
Under review as a conference paper at ICLR 2021

A COACH-PLAYER FRAMEWORK FOR DYNAMIC TEAM
COMPOSITION

Anonymous authors
Paper under double-blind review

ABSTRACT

In real-world multi-agent teams, agents with different capabilities may join or
leave “on the fly” without altering the team’s overarching goals. Coordinating
teams with such dynamic composition remains a challenging problem: the optimal
team strategy may vary with its composition. Inspired by real-world team sports,
we propose a coach-player framework to tackle this problem. We assume that the
players only have a partial view of the environment, while the coach has a com-
plete view. The coach coordinates the players by distributing individual strategies.
Specifically, we 1) propose an attention mechanism for both the players and the
coach; 2) incorporate a variational objective to regularize learning; and 3) design
an adaptive communication method to let the coach decide when to communicate
with different players. Our attention mechanism on the players and the coach
allows for a varying number of heterogeneous agents, and can thus tackle the dy-
namic team composition. We validate our methods on resource collection tasks
in multi-agent particle environment. We demonstrate zero-shot generalization to
new team compositions with varying numbers of heterogeneous agents. The per-
formance of our method is comparable or even better than the setting where all
players have a full view of the environment, but no coach. Moreover, we see that
the performance stays nearly the same even when the coach communicates as lit-
tle as 13% of the time using our adaptive communication strategy. These results
demonstrate the significance of a coach to coordinate players in dynamic teams.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) is the problem of coordinating a team of
agents to perform a shared task. It has broad applications in autonomous vehicle teams (Cao et al.,
2012), sensor networks (Choi et al., 2009), finance (Lee et al., 2007), and social science (Leibo
et al., 2017). Recent works in multi-agent reinforcement learning (MARL) have shed light on solv-
ing challenging multi-agent problems such as playing StarCraft with deep learning models (Rashid
et al., 2018). Among these methods, centralized training with decentralized execution (CTDE) has
gained much attention since learning in a centralized way enables better cooperation while execut-
ing independently makes the system efficient and scalable (Lowe et al., 2017). However, most deep
CTDE approaches for cooperative MARL are limited to a fixed number of homogeneous agents.

Real-world multi-agent tasks, on the other hand, often involve dynamic teams. For example, in a
soccer game, a team receiving a red card has one fewer player. In this case, the team may switch to
a more defensive strategy. As another example, consider an autonomous vehicle team for delivery.
The control over the team depends on how many vehicles we have, how much load each vehicle
permits, as well as the delivery destinations. In both examples, the optimal team strategy varies
according to the team composition,1 i.e., the size of the team and each agent’s capability. In these
settings, it is intractable to re-train the agents for each new team composition, and it is thus desirable
to have zero-shot generalization to new team compositions that are not seen during training.

Recently, Iqbal et al. (2020) proposed a multi-head attention model for learning in environments
with a variable number of agents under the CTDE framework. However, in many challenging tasks,

1Team composition is part of an environmental scenario (de Witt et al., 2019), which also includes other
environment entities. The formal definition is in Section 2.1.

1

Under review as a conference paper at ICLR 2021

universe of teams

players

coach
strategy

the environment

actionreward

(a) Training

team is changing

(b) Dynamic composition

Dynamic
composition

CTDE

Hierarchical

(c) MARL
Figure 1: (a) In training, we sample teams from a set of compositions. The coach observes the entire
world and coordinates different teams via broadcasting strategies periodically; (b) A team with
dynamic composition can be viewed as a sequence of fixed composition team, thus the proposed
training generalizes to dynamic composition; (c) Our method is at the star position within MARL.3

the CTDE constraint is too restrictive as each agent only has access to its own decisions and partial
environmental observations at test time – See Section 3.1 for an example where this requirement
causes failure to learn. The CTDE constraint can be relaxed either by 1) allowing all agents to com-
municate with each other (Zhang et al., 2018) or 2) having a special “coach” agent who distributes
strategic information based on the full view of the environment (Stone & Veloso, 1999). The former
case is typically too expensive for many CTDE scenarios (e.g., battery-powered drones or vehicles),
while the latter case of having a coach may be feasible (e.g., satellites or watchtowers to monitor the
field in which agents operate). In this work, we focus on the latter approach of having a coach to
coordinate the agents.

Specifically, we grant the coach with global observation while agents only have partial views of the
environment. We assume that the coach can distribute information to various agents only in lim-
ited amounts. We model this communication through a continuous vector, termed as the strategy
vector, and it is specific to each agent. We design each agent’s decision module to incorporate the
most recent strategy vector from the coach. We further propose a variational objective to regularize
learning, inspired by (Rakelly et al., 2019; Wang et al., 2020a). In order to save costs incurred in
receiving information from the coach, we additionally design an adaptive policy where the coach
communicates with different players only as needed. To train the coach and agents, we sample dif-
ferent teams from a set of team compositions. Recall that the training is centralized under the CTDE
framework. At execution time, the learned policy generalizes across different team compositions in
a zero-shot manner. Our framework also allows for dynamic teams whose composition varies over
time (see Figure 1 (a-b)).

Summary of Results: We (1) propose a coach-player framework for dynamic team composition of
heterogeneous agents; (2) introduce a variational objective to regularize the learning, which leads to
improved performance; (3) design an adaptive communication strategy to minimize communication
from the coach to the agents. We apply our methods on resource-collection tasks in multi-agent
particle environments. We evaluate zero-shot generalization for new team compositions at test time.
Results show comparable or even better performance against methods where players have full ob-
servation but no coach. Moreover, there is almost no performance degradation even when the coach
communicates as little as 13% of the time with the players. These results demonstrate the effective-
ness of having a coach in dynamic teams.

2 BACKGROUND

2.1 PROBLEM FORMULATION

We model the cooperative multi-agent task under the Decentralized partially observable Markov
Decision Process (Dec-POMDP) (Oliehoek et al., 2016). Specifically, we build on the setting of
Dec-POMDP with entities (de Witt et al., 2019), which considers entity-based knowledge represen-
tation. Here, entities include both controllable agents and other environment landmarks. In addition,
we extend the representation to allow agents to have individual characteristics, i.e., skill-level, phys-
ical condition, etc. Therefore, a Dec-POMDP with characteristics-based entities can be described
as a tuple (S,U ,O, P,R, E ,A, C,m,Ω, ρ, γ). E represents the space of entities. ∀e ∈ E , the entity
e has its state representation se ∈ Rde . The global state is therefore the set s = {se|e ∈ E} ∈ S.

3Rigorously speaking the players in our method occasionally receive global information from the coach.
But players still execute independently with local views while they benefit from the centralized learning.

2

Under review as a conference paper at ICLR 2021

A subset of the entities are controllable agents a ∈ A ⊆ E . For both agents and non-agent entities,
we differentiate them based on their characteristics ce ∈ C.4 For example, ce can be a continuous
vector that consists of two parts such that only one part can be non-zero vector. That is, if e is an
agent, the first part can represent its skill-level or physical condition, and if e is an non-agent entity,
the second part can represent its entity type. A scenario is a multiset of entities c = {ce|e ∈ E} ∈ Ω
and possible scenarios are drawn from the distribution ρ(c). In other words, scenarios are unique up
to the composition of the team and that of world entities. Fixing any particular scenario c, it maps
to a normal Dec-POMDP with the fixed multiset of entities {e|ce ∈ c}.
Given a scenario c, at each environment step, each agent a can observe a subset of entities specified
by an observability function m : A × E → {0, 1}, where m(a, e) indicates whether agent a can
observe entity e.5 Therefore, an agent’s observation is a set oa = {se|m(a, e) = 1} ∈ O. All agents
can perform the joint action u = {ua|a ∈ A} ∈ U , and the environment will step according to
the transition dynamics P (s′|s,u; c). After that, the entire team will receive a single scalar reward
r ∼ R(s,u; c). Starting from an initial state s0, the MARL objective is to maximize the discounted
cumulative team reward over time: G = Es0,u0,s1,u1,...[

∑∞
t=0 γ

trt], where γ is the discount factor.
Our goal is to learn a team policy that can generalize across different scenarios c (different team
compositions) and eventually dynamic scenarios (varying team compositions over time).

For optimizing G, Q-learning is a specific method that learns an accurate action-value function and
makes decision based on that. The optimal action-value function Q satisfies the Bellman equality:
Qtot
∗ (s,u; c) = r(s,u; c) + γEs′∼P (·|s,u;c)

[
maxu′ Qtot

∗ (s′,u′; c)
]
, where Qtot

∗ denote the team’s
optimal Q-value. A common strategy is to adopt function approximation and parameterize the
optimal Qtot

∗ with parameter θ. Moreover, due to partial observability, the history of observation-
action pairs is often encoded to a compact vector representation, i.e., via a recurrent neural net-
work (Medsker & Jain, 1999), in place of the state: Qtot

θ (τt,ut; c) ≈ E [Qtot
∗ (st,ut; c)], where

τ = {τa|a ∈ A} and τa = (oa0 , u
a
0 , . . . o

a
t). In practice, at each time step t, the recurrent neural

network takes in (uat−1, o
a
t) as the new input, where ua−1 = 0 at t = 0 (Zhu et al., 2017). Deep Q-

learning (Mnih et al., 2015) uses deep neural networks to approximate the Q function, its objective
in our case is:

L(θ) = E(c,τt,ut,rt,τt+1)∼D

[(
rt + γmax

u′
Qtot
θ̄ (τt+1,u

′; c)−Qtot
θ (τt,ut; c)

)2]
. (1)

Here, D is a replay buffer that stores previously generated off-policy data. Qtot
θ̄

is the target network
parameterized by a delayed copy of θ for stability.

2.2 VALUE FUNCTION FACTORIZATION AND ATTENTION QMIX

Factorizing the action-value function Q into per agent value function has become a popular ap-
proach in centralized training and decentralized execution. Specifically, Rashid et al. (2018) pro-
poses QMIX that factorizes Qtot(τt,u) into {Qa(τat , u

a|a ∈ A} and combines them via a mixing
network such that ∀a, ∂Qtot

∂Qa ≥ 0. The condition guarantees that individual optimal action ua is also
the best action for the team. As a result, during execution, the mixing network can be removed and
agents work independently according to their own Qa. Attention QMIX (A-QMIX) (Iqbal et al.,
2020) augments the QMIX algorithm with attention mechanism to deal with an indefinite num-
ber of agents/entities. In particular, for each agent, the algorithm applies the multi-head attention
(MHA) layer (Vaswani et al., 2017) to summarize the information of the other entities. This infor-
mation is used for both encoding the agent’s state and adjusting the mixing network. Specifically,
the input o is represented by two matrices: the entity state matrix XE and the observability ma-
trix M . Assume at the given scenario c, there exists ne entities, na of which are the controllable
agents, then XE ∈ Rne×de includes all entities encoding and the first na rows belong to agents.
M ∈ {0, 1}na×ne is a binary observability mask and Mij = m(ai, ej) indicates whether agent
i observes entity j. XE is first passed through an encoder, i.e., a single-layer feed-forward net-
work, and becomes X . Denote the k-th row of X as hk, then for the i-th agent, the MHA layer
then takes hi as the query and {hj |Mij = 1} as the keys to compute a latent representation of ai’s
observation. For the mixing network, the same MHA layer will take XE and the full observation

4ce is part of se, but we will explicitly write out ce in the following for emphasis.
5An agent can always observe itself, i.e., m(a, a) = 1,∀a ∈ A.

3

Under review as a conference paper at ICLR 2021

matrixM∗, whereM∗
ij = 1 if both ei and ej exist in the scenario c, and outputs the encoded global

representation for each agent. These encoded representations are then used to generate the mixing
network. We refer readers to Appendix B of Iqbal et al. (2020) for more details. While A-QMIX
in principle applies to the dynamic team composition problem, it is restricted to fully decentralized
execution with partial observation. We borrow the attention modules from A-QMIX but additionally
investigate how to efficiently take advantage of the global information by introducing the coach.

Iqbal et al. (2020) proposes an extended version of A-QMIX, called Attentive-Imaginative QMIX
(AI-QMIX), which randomly breaks up the team into two disjoint parts for each agent’s Qa to
further decompose the Q value. While the authors demonstrate AI-QMIX outperforms A-QMIX on
a gridworld resource allocation task and a modified StarCraft environment. As we will show in the
experiment section, we find that AI-QMIX does not improve over A-QMIX by much while doubling
the computation resource. For this reason, our method is mainly based on the A-QMIX framework,
but extending it to AI-QMIX is straightforward.

3 METHOD

Here we present the coach-player architecture to incorporate global information for adapting the
team-level strategy across different scenarios c. We first introduce the coach agent that coordinates
base agents with global information via broadcasting strategies periodically. Then we present the
learning objective and and an additional variational objective to regularize the training. We finish by
introducing a method to reduce the broadcast rate and provide analysis to support it.

3.1 ON THE IMPORTANCE OF GLOBAL INFORMATION

As the optimal team strategy varies according to the scenario c, which includes the team composi-
tion, it is important for the team to be aware of the scenario change promptly. In an extreme example,
assume in a multi-agent problem where every agent has its skill-level represented by a real number
ca ∈ R and there is a task to complete. For each agent a, ua ∈ {0, 1} indicates whether a chooses to
perform the task. The reward is defined asR(u; c) = maxa c

a ·ua+1−
∑
a u

a. In other words, the
reward is proportional to the skill-level of the agent who performs it and the team got penalized if
more than 1 agent choose to perform the task. If the underlying scenario c is fixed, even if all agents
are unaware of others’ capabilities, it is still possible for the team to gradually figure out the optimal
strategy. By contrast, when c is subject to change, i.e. agents with different c can join or leave, even
if we allow agents to communicate via a network, the information that a particular agent joins or
leaves generally takes d time steps to propagate where d is the longest shortest path from that agent
to any other agents. Therefore, we can see that knowing the global information is not only beneficial
but sometimes also necessary for coordination. This motivates the introduction of the coach agent.

3.2 COACH AND PLAYERS

We introduce a coach agent and grant it with global observation. To preserve efficiency as in the
decentralized setting, we limit the coach agent to only distribute information via a continuous vector
za ∈ Rdz (dz is the dimension of strategy) to agent a, which we call the strategy, once every T time
steps. T is the communication interval. The team strategy is therefore represented as z = {za|a ∈
A}. Strategies are predicted via a function f parameterized by φ. Specifically, we assume

za ∼ N (µa,Σa), where (µ = {µa|a ∈ A},Σ = {Σa|a ∈ A}) = fφ(s; c). (2)

Within the next T steps, agent a will act conditioned on the strategy za. Specifically, within an
episode, at time tk ∈ {v|v ≡ 0 (mod T)}, the coach observes the global state stk and computes
and distributes the strategies ztk for all agents. From time t ∈ [tk, tk + T − 1], any agent a will act
according to its individual action-value Qa(τat , · | zatk ; ca).

Denote t̂ = max{v|v ≡ 0 (mod T) and v ≤ t}, the most recent time step when the coach distribute
strategies. The mean square Bellman error objective in equation 1 becomes

LRL(θ, φ) = E(c,τt,ut,rt,st̂,s ˆt+1)∼D

[(
rt + γmax

u′
Qtot
θ̄ (τt+1,u

′|z ˆt+1; c)−Qtot
θ (τt,ut | zt̂; c)

)2]
,

(3)

4

Under review as a conference paper at ICLR 2021

Multi-Head
Attention

FC

GRU+MLP

Multi-Head
AttentionFull View

Multi-Head
Attention

FC

GRU+MLP

Multi-Head
Attention

FC

GRU+MLP

T-step with the same strategies

MLP

Mixing
Network

MLP Head

FC

Individual Q values

Team Q

Partial View

Multi-Head
Attention

MLP Head

FC

Agents

Coach

Figure 2: The coach-player network architecture. Here, GRU refers to gated recurrent unit (Chung
et al., 2014); MLP refers to multi-layer perceptron; FC refers to fully connected layer. Both coach
and players use multi-head attention to encode information. The coach has full view while players
have partial views. hat encodes agent a’s history. hat combines the most recent strategy zt̂ = zt−t%T
to predict the individual utility Qa. The mixing network combines all Qas to predict Qtot.

where zt̂ ∼ fφ(st̂; c), z ˆt+1 ∼ fφ̄(s ˆt+1; c), and φ̄ is the parameter of the target network for the
coach’s strategy predictor f . We build our network on top of A-QMIX but use a separate multi-head
attention (MHA) layer to encode the global states that the coach observes. For the mixing network,
we also use the coach’s output from the MHA layer for mixing the individual Qa to form the team
Qtot. The entire architecture is described in Figure 3.2. We provide more details in Appendix.

3.3 REGULARIZING WITH VARIATIONAL OBJECTIVE

Inspired by recent work that applied variational inference to regularize the learning of a latent space
in reinforcement learning (Rakelly et al., 2019; Wang et al., 2020a), we also introduce a variational
objective to stabilize the training. Intuitively, an agent’s behavior should be consistent with its
assigned strategy. In other words, the received strategy should be identifiable from the agent’s future
trajectory. Therefore, we propose to maximize the mutual information between the strategy and
the agent’s future observation-action pairs ζat = (oat+1, u

a
t+1, o

a
t+2, u

a
t+2, . . . , o

a
t+T−1, u

a
t+T−1). We

maximize the following variational lower bound:

I(zat ; ζat , st) = Est,zat ,ζat

[
log

qξ(z
a
t |ζat , st)

p(za|st)

]
+DKL

(
p(zat |ζat , st), qξ(zat |ζat , st))

)
≥ Est,zat ,ζat

[
log

qξ(z
a
t |ζat , st)

p(za|st)

]
= Est,zat ,ζat

[
log qξ(z

a
t |ζat , st)

]
+H(zat |st).

(4)

Here H(·) denotes the entropy and qξ is the variational distribution parameterized by ξ. We fur-
ther adopt the Gaussian factorization for qξ as in (Rakelly et al., 2019), i.e. qξ(z

a
t |ζat , st) ∝

q
(t)
ξ (zat |st, uat)

∏t+T−1
k=t+1 q

(k)
ξ (zat |oak, uak), where each q(·)

ξ is a Gaussian distribution. So qξ predicts
the µ̂at and Σ̂at of a multivariate normal distribution from which we calculate the log-probability
of zat . In practice, zat is sampled from fφ using the re-parameterization trick (Kingma & Welling,
2013). The objective is Lvar(φ, ξ) = −λ1Est,zat ,ζat [log qξ(z

a
t |ζat , st)] − λ2H(zat |st), where λ1 and

λ2 are tunable coefficients.

3.4 REDUCING THE COMMUNICATION FREQUENCY

So far, we assume at every T steps the coach periodically broadcasts new strategies for all agents.
In practice, broadcasting suffers communication cost or bandwidth limit. So it is desirable to only
distribute strategies when “necessary”. To reduce the communication frequency, we propose an
intuitive method that decides whether to distribute new strategies based on the `2 distance of the old
strategy to the new one. In particular, at time step t = kT, k ∈ Z, assuming the prior strategy for
agent a is zaold, the new strategy for agent a is

z̃at =

{
zat ∼ fφ(s, c) if ||zat − zaold||2 ≤ β
zaold otherwise.

(5)

5

Under review as a conference paper at ICLR 2021

For a general time step t, the individual strategy for a is therefore z̃a
t̂

. Here β is a manually spec-
ified threshold. Note that we can train a single model and apply this criterion for all agents. By
adjusting β, one can easily achieve different communication frequencies. Intuitively, when the
previous strategy is “close” to the current one, it should be more tolerant to keep using it. The
intuition is concrete when the learned Qtot

θ has relatively small Lipschitz constant. If we assume
∀τt,ut, st, st̂, c, ||Qtot(τt,ut, f(st̂); c) − Qtot

∗ (st,ut; c)||2 ≤ κ, where Qtot
∗ is the optimal Q, and

∀za1 , za2 , |Qtot(τt,ut|za1 , z−a; c)−Qtot(τt,ut|za2 , z−a; c)| ≤ η||za1 − za2 ||2, we have the following:

Theorem 1. If the used team strategies z̃t satisfies ∀a, t, ||z̃a
t̂
− za

t̂
||2 ≤ β, denote the action-

value and the value function of following the used strategies as Q̃ and Ṽ , i.e. Ṽ (τt|z̃t̂; c) =

maxu Q̃(τt̂,u|z̃t; c), and define V tot
∗ similarly, we have

||V tot
∗ (st; c)− Ṽ (τt|z̃t̂; c)||∞ ≤

2(naηβ + κ)

1− γ
, (6)

where na is the number of agents and γ is the discount factor.

We defer the proof to Appendix A. The method described in equation 5 satisfies the condition in
Theorem 1 and therefore when β is small, distributing strategies according to equation 5 will not
result in much performance drop.

4 EXPERIMENTS

We design the experiments to 1) verify the effectiveness of the coach agent; 2) investigate how
performance varies with the interval T ; 3) test if the variational objective is useful; and to 4) un-
derstand how much the performance drops by adopting the method in equation 5. We test our idea
on a resource collection task with different scenarios in customized multi-agent particle environ-
ments (Lowe et al., 2017). In the following, we call our method COPA (COach-and-PlAyer).

4.1 RESOURCE COLLECTION

In Resource Collection, a team of agents coordinate to collect different resources spread out on a
square map with width 1.8. There are 4 types of entites: the resources, the agents, the home and the
invader. We assume there are 3 types of resources: (r)ed, (g)reen and (b)lue. In the world, always
6 resources appear with 2 of each type. Each agent has 4 characteristics (car , c

a
g , c

a
b , v

a), where
cax represents how efficient a collects the resource x and v is the agent’s max moving speed. The
agent’s job is to collect the most amount of resources and bring them home, and catch the invader
if it appears. If a collects x, the team receives a reward of 10 · cax as reward. Holding any resource,
agents cannot collect more and need to bring the resource home until going out again. Bringing
a resource home has 1 reward. Occasionally the invader appears and goes directly to home. Any
agent catch the invader will have 4 reward. If the invader reaches home, the team is penalized by−4
reward. Each agent has 5 actions: accelerate up / down / left / right and decelerate, and it observes
anything within 0.2 distance. The maximum episode length is 145. In training, we allow scenarios
to have 2 to 4 agents, and for each agent, car , c

a
g , c

a
b are chosen from {0.1, 0.5, 0.9} and the max speed

va from {0.3, 0.5, 0.7}. We design 3 testing tasks: 5-agent task, 6-agent task, and a varying-agent
task. For each task, we generate 1000 different scenarios c. Each scenario includes na agents, 6
resources and an invader. For agents, car , c

a
g , c

a
b are chosen uniformly from the interval [0.1, 0.9] and

va from [0.2, 0.8]. For a particular scenario in the varying agent task, starting from 4 agents, the
environment randomly adds or drops an agent every ν steps as long as the number of agents remains
in [2, 6]. ν is a random variable from the uniform distribution U(8, 12). See Figure 3 for an example
run of the learned policy.

Effectiveness of Coach We provide the training curve in Figure 4.1 (a) where the communication
interval is set to T = 4. The black solid line is a hard-coded greedy algorithm where agents
always go for the resource they are mostly good at collecting, and whenever the invader appears,
the closest agent goes for it. We see that without global information, A-QMIX and AI-QMIX are
significantly below the hard-coded baseline. Without the coach, we let all agents have the global
view every T steps in A-QMIX (periodic) but it barely improves over A-QMIX. A-QMIX (full)
is fully centralized, i.e., all agents have global view. Without the variational objective, COPA is
comparable against A-QMIX (full). With the variational objective, it becomes even better than

6

Under review as a conference paper at ICLR 2021

(i) t = 0 (ii) t = 5 (iii) t = 10 (iv) t = 19 (v) t = 21 (vi) t = 30

Home Resources Invader Agent

Figure 3: An example episode up to t = 30 with communication interval T = 4. Here, ca is
represented by rgb values, ca = (r, g, b, v). For illustration, we set agents rgb to be one-hot but it
can vary in practice. (i) an agent starts at home; (ii) the invader (black) appears while the agent (red)
goes to the red resource; (iii) another agent is spawned while the old agent brings resource home;
(iv) one agent goes for the invader while the other for resource; (v-vi) a new agent (blue) is spawned
and goes for the blue resource while other agents (red) are bringing resources home.

A-QMIX (full). Note that all baseline methods are scaled to have more parameters than COPA. The
results demonstrate the importance of global coordination and the coach-player hierarchy.

Communication Interval To investigate how performance varies with T , we train with dif-
ferent T chosen from [2, 4, 8, 12, 16, 20, 24] in Figure 4.1(b). Interestingly, the performance peaks
at T = 4, contradicting the intuition that smaller T is better. This shows the coach is more useful
when it can make the agents behavior smooth/consistent over time.

(a) Comparison with baselines (b) Ablations on T

Figure 4: Training curves for Resource Collection. (a) comparison against A-QMIX, AI-QMIX and
COPA without the variational objective. Here we choose T = 4; (b) ablations on the communication
interval T . All results are averaged over 5 seeds.

Method Env. (n = 5) Env. (n = 6) Env. (varying n)
Reward Comm. Frequency Reward Comm. Frequency Reward Comm. Frequency

Random Policy 6.9 N/A 10.4 N/A 2.3 N/A
Greedy Expert 115.3 N/A 142.4 N/A 71.6 N/A
AI-QMIX 90.5±1.5 0. 109.3±1.6 0. 61.5±0.9 0.
A-QMIX 96.9±2.1 0. 115.1±2.1 0. 66.2±1.6 0.
A-QMIX (periodic) 93.1±20.4 0.25 104.2±22.6 0.25 68.9±12.6 0.25
A-QMIX (full) 157.4±8.5 1. 179.6±9.8 1. 114.3±6.2 1.

COPA (β = 0) 175.6±1.9 0.25 203.2±2.5 0.25 124.9±0.9 0.25
COPA (β = 2) 174.4±1.7 0.18 200.3±1.6 0.18 122.8±1.5 0.18
COPA (β = 3) 168.8±1.7 0.13 195.4±1.8 0.13 120.0±1.6 0.14
COPA (β = 5) 149.3±1.4 0.08 174.7±1.7 0.08 104.7±1.6 0.08
COPA (β = 8) 109.4±3.6 0.04 130.6±4.0 0.04 80.6±2.0 0.04

Table 1: Generalization performance on unseen environments with more agents and dynamic team
composition. Results are computed from 5 models trained with 5 different seeds. Communication
frequency is compared to communicating with all agents at every step.

Figure 5: The varying sensitivity
to communication frequency.

Zero-shot Generalization We apply the learned model with
T = 4 to the 3 testing environments. Results are provided in
Table 4.1. The communication frequency is calculated accord-
ing to the fully centralized setting. For instance, when T = 4
and β = 0, it results in an average 25% centralization frequency.
As we increase β to suppress the distribution of strategies, we
see that the performance shows no significant drop till 13% cen-
tralization frequency. Moreover, we apply the same model to 3

7

Under review as a conference paper at ICLR 2021

environments that are dynamic to different extents. In the more static environment, resources are
always spawned at the same locations. In medium environment, resources are spawned randomly
but there is no invader. The more dynamic environment is the 3rd environment in Table 4.1 where
the team is dynamic in composition and there exists the invader. Result is summarized in Figure 5.
Here, the x-axis is normalized according to the communication frequency when β = 0, and the
y-axis is normalized by the corresponding performance. As expected, as the environment becomes
more dynamic, low communication frequency more severely downgrades the performance.

4.2 RESCUE GAME

Search-and-rescue is a natural application of multi-agent systems. In this section we further apply
COPA to a rescue game. In particular, we consider a 10 × 10 grid-world, where each grid contains
a building. At any time step, each building is subject to catch a fire. When a building b is on fire,
it has an emergency level cb ∼ U(0, 1). Within the world, at most 10 buildings will be on fire
at the same time. Fortunately we have n (n is a random number from 2 to 8) robots who are the
surveillance firefighters. Each robot a has a skill-level ca ∈ [0.2, 1.0]. A robot has 5 actions, moving
up/down/left/right and put out the fire. If a is at a building on fire and chooses to put out the fire,
the emergency level will be reduced to cb ← max(cb − ca, 0). At each time step t, the overall-
emergency is given by cBt =

∑
b(c

b)2 since we want to penalize the existence of more emergent
fire. The reward is defined as rt = cBt−1 − cBt , the amount of emergence level the team reduces.
During training, we sample n from 3− 5 and these robots are spawned randomly across the world.
Each agent’s skill-level is sampled from [0.2, 0.5, 1.0]. Then a random number of 3 − 6 buildings
will catch a fire. During testing, we enlarge n to 2− 8 agents and sample up to 10 buildings on fire.
We summarize the result in the Table 4.2. Interestingly, we find that A-QMIX with full observation

Random Greedy A-QMIX A-QMIX (full) COPA (w/o Lvar) COPA (1) COPA (0.5) COPA (0.15)

Epi. Reward 1.4 7.0 5.4±0.5 1.6±0.5 9.0±0.6 10.7±0.6 11.1±0.8 8.9±0.5

Table 2: Average episodic reward over the same 500 Rescue games. Results are averaged over
the same algorithm trained with 3 different seeds. For COPA (x), x denotes the communication
frequency. Greedy algorithm matches the k-th skillful agent for the k-th emergent building.

failed to learn. We conjecture this is because the team has too much information to process during
training and therefore it is hard to search for a good policy. COPA consistently outperforms all
baselines even with a communication frequency as low as 0.15.

5 RELATED WORKS

In this section we briefly go over some related works in cooperative multi-agent reinforcement learn-
ing and hierarchical reinforcement learning.
Centralized Training with Decentralized Execution Centralized training with decentralized ex-
ecution (CTDE) assumes agents execute independently but uses the global information for training.
A branch of methods investigates factorizableQ functions (Sunehag et al., 2017; Rashid et al., 2018;
Mahajan et al., 2019; Son et al., 2019) where the team Q is decomposed into individual utility func-
tions. Some other methods adopt actor-critic method where only the critic is centralized (Foerster
et al., 2017; Lowe et al., 2017). However, most deep CTDE methods by structure require fixed-size
teams and are often applied on homogeneous teams.
Methods for Dynamic Compositions Several recent works pay attention to transfer learning
and curriculum learning in MARL problems where the learned policy is is a warm start for new
tasks (Carion et al., 2019; Shu & Tian, 2018; Agarwal et al., 2019; Wang et al., 2020b; Long et al.,
2020). These works focus on curriculum learning and mostly consider homogeneous agents. Hence
the team strategy is relatively consistent. Iqbal et al. (2020) first adopt the multi-head attention
mechanism for dealing with a varying size heterogeneous team. But the heterogeneity comes from
a small finite set of agent types (usually 2 to 3). Additionally, the method is fully decentralized and
therefore less adaptive to frequent change in team composition.
Ad Hoc Teamwork and Networked Agents Ad hoc teamwork studies the problem of quick adap-
tation to unknown teams (Genter et al., 2011; Barrett & Stone, 2012). However, ad hoc teamwork

8

Under review as a conference paper at ICLR 2021

focuses on the single ad hoc agent and often assumes no control over the teammates and therefore is
essentially a single-agent problem. Decentralized networked agents assume information can propa-
gate among agents and their neighbors (Kar et al., 2013; Macua et al., 2014; Suttle et al., 2019; Zhang
et al., 2018). However, research in networked agents still mainly focus on homogeneous fixed-size
teams. Although it is possible to extend the idea for the dynamic team composition problem, we
leave it as a future work.
Hierarchical Reinforcement Learning The main focus of hierarchical RL/MARL is to decom-
pose the task into hierarchies: a meta-controller selects either a temporal abstracted action (Bacon
et al., 2017), called an option, or a goal state (Vezhnevets et al., 2017) for the base agents. Then the
base agents shift their purposes to finish the assigned option or reach the goal. Therefore usually the
base agents have different learning objective from the meta-controller. Recent deep MARL methods
also demonstrate role emergence (Wang et al., 2020a) or skill emergence (Yang et al., 2019). But
the inferred role/skill is only conditioned on the individual trajectory. The coach in our method uses
global information to determine the strategies for the base agents. To our best knowledge, we are the
first to consider applying such hierarchy for teams with varying number of heterogeneous agents.

6 CONCLUSION

We investigated a new setting of multi-agent reinforcement learning problems, where both the team
size and members’ capabilities are subject to change. To this end, we proposed a coach-player
framework where the coach coordinates with global view but players execute independently with
local views and the coach’s strategy. We developed a variational objective to regularize the learning
and introduces an intuitive method to suppress unnecessary distribution of strategies. The experi-
ment results across multiple unseen scenarios on the Resource Collection task demonstrate the effec-
tiveness of the coach agent. The zero-shot generalization ability of our method shows a promising
direction to real-world ad hoc multi-agent coordination.

REFERENCES

Akshat Agarwal, Sumit Kumar, and Katia Sycara. Learning transferable cooperative behavior in
multi-agent teams. arXiv preprint arXiv:1906.01202, 2019.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

Samuel Barrett and Peter Stone. An analysis framework for ad hoc teamwork tasks. In Pro-
ceedings of the 11th International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2012), June 2012. URL http://www.cs.utexas.edu/users/ai-lab?
AAMAS12-Barrett.

Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of recent progress in the
study of distributed multi-agent coordination. IEEE Transactions on Industrial informatics, 9(1):
427–438, 2012.

Nicolas Carion, Nicolas Usunier, Gabriel Synnaeve, and Alessandro Lazaric. A structured prediction
approach for generalization in cooperative multi-agent reinforcement learning. In Advances in
Neural Information Processing Systems, pp. 8130–8140, 2019.

Jongeun Choi, Songhwai Oh, and Roberto Horowitz. Distributed learning and cooperative control
for multi-agent systems. Automatica, 45(12):2802–2814, 2009.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Christian Schroeder de Witt, Jakob Foerster, Gregory Farquhar, Philip Torr, Wendelin Boehmer,
and Shimon Whiteson. Multi-agent common knowledge reinforcement learning. In Advances in
Neural Information Processing Systems, pp. 9927–9939, 2019.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. arXiv preprint arXiv:1705.08926, 2017.

9

http://www.cs.utexas.edu/users/ai-lab?AAMAS12-Barrett
http://www.cs.utexas.edu/users/ai-lab?AAMAS12-Barrett

Under review as a conference paper at ICLR 2021

Katie Genter, Noa Agmon, and Peter Stone. Role-based ad hoc teamwork. In Proceedings of the
Plan, Activity, and Intent Recognition Workshop at the Twenty-Fifth Conference on Artificial Intel-
ligence (PAIR-11), August 2011. URL http://www.cs.utexas.edu/users/ai-lab?
PAIR11-katie.

Shariq Iqbal, Christian A Schroeder de Witt, Bei Peng, Wendelin Böhmer, Shimon Whiteson, and
Fei Sha. Ai-qmix: Attention and imagination for dynamic multi-agent reinforcement learning.
arXiv preprint arXiv:2006.04222, 2020.

Soummya Kar, José MF Moura, and H Vincent Poor. Qd-learning: A collaborative distributed strat-
egy for multi-agent reinforcement learning through consensus+innovations. IEEE Transactions
on Signal Processing, 61(7):1848–1862, 2013.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Jae Won Lee, Jonghun Park, O Jangmin, Jongwoo Lee, and Euyseok Hong. A multiagent approach
to q-learning for daily stock trading. IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, 37(6):864–877, 2007.

Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Graepel. Multi-agent
reinforcement learning in sequential social dilemmas. arXiv preprint arXiv:1702.03037, 2017.

Qian Long, Zihan Zhou, Abhibav Gupta, Fei Fang, Yi Wu, and Xiaolong Wang. Evolu-
tionary population curriculum for scaling multi-agent reinforcement learning. arXiv preprint
arXiv:2003.10423, 2020.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. In Advances in neural infor-
mation processing systems, pp. 6379–6390, 2017.

Sergio Valcarcel Macua, Jianshu Chen, Santiago Zazo, and Ali H Sayed. Distributed policy evalu-
ation under multiple behavior strategies. IEEE Transactions on Automatic Control, 60(5):1260–
1274, 2014.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. In Advances in Neural Information Processing Systems, pp. 7613–7624,
2019.

Larry Medsker and Lakhmi C Jain. Recurrent neural networks: design and applications. CRC
press, 1999.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340, 2019.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foer-
ster, and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. arXiv preprint arXiv:1803.11485, 2018.

Tianmin Shu and Yuandong Tian. M 3̂ rl: Mind-aware multi-agent management reinforcement
learning. arXiv preprint arXiv:1810.00147, 2018.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learn-
ing to factorize with transformation for cooperative multi-agent reinforcement learning. arXiv
preprint arXiv:1905.05408, 2019.

10

http://www.cs.utexas.edu/users/ai-lab?PAIR11-katie
http://www.cs.utexas.edu/users/ai-lab?PAIR11-katie

Under review as a conference paper at ICLR 2021

Peter Stone and Manuela Veloso. Task decomposition, dynamic role assignment, and low-bandwidth
communication for real-time strategic teamwork. Artificial Intelligence, 110(2):241–273, 1999.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Wesley Suttle, Zhuoran Yang, Kaiqing Zhang, Zhaoran Wang, Tamer Basar, and Ji Liu. A multi-
agent off-policy actor-critic algorithm for distributed reinforcement learning. arXiv preprint
arXiv:1903.06372, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. arXiv
preprint arXiv:1703.01161, 2017.

Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. Multi-agent reinforcement learning
with emergent roles. arXiv preprint arXiv:2003.08039, 2020a.

Weixun Wang, Tianpei Yang, Yong Liu, Jianye Hao, Xiaotian Hao, Yujing Hu, Yingfeng Chen,
Changjie Fan, and Yang Gao. From few to more: Large-scale dynamic multiagent curriculum
learning. In AAAI, pp. 7293–7300, 2020b.

Jiachen Yang, Igor Borovikov, and Hongyuan Zha. Hierarchical cooperative multi-agent reinforce-
ment learning with skill discovery. arXiv preprint arXiv:1912.03558, 2019.

Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Başar. Fully decentralized multi-
agent reinforcement learning with networked agents. arXiv preprint arXiv:1802.08757, 2018.

Pengfei Zhu, Xin Li, Pascal Poupart, and Guanghui Miao. On improving deep reinforcement learn-
ing for pomdps. arXiv preprint arXiv:1704.07978, 2017.

A APPENDIX

PROOF OF THEOREM 1

Here we expand the assumptions from Theorem 1 and provide the proof for it. The two assumptions
are:
Assumption 1. Denote the learned team action-value function as Qtot, the learned coach strategy
encoder as f and the true optimal action-value function as Qtot

∗ . We assume for any τt,ut, st, st̂, c,

||Qtot(τt,ut, f(st̂); c)−Q
tot
∗ (st,ut; c)||2 ≤ κ. (7)

Assumption 2. Denote the learned individual action-value function as {Qai}na
i=1, and the particular

individual action-value at a state s with action u as {qai = Qai(sai , uai)}na
i=1. Then we assume

unilaterally varying any qai to q′, i.e. all other q−ai remain the same, will not cause dramatic
change of Qtot if q′ stays closely to qai :∣∣Qtot(q−ai , qai)−Qtot(q−ai , q′)

∣∣ ≤ η1|qai − q′| (8)

and for any agent a and ∀ca, τat , uat , za1 , za2 with proper dimensions,∣∣Qa(τat , u
a
t |za1 ; ca)−Qa(τat , u

a
t |za2 ; ca)

∣∣ ≤ η2||za1 − za2 ||2. (9)

In other words, assumption 1 assumes the learned Qtot approximates the true optimal Qtot
∗ well

combined with the learned coach strategy function f ,6 and assumption 2 assumes the learned team
action-value Qtot has bounded Lipschitz constant. Next we provide the proof for Theorem 1.

6Note here we only assume Qtot is accurate around the predicted strategy by f , not for any strategy.

11

Under review as a conference paper at ICLR 2021

Proof. From assumption 2, it is easy to check that if ||z̃at − za
t̂
||2 ≤ β for all a, then

|Qtot(τt,ut|z̃t, c) − Qtot(τt,ut|zt̂, c)| ≤ naη1η2β. For notation convenience, we ignore the su-
perscript of tot and the condition on c. For a state s, denote the action the learned policy take as u†,
u† = arg maxuQ(τ ,u). Similarly we can define u∗ as the action the optimal Q∗ takes and ũ that
Q̃ takes. From assumption 1, we know that

Q∗(s,u
†) ≥ Q(τ ,u†)− κ ≥ Q(τ ,u∗)− κ ≥ Q∗(s,u∗)− 2κ. (10)

Therefore taking u† will result in at most 2κ performance drop at this single step. Similarly, denote
ε0 = naη1η2β, then

Q(τ , ũ) ≥ Q̃(τ , ũ)− ε0 ≥ Q̃(τ ,u†)− ε0 ≥ Q(τ ,u†)− 2ε0. (11)

Hence Q∗(s, ũ) ≥ Q∗(s,u∗)− 2(ε0 + κ). Note that this means taking the action ũ in the place of
u∗ at state s will result in at most 2(ε0 + κ) performance drop. This conclusion generalizes to any
step t. Therefore, if at each single step the performance is bounded within 2(ε0 + κ), then overall
the performance is within 2(ε0 + κ)/(1− γ).

NETWORK ARCHITECTURE

For all experiments, we use the same network architecture where all intermediate hidden layer have
128 dimensions. Note that this is possible since the only difference is the number of entities, which
does not influence our architecture when adopting an attention model. The architecture details follow
exactly as in Appendix A of (Iqbal et al., 2020).

TRAINING DETAILS

To train the model, we set the max total number of steps to 5 million. Then we use the exponentially
decayed ε-greedy algorithm as our exploration policy, starting from ε0 = 1.0 to εn = 0.05. We
parallel the environment with 8 threads for training. Details on hyper-parameters are available in
Section A.

HYPER PARAMETERS

For all experiments, we use the same set of hyper-parameters. We provide them in the following
table:

Name Description Value

|D| replay buffer size 100000
nhead number of heads in multi-head attention 4
nthread number of parallel threads for running the environment 8

dh the hidden dimension of all modules 128
γ the discount factor 0.99
lr learning rate 0.0003

optimizer RMSprop
α α value in RMSprop 0.99
ε ε value in RMSprop 0.00001
nbatch batch size 256
grad clip clipping value of gradient 10
target update frequency how frequent do we update the target network 200 updates
λ1 λ1 in variational objective 0.001
λ2 λ2 in variational objective 0.0001

Table 3: Hyper-parameters in our experiments.

12

	Introduction
	Background
	Problem Formulation
	Value Function Factorization and Attention QMIX

	Method
	On the importance of global information
	Coach and players
	Regularizing with variational objective
	Reducing the communication frequency

	Experiments
	Resource Collection
	Rescue Game

	Related Works
	Conclusion
	Appendix

