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ABSTRACT

Time series anomaly and intrusion detection are extensively studied in statistics,
economics, and computer science. Over the years, numerous methods have been
proposed for time series anomaly and intrusion detection using deep learning-
based methods. Many of these methods demonstrate state-of-the-art performance
on benchmark datasets, giving the false impression that these systems are robust
and deployable in practical and industrial scenarios. In this paper, we demon-
strate that state-of-the-art anomaly and intrusion detection methods can be eas-
ily fooled by adding adversarial perturbations to the sensor data. We use differ-
ent scoring metrics such as prediction errors, anomaly, and classification scores
over several public and private datasets belong to aerospace applications, auto-
mobiles, server machines, and cyber-physical systems. We evaluate state-of-the-
art deep neural networks (DNNs) and graph neural networks (GNNs) methods,
which claim to be robust against anomalies and intrusions, and find their perfor-
mance can drop to as low as 0% under adversarial attacks from Fast Gradient Sign
Method (FGSM) and Projected Gradient Descent (PGD) methods. To the best of
our knowledge, we are the first to demonstrate the vulnerabilities of anomaly and
intrusion detection systems against adversarial attacks. Our code is available here:
https://anonymous.4open.science/r/ICLR298

1 INTRODUCTION

Machine learning and deep learning have profoundly impacted numerous fields of research and so-
ciety over the last decade (LeCun et al., 2015; Goodfellow et al., 2016). Medical imaging (Litjens
et al., 2017), speech recognition (Kumar et al., 2018), and smart manufacturing systems (Wang et al.,
2018) are a few of these areas. With the proliferation of smart sensors, massive advances in data col-
lection and storage, and the ease with which data analytics and predictive modeling can be applied,
multivariate time series data obtained from collections of sensors can be analyzed to identify regular
patterns that can be interpreted and exploited. Numerous researchers have been interested in time
series anomaly and intrusion detection (Pang et al., 2021; Khraisat et al., 2019). For instance, time
series anomaly detection methods are used in the aerospace industry for satellite health monitoring,
while intrusion detection methods are employed in the automobile industry for in-vehicle controller
area networks. These deep neural network-based solutions outperform the competition on a vari-
ety of benchmark datasets. However, as deep learning became more prevalent, researchers began
to investigate the vulnerability of deep networks, particularly to adversarial attacks. In the context
of image recognition, an adversarial attack entails modifying an original image in such a way that
the modifications are nearly imperceptible to the human eye (Yuan et al., 2019). The modified im-
age is referred to as an adversarial image, as it will be classified incorrectly by the neural network,
whereas the original image will be classified correctly. One of the most well-known real-world at-
tacks involves manipulating the image of a traffic sign in such a way that it is misinterpreted by an
autonomous vehicle (Eykholt et al., 2018). The most common type of attack is gradient-based, in
which the attacker modifies the image in the direction of the gradient of the loss function relative
to the input image, thereby increasing the rate of misclassification (Yuan et al., 2019; Goodfellow
et al., 2014; Madry et al., 2017).
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Figure 1: Example of ground truth and perturbed
time series using FGSM and PGD attacks on
CLMPPCA.

While adversarial attacks have been extensively
studied in the context of image recognition,
they have not been extensively investigated for
anomaly and intrusion detection systems. It
is surprising given the increasing popularity of
deep learning models for classifying time se-
ries (Ma et al., 2018; Zheng et al., 2017; Wang
et al., 2017).

Additionally, adversarial attacks are a possibil-
ity in a large number of applications that require
the use of time series data. For instance, Fig-
ure 1 (top) depicts the original and perturbed
time series for the Korean Aerospace Research
Institute’s KOMPSAT-5 satellite (KARI). The
prediction error (see Figure 1, bottom) is gen-
erated by the “Convolutional LSTM with Mix-
tures of Probabilistic Principal Component An-
alyzers” (CLMPPCA) method, which is cur-
rently deployed at KARI, to predict anoma-
lies. While CLMPPCA accurately predicts the
anomaly for the original time series, adding
small perturbations in the form of FGSM and
PGD attacks causes the entire input samples
to be classified as an anomaly. This attack
can have a severe impact on the satellite health
monitoring system.

We present, transfer, and adapt adversarial at-
tacks that have been demonstrated to work well on images to time series data (containing anoma-
lies and intrusions) in this work. Additionally, we present an experimental study utilizing bench-
mark datasets from the aerospace and automobile industries and server machines, demonstrating that
state-of-the-art anomaly and intrusion detection methods are vulnerable to adversarial attacks. We
highlight specific real-world use cases to emphasize the critical nature of such attacks in real-world
scenarios. Our findings indicate that deep networks for time series data, like their computer vision
counterparts, are vulnerable to adversarial attacks. As a result, this paper emphasizes the importance
of protecting against such attacks, particularly when anomaly and intrusion detection systems are
used in sensitive industries such as aerospace and automobiles. Finally, we discuss some mecha-
nisms for avoiding these attacks while strengthening the models’ resistance to adversarial examples.

Aim, Scope and Contribution. In this work, we do not propose any novel adversarial attack
method. However, we demonstrate the threat of existing attacks such as FGSM and PGD on state-
of-the-art anomaly and intrusion detection methods. In comparison to the computer vision domain,
where adversarial attack has been extensively studied and investigated, the literature on novelty
detection, and particularly on anomaly detection, is noticeably devoid of such studies. The purpose
of this paper is to bring attention to this issue. Additionally, we hope to encourage researchers to
consider robustness to adversarial attacks when evaluating future detectors. The paper’s scope was
limited to SOTA anomaly detectors and intrusion detection systems (Note: As intrusion detection is a
vast domain we consider only one sub-domain i.e., intrusion detection in Controller Area Network).
Finally, to demonstrate that the current generation of detectors is unprepared against adversarial
attacks. We demonstrate these attacks successfully on a deployed system in the aerospace industry.

2 RELATED WORK

2.1 BACKGROUND AND NOTATIONS

When performing a supervised learning task, we define D = {(si, yi)|i = 1, . . . , N} to represent a
data set containing N data samples. Each data sample is composed of a m-dimensional multivariate
time series si and a single target value yi for classification. We will observe such formation in
intrusion detection scenarios (see Section 4.2). For unsupervised learning, each data sample is
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again composed of a m-dimensional multivariate time series si however, yi is an n-dimensional
multivariate time series obtained from an autoregressive model, predicting the future. In most cases,
n = m however, they can be different as well. Moreover, we define any deep learning method
as F(·) ∈ f : RN → ŷ and loss function (e.g., cross entropy or mean squared error) as Lf (· , ·).
Finally, generating an adversarial instance sadvi can be described as a optimization problem given a
trained deep learning model F and an original input time series si, as follows:

min
∥∥si − sadvi

∥∥ s.t. F(si) = ŷi, F(sadvi ) = ŷadvi and ŷi 6= ŷadvi . (1)

2.2 ADVERSARIAL ATTACKS

In 2014, Szegedy et al. (2013) introduced adversarial examples against deep neural networks for im-
age recognition tasks for the first time. Following these inspiring discoveries, an enormous amount
of research has been devoted to generating, understanding, and preventing adversarial attacks on
deep neural networks (Eykholt et al., 2018; Goodfellow et al., 2014; Madry et al., 2017). Adversar-
ial attacks can be broadly classified into two types: white-box and black-box attacks. As white-box
attacks presume access to the model’s design and parameters, they can attack the model effectively
and efficiently using gradient information. By contrast, black-box attacks do not require access
to the output probabilities or even the label, making them more practical in real-world situations.
However, black-box attacks frequently take hundreds, if not millions, of model queries to calculate
a single adversarial case.

The majority of adversarial attack techniques have been proposed for use in image recognition. For
instance, a Fast Gradient Sign Method attack was developed by Goodfellow et al. (2014) as a sub-
stitute for expensive optimization techniques (Szegedy et al., 2013). Madry et al. (2017) proposed
Projected Gradient Descent (PGD) in response to the success of FGSM. PGD seeks to find the per-
turbation that maximizes a model’s loss on a particular input over a specified number of iterations
while keeping the perturbation’s size below a specified value called epsilon (ε). This constraint is
typically expressed as the perturbation’s L2 or L∞ norm. It is added to ensure that the content of the
adversarial example is identical to that of the unperturbed sample — or even to ensure that the adver-
sarial example is imperceptibly different from the unperturbed sample. Carlini-Wagner is another
well-known attack (Carlini & Wagner, 2017). However, it is primarily intended for L2 norm-based
attacks, whereas this study focuses exclusively on L∞ norm-based attacks.

Adversarial Attacks on Time Series. Limited efforts have been made to extend similar attacks
to time series data. Surprisingly, the community has ignored adversarial attack approaches for time
series anomaly and intrusion detection tasks. However, a few adversarial attack approaches have
been proposed recently for the time series classification task, which are tangentially related to our
work. For instance, in their work on adopting a soft K Nearest Neighbors (KNN) classifier with
Dynamic Time Warping (DTW), Oregi et al. (2018)demonstrated that adversarial examples could
trick the proposed nearest neighbors classifier on a single simulated synthetic control dataset from
the UCR archive (Dau et al., 2019). Given that the KNN classifier is no longer considered the state-
of-the-art classifier for time series data (Bagnall et al., 2017), Fawaz et al. (2019) extend this work
by examining the effect of adversarial attack on the more recent and commonly used ResNet classi-
fier (He et al., 2016). Fawaz et al. (2019), on the other hand, focused mainly on univariate datasets
from the UCR repository. As a result, Harford et al. (2020) investigate the influence of adversarial
attacks on multivariate time series classification using the multivariate dataset from UEA reposi-
tory (Bagnall et al., 2018). However, Harford et al. (2020) only consider basic methods such as
1-Nearest Neighbor Dynamic Time Warping (Seto et al., 2015) (1-NN DTW) and a Fully Convolu-
tional Network (FCN). Karim et al. (2020) and Harford et al. (2020) attacked models using Gradient
Adversarial Transformation Networks (GATNs). However, they examined just transfer attacks, a
relatively weak sort of black-box attack. Only Siddiqui et al. (2019) demonstrated the effectiveness
of gradient-based adversarial attacks on time series classification and regression networks. How-
ever, they considered a very simple baseline for the attack, containing only three convolutional, two
max-pooling, and one dense layer.

Our study differs from previous research in that we focus on time series anomaly and intrusion
detection rather than the broader classification problem. More precisely, we explore autoregres-
sive models that have been mostly overlooked in prior works. Additionally, rather than targeting
generic deep neural networks KNN with DTW or ResNet, we investigate state-of-the-art anomaly
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Figure 2: Pipeline of a typical time series training phase and adversarial attack phase.

or intrusion detection methods. For instance, when it comes to anomaly detection, we focus on
the most contemporary and commonly used techniques, such as MSCRED (Zhang et al., 2019),
CLMPPCA Tariq et al. (2019), and MTAD-GAT Zhao et al. (2020). Similarly, for controller area
network intrusion detection, we explore two well-known methods: CAN-ADF (Tariq et al., 2020a)
and CANTransfer (Tariq et al., 2020b). Section 4 will cover these methods in further depth.

3 THREAT MODEL AND ATTACK GENERATION

Adversary’s Capabilities. We consider an adversary whose objective is to reduce the effectiveness
of a victim model. The attacker can apply the perturbations by modifying the victim’s test-time
samples, for example, by compromising a sensor or the data link that collects the data for inference.
We investigate a L∞ norm threat model with a 0.1 epsilon. Due to the variable input range of time
series data, there are no box constraints, in contrast to the visual image, where the pixels take on a
definite value between [0, 255]. As a result, the data was standardized in our case using a zero-mean
and unit standard deviation which justified the choice of 0.1 as the epsilon value.

Adversary’s Knowledge. To evaluate the vulnerability of anomaly and intrusion detection systems,
we examine non-targeted white-box scenarios in which the attacker has complete knowledge of the
victim model, including its training data and the model’s tunable parameters and weights.

Adversary’s Goals. The adversary considers two cases: (i) normal to anomaly (or intrusion)
and (ii) anomaly to normal. In (i), the adversary creates a sadvi for each test sample si so that the
models interpret it as an anomaly (or intrusion), thereby generating a false-positive. However, in
(ii), the adversary fabricates sadvi to achieve the inverse effect, namely, to cause the model to predict
an anomaly as normal, hence generating false-negative examples. As anomalies are rare events,
even a few misclassifications caused by the adversary can have a detrimental effect on the model’s
performance.

Adversarial Attack Generation. The Fast Gradient Sign Method (FGSM) attack was proposed for
the first time by Goodfellow et al. (2014). The training of neural networks entails minimizing a loss
function by adjusting the network weights. FGSM, on the other hand, does the opposite by adjusting
the input samples in the direction opposite to the loss function’s minimum. Thus, the FGSM attack
is concerned with the computation of optimal perturbation series η, which can be added/summed
to an input sample pointwise (i.e., a point refers to a single timestep) in order to maximize the
classification loss function, i.e., cause misclassifications. This is mathematically expressed as:

η = ε · sign (∇s Lf (si, yi)) (2)

where ∇s denotes the derivative of the network’s loss, Lf (· , ·), with respect to each timestep in
si (calculated for an input datapoint si and it’s true output yi). To control the magnitude of the
perturbation (i.e., to keep it imperceptibly small), ε is used as a multiplier factor. After that, the
perturbed sample sadvi can be computed as si+ η. Note that FGSM requires the attacker to compute
the loss function gradient with respect to a given input, which may not be possible directly. Due to
the fact that FGSM requires knowledge of the internal workings of the network, therefore referred
to as a white-box attack. However, a surrogate model can be used to simulate the target model.
An FGSM attack can be applied to the surrogate to generate adversarial examples (Papernot et al.,
2017), allowing for the use of such white-box attacks in practical practice scenarios (Kurakin et al.,
2016b).
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Table 1: A summary of anomaly and intrusion detection datasets.
Statistics SMAP MSL SMD KARI Synthetic OTIDS
Dimensions 55 27 28 4-35 30 11
Anomalies (or Intrusions) 13.13% 10.27% 4.16% 1% 1.10% 48.64%
Train Size 135,183 58,317 708,405 4,405,636 8,000 2,306,954
Test Size 427,617 73,729 708,420 17,622,546 10,000 2,306,955

Madry et al. (2017) proposed a more robust adversarial attack called Projected Gradient Descent
(PGD). This attack employs a multi-step procedure and a negative loss function. It overcomes the
problem of network overfitting and the shortcomings of the FGSM attack. It is more robust than
first-order network information-based FGSM, and it performs well under large-scale constraints.
Gradient Descent is essentially identical to the Basic Iterative Method (BIM) (Kurakin et al., 2016b)
or the Iterative FGSM (IFGSM) (Kurakin et al., 2016a) attacks. The only difference is that PGD
initializes the example at a random location within the ball of interest (determined by the L∞ norm)
and performs random restarts, whereas BIM initializes at the original location.

sadvi,t+1 = Πs+δ

(
sadvi,t + α sign(∇sLf (si, y))

)
s.t. 1 ≤ t ≤ T (3)

where δ is a nonempty compact topological space, T is the total number of iterations, and α is the
control rate. An illustration of the overall pipeline is provided in Figure 2.

4 EXPERIMENTAL SETUP

Datasets. We employ a variety of datasets to detect anomalies and intrusions. For anomaly detec-
tion we employ three public datasets: (i) Mars Science Laboratory rover (MSL) (Hundman et al.,
2018), (ii) Soil Moisture Active Passive satellite (SMAP) (Hundman et al., 2018), and (iii) Server
Machine Dataset (SMD) (Su et al., 2019), as well as one private dataset: (vi) Korean Aerospace Re-
search Institute KOMPSAT-5 satellite (KARI) (Tariq et al., 2019) and one synthetic dataset: (v) from
the MSCRED paper (Zhang et al., 2019). Intrusion detection was performed using the CAN Dataset
for intrusion detection (OTIDS) (Lee et al., 2017). The datasets were chosen based on our baselines’
shown ability to provide state-of-the-art performance on these datasets. Table 1 summarize these
datasets.

Evaluation Metrics. For intrusion detection, we use three metrics: Precision, Recall, and F1-
score. However, we only provide the F1 score in the main text (please refer to Appendix X for
detailed results). To obtain the final classification result for anomaly detection methods, we observed
that the majority of detectors use a thresholding method on top of the neural network’s predictions,
which are expressed as an anomaly score or prediction error. The prediction, recall, and F1-score
are then calculated using the results from thresholding methods. While these metrics are beneficial,
the true impact of the adversarial attack is visible primarily in anomaly detectors’ anomaly score
and prediction errors. Therefore, we include Figure 1, 3b and 3a, as illustrations of this impact.
Additionally, we include more related figures in Appendix A– G.

We conduct experiments on the following baselines to demonstrate that the vulnerability to adversar-
ial attacks is common among several state-of-the-art anomaly (or intrusion) detection architectures.

4.1 ANOMALY DETECTION BASELINES

Anomaly detectors based on Deep Neural Networks (DNNs) are the most frequently used method.
However, some methods based on Graph Neural Networks (GNNs) have also been proposed re-
cently. As a result, we evaluated both DNNs- and GNNs-based anomaly detectors. We used the
following criteria to determine the baseline: (i) To ensure that we cover a broad range of methods,
we decide that the baselines we choose should be diverse, i.e., no two baselines have similar model
architecture. (ii) They should consider a different pre-processing technique (e.g., using raw data
or feature vectors). (iii) They should take into account various post-processing techniques for pre-
diction (e.g., anomaly score, prediction error, or classification score). (iv) The method is widely
accepted and peer-reviewed. For this criterion, we take into account GitHub Forks, paper citations,
and publication venues. (v) The source code is freely available or can be obtained upon request. We
selected the following baselines based on these criteria:
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• MSCRED (Zhang et al., 2019) [AAAI]. Taking advantage of the temporal dependencies in-
herent in multivariate time series, Zhang et al. (2019) proposed a Multi-Scale Convolutional Re-
current Encoder-Decoder (MSCRED) for anomaly detection on two datasets: I synthetic and (ii)
power plant. Sidenote: Shen et al. (2020) demonstrated that MSCRED outperforms all SOTA
anomaly detection methods except Temporal Hierarchical One-Class (THOC), but we were un-
able to evaluate THOC as the code is not available (see more details below this list). As a result,
we chose the second best method (i.e., MSCRED) among recently developed SOTA anomaly de-
tection methods. Because the power plant dataset is not publicly available, we compare MSCRED
with and without adversarial attack using the synthetic dataset used by Zhang et al. (2019) in their
work.

• CLMPPCA (Tariq et al., 2019) [KDD]. Tariq et al. (2019) proposed a hybrid approach for
anomaly detection in multivariate satellite telemetry data. They propose a Convolutional LSTM
with Mixtures of Probabilistic Principal Component Analyzers (CLMPPCA) method for trans-
forming the time window containing several telemetry data samples into a feature vector that is
used to train the model and to predict the future data instances. To make final classification, the
prediction errors calculated from the prediction and ground truth are combined with a moving
average-based threshold method. Tariq et al. (2019) evaluated a private dataset from the Korean
Aerospace Research Institute’s KOMPSAT-5 satellite (KARI). We were able to obtain the same
private dataset and demonstrate how adversarial attacks affect the performance of CLMPPCA.
One of the primary reasons for selecting CLMPPCA is that it is currently deployed at KARI.
Thus, successfully demonstrating an attack on this method will demonstrate its applicability in a
practical scenario.

• MTAD-GAT (Zhao et al., 2020) [ICDM]. Zhao et al. (2020) proposed a multivariate time series
anomaly detector based on Graph Attention Networks. The authors treat each univariate time
series as a separate feature and employ two parallel graph attention layers to learn the complex
dependencies between multivariate time series in both temporal and feature dimensions by jointly
optimizing a forecasting-based and reconstruction-based model. MTAD-GAT outperformed sev-
eral recent time series anomaly detectors such as OmniAnomaly (Su et al., 2019), MAD-GAN (Li
et al., 2019), and DAGMM (Zong et al., 2018) from ICLR 2018, on three publicly available
anomaly datasets (SMAP, MSL, and SMD). As a result, MTAD-GAT is one of the best SOTA
methods currently available. We evaluate MTAD-GAT with and without adversarial attacks on all
three datasets.

Note that we chose these three baselines based on their compliance with our defined criteria. Ad-
ditionally, we were unable to evaluate some recent methods, such as Temporal Hierarchical One-
Class (THOC) published at NeurIPS 2020, because the source code is not publicly available and
our request to obtain the source code from the author was not answered. We discuss this further in
Section 9.

4.2 INTRUSION DETECTION BASELINES

Khraisat et al. (2019) and Gamage & Samarabandu (2020) discuss the different domains where
Intrusion detection-based methods are employed. We selected one such area, i.e., Intrusion detection
in Vehicle Controller Area Network, and compared state-of-the-art solutions from this domain. We
use the same criteria as anomaly detection to select the intrusion detection baselines as follows:

• CAN-ADF. Tariq et al. (2020a) proposed a hybrid of heuristics and recurrent neural network
(RNN) to detect different intrusions such as DoS, Fuzzing, and Replay attacks. The heuristics
and RNN components in CAN-ADF complement each other resulting in significantly better per-
formance and stability. The gradient-based attack can only be applied to the RNN component
of CAN-ADF. Therefore, we believe it to be an interesting scenario where only one of the two
components of the detector is attacked.

• CANTransfer. Recently, continual learning-based methods have become prevalent for intrusion
detection. They can learn new intrusion signatures with only a few samples while keeping the
same performance on previously learned intrusions. CANTransfer (Tariq et al., 2020b) is one
such method. The author first trains the base model on DoS Attack and then uses continual
learning techniques to learn new intrusion such as Fuzzing and Replay by using only one attack
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Table 2: MTAD-GAT results (F1 score) on MSL,
SMAP and SMD datasets.

Method MSL SMAP SMD
No Attack 0.950 0.894 0.999
FGSM 0.719 0.804 0.803
PGD 0.687 0.775 0.665

Table 3: MSCRED results (F1 score) on
synthetic dataset from original paper.

Method Pre. Rec. F1

No Attack 1.000 0.800 0.890
FGSM 0.487 0.500 0.493
PGD 0.485 0.500 0.492

instance. We believe that it will be interesting to observe the robustness of continual learning-
based intrusion detectors against adversarial attacks.

Both CAN-ADF and CANTransfer use the same OTIDS dataset. Therefore, it gives us the oppor-
tunity to perform a fair comparison of two different systems (under adversarial attack) solving the
same problem.

5 EMPIRICAL EVALUATION

We present results for the L∞ FGSM and PGD attacks against three SOTA anomaly detection meth-
ods—MSCRED, CLMPPCA, and MTAD-GAT—as well as two controller area network intrusion
detection methods—CAN-ADF and CANTransfer. The Appendix includes additional details about
the L∞ results (Appendix A); details on the L1 (Appendix B) and L2 (Appendix C) attacks; more
details on impact of adversarial attacks on MTAD-GAT (Appendix D– F some original vs. per-
turbed time series samples (Appendix G; and results from the FGSM, PGD, BIM, Carlini-Wagner,
and Momentum Iterative Method (MIM) (Dong et al., 2018) attacks on 71 datasets from the UCR
repository (Appendix H). In general, we observe that perturbations that are L∞-bounded are more
effective. This could be explained by optimization challenges, as L1 and L2 attacks are typically
more difficult to optimize (Carlini & Wagner, 2017; Tramer & Boneh, 2019).

5.1 ADVERSARIAL ATTACK ON ANOMALY DETECTORS

MSCRED Performance. We employ non-targeted FGSM and PGD methods to attack MSCRED.
As a result, only si from the test set is made available to the attack methods. The ε is set to 0.1 for the
FGSM attack, and α is set to 0.1 for the PGD attack with T = 40. The MSCRED method determines
the appropriate threshold between normal and anomalous data points based on the training data. As
a result, any modification to the test samples should not affect the threshold. As shown in Table 3,
the victim model (MSCRED) has no efficacy on the samples perturbed by FGSM and PGD attacks
and thus fails to detect all anomalies. Additionally, MSCRED classifies all instances of normal data
as anomalies. We demonstrate in Figure 3a that MSCRED (No Attack) can accurately predict the
majority of anomalies with an F1 score of 0.890 (see see Table 3). According to Figure 3a, the
anomaly scores under FGSM (yellow) and PGD (blue) attacks are always higher than the threshold
(red dashed line), which means that MSCRED is predicting everything as an anomaly, resulting in
an F1 score of less than 0.50. It is intriguing that such a small amount of change in the time series,
which is primarily imperceptible to the naked eye, can greatly affect the MSCRED’s anomaly scores,
even when the perturbations are so minute. The results in Table 3 are demonstrating that MSCRED
is not robust against adversarial attacks.

MTAD-GAT Performance. As with MSCRED, we attack MTAD-GAT using a non-targeted
FGSM and PGD method with ε = 0.1, α = 0.1, and t = 40. The results of adversarial attacks
against MTAD-GAT trained on the MSL, SMAP, and SMD datasets are shown in Table 2. MTAD-
GAT demonstrates state-of-the-art performance for anomaly detection in the absence of an adver-
sarial attack (No Attack). However, when adversarial examples from FGSM and PGD are used to
evaluate it, the detection performance drops to as low as 66%. The impact of a PGD attack is more
significant than that of the FGSM attack, which is understandable given that PGD is a more powerful
attack than FGSM. It leads us to ponder that if more sophisticated attacks are explicitly developed
for time series data, they will have a significantly greater impact on SOTA anomaly detectors. As a
result, future anomaly detection methods should take adversarial examples into account.

Additionally, Figure 3b illustrates the effect of adversarial examples from FGSM (yellow) and PGD
(blue) attacks on the MTAD-GAT anomaly score for the MSL dataset. We can see that the anomaly
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Figure 3: Anomaly score of No Attack, FGSM and PGD on MSCRED (a) and on MTAD-GAT for
MSL dataset (b) The y-axis scale is between 0 and 1 for (b). See Appendix A and D for more details
on (a) and (b), respectively.

Table 4: CLMPPCA prediction errors on KARI KOMPSAT-5 dataset for subsystems (SS) 1-10.
Methods SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9 SS10
No Attack 0.025 0.020 0.646 0.018 0.078 0.081 0.028 0.015 0.043 0.106
FGSM 0.306 0.327 5.657 0.153 1.744 1.708 0.246 0.201 1.303 0.314
PGD 0.688 0.748 11.200 0.205 2.459 3.391 0.430 0.231 1.798 0.555

score for FGSM and PGD frequently exceeds the threshold (red dashed line), resulting in a large
number of false positives and lowering the F1 score from 94.98% to 71.90% for FGSM and 68.69%
for PGD.

CLMPPCA Performance. The KARI dataset is divided into ten subsystems. As a result, we
trained the CLMPPCA model on each subsystem separately, as described in the original paper. We
then used FGSM and PGD attacks to evaluate each of these trained models. For FGSM, we use
ε = 0.1, for PGD, we use α = 0.1, and t = 40. Table 4 summarizes the prediction errors for each
subsystem prior to and following the attack. We can see that when adversarial attacks are used, the
prediction error increases up to twentyfold. Note: For brevity and space constraints, we omit the
F1 score from Table 4, as it is 0.50 for all subsystems. CLMPPCA fails to predict any anomalies
under FGSM and PGD attacks because the prediction error is always higher than the threshold (see
Figure 1). We believe that by employing these straightforward yet effective attacks, an adversary can
easily introduce false positives into CLMPPCA’s predictions at will, posing significant difficulties
for satellite operators.

Our findings indicate that the majority of SOTA anomaly detectors prioritized performance over
robustness. This could have dire consequences if such systems are deployed in real-world systems.
CLMPPCA is one such example, which is currently being deployed at KARI. Please note that we
have informed KARI of the vulnerability in CLMPPCA; additional information is available in our
Ethics Statement (see Section 8).

5.2 ADVERSARIAL ATTACK ON CAN INTRUSION DETECTORS

We evaluate the robustness of two popular and recent Controller Area Network intrusion detec-
tors under adversarial impact. We use the same experimental settings (i.e., same training and test
sets, epochs = 50) and attack settings (i.e., ε = 0.1, α = 0.1 and T = 40) for CAN-ADF and
CANTransfer to have a fair comparison.
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CAN-ADF Performance. The results for CAN-ADF under no attack, FGSM attack, and PGD
attack are presented in Table 5, column 2. While CAN-ADF outperforms CANTransfer in a normal
scenario (i.e., no attack), it is also more vulnerable to adversarial attacks, with an F1 score of 0.00
for the PGD attack. Even though we could only attack the RNN component of CAN-ADF and
the heuristics component remained unaffected, CAN-ADF’s poor performance against adversarial
attacks demonstrates its high reliance on the RNN component.

Table 5: CAN-ADF and CANTransfer re-
sults (F1 score) on OTIDS dataset.

Method CAN-ADF CANTransfer
No Attack 0.987 0.879
FGSM 0.188 0.858
PGD 0.000 0.311

CANTransfer Performance. Table 5, column 3
contains the results for CANTransfer with no attack,
FGSM attack, and PGD attack. While CANTransfer
performs slightly worse than CAN-ADF in the ab-
sence of an attack (0.879), it exhibits greater resis-
tance to adversarial attacks than CAN-ADF, partic-
ularly against FGSM attacks, where CANTransfer’s
performance drops by only 2%. We attempted mul-
tiple runs of the experiment, but the results remained
consistent for the FGSM attack. Under PGD, it is a different tale, as CANTransfer’s performance
drops significantly from 0.879 to 0.311, demonstrating its vulnerability.

These findings demonstrate that neither of the two most recent intrusion detectors for Controller
Area Networks is resistant to adversarial examples. As a result, future research should consider the
robustness of new detectors against adversarial attacks when designing them.

6 DISCUSSION

Defense against Adversarial Time Series. Adversarial training is one of the most commonly used
defense methods against adversarial examples. However, as Kang et al. (2019) suggest, training a
network to withstand one type of attack may weaken it against others. Additionally, Tramer et al.
(2020) outline various methods to conduct an adaptive attack and demonstrate that none of the 13
recently developed defense methods can withstand all types of adaptive attacks. Recently, several
techniques for defending against adversarial time series have been proposed. For example, Goodge
et al. (2020) propose an Approximate Projection Autoencoder (APAE) resistant to IFGSM attacks.
However, it only considers autoencoder-based anomaly detectors. Moreover, the performance of
several SOTA baselines reported in the paper is significantly lower than that reported in their original
paper using the same publicly available benchmark dataset. As a result, a thorough examination of
the defense methods is required.

Limitations and Future Work. There are some limitations to our work, and future work will try
to solve them. For instance, we could not evaluate all of the recent anomaly and intrusion detectors
in our work due to the following reasons: (i) The most important reason is that the codes are not
publicly available in many cases or the code is outdated, making it hard to compare ( we discuss this
in detail in reproducibility section). (ii) It is hard to reproduce the same results as demonstrated by
the paper, mainly when the codes are not from the original authors but developed by the community.
Therefore, future work should look for more methods. Moreover, we have only applied FGSM,
PGD, and SL1D (see Appendix) attacks on the detectors. We do provide results from other attacks
such as Carlini-Wagner L2 and MIM on the UCR dataset in Appendix. Another future work will be
to transfer these and new adversarial attacks to anomaly and intrusion detectors. Finally, developing
robust detectors should be considered in future studies.

7 CONCLUSION

The concept of adversarial attacks on deep learning models for time series anomaly and intrusion
detection was introduced in this paper. We defined and adapted adversarial attacks initially proposed
for image recognition to time series data. On several benchmark datasets, we demonstrated how ad-
versarial perturbations could reduce the accuracy of state-of-the-art anomaly and intrusion detectors.
As data scientists and developers increasingly implement deep neural network-based solutions for
time series related real-world critical decision-making systems (e.g., in aerospace and automobile
industries), we shed light on several critical use cases where adversarial attacks could have severe
and dangerous repercussions.
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8 ETHICS STATEMENT

Our study, in our opinion, raises only one significant ethical issue (i.e., presenting the vulnerabilities
of a deployed system). Now, we will describe how we deal with it. To begin, we downloaded
the CLMPPCA code from GitHub. Second, we contacted the authors of the CLMPPCA paper and
requested the dataset. Following KARI’s security clearance. We were able to obtain access to the
dataset and some code associated with the driver, which was kept private on purpose. We contacted
the authors and informed them of our findings after identifying the vulnerabilities in CLMPPCA.
The authors replicated our findings on the deployed system using the same attacks. For the time
being, the system is offline, and the authors of the CLMPPCA paper and other KARI developers are
investigating possible defense methods. We believe that adhering to this entire procedure resolves
any ethical concerns regarding this matter.

9 REPRODUCIBILITY

Reproducibility Issues in Baselines. According to our research, the majority of recent anomaly
detection methods do not make their source code publicly available. Additionally, many methods
whose source code was made publicly available by their authors (or implemented unofficially) were
outdated. As a result, we were unable to run them directly on the most recent machines. For instance,
in our experiment, we used an Nvidia RTX 3090 GPU. We discovered that, due to some issues with
the CUDA version, we could not run an older version of TensorFlow optimally. As a result, the code
either takes an eternity to execute or does not execute at all.

Our Solution. We chose to port the baselines to the latest versions of TensorFlow and PyTorch,
respectively, which were 2.5.0 for TensorFlow and 1.9.0 for PyTorch at the time of our experiments.
We used the CleverHans Library’s (Papernot et al., 2018) FGSM, PGD, BIM, Carlini-Wagner L2,
SL1D, and MIM attacks , which were recently ported to TensorFlow2 and PyTorch in version 4.0.0.
As a result, our workflows are compatible with the latest libraries. Additionally, after cleaning the
code, we will include some tutorial attacks (similar to those included in the CleverHans library for
image datasets) that can be used to assess the vulnerability of future detectors to adversarial attacks.

Guidelines for Baseline: Note that it is difficult to port or implement all of the most recent methods
on our own. Therefore, we tried our best with the limited resources that we had to make the baselines
compatible with the latest version of libraries. We will provide some guidelines for creating new
baselines and evaluating them against adversarial attacks on our GitHub page. We will leave it up to
the community to add additional methods in the future.

Reproducibility of Evaluation Code: We are currently cleaning up the code, and an initial draft
of our repository is available at the following link: https://anonymous.4open.science/
r/ICLR298. We will continue to update it. We request and welcome the reviewer to visit the
repository and offer constructive feedback on improving it.

Links to Baselines and Datasets. We will include the updated codes for each baseline in our
repository as well. We obtained the code of the baselines from the following repositories:

• MSCRED: https://github.com/Zhang-Zhi-Jie/Pytorch-MSCRED
• MTAD-GAT: https://github.com/ML4ITS/mtad-gat-pytorch
• CLMPPCA: https://github.com/shahroztariq/CL-MPPCA
• CAN-ADF: https://github.com/shahroztariq/CAN-ADF
• CANTransfer: https://github.com/shahroztariq/CANTransfer

Note that we are unable to share the KARI dataset as it is proprietary and requires security clearance
to access. The link to rest of the dataset used in our evaluation are as follows:

• SMAP and MSL: https://s3-us-west-2.amazonaws.com/telemanom/data.zip
• SMD: https://github.com/ML4ITS/mtad-gat-pytorch/tree/main/datasets
• Synthetic: https://github.com/Zhang-Zhi-Jie/Pytorch-MSCRED
• OTIDS: https://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset
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A DETAILS ON L∞ FGSM AND PGD ATTACKS

In Figure 4, we detail MSCRED’s performance against normmax-norm FGSM and PGD attacks.
Under normal conditions, we can see that the model correctly predicted three large anomalies but
missed two minor ones. As a result, an F1 score of 0.890 is obtained. However, when attacked
with either FGSM or PGD, the MSCRED model produces no meaningful results because it predicts
everything as an anomaly. Furthermore, the patterns of anomaly score under FGSM and PGD attack
are very similar to those observed during non-anomalous (or normal) periods. As a result, adjusting
the threshold to account for changes in the anomaly score will not be as effective.
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Figure 4: Anomaly score comparison of MSCRED under No Attack and, L∞-norm based FGSM
and PGD attacks.

B SL1D AND FGSM L1 ATTACK

In Figure 5, we present the results from two L1 attacks: (i) FGSM L1 and (ii) Sparse L1 Descent
(SL1D) attacks. As discussed previously in the main paper, optimizing L1 and L2-based attacks can
be challenging. We can see an excellent illustration of this with the FGSM L1 attack, where adver-
sarial examples from the L1-based FGSM attack produce nearly identical results to the No Attack
data samples (with a few minor differences). However, the SL1D attack, also an L1-based attack,
performs similar to the L∞ attack discussed previously. Although the range of anomaly scores
produced by SL1D attacks is slightly less than that produced by L∞ attacks, it is still significantly
higher than the threshold making the MSCRED model to predict the whole input time series as an
anomaly.
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Figure 5: Anomaly score comparison of MSCRED under No Attack and, L1-norm based FGSM
and SL1D attacks.

C L2 FGSM AND PGD ATTACK

The results of the L2-based FGSM and PGD attacks are shown in Figure 6. Almost identical to
the L1-based FGSM attack, the L2-based FGSM attack produces adversarial samples that have no
effect on the anomaly score and are thus deemed ineffective. Similar results are obtained using the
L2-based PGD attack. As illustrated in Figure 6, the Anomaly scores for No Attack, FGSM L2, and
PGD L2 all overlap significantly.
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Figure 6: Anomaly score comparison of MSCRED under No Attack and, L2-norm based FGSM
and PGD attacks.
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D DETAILED VIEW OF MTAD-GAT RESULTS ON MSL DATASET

In this section, we discuss the MTAD-GAT results on the MSL dataset in greater detail. Figure 7– 9
show No Attack, FGSM attack, and PGD attack results on the entire test data, respectively. We can
see that MTAD-GAT predicts fewer anomalies under FGSM and PGD attacks than normal condi-
tions (i.e., No Attack), resulting in a higher rate of false negatives. We have now discussed both
of these scenarios in detail in this work: (i) adversarial attack to generate false positives and (ii)
adversarial attack to generate false negatives. Additionally, consistent with our previous findings,
PGD performs better than FGSM and generates more false negatives than FGSM.

0 10k 20k 30k 40k 50k 60k 70k
0

0.5

1

1.5
Error

Threshold

Figure 7: MTAD-GAT’s anomaly score on normal data (i.e., No Attack).
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Figure 8: MTAD-GAT’s anomaly score under FGSM attack.
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Figure 9: MTAD-GAT’s anomaly score under PGD attack.
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E RESULTS ON SMD DATASET FOR MTAD-GAT

We present additional details on the MTAD-GAT results using the Server Machine Dataset (SMD)
in Figure 10, 11a and 11b . In the figures, the top row (in red) represents the Anomaly scores,
the middle row (in brown) represents the MTAD-GAT predictions, and the bottom row (in blue)
represents the ground truth. We can see that MTAD-GAT performs at a state-of-the-art level under
normal conditions. However, when subjected to FGSM and PGD attacks, it generates a large number
of false positives, resulting in a significant decrease in overall performance. Additionally, we can
observe that when PGD is used, MTAD-GAT produces more false positives than when FGSM is
used.
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Figure 10: The anomaly score and predicted anomalies for MTAD-GAT on SMD dataset under
normal conditions (No Attack).
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Figure 11: The anomaly score and predicted anomalies for MTAD-GAT on SMD dataset under
FGSM and PGD Attack.

17



Under review as a conference paper at ICLR 2022

F EFFECTS OF FGSM AND PGD ATTACKS ON MTAD-GAT’S FEATURES

As previously stated, MTAD-GAT is composed of two components (i.e., forecasting and recon-
struction). We demonstrate in Figure 12– 14 that both components become equally effective when
subjected to adversarial attacks. For example, in normal circumstances (as illustrated in Figure 12),
the forecast and reconstruction are quite close to the yi (ground truth). However, when attacked by
FGSM, they deviate from the ground truth, fooling the system into believing it is an anomaly. Ad-
ditionally, forecast and reconstruction are more chaotic during a PGD attack. As a result, detection
performance is even lower than that of a FGSM attack.
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Figure 12: Comparison of Forecast and Reconstruction with yi during No Attack.
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Figure 13: Comparison of Forecast and Reconstruction with yi during FGSM Attack.
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Figure 14: Comparison of Forecast and Reconstruction with yi during PGD Attack.
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G ORIGINAL VS. PERTURBED SAMPLES

We compare some samples of original and perturbed time series in this section. The ground truth
(in black), the FGSM (in yellow), and the PGD are depicted in Figure 15. (in dotted blue line). We
can easily see that all three of the time series overlap, rendering them largely indistinguishable to
the naked eye. Additionally, Figure 16a– 16c show an expanded version of the time series depicted
in Figure 1. Each of the three time series (i.e., No Attack, FGSM, and PGD) appears identical.
Here, we demonstrate that even simpler adversarial attacks such as FGSM and PGD can be highly
effective on time series data. Such perturbations will go unnoticed by a human observer.

PGD

Ground Truth

FGSM

Figure 15: Comparing No Attack (Ground Truth), FGSM and PGD attack on time series from the
KARI Subsystem 2 (SS2). There is no significant difference between the three time series therefore
they seem perfectly overlap.

(a) FGSM

(b) PGD

(c) PGD

Figure 16: A more detailed view of the same time series as in Figure 1. However, for comparison
purposes, the time series generated by No Attack (a), FGSM (b), and PGD (c) are shown separately.
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H UCR DATASET RESULTS

In addition to all the experiment on state-of-the-art anomaly and intrusion detection system. We also
cover general time series classification task where we attack a multilayer perception (MLP), a fully
convolutional network and ResNet trained on different dataset from the UCR repository. We conduct
an analysis of 71 datasets from the University of California, Riverside (UCR) repository. In future
work, we will expand on this experiment by including additional neural networks (MobileNet, Effi-
cientNet, DenseNet, and Inception Time) and datasets (the remainder of the UCR dataset, datasets
from the UEA repository).

We find that the Carlini-Wagner L2 attack provides the best adversarial examples, resulting in the
most significant performance degradation. In Figure 17, we show some original samples and the
corresponding perturbed samples generated by FGSM, PGD, BIM, Carlini-Wagner L2, and MIM
attacks on UCR datasets. Additionally, we present the ResNet classification results in Figure 17.
Finally, in Table 6– 8, we present the classification results for MLP, FCN, and ResNet.
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Figure 17: Comparison of original vs. perturbed samples from different datasets inside UCR repos-
itory. Moreover, the classification results of ResNet under normal and five different attack scenarios
is also provided.

20



Under review as a conference paper at ICLR 2022

Table 6: Multilayer perceptron (MLP) classification result on UCR repository under five adversarial
attacks.

MLP

Datasets FGSM PGD BIM
Carlini
Wagner
L2

MIM No
Attack

50words 44±0.8 42±1.3 42±1.3 35±1 43±1 63±1.1
Adiac 14±1.8 15±1.6 15±1.6 16±1.3 16±1.8 53±2.7
ArrowHead 29±3.9 27±3.3 27±3.3 24±4.3 27±3.1 74±2.6
Beef 32±5.1 26±3.9 26±3.9 29±3.9 27±3.4 78±3.9
BeetleFly 74±7.7 74±7.7 74±7.7 70±5 74±7.7 75±13.3
BirdChicken 62±5.8 62±5.8 62±5.8 57±10.5 62±5.8 69±2.9
Car 49±1 35±2.9 35±2.9 52±1 45±1 83±1
CBF 76±2.6 76±2.4 76±2.4 63±3.5 76±2.6 94±2.6
Chlorine
Concentration 24±0.3 24±0.5 24±0.5 24±0.7 24±0.4 65±0.4

Coffee 9±2.1 9±2.1 9±2.1 9±4.2 9±2.1 100±0
Computers 46±1.1 45±1.1 45±1.1 45±1.1 45±1.1 58±0.9
Cricket X 26±0.7 25±0.7 25±0.7 21±1 26±0.9 45±1
Cricket Y 30±0.8 29±1.7 29±1.7 24±0.6 29±1.7 48±1.6
Cricket Z 32±0.7 30±1.1 30±1.1 25±1 31±0.2 44±1.2
DiatomSize
Reduction 40±1.2 37±1.4 37±1.4 31±4 38±1.5 95±2.4

DistalPhalanx
OutlineAgeGroup 16±0.9 16±1 16±1 16±1 16±0.9 83±0.8

DistalPhalanx
OutlineCorrect 29±1.4 28±1.8 28±1.8 25±0.9 29±1.7 77±0.9

Distal
PhalanxTW 13±0.8 12±1.1 12±1.1 12±0.9 12±1.2 78±0.7

Earthquakes 69±1.5 69±1.5 69±1.5 52±4.2 69±1.5 73±1.1
ECG200 60±1.8 60±2.1 60±2.1 29±5.8 60±2.1 84±0.6
ECG5000 65±0.2 64±0.3 64±0.3 61±0.3 64±0.4 93±0.2
ECGFiveDays 48±2.3 46±2.1 46±2.1 35±4.8 47±2.1 95±3.3
ElectricDevices 22±0.4 21±0.5 21±0.5 21±0.6 21±0.6 55±0.8
FaceAll 57±0.3 56±0.4 56±0.4 39±0.9 56±0.2 74±0.6
FaceFour 79±2.4 77±2 77±2 76±1.8 79±1.4 88±0.7
FacesUCR 67±1.7 63±1.6 63±1.6 55±1.6 65±1.8 83±1.2
FISH 16±2.1 8±1.2 8±1.2 14±1.9 12±1.2 85±0.4
Gun Point 48±6.1 47±6.2 47±6.2 34±5.4 47±6.2 92±1.4
Ham 34±2.4 34±2.6 34±2.6 48±3.5 34±2.6 70±2
Haptics 21±0.9 21±0.8 21±0.8 21±1.2 20±0.7 41±0.7
Herring 50±1.9 50±1.9 50±1.9 50±1.9 50±1.9 51±1.9
InlineSkate 21±1.1 19±0.8 19±0.8 20±1.4 20±1.4 34±0.7
InsectWing
beatSound 37±0.7 30±0.3 30±0.3 42±0.3 34±0.4 62±0.7

ItalyPower
Demand 82±0.8 82±0.9 82±0.9 11±1.4 82±0.9 96±0.2

LargeKitchen
Appliances 33±2.2 32±1.3 32±1.3 34±0.6 33±2.1 51±0.5

Lighting2 70±2.6 70±2.6 70±2.6 58±3.8 70±2.6 65±3.5
Lighting7 53±4.2 53±3.7 53±3.7 35±3.7 53±3.7 64±2.4
Meat 26±1 26±1 26±1 25±1.7 26±1 74±1
MedicalImages 39±1.9 36±2.2 36±2.2 26±0.5 37±2.2 67±0.5
MiddlePhalanx
OutlineAgeGroup 32±10.7 26±4.8 26±4.8 20±0.8 27±5.7 73±1.5
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MiddlePhalanx
OutlineCorrect 46±1.5 46±1.6 46±1.6 45±1.5 46±1.6 56±1.5

Middle
PhalanxTW 18±2.9 18±2.8 18±2.8 18±1.7 18±2.9 56±2.4

MoteStrain 79±0.7 79±0.7 79±0.7 53±2.3 79±0.7 84±1.1
OliveOil 28±2 28±2 28±2 28±2 28±2 59±2
OSULeaf 29±0.7 29±1.1 29±1.1 29±0.9 30±0.7 45±0.3
Phalanges
OutlinesCorrect 33±3.2 33±2.6 33±2.6 33±2.3 33±2.7 68±2.4

Plane 89±2 87±1.1 87±1.1 85±4.3 88±1.1 98±1.1
ProximalPhalanx
OutlineAgeGroup 18±2 18±2.3 18±2.3 18±1.8 18±2.3 81±1.9

ProximalPhalanx
OutlineCorrect 36±1.4 34±1.1 34±1.1 33±1.6 34±0.9 68±1.6

Proximal
PhalanxTW 41±3.9 42±4 42±4 42±4 42±3.9 53±4.1

Refrigeration
Devices 36±1.8 36±1.6 36±1.6 36±1.3 36±1.9 43±1.2

ScreenType 39±1.4 38±1.8 38±1.8 38±1 39±1.6 36±0.3
ShapeletSim 50±1.7 50±1.4 50±1.4 49±1.7 50±1.4 48±0.9
ShapesAll 49±1.6 42±1.1 42±1.1 43±1.3 46±1.8 70±0.2
SmallKitchen
Appliances 33±1.4 34±1 34±1 36±1.6 34±1.1 49±2.2

SonyAIBO
RobotSurface 68±2.6 68±2.6 68±2.6 62±7.3 68±2.6 68±4.6

SonyAIBO
RobotSurfaceII 81±0.8 81±0.8 81±0.8 71±0.6 81±0.8 83±0.8

Strawberry 7±0.3 6±0.3 6±0.3 9±0.7 7±0.2 96±0.3
SwedishLeaf 32±1.2 26±2.1 26±2.1 25±0.8 29±1.4 82±0.3
Symbols 76±1.5 74±1.2 74±1.2 76±1.4 75±1 89±0.2
synthetic control 80±1.6 80±1.7 80±1.7 37±3.6 80±1.6 95±1
ToeSegmentation1 51±1.5 51±1.5 51±1.5 50±1.2 51±1.5 57±0.7
ToeSegmentation2 63±1.8 63±1.8 63±1.8 55±5.5 63±1.8 67±3
Trace 29±2.7 29±2.4 29±2.4 29±2.4 29±2.9 89±1.8
TwoLeadECG 45±2.2 44±2.3 44±2.3 37±1.8 45±2.2 77±0.7
Two Patterns 32±1.8 31±1.6 31±1.6 12±0.2 31±1.7 96±0.4
wafer 39±1.5 39±1.5 39±1.5 21±1.5 39±1.5 96±0.9
Wine 45±0 45±0 45±0 45±0 45±0 56±0
WordsSynonyms 40±1.2 38±0.5 38±0.5 32±1 39±1.1 53±0.4
Worms 28±0.4 27±0.9 27±0.9 24±1.5 28±0.6 36±1.2
WormsTwoClass 49±1.2 49±1 49±1 47±1.4 49±1 60±1

Table 7: Fully Convolutional Network (FCN) classification result on UCR repository under five
adversarial attacks.

FCN

Datasets FGSM PGD BIM
Carlini
Wagner
L2

MIM No
Attack

50words 3±0.5 6±1.4 6±1.4 18±3.6 4±1.3 29±16
Adiac 5±1.8 7±3.8 7±3.8 11±2.1 7±3.5 24±17.7
ArrowHead 40±0 14±6.2 14±6.2 14±6.5 15±6 80±6.6
Beef 26±10.2 23±9.7 23±9.7 23±12.7 22±7.7 52±9.7
BeetleFly 50±0 20±5 20±5 20±5 20±5 80±5
BirdChicken 50±0 15±10 15±10 7±2.9 22±2.9 94±2.9
Car 22±0 40±27.5 40±27.5 40±26.2 40±25.1 47±23.4
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CBF 83±1.2 79±1.6 79±1.6 1±0.1 81±1.3 100±0.2
Chlorine
Concentration 39±19.5 39±19.8 39±19.8 38±19.1 39±19.8 54±18.5

Coffee 0±0 0±0 0±0 0±0 0±0 100±0
Computers 44±10 19±5.7 19±5.7 16±6.1 28±11 85±6.1
Cricket X 16±5.7 11±1.8 11±1.8 13±2.3 11±3 72±3.7
Cricket Y 19±1.9 16±3.1 16±3.1 16±2.9 16±3.3 69±7.5
Cricket Z 13±1.1 11±3.2 11±3.2 14±3.5 11±2.1 72±5.1
DiatomSize
Reduction 16±4.9 6±0.9 6±0.9 7±0.5 7±0.7 93±0.7

DistalPhalanx
OutlineAgeGroup 19±4.7 19±4.4 19±4.4 19±4.4 19±4.4 80±4.3

DistalPhalanx
OutlineCorrect 38±9.6 32±6.1 32±6.1 32±6.2 33±6.6 69±6.1

Distal
PhalanxTW 15±1.1 17±1.2 17±1.2 17±1.1 17±1.1 73±2.1

Earthquakes 36±4.1 34±3.2 34±3.2 25±2.5 35±3.3 76±2.5
ECG200 49±6.5 16±3.1 16±3.1 11±1.8 24±5 89±1.8
ECG5000 69±6.9 33±24.7 33±24.7 4±0.4 51±12.5 94±0.4
ECGFiveDays 38±9.5 2±0.2 2±0.2 2±0.3 2±0.3 99±0.3
ElectricDevices 43±1.3 32±2.7 32±2.7 14±3.3 35±2.9 70±3.7
FaceAll 66±0.7 41±0.4 41±0.4 8±2.7 57±0.4 90±2.8
FaceFour 6±2.3 3±1.8 3±1.8 5±1.8 3±1.2 94±0.7
FacesUCR 68±2.4 40±7.9 40±7.9 4±0.7 56±4.4 93±0.8
FISH 13±0.4 19±11.5 19±11.5 22±11.9 18±11 60±2.9
Gun Point 51±2.7 2±0.7 2±0.7 1±0.4 4±2.4 100±0.4
Ham 37±3.4 37±3.5 37±3.5 37±3.5 37±3.5 64±3.5
Haptics 23±3.1 18±4.8 18±4.8 19±5 18±4.8 29±3.4
Herring 60±0 46±8.2 46±8.2 49±11.9 54±5.5 60±0
InlineSkate 16±0.5 13±5.2 13±5.2 16±6.7 13±4.5 22±7.6
InsectWingbeat
Sound 13±1.8 11±1.3 11±1.3 12±1.5 11±1.4 23±4.4

ItalyPower
Demand 84±1 81±1.7 81±1.7 5±0.5 83±1.5 96±0.3

LargeKitchen
Appliances 50±4.9 32±23.7 32±23.7 21±17.5 45±13.9 74±16

Lighting2 40±1.7 29±1 29±1 29±1 30±1.7 72±1
Lighting7 32±7.6 19±2.9 19±2.9 17±3.5 23±4.2 74±1.6
Meat 34±0 45±13.7 45±13.7 52±24.9 47±11.7 34±0
MedicalImages 23±6.8 14±2 14±2 14±3.1 16±1.2 77±2.8
MiddlePhalanx
OutlineAgeGroup 18±6.6 18±5.9 18±5.9 17±5.7 18±6.1 70±6.7

MiddlePhalanx
OutlineCorrect 44±22.5 43±21.6 43±21.6 45±24.2 43±21.6 58±21.4

MiddlePhalanxTW 20±10 23±11 23±11 21±9 23±10.7 48±12.8
MoteStrain 80±1 78±1.2 78±1.2 10±0.5 79±1.5 91±0.5
OliveOil 18±19.3 16±21.2 16±21.2 18±19.3 18±19.3 56±15.1
OSULeaf 14±0 12±4 12±4 12±4.4 11±4.1 75±16.7
Phalanges
OutlinesCorrect 36±2.5 36±2.5 36±2.5 36±2.6 36±2.5 65±2.6

Plane 40±5.8 11±3.9 11±3.9 0±0 25±6.5 100±0
ProximalPhalanx
OutlineAgeGroup 32±23.7 22±8.8 22±8.8 25±10.7 22±8.8 64±18.9

ProximalPhalanx
OutlineCorrect 32±26.8 31±26.4 31±26.4 31±26.2 31±26.8 70±26.2
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Proximal
PhalanxTW 18±8.2 14±3.1 14±3.1 15±4.7 14±2.9 75±2.9

Refrigeration
Devices 40±3.5 36±0.9 36±0.9 35±1.7 36±1 46±1.7

ScreenType 33±3.3 28±3.6 28±3.6 27±3.6 29±4.3 62±5.2
ShapeletSim 8±3.7 8±3.1 8±3.1 8±2.8 8±3.1 93±2.8
ShapesAll 4±1.4 3±2.9 3±2.9 7±0.6 3±1.9 19±18
SmallKitchen
Appliances 53±16.7 37±18.1 37±18.1 39±22.6 41±11.1 43±12.3

SonyAIBO
RobotSurface 84±2.2 82±2.7 82±2.7 5±0.3 83±2.7 97±0.6

SonyAIBO
RobotSurfaceII 86±1.5 84±2.1 84±2.1 3±0.5 85±1.7 98±0.5

Strawberry 44±20.8 31±8.8 31±8.8 31±8.9 31±9.1 70±8.8
SwedishLeaf 28±1.7 10±2.6 10±2.6 6±3.6 13±3.3 93±3.6
Symbols 36±3.2 6±1.6 6±1.6 5±0.6 15±1.9 94±1.3
synthetic control 95±1 95±1.3 95±1.3 3±0.9 95±1.2 98±0.7
ToeSegmentation1 41±6.2 11±0.8 11±0.8 3±0.7 18±3 98±0.7
ToeSegmentation2 43±1.4 26±2.3 26±2.3 14±2.8 36±0.5 87±2.8
Trace 52±18.6 18±8.9 18±8.9 1±0.6 43±2.9 100±0.6
TwoLeadECG 7±3.1 2±0.4 2±0.4 1±0.1 3±0.7 100±0.1
Two Patterns 34±7.3 15±0.7 15±0.7 15±0.7 19±2.3 86±0.7
wafer 8±3.2 3±0.9 3±0.9 1±0.2 3±1.3 100±0.2
Wine 50±0 50±0 50±0 50±0 50±0 50±0
WordsSynonyms 5±2.2 9±3.3 9±3.3 12±1.5 6±1.9 30±10.2
Worms 17±1.7 21±3.6 21±3.6 21±5.3 21±3.4 48±7.3
WormsTwoClass 48±5 39±2.3 39±2.3 39±2.5 40±4.2 62±2.3

Table 8: ResNet classification result on UCR repository under five adversarial attacks.

ResNet

Datasets FGSM PGD BIM
Carlini
Wagner
L2

MIM No
Attack

50words 8±2.3 10±1 10±1 13±1.5 9±1.5 67±0.7
Adiac 5±0.2 10±1.2 10±1.2 10±0.2 10±0.4 82±0.7
ArrowHead 34±11.5 13±0.9 13±0.9 13±1.5 15±1 79±2.3
Beef 24±8.9 19±5.1 19±5.1 18±3.9 22±3.9 74±3.4
BeetleFly 29±5.8 17±5.8 17±5.8 17±5.8 17±5.8 84±5.8
BirdChicken 54±5.8 14±2.9 14±2.9 14±2.9 20±5 87±2.9
Car 20±1 9±4.5 9±4.5 8±3.9 10±4.9 89±3.5
CBF 89±1.4 87±1.8 87±1.8 1±0.2 88±1.6 100±0.2
Chlorine
Concentration 14±0.4 14±0.8 14±0.8 13±0.4 14±0.7 82±1.1

Coffee 0±0 0±0 0±0 0±0 0±0 100±0
Computers 58±5.4 24±1.3 24±1.3 20±3.2 45±5.1 82±2.6
Cricket X 33±3 17±2.5 17±2.5 14±2.1 27±1.9 76±2.4
Cricket Y 23±0.6 13±0.7 13±0.7 13±0.6 16±1.7 80±1.1
Cricket Z 28±2.9 14±2 14±2 13±0.8 22±2.4 78±1.4
DiatomSize
Reduction 10±4.1 4±1.5 4±1.5 5±2 4±1.4 97±1.9

DistalPhalanx
OutlineAgeGroup 18±2.4 17±1.8 17±1.8 17±2 17±1.8 81±1.8

DistalPhalanx
OutlineCorrect 29±3.6 23±1 23±1 21±1.2 25±1.7 80±1
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Distal
PhalanxTW 15±0.3 15±0.8 15±0.8 14±0.6 15±0.9 76±0.7

Earthquakes 48±2.9 45±2.7 45±2.7 24±1 46±3.1 80±1.2
ECG200 69±4.4 50±11.6 50±11.6 13±2.1 63±4.1 88±2.4
ECG5000 73±0.8 61±1.3 61±1.3 5±0.3 66±1.3 94±0.3
ECGFiveDays 33±16.2 4±1.6 4±1.6 3±0.6 6±3.8 98±0.7
ElectricDevices 41±2.1 31±1.7 31±1.7 15±2.4 36±2.2 70±4.5
FaceAll 76±0.4 69±1 69±1 11±0.5 74±0.7 83±1.6
FaceFour 30±5.2 9±2.4 9±2.4 4±2.9 22±3.5 95±0.7
FacesUCR 74±1.4 64±2.3 64±2.3 3±0.8 70±1.6 95±0.4
FISH 13±0 3±0.9 3±0.9 3±1.2 3±0.9 98±1
Gun Point 23±5.6 6±2 6±2 1±0.4 10±0.7 100±0
Ham 30±2.9 29±2 29±2 30±2.4 29±2 72±2
Haptics 20±0.2 22±3.1 22±3.1 21±3.7 21±3.8 49±4
Herring 49±11 41±1 41±1 41±1 41±1 60±1
InlineSkate 15±1.3 19±2 19±2 19±2.9 19±1.9 32±3.1
InsectWingbeat
Sound 22±0.5 23±0.6 23±0.6 23±0.4 24±0.3 46±1.1

ItalyPower
Demand 87±1.3 86±0.8 86±0.8 7±0.9 86±1.3 97±0.2

LargeKitchen
Appliances 59±2.8 32±2.7 32±2.7 8±1.4 47±1.2 90±0.8

Lighting2 46±0 42±2.6 42±2.6 27±1.7 43±1.7 74±1.7
Lighting7 36±3.7 20±4.2 20±4.2 19±2.1 24±7.7 74±4.2
Meat 17±15.5 8±5.4 8±5.4 8±5.4 8±5.4 93±5.4
MedicalImages 47±5 28±3.8 28±3.8 15±2.5 36±2.4 78±0.7
MiddlePhalanx
OutlineAgeGroup 16±1.5 16±0.7 16±0.7 15±0.2 16±0.8 75±1

MiddlePhalanx
OutlineCorrect 27±9.1 27±9 27±9 27±9.1 27±9 74±9.2

Middle
PhalanxTW 15±2.8 17±0.4 17±0.4 17±0.6 17±0.7 62±0.8

MoteStrain 76±0.9 73±1.1 73±1.1 10±0.8 75±1.1 91±0.8
OliveOil 14±0 17±5.8 17±5.8 18±3.9 17±5.8 79±2
OSULeaf 14±1 6±2.2 6±2.2 5±1.9 6±2.2 94±2.8
Phalanges
OutlinesCorrect 27±3 17±0.9 17±0.9 18±0.7 17±0.9 84±0.9

Plane 73±6.2 41±6.4 41±6.4 0±0 63±5.3 100±0
ProximalPhalanx
OutlineAgeGroup 16±4.8 15±0.8 15±0.8 16±1.5 15±0.8 86±0.6

ProximalPhalanx
OutlineCorrect 16±2.6 11±1.6 11±1.6 11±1.7 11±1.6 90±1.6

Proximal
PhalanxTW 8±1.2 13±0.5 13±0.5 14±0.3 14±0.4 82±0.5

Refrigeration
Devices 35±2.5 34±3.1 34±3.1 31±2.3 34±3.1 54±0.6

ScreenType 35±7 29±2.6 29±2.6 28±3.5 32±4.5 61±3.8
ShapeletSim 13±7.9 12±8.6 12±8.6 10±10.2 13±8.1 91±9.9
ShapesAll 7±0.7 3±0.3 3±0.3 5±0.3 4±0.7 88±0.5
SmallKitchen
Appliances 44±4.5 28±5.6 28±5.6 29±7.7 34±5.2 56±16

SonyAIBO
RobotSurface 80±2.3 79±2.9 79±2.9 14±3.2 79±2.5 92±0.9

SonyAIBO
RobotSurfaceII 81±1.1 79±1.6 79±1.6 4±0.8 80±1 98±0.8

Strawberry 24±16 22±17.7 22±17.7 22±17.6 22±17.7 80±17.6
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SwedishLeaf 34±0.8 16±0.5 16±0.5 4±0.5 22±0.9 96±0.4
Symbols 32±2.1 8±0.5 8±0.5 5±1.6 16±1.5 95±1.7
synthetic control 95±0.7 95±0.4 95±0.4 20±4 95±0.7 100±0.4
ToeSegmentation1 54±1.8 31±2.5 31±2.5 4±0.7 39±2 97±0.7
ToeSegmentation2 45±5.2 35±5.9 35±5.9 11±2.5 41±4.3 90±2.5
Trace 30±2.1 13±9.7 13±9.7 2±1.6 37±8.6 98±0
TwoLeadECG 8±4.8 2±0.6 2±0.6 1±0.5 4±1.7 100±0.3
Two Patterns 68±1.9 42±6.2 42±6.2 6±1.1 56±3.8 96±1
wafer 17±11.8 7±7.8 7±7.8 2±0.2 11±10.8 100±0.1
Wine 34±16 25±8.4 25±8.4 25±8.4 25±8.4 76±8.4
WordsSynonyms 15±3.1 14±1 14±1 16±0.4 14±1.4 54±1.3
Worms 26±2 21±1.5 21±1.5 19±0.9 25±0.4 63±2
WormsTwoClass 54±2.7 29±2 29±2 27±2 32±1.4 75±1.4
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