTR perform on par or even better but struggle with small objects.
DETR shows the opposite behavior.
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Figure 7: Object-centric robustness by framework. Note that we compromised on R-101 for SOTR and F-
BCNet, see Table 1 for an overview of available backbone combinations.

To investigate the impact of different backbones we fix the neck method (FPN) and compare
model pairs within a given framework. As can be seen from the rAP metric in Figure 8 (top), deeper
models perform generally slightly better. The rAPm and rAPl metrics follow this trend. We therefore
append the results for rAPs were the behavior is less clear and surprisingly, often reversed. Note
that Swin-T and S are comparable to ResNet-50 and 101 in model complexity and perform best
within the Cascade and Mask R-CNN framework respectively. BM and C-BM represent BMask and
Cascade BMask respectively.
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Figure 8: Top: Object-centric robustness by backbone architecture (zoom in for better visibility). Models
marked with * are trained with LSJ. Bottom: Robustness by neck architecture. Deformable convolutions are
highlighted for better visibility. Note that Yolo scores are bbox and not directly comparable.

To investigate the impact of different neck methods we do the reverse and compare models by fix-
ing backbones and framework. As can be seen from Figure 8 (bottom), FPN necks are typically the
least robust option. However, FPN in combination with deformable convolutions (DCN) performs
consistently best. Note that SOTR additionally implements dynamic convolution kernels. For small
objects, DC5 necks improve the robustness on Stylized Objects (triangle). We also compare Yolo
against itself and find that surprisingly, the simple v4-csp model (CPAN) is the most robust option.
We provide hypothesis for these findings in our discussion.
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Figure 9: Object-centric robustness by
pre-training and data augmentation.

Finally we investigate the impact of pre-training and
strong data augmentation. As displayed in Figure 9, differ-
ent types of initialization perform almost similar within a
few percent. This is surprising since we expected represen-
tations to perform more differently based on the objective
used in pre-training, in particular from the contrastive learn-
ing framework. On the other hand we can report that super-
vised and unsupervised representations perform almost on
par. Similarly, longer training schedules have little impact
on model robustness but do not lead to strong overgeneral-
ization either. In comparison we find that random initial-
ization with LSJ data augmentation performs best.

5 DISCUSSION

The first key finding of our object-centric sensitivity analysis is that YOLACT and the bottom-up
frameworks SOTR and SOLOv2 are significantly more robust than other frameworks. We suspect
that the consideration of the entire image in combination with their mechanisms to represent mul-
tiple mask prototypes to play a major role, though more in depth research is required to verify this
hypothesis. To our surprise, the object specific mask heads BMask and BCNet did not improve ro-
bustness in a significant way. A naive explanation might be that their specialized representations do
simply not generalize to out-of-distribution texture. However, it could also be the case that improved
mask detections are just not well reflected in the averaged AP scores. Since we release all detection
data, this hypothesis could be investigated by extensive result visualization in a follow-up work. In
general we find that deep learning models for instance segmentation appear to be biased towards
texture, similar to classification models (Geirhos et al., 2019). More specifically, we show that mod-
els are fairly robust to shape and texture corruptions after an initial performance dip. The remaining
loss can then be attributed to actual texture transfer from an unknown domain. This effect appears
to scale with instance size and we hypothesize that the difference between shape and texture simply
collapses for (very) small objects in MS COCO. In contrast to Geirhos et al. (2019) who argue that
this problem is induced by the ImageNet training data, we find no such correlation in terms of pre-
training. We conclude that either a similar bias is induced by the COCO dataset or that architectures
are simply not flexible enough to cope with feature variability, independent of training regime. The
latter hypothesis was formulated by Greff et al. (2020) as the binding problem and concerns “the
inability [of neural networks] to dynamically and flexibly combine (bind) information [... which]
limits their ability to [...] accommodate different patterns of generalization”. Our comparison of
fixed and dynamic architectures supports this hypothesis as we find that deformable and dynamic
convolutions lead to improved robustness consistently. We consider this another promising research
direction towards systematic generalization.

6 CONCLUSION

In this study we contribute a comprehensive baseline on the object-centric robustness of instance
segmentation models. We first introduce a novel negative test on Stylized COCO in the form of an
counterfactual sensitivity analysis. Based on a broad selection of frameworks and architectures, we
test 68 models on 61 dataset versions for a total of 4148 subset evaluations. We find a non-trivial
ranking of frameworks with YOLACT(++), SOTR and SOLOv2 performing best. In addition we
show that dynamic and deeper architectures improve robustness. In contrast, training schedules,
data augmentation and pre-training have only a minor impact in comparison. We discuss limitations
of our approach and provide interesting future research directions in our discussion.
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APPENDIX

DATASET CREATION

Figure 10 provides a representative sample of images in Stylized COCO. Figure 11 displays the
effect of controlling the style strength parameter in AdaIN. Figure 12 shows the masked versions
of the last example image in Figure 11 and its blending sequences for Stylized COCO. Finally we
attached a complete example for one image in Figure 13.

Figure 10: Creation process of Stylized COCO. We plot the mask annotations to locate ground truth instance
in the stylized images. These are also used to create the masked version of Stylized COCO.
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Figure 11: Comparison of AdaIn style transfer strength. Depending on the style image, an alpha value of 1
(pink) can produce rather extreme versions where objects are almost eradicated from the scene. An alpha value
of 0 (yellow) corresponds to a style transfer of the content image with itself. As can bee seen in the middle
column, this variant already introduces subtle shape changes to the images.

Figure 12: Comparison of Stylized COCO, Stylized Objects and Background for the last example in Figure 11.
Bottom rows show the pixel and feature space blending sequences for the stylized COCO version.
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Figure 13: Full example for one image. Top row: Creation Process of Stylized-COCO. Second row: Com-
parison of AdaIn style strength. Third row: Comparison of the stylized datasets. Last three rows: Blending
Sequences for Stylized-COCO, Stylized-Objects and Stylized-Background. We create these for every image
which results in 60 modified copies of the COCO val2017 subset.

The configuration to reproduce the exact same version of stylized COCO can be found in our code
release.
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A NOTE ON THE ROLE OF DATA AUGMENTATION

A certainly under-explored dimension of our study is the impact of data augmentation for systematic
generalization. It is known that specific augmentation techniques will improve the performance
on certain problem domains. For instance, Geirhos et al. (2019) and Michaelis et al. (2019) have
shown that the texture bias in some classification and detection models can be reduced when stylized
images are used during training. It is not know however if the learned representations generalize in
a more systematic way, e.g. improve the performance on occluded objects for instance. It is also not
known if frameworks and architectures benefit equally from such augmentation or if some models
can exploiting the regularized signal more efficiently. These are certainly interesting questions but
would require to re-train all models that are used in our study from scratch. As this would result in a
significant amount of compute, we decided against this experiment for the following reasons. First,
our infrastructure is simply limited. Second, we consider the investment to be disproportional to the
expected result. As can be seen from Figure 9, die difference in robustness for a ResNet-50 without
and with Large Scale Jitter augmentation lies within a few percent. In contrast, frameworks and
neck architectures appeared to have a much larger impact on robustness. In consequence, we opted
to make these dimension a priority in our comparison and to postpone a more in depth analysis of
data augmentation.

PRE-TRAINED MODEL WEIGHTS

We use code and checkpoints from the following projects. Note that unfortunately, CPMask (Fan
et al., 2020) was not fully released at the time of this publication but will be included in our code
release in the future. Before we test a model on Stylized COCO and its variants, we reproduced
the reported score on COCO val2017. Models without reported metrics on val2017 have been
validated on test-dev2017 before testing.

• Detectron 2: https://github.com/facebookresearch/detectron2/

• BMask R-CNN: https://github.com/hustvl/BMaskR-CNN

• PyContrast (SSL): https://github.com/HobbitLong/PyContrast/

• Swin: https://github.com/SwinTransformer/Swin-Transformer-Object-Detection

• YOLO: https://github.com/AlexeyAB/darknet

• YOLACT(++): https://github.com/dbolya/yolact

• DETR: https://github.com/facebookresearch/detr

• BCNet: https://github.com/lkeab/BCNet

• CPMask: https://github.com/fanq15/FewX

• SOTR: https://github.com/easton-cau/SOTR

• SOLOv2: https://github.com/aim-uofa/AdelaiDet/tree/master/configs/
SOLOv2
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ADDITIONAL RESULTS

We include additional results for comparison. In particular, we append the equivalent bounding
box versions of our main paper figures. Figure 14 compares the absolute performance on COCO
val2017 between all models. The model grouping and detailed results we present in the main
paper are based on the distance matrices in Figure 15. Figure 16 provides the bbox equivalent to
the general overview on model robustness. We also include the absolute performance versions of
those figures. Figure 17 compares the relative framework performance by bbox score. Figure 18
and Figure 19 display the comparisons of backbone and neck architectures respectively.
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Figure 14: Comparison of absolute model performance on COCO val2017. Methods that do not report scores
for val2017 have been validated on test-dev2017. Note that SOTR and SOLO perform worse on small
objects but exhibit significantly improved segmentation scores for medium and large objects
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Figure 15: Euclidian distance between the relative model performances (over the full alpha range). We average
over AP, APs, APm and APl. Yellow squares group the same model with different learning schedule.
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Figure 16: General overview of model robustness. Top row shows relative performance as in the main paper.
Bottom row displays absolute performance for comparison. Note that comparing relative or absolute perfor-
mance results in a different order of frameworks due to varying base performance.
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Figure 17: Object-centric robustness by framework (bbox). Note that we compromised on R-101 for SOTR.
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(b) Bounding Box scores

Figure 18: Full comparison of object-centric robustness by backbone architecture. Models marked with * are
trained with LSJ.

F
P
N
C
4

D
C
5

D
C
N

F
P
N

D
C
5

F
P
N

D
C
N

F
P
N
C
4

D
C
5

D
C
N

F
P
N

D
C
N

F
P
N

D
C
N

F
P
N

D
C
N

P
A
N

C
P
A
N

p
5
-C
P
A
N

p
6
-C
P
A
N

F
P
N
C
4

D
C
5

D
C
N

F
P
N

D
C
5

F
P
N

D
C
N

F
P
N
C
4

D
C
5

D
C
N

F
P
N

D
C
N

F
P
N

D
C
N

F
P
N

D
C
N

P
A
N

C
P
A
N

p
5
-C
P
A
N

p
6
-C
P
A
N

R
5
0

R
1
0
1

X
1
0
1

X
1
5
1

C
D
5
3

R
5
0

R
1
0
1

X
1
0
1

X
1
5
1

C
D
5
3

�=0 �=1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

rAP

F
P
N
C
4

D
C
5

D
C
N

F
P
N

D
C
5

F
P
N

D
C
N

F
P
N
C
4

D
C
5

D
C
N

F
P
N

D
C
N

F
P
N

D
C
N

F
P
N

D
C
N

P
A
N

C
P
A
N

p
5
-C
P
A
N

p
6
-C
P
A
N

F
P
N
C
4

D
C
5

D
C
N

F
P
N

D
C
5

F
P
N

D
C
N

F
P
N
C
4

D
C
5

D
C
N

F
P
N

D
C
N

F
P
N

D
C
N

F
P
N

D
C
N

P
A
N

C
P
A
N

p
5
-C
P
A
N

p
6
-C
P
A
N

R
5
0

R
1
0
1

X
1
0
1

X
1
5
1

C
D
5
3

R
5
0

R
1
0
1

X
1
0
1

X
1
5
1

C
D
5
3

�=0 �=1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

rAPs

F
P
N
C
4

D
C
5

D
C
N

F
P
N

D
C
5

F
P
N

D
C
N

F
P
N
C
4

D
C
5

D
C
N

F
P
N

D
C
N

F
P
N

D
C
N

F
P
N

D
C
N

P
A
N

C
P
A
N

p
5
-C
P
A
N

p
6
-C
P
A
N

F
P
N
C
4

D
C
5

D
C
N

F
P
N

D
C
5

F
P
N

D
C
N

F
P
N
C
4

D
C
5

D
C
N

F
P
N

D
C
N

F
P
N

D
C
N

F
P
N

D
C
N

P
A
N

C
P
A
N

p
5
-C
P
A
N

p
6
-C
P
A
N

R
5
0

R
1
0
1

X
1
0
1

X
1
5
1

C
D
5
3

R
5
0

R
1
0
1

X
1
0
1

X
1
5
1

C
D
5
3

�=0 �=1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

rAPm

F
P
N
C
4

D
C
5

D
C
N

F
P
N

D
C
5

F
P
N

D
C
N

F
P
N
C
4

D
C
5

D
C
N

F
P
N

D
C
N

F
P
N

D
C
N

F
P
N

D
C
N

P
A
N

C
P
A
N

p
5
-C
P
A
N

p
6
-C
P
A
N

F
P
N
C
4

D
C
5

D
C
N

F
P
N

D
C
5

F
P
N

D
C
N

F
P
N
C
4

D
C
5

D
C
N

F
P
N

D
C
N

F
P
N

D
C
N

F
P
N

D
C
N

P
A
N

C
P
A
N

p
5
-C
P
A
N

p
6
-C
P
A
N

R
5
0

R
1
0
1

X
1
0
1

X
1
5
1

C
D
5
3

R
5
0

R
1
0
1

X
1
0
1

X
1
5
1

C
D
5
3

�=0 �=1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

rAPl

(a) Segmentation scores (YOLO is bbox)
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Figure 19: Full comparison of object-centric robustness by neck architecture. Models with dynamic compo-
nents are highlighted.
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