
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT OFF-POLICY EVALUATION WITH SAFETY
CONSTRAINT FOR REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In reinforcement learning, classic on-policy evaluation methods often suffer from
high variance and require massive online data to attain the desired accuracy. Pre-
vious studies attempt to reduce evaluation variance by searching for or designing
proper behavior policies to collect data. However, these approaches ignore the
safety of such behavior policies—the designed behavior policies have no safety
guarantee and may lead to severe damage during online executions. In this paper,
to address the challenge of reducing variance while ensuring safety simultane-
ously, we propose an optimal variance-minimizing behavior policy under safety
constraints. Theoretically, while ensuring safety constraints, our evaluation method
is unbiased and has lower variance than on-policy evaluation. Empirically, our
method is the only existing method to achieve both substantial variance reduc-
tion and safety constraint satisfaction. Furthermore, we show our method is even
superior to previous methods in both variance reduction and execution safety.

1 INTRODUCTION

In recent years, reinforcement learning (RL, Sutton and Barto (2018)) has shown exceptional success
in various sequential decision-making problems. For instance, RL algorithms have reduced energy
consumption for Google’s data center’s cooling by 40% (Chervonyi et al., 2022), solved Olympiad-
level geometry problems (Trinh et al., 2024), and designed general-purpose data center CPUs
(Mirhoseini et al., 2021). In RL applications, policy evaluation enables RL practitioners to estimate the
performance of a policy before committing to its full deployment. In policy evaluation, conventional
wisdom uses the on-policy method, in which a policy (i.e., the target policy) is evaluated by directly
executing itself. However, this straightforward approach is crude because using the target policy itself
as the data-collecting policy (i.e., the behavior policy) is proved to be suboptimal (Hanna et al., 2017;
Liu and Zhang, 2024), resulting in evaluations with potentially high variance. Thus, the on-policy
evaluation method may require massive online data to achieve the desired accuracy.

Unfortunately, collecting massive online data through real-world interaction can be both expensive
and slow (Li, 2019; Zhang, 2023). In Google’s data center’s cooling system, each interaction step
in the actual deployment takes 5 minutes (Chervonyi et al., 2022). Thus, the evaluation of a policy
requiring millions of steps is prohibitively expensive. To reduce the reliance on costly online data
collection, offline RL has been introduced as a possible solution. However, mismatches between the
offline data distribution and the distribution induced by the target policy frequently arise, resulting in
bias that is both uncontrolled and difficult to eliminate (Jiang and Li, 2016; Farahmand and Szepesvári,
2011; Marivate, 2015). As a result, both online and offline RL practitioners still depend heavily on
online policy evaluation techniques (Kalashnikov et al., 2018; Vinyals et al., 2019).

To improve the online sample efficiency for policy evaluation, existing methods propose to reduce
the evaluation variance by searching for or designing proper behavior policies (Hanna et al., 2017;
Zhong et al., 2022; Liu and Zhang, 2024). However, all their approaches ignore a critical issue:
safety. In many real-world applications, neglecting safety in policy execution can result in serious
consequences. For example, in Google’s data center cooling system, a behavior policy that is tailored
for variance reduction without considering safety constraints may unpredictably overheat the system,
causing equipment damages or service disruptions. Therefore, besides reducing evaluation variance,
it is crucial to guarantee execution safety.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this paper, we address the challenge of reducing variance while ensuring safety simultaneously.
We make the following contributions:

1. We propose an optimal variance-minimizing behavior policy under safety constraints.
2. Theoretically, we show that our method gives an unbiased estimation. In addition to strictly

satisfying the safety constraints, our method is proven to attain lower variance than the
classic on-policy evaluation method.

3. Empirically, we show that our method is the only existing method to achieve both substantial
variance reduction and constraint satisfaction. Moreover, it is even superior to previous
methods in both variance reduction and execution safety.

2 RELATED WORK

Safe RL. Safety in reinforcement learning, often framed as safe RL (Garcıa and Fernández, 2015),
has been an active research topic recently. Many recent works focus on safety in policy exploration
and optimization (Brunke et al., 2022). For safe exploration, Moldovan and Abbeel (2012) present
a method for ensuring safe exploration by keeping the agent within a predefined set of safe states
during its learning process. However, their method is a model-based approach, requiring an explicit
approximation of the transition function, which introduces challenges common to model learning,
such as compounding errors and the need for accurate model dynamics (Sutton, 1990; Sutton et al.,
2008; Deisenroth and Rasmussen, 2011; Chua et al., 2018). In contrast, our approach does not rely
on approximating the transition function (i.e., model-free), since parameters can be estimated by
off-the-shelf offline policy evaluation methods (e.g. Fitted Q-Evaluation, Le et al. (2019)). As for safe
optimization, Berkenkamp et al. (2017) propose to ensure safety by keeping the agent within safe
regions, which are characterized by a Lyapunov function. However, they assume the environment to
be deterministic, i.e., p(s′|s, a) = 1 for the successive state s′, which is a significant limitation as
most MDPs are stochastic. Their method is also model-based, requiring knowledge of the transition
functions. In contrast, our approach copes well with stochastic environments and is model-free.

Safe reinforcement learning is often modeled as a Constrained Markov Decision Process (CMDP)
(Gu et al., 2022; Wachi et al., 2024; Liu et al., 2021), in which we need to maximize the agent
reward while making agents satisfy safety constraints. Achiam et al. (2017) enforce a constant
threshold to constrain the expected total cost. However, even though they adopt the trust-region
method to control policy updates, the expected total cost of the new policy can still exceed the
safety threshold at each update step, leading to uncontrolled violations of the safety constraints
over time. In contrast, our method inherently integrates safety constraints into the policy design,
ensuring strict satisfaction of constraints throughout execution. Wachi and Sui (2020) propose
a method for safe reinforcement learning in constrained Markov decision processes (CMDPs) by
using a Gaussian Process to model the safety constraints and guide exploration. Nevertheless, their
approach needs to compute the covariance matrix between explored states throughout the execution,
which is computationally expensive, especially in environments with large state spaces. In addition,
they assume that the state transitions are deterministic, making their method highly restricted. In
contrast, our algorithm does not rely on knowledge about the complicated covariances and copes
with stochastic environments.

Variance Reduction. Variance reduction for policy evaluation in reinforcement learning (RL) is
also widely explored. Since using the target policy as the data-collecting policy (i.e., the behavior
policy) for evaluating itself is not optimal (Owen, 2013), some recent studies focus on searching
for or designing a data-reducing behavior policy without considering safety. Hanna et al. (2017)
formulate the task of finding a variance-reduction behavior policy as an optimization problem. They
parameterize the behavior policy and use stochastic gradient descent to update the policy. However, in
reinforcement learning, the stochastic method has been known to easily get stuck in highly suboptimal
points in just moderately complex environments (Williams, 1992), where various local optimal and
saddle points exist. Besides, they do not consider the safety of their obtained behavior policy,
which might cause damage during execution. In contrast, our method directly learns the globally
optimal behavior policy with safety guarantees. Moreover, their method requires highly sensitive
hyperparameter tuning to learn the behavior policy effectively. Specifically, the learning rate can
vary by up to 105 times across different environments, as reported in the experiments of Hanna
et al. (2017). This extreme sensitivity requires online tuning, consuming massive online data. In

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

contrast, we propose an efficient algorithm to learn our optimal behavior policy with purely offline
data. Furthermore, Hanna et al. (2017) constrain the online data to be complete trajectories. In
contrast, our method copes well with incomplete offline tuples, making it widely applicable.

Zhong et al. (2022) also propose to design a variance-reducing behavior policy for policy evaluation.
They adjust the behavior policy to focus on under-sampled data segments. However, their method
requires the offline data to be in complete trajectories, and the data must be generated by known
behavior policies that are highly similar to the target policy. These assumptions are strong. In
contrast, our method effectively handles incomplete offline segments from potentially unknown and
diverse behavior policies. Zhong et al. (2022) also ignore safety constraints in their behavior policy,
leading to potential risks in executing the data-collecting behavior policy. In contrast, our method
incorporates safety constraints into the search for the optimal variance-reducing behavior policy,
ensuring safety throughout the execution.

Using the per-decision importance sampling estimator, Mukherjee et al. (2022) also propose a
behavior policy to reduce variance. Nevertheless, they also do not consider the crucial safety problem.
Besides, their results are restricted to tree-structured MDPs, which is a significant limitation. In
contrast, our method works on general CMDPs, extensions of the widely studied MDPs. Moreover,
Mukherjee et al. (2022) also leverage a model-based approach. The current state-of-the-art method
in behavior policy design is proposed by Liu and Zhang (2024), where they find an optimal and
an offline-learnable behavior policy. However, all these approaches (Hanna et al., 2017; Zhong
et al., 2022; Liu and Zhang, 2024) focus solely on reducing evaluation variance while neglecting a
critical issue: safety. Without integrating safety constraints into the design of the behavior policy, its
online execution could cause unforeseen and severe damage. In contrast, we consider the variance
minimization problem with safety constraints, obtaining a behavior policy that is safe throughout
the execution, while simultaneously achieving substantial variance reduction compared with the
on-policy method.

3 BACKGROUND

A finite Markov decision process (MDP, Puterman (2014)) includes a finite state space S, a finite
action space A, a reward function r : S ×A → R, a transition probability function p : S ×S ×A →
[0, 1], an initial distribution p0 : S → [0, 1], and a constant horizon length T . In this paper, to impose
safety constraints, we consider constrained Markov decision processes (CMDPs, Altman (2021)),
which extends the MDPs with a cost function c : S × A → [0,∞). Without loss of generality, we
consider the undiscounted setting for simplicity. Our method is compatible with the discounted setting
(Puterman, 2014) as long as the horizon is fixed and finite. For any integer, we define a shorthand
[n]

.
= {0, 1, . . . , n}. For any set X , we use |X | to denote its cardinality. We use ∆|X |−1 to denote

the (|X | − 1)-dimensional probability simplex, representing the set of all probability distributions
over the set X .

A constrained Markov decision process (CMDP) begins at time step 0, where an initial state S0 is
sampled from p0. At each time step t ∈ [T − 1], an action At is sampled based on πt(· | St). Here,
πt : A × S → [0, 1] denotes the policy at time step t. Thereafter, a reward Rt+1

.
= r(St, At) and

a cost Ct+1
.
= c(St, At) is emitted by the environment. A successor state St+1 is then sampled

from p(· | St, At). We define the abbreviation πi:j
.
= {πi, πi+1, . . . , πj} and π

.
= π0:T−1. At each

time step t, the return for the reward r is defined as Gt
.
=

∑T
i=t+1 Ri, and the return for the cost

c is Gc
t
.
=

∑T
i=t+1 Ci. Then, we define the state-value and action-value functions for the reward r

as vπ,t(s)
.
= Eπ [Gt | St = s] and qπ,t(s, a)

.
= Eπ [Gt | St = s,At = a] . Similarly, the state-value

and action-value functions for the cost c are defined as vcπ,t(s)
.
= Eπ [G

c
t | St = s] and qcπ,t(s, a)

.
=

Eπ [G
c
t | St = s,At = a] . We adopt the total rewards performance metric from Puterman (2014) to

measure the performance of the policy π, which is defined as J(π) .
=

∑
s p0(s)vπ,0(s). Likewise,

we also define the total costs of π as Jc(π)
.
=

∑
s p0(s)v

c
π,0(s). In this paper, we use Monte

Carlo methods, as introduced by Kakutani (1945), for estimating the total rewards J(π). The most
straightforward and prevalent technique among many of its variants is to draw samples of J(π)
through the online execution of the policy π. The empirical average of the sampled returns converges
to J(π) as the number of samples increases. Since this method estimates a policy π by executing
itself, it is called on-policy learning (Sutton 1988).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In this work, we focus on off-policy evaluation, where the goal is to estimate the total rewards J(π)
of an interested policy π, called the target policy by executing a different policy µ, called the behavior
policy. We generate each trajectory {S0, A0, R1, C1, S1, A1, R2, C2, . . . , ST−1, AT−1, RT , CT } by
a behavior policy µ with S0 ∼ p0, At ∼ µt(·|St). We use a shorthand τ

µt:T−1

t:T−1 for a trajectory
generated by the behavior policy µ from the time step t to the time step T − 1 inclusively. It is
defined as τµt:T−1

t:T−1
.
= {St, At, Rt+1, Ct+1 . . . , ST−1, AT−1, RT , CT }. In off-policy evaluation, to

give an estimate of J(π), we adopt the importance sampling ratio to reweigh rewards collected by
the behavior policy µ. We define the importance sampling ratio at time step t as ρt

.
= πt(At|St)

µt(At|St)
. The

product of importance sampling ratios from time t to t′ ≥ t is then defined as ρt:t′
.
=

∏t′

k=t
πk(Ak|Sk)
µk(Ak|Sk)

.

Various methods utilize importance sampling ratios within off-policy learning frameworks (Geweke,
1988; Hesterberg, 1995; Koller and Friedman, 2009; Thomas, 2015). In this paper, We investigate the
per-decision importance sampling estimator (PDIS, Precup et al. (2000)). The PDIS Monte Carlo
estimator is defined as GPDIS(τ

µt:T−1

t:T−1)
.
=

∑T−1
k=t ρt:kRk+1, which can also be expressed recursively

as

GPDIS(τ
µt:T−1

t:T−1) =

{
ρt

(
Rt+1 +GPDIS(τ

µt+1:T−1

t+1:T−1)
)

t ∈ [T − 2],

ρtRt+1 t = T − 1.
(1)

With the classic policy coverage assumption (Precup et al., 2000; Maei, 2011; Sutton et al., 2016;
Zhang, 2022)

∀t, s, a, µt(a|s) = 0 =⇒ πt(a|s) = 0,

GPDIS provides an unbiased estimation for J(π), i.e.,

E
[
GPDIS(τ

µ0:T−1

0:T−1)
]
= J(π).

Since the PDIS estimator is unbiased, reducing its variance is sufficient for improving its sample
efficiency. We achieve this variance reduction by designing and learning proper behavior policies.

4 CONSTRAINED VARIANCE MINIMIZATION FOR CONTEXTUAL BANDITS

In this section, we focus on variance minimization in policy evaluation under safety constraints in
contextual bandits. These discussions provide the foundation for the more complicated optimization
problems in sequential reinforcement learning settings, which we explore in Section 5. Notations
defined in this section are independent of the rest of the paper.

We consider contextual bandits as one-step CMDPs, where the trajectories are in the form of (s, a, r, c).
To estimate the performance of the target policy π, Ea∼π[r(s, a)], with data collected by a behavior
policy µ, we adopt the importance sampling ratio (Rubinstein, 1981) to reweigh the reward collected
by µ. That is, we use Ea∼µ[ρ(a|s)r(s, a)] as an estimator, where ρ(a|s) = π(a|s)

µ(a|s) . Recall ∆|A|−1 is
the probability simplex representing all probability distributions over the set A. To ensure that this
off-policy evaluation is unbiased, a classic choice by Rubinstein (1981) searches for µ in

Λ−
.
=

{
µ | ∀s, a, µ(a|s) = 0 ⇒ π(a|s) = 0 ∧ ∀s, µ(·|s) ∈ ∆|A|−1

}
.

In this work, we search in an enlarged space Λ (Owen, 2013; Liu and Zhang, 2024), where

Λ
.
=

{
µ | ∀s, a, µ(a|s) = 0 ⇒ π(a|s)r(s, a) = 0 ∧ ∀s, µ(·|s) ∈ ∆|A|−1

}
. (2)

Although a behavior policy µ in Λ may not cover the target policy π, µ still gives unbiased estimation
in statistics. In the following lemma, we show that searching for µ in this enlarged space Λ guarantees
unbiasedness in the contextual bandits setting.
Lemma 1. ∀µ ∈ Λ, ∀s,

Ea∼µ[ρ(a|s)r(s, a)] = Ea∼π[r(s, a)].

Its proof is in Appendix A.1. Our goal is to search for a variance-minimizing behavior policy µ.
Except for the unbiasedness guaranteed by the search space Λ, we also require µ to satisfy safety
constraints which will be defined later. We formulate the variance minimization objective as, ∀s,

min
µ∈Λ

Va∼µ(ρ(a|s)r(s, a)). (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Then, with the unbiasedness in Lemma 1, we can further decompose the objective in (3) as

Va∼µ(ρ(a|s)r(s, a))
=Ea∼µ[(ρ(a|s)r(s, a))2]− Ea∼µ[ρ(a|s)r(s, a)]2

=Ea∼µ[ρ(a|s)2r(s, a)2]− Ea∼π[r(s, a)]
2. (By Lemma 1) (4)

Since the second term is a constant and is unrelated to µ, it suffices to solve

min
µ∈Λ

Ea∼µ[ρ(a|s)2r(s, a)2]. (5)

Next, to ensure the safety of executing the behavior policy µ, we incorporate a safety constraint
into the variance minimization problem. Since measuring safety by the expected cost is a common
approach in the safety RL community (Berkenkamp et al., 2017; Achiam et al., 2017; Chow et al.,
2018), we require that the expected cost of µ remains within a threshold related to the expected cost
of π. Given a safety parameter ϵ ∈ [0,∞), define a cost threshold

δϵ(s)
.
= (1 + ϵ)Ea∼π[c(s, a)].

We impose the following constraint to the optimization problem (5)

Ea∼µ[c(s, a)] ≤ δϵ(s), ∀s. (6)

This constraint requires that the expected cost of the designed behavior policy µ should be smaller
than the multiple of the expected cost of the target policy π. By satisfying this constraint, we maintain
a desired level of safety during the execution of the behavior policy µ. This safety is defined with
respect to the target policy π, which is executed in the classic on-policy evaluation method. By setting
ϵ = 0, behavior policies satisfying this constraint are guaranteed to be safer than the target policy.

Notably, another line of research focused on policy safety chooses a constant threshold for the
expected cost. We can simply modify (6) into a constant-threshold constraint by replacing the
threshold function δϵ(s) with a constant δ. However, such absolute thresholds may make optimization
problems infeasible. Strong assumptions on environments and policies have to be made to guarantee
the existence of feasible solutions under absolute threshold (Achiam et al., 2017). In this paper,
we impose the safety constraint with respect to the target policy π, because our goal is to design
a safe behavior policy to address the high variance associated with classic on-policy evaluation
methods. The parameter ϵ in our threshold allows RL practitioners to adjust safety tolerance based on
the specific requirements of the problem, as safety constraints are often highly problem-dependent
(Achiam et al., 2017). In Section 7, we demonstrate our method in sequential reinforcement learning
with a harsh threshold, ϵ = 0, achieving both variance and cost reduction compared to the on-policy
method.

We formally define our optimization problem and prove its convexity and feasibility in the following
theorem.
Lemma 2. For all ϵ and s, the following optimization problem is convex and feasible.

min
µ∈Λ

Ea∼µ[ρ(a|s)2r(s, a)2], (7)

s.t. Ea∼µ[c(s, a)] ≤ δϵ(s). (8)

Its proof is in Appendix A.2. Use µ∗ to denote the optimal solution of the above optimization problem.
We have the following lemma.
Lemma 3. For all ϵ and s, let µ∗ be the optimal solution of optimization problem (7), we have

Va∼µ∗(ρ(a|s)r(s, a)) ≤ Va∼π(r(s, a)).

Proof. We first show that the target policy π is always in the feasible set of the optimization problem
(7). We define the set of feasible policies as

F .
= {µ ∈ Λ | ∀ϵ, s,Ea∼µ[c(s, a)] ≤ δϵ(s)}. (9)

Because ϵ ∈ [0,∞), for the safety constraint, we have

Ea∼π[c(s, a)] ≤ (1 + ϵ)Ea∼π[c(s, a)] = δϵ(s).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

By the definition of Λ (2), π ∈ Λ. Thus, π ∈ F . Because

µ∗ .
=argmin

µ∈F
Ea∼µ[ρ(a|s)2r(s, a)2] (10)

is the optimal solution, we have

Va∼µ∗(ρ(a|s)r(s, a))
=Ea∼µ∗ [ρ(a|s)2r(s, a)2]− Ea∼π[r(s, a)]

2 (by (4))

≤Ea∼π[ρ(a|s)2r(s, a)2]− Ea∼π[r(s, a)]
2 (by (10))

=Ea∼π[r(s, a)
2]− Ea∼π[r(s, a)]

2

=Va∼π(r(s, a)).

In Section 5, we expand Lemma 2 and Lemma 3 from contextual bandits to sequential reinforcement
learning in Theorem 1 and Theorem 2. We show that with a recursive expression of the estimation
variance, we can reduce the sequential problem into bandits in each time step t, and thereafter obtain
the optimal behavior policy µ∗ that minimizes variance under safety constraints.

5 CONSTRAINED VARIANCE MINIMIZATION FOR SEQUENTIAL
REINFORCEMENT LEARNING

In this section, we extend the techniques from contextual bandits to the sequential reinforcement learn-
ing setting. We seek to find an optimal behavior policy µ that reduces the variance V

(
GPDIS(τ

µ0:T−1

0:T−1)
)

under safety constraints. Before defining the optimization problem, we first define the policy space
we search for the behavior policy to ensure the unbiasedness of the PDIS estimator. Conventional
methods search µ in the set of all policies that cover the target policy π (Sutton and Barto, 2018), i.e.,

Λ−
.
= {µ | ∀t, s, a, µt(a|s) = 0 ⇒ πt(a|s) = 0 ∧ ∀t, s, µt(·|s) ∈ ∆|A|−1}.

In this paper, similar to the bandits setting (2), we search in an enlarged set Λ, which is defined as

Λ
.
={µ | ∀t, s, a, µt(a|s) = 0 ⇒ πt(a|s)qπ,t(s, a) = 0 ∧ ∀t, s, µt(·|s) ∈ ∆|A|−1}. (11)

The following lemma from Liu and Zhang (2024) ensures the unbiasedness of the off-policy estimator
with the behavior policy µ ∈ Λ.

Lemma 4. ∀µ ∈ Λ, ∀t, ∀s,

E
[
GPDIS(τ

µt:T−1

t:T−1) | St = s
]
= vπ,t(s).

Its proof is in Appendix A.3. A natural idea to do variance minimization under safety constraints
with a safety parameter ϵ ∈ [0,∞) is to solve the following optimization problem

min
µ∈Λ

V
(
GPDIS(τ

µ0:T−1

0:T−1)
)
, (12)

s.t. Jc(µ) ≤ (1 + ϵ)Jc(π),

where Jc(µ)
.
=

∑
s p0(s)v

c
µ,0(s) is the expected cost of the behavior policy µ. Solving this problem

directly is very challenging. When designing a policy at a time step t, we need to consider not only
the immediate reward generated by this action but also the future consequences. Hanna et al. (2017)
try to solve this problem without safety constraints by directly optimizing the behavior policy µ with
gradient descent. However, this approach requires online data to optimize µ and struggles in even
moderately complicated environments as shown in Zhong et al. (2022) and Liu and Zhang (2024).

In this paper, we therefore propose to solve this problem in a backward way while ensuring safety
constraints. Given an ϵ, use

δϵ,t(s)
.
= (1 + ϵ)vcπ,t(s) (13)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

to denote the safety threshold. We define an extended reward function r̃t(s, a) and a behavior policy
µ∗. They are defined in the order of

{
r̃T−1, µ

∗
T−1, r̃T−2, µ

∗
T−2, · · · , r̃0, µ∗

0

}
. Denote the variance of

the state value for the next state given the current state-action pair (s, a) as νπ,t(s, a). We have

νπ,t(s, a)
.
=

{
0 t = T − 1,

VSt+1
(vπ,t+1(St+1) | St = s,At = a) t ∈ [T − 2].

Then, the extended reward function is defined as

r̃t(s, a)
.
=

{
rπ,t(s, a)

2 t = T − 1,

νπ,t(s, a) + qπ,t(s, a)
2 + ESt+1

[
V
(
GPDIS(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| s, a

]
t ∈ [T − 2].

(14)

The behavior policy µ∗
t is defined as the optimal solution to the following problem. ∀t, s,

min
µt∈Λ

Ea∼µt
[ρ2t r̃t(s, a)],

s.t. Ea∼µt
[qcµ,t(s, a)] ≤ δϵ,t(s).

We have the following theorem showing the convexity and feasibility of (15), thus ensuring the
existence of the behavior policy µ∗.
Theorem 1. For all ϵ, t, and s, the following optimization problem is convex and feasible.

min
µt∈Λ

Ea∼µt
[ρ2t r̃t(s, a)], (15)

s.t. Ea∼µt
[qcµ,t(s, a)] ≤ δϵ,t(s). (16)

Its proof is in Appendix A.4. We notice that the constrained optimization problem (15) is similar to
(7), which is the optimization problem introduced in Section 4. In the contextual bandit setting (7), we
optimize the objective with respect to the reward function r, ensuring variance reduction (Lemma 3).
In sequential reinforcement learning (15), we optimize with respect to the extended reward function
r̃, achieving variance reduction (Theorem 2 and (17)), while simultaneously guaranteeing safety
(18). This observation provides a key insight: the step-wise optimization problem in sequential
reinforcement learning can be viewed as a reduced optimization problem in one-step contextual
bandits, where the reward is r̃. In Section 6, we further propose an efficient algorithm to learn r̃
without directly addressing the complicated trajectory variance V

(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
, making

long-horizon RL problems more tractable.
Theorem 2. The behavior policy µ∗ reduces variance compared with the on-policy evaluation
method.

∀t, s,V
(
GPDIS(τ

µ∗
t:T−1

t:T−1) | St = s
)
≤ V

(
GPDIS(τ

πt:T−1

t:T−1) | St = s
)
.

Its proof is in Appendix A.5. We also present the following theorem to demonstrate variance reduction
and safety guarantee with respect to the original constrained optimization problem (12).
Theorem 3. For all ϵ, the corresponding behavior policy µ∗ has the following property

1. V
(
GPDIS(τ

µ∗
0:T−1

0:T−1)
)
≤ V

(
GPDIS(τ

π0:T−1

0:T−1)
)

(17)

2. Jc(µ∗) ≤ (1 + ϵ)Jc(π) (18)

Its proof is in Appendix A.6. Notably, (18) shows that our step-wise safety-constraint (16) is stricter
than the original constraint (12).

6 LEARNING THE OPTIMAL BEHAVIOR POLICY

In this section, we propose an efficient algorithm to learn r̃ with previously logged offline data, and sub-
sequently derive the optimal behavior policy µ∗ under safety constraints. We notice that learning r̃ by
(14) is inefficient since we need to approximate the complicated variance V

(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St

)
,

which involves the entire future trajectory. To tackle this challenge, we present a recursive expression
of r̃ in the following lemma.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 1: Safety-Constrained Optimal Policy Evaluation (SCOPE)
1: Input: a target policy π,

an offline dataset D = {(ti, si, ai, ri, ci, s′i)}
m
i=1

2: Output: a behavior policy µ∗

3: Approximate qπ,t, q
c
π,t from D

4: for t = T − 1 to 0 do
5: Approximate r̃t from D by Lemma 5
6: Approximate µ∗

t (a|s) following (15)
7: end for
8: Return: the approximated behavior policy µ∗

Lemma 5. ∀s, a, when t = T − 1, r̃t(s, a) = rπ,t(s, a)
2. When t ∈ [T − 2],

r̃t(s, a) = 2qπ,t(s, a)r(s, a)− r(s, a)2 + Es′∼p,a′∼π

[
πt+1(a

′|s′)
µ∗
t+1(a

′|s′) r̃π,t+1(s
′, a′)

]
.

Its proof is in Appendix A.7. With this lemma, we can learn r̃ recursively without approximating the
complicated trajectory variance. Then, by (33) in the appendix, we can also decompose the widely
interested variance target in a succinct form

V
(
GPDIS(τ

µ∗
t:T−1

t:T−1) | St = s
)

︸ ︷︷ ︸
(a)

= Ea∼µ[ρ
2
t r̃t(s, a)]︸ ︷︷ ︸
(b)

− vπ,t(s)
2︸ ︷︷ ︸

(c)

, ∀s, t. (19)

This succinct form offers a way to approximate the complicated trajectory variance term (a) from
(b) and (c), which do not contain any variance term themselves. This is a surprising result because
previously the best simplification of the variance for off-policy estimator (a) still depends on state-
value variance terms (Jiang and Li, 2016; Liu and Zhang, 2024). With (19), we can approximate the
variance of the off-policy estimator in a model-free way with only segmented offline data.

For broad applicability, we adopt the behavior policy-agnostic offline learning setting (Nachum
et al., 2019), where the offline data has m previously logged data tuples in the form of
{(ti, si, ai, ri, ci, s′i)}

m
i=1. These data tuples can be generated by one or multiple possibly unknown

behavior policies, and they are not required to form a complete trajectory. In the i-th data tuple, ti
is the time step, si is the state at time step ti, ai is the action taken, ri is the observed reward, ci is
the observed cost, and s′i is the successor state. In this paper, we learn r̃ from previously logged
offline data. Previously logged offline data are cheap and readily available compared with online
data. This makes them a great engine for improving policy evaluation in the online phase. Compared
with gradient-based methods (Hanna et al., 2017; Zhong et al., 2022) which need complete online
trajectories, our method does not require a long online warm-up time to find a good behavior policy
because we are able to utilize offline data. Subsequently, the optimal variance-reducing behavior
policy µ∗ under safety constraints is approximated through standard convex optimization solvers
(Nocedal and Wright, 1999; Agrawal et al., 2018).

7 EMPIRICAL RESULTS

In this section, we show the empirical results comparing our methods against three baselines: (1)
the on-policy Monte Carlo estimator, (2) the robust on-policy sampling estimator (ROS, Zhong et al.
(2022)), and (3) the offline data informed estimator (ODI, Liu and Zhang (2024)). To ensure our
method attains lower cost and is thus even safer than the on-policy estimator, we choose ϵ = 0 in
the threshold δϵ,t (13). All methods learn their required parameters from the same offline dataset
to ensure fair comparisons. Given previously logged offline data, our method learns the optimal
behavior policy under safety constraints using Algorithm 1.

We name our algorithm Safety-Constrained Optimal Policy Evaluation (SCOPE) to emphasize that
safety constraints are inherently considered in the design of the variance-minimizing behavior policy,
unlike previous methods that overlook safety concerns. A metaphor for SCOPE is that it builds a
bridge focused on efficient transportation (evaluation efficiency) while simultaneously ensuring traffic
safety (satisfying safety constraints).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

100 101 102 103

Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
io

n
Er

ro
r

size = 1,000
On-policy MC
Ours
ODI
ROS

100 101 102 103

Episodes

0.0

0.2

0.4

0.6

0.8

1.0
size = 27,000

On-policy MC
Ours
ODI
ROS

Figure 1: Results on Gridworld with episodes as
x-axis. Each curve is averaged over 900 runs (30
target policies, each having 30 independent runs).
Shaded regions denote standard errors and are
invisible for some curves as they are too small.

100 101 102 103

Cost Budget

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
io

n
Er

ro
r

size = 1,000
On-policy MC
Ours
ODI
ROS

100 101 102 103

Cost Budget

0.0

0.2

0.4

0.6

0.8

1.0
size = 27,000

On-policy MC
Ours
ODI
ROS

Figure 2: Results on Gridworld with cost budget
as x-axis. Cost budget is the total cost of execu-
tion. Each curve is averaged over 900 runs (30
target policies, each having 30 independent runs).
Shaded regions denote standard errors.

Env Size On-policy MC Ours ODI ROS

1,000 1.000 0.861 1.602 1.083
27,000 1.000 0.849 1.590 1.067

Table 1: Average trajectory cost on Gridworld. Numbers are normalized by the cost of the on-policy
estimator. ODI and ROS have much larger costs because they both ignore safety constraints. Our
method is the only method achieving both variance reduction and constraint satisfaction.

Gridworld: We first conduct experiments in Gridworld with n3 states. Each Gridworld is an n× n
grid with the time horizon also being n. Gridworld environments offer a great tool to test algorithm
scalability, because the number of states scales cubically with n. Gridworld in our experiments
have n3 = 1, 000 and n3 = 27, 000 number of states, which are the largest Gridworld environments
tested among related works (Zhong et al., 2022; Liu and Zhang, 2024). We test all methods on
target policies with various performances. The offline data is generated by many different policies to
simulate previously logged offline data. In Figure 1, we report the estimation error against episodes.
The estimation error for any line is the absolute error normalized by the absolute error of the on-policy
estimator after the first episode. Thus, the estimation error of the on-policy estimator starts from 1. In
Figure 2, we report the estimation error against the total cost of execution.

If considering solely variance reduction, Figure 1 shows our method outperforms the on-policy
estimator and ROS by a large margin. Admittedly, ODI (Liu and Zhang, 2024) is slightly better
than our method in terms of variance reduction. However, this slight advantage comes with a huge
trade-off of safety. As shown in Table 1, ODI has a much larger cost than on-policy evaluation method
(more than 1.5 times) and our method (almost twice as much). This addresses the underestimated
fact—solely reducing variance without safety constraints leads to high-cost (unsafe) methods.

To further demonstrate the superiority of balancing variance reduction and safety cost of our method,
we provide Figure 2 to compare the variance reduction each method achieves with the same cost bud-
get. Since our method SCOPE is optimal for safety-constrained variance minimization, it consistently
outperforms all baselines in Figure 2, as shown by the lowest blue line. This means that compared
with existing best-performing methods, SCOPE needs less cost to achieve the same level of accuracy.
From Figure 2, we compute that to achieve the same accuracy that the on-policy estimator achieves
with 1000 costs (each on-policy episode has expected cost 1 by normalization), ODI costs 880 and
SCOPE costs only 425. Following this computation, our method saves 57.5% of costs compared to
the on-policy method, and 50% compared to ODI. This reinforces the underestimated fact from
the opposite direction—ensuring safety constraints along with the variance minimization leads
to a low-cost method. Also, notably, our estimator outperforms the on-policy and ROS estimators in
reducing both variance and cost.

MuJoCo: We also conduct experiments in MuJoCo robot simulation tasks (Todorov et al., 2012).
MuJoCo is a physics engine containing various stochastic environments, where the goal is to control
a robot to achieve different behaviors such as walking, jumping, and balancing.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

100 101 102

Cost Budget

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
io

n
Er

ro
r

Ant
On-policy MC
Ours
ODI
ROS

100 101 102

Cost Budget

0.0

0.2

0.4

0.6

0.8

1.0
Hopper

On-policy MC
Ours
ODI
ROS

100 101 102

Cost Budget

0.0

0.2

0.4

0.6

0.8

1.0
InvertedDoublePendulum

On-policy MC
Ours
ODI
ROS

100 101 102

Cost Budget

0.0

0.2

0.4

0.6

0.8

1.0
InvertedPendulum

On-policy MC
Ours
ODI
ROS

100 101 102

Cost Budget

0.0

0.2

0.4

0.6

0.8

1.0
Walker

On-policy MC
Ours
ODI
ROS

Figure 3: Results on MuJoCo. Cost budget on the x-axis is the total cost of execution. Each curve
is averaged over 900 runs (30 of target policies, each having 30 independent runs). Shaded regions
denote standard errors and are invisible for some curves because they are too small. Results with a
larger x-axis range are in the appendix.

On-policy MC Ours ODI ROS Saved Cost Percentage

Ant 1000 746 1136 1063 (1000 - 746)/1000 = 25.4%
Hopper 1000 552 824 1026 (1000 - 552)/1000 = 44.8%
I. D. Pendulum 1000 681 1014 1003 (1000 - 681)/1000 = 31.9%
I. Pendulum 1000 425 615 890 (1000 - 425)/1000 = 57.5%
Walker 1000 694 1031 960 (1000 - 694)/1000 = 30.6%

Table 2: Cost needed to achieve the same estimation accuracy that on-policy Monte Carlo achieves
with 1000 episodes on MuJoCo. Each curve is averaged over 900 runs. Standard errors are plotted in
Figure 3.

As confirmed in Table 5 and Table 6 in the appendix, our method is the only method consistently
achieving both variance reduction and safety constraint satisfaction. Figure 3 again indicates that our
method consistently outperforms all baselines on reducing variance under the same cost budget. This
advantage is observed across all five environments, demonstrating the stableness of our method in
balancing variance reduction and cost management. Numerically, in Table 2, we show that our method,
SCOPE, saves up to 57.5% cost to achieve the desired evaluation accuracy. More experiment details
are in Appendix B. It is worth mentioning that our method is robust to hyperparameter choices—all
hyperparameters in our method are tuned offline and stay the same across all environments.

8 CONCLUSION

In reinforcement learning, due to the sequential nature, policy evaluation often suffers from large
variance and requires massive data to achieve the desired level of accuracy. In addition, safety is a
critical concern for policy execution, since unsafe actions can lead to significant risks and irreversible
damage. In this paper, we address these two challenges simultaneously: we propose an optimal
variance-minimizing behavior policy under safety constraints.

Theoretically, we show that our estimate is unbiased. Moreover, while simultaneously satisfying
safety constraints, our behavior policy is proven to achieve lower variance than the classic on-policy
evaluation method (Theorem 2, Theorem 3). We solve the constrained optimization problem without
approximating the complicated trajectory variance (Lemma 5), pointing out a promising direction for
addressing long-horizon sequential reinforcement learning challenges.

Empirically, compared with existing best-performing methods, we show our method is the only one
that achieves both substantial variance reduction and constraint satisfaction for policy evaluation in
sequential reinforcement learning. Moreover, it is even superior to previous methods in both variance
reduction and execution safety.

Admittedly, as there is no free lunch, if the offline data size is too small—perhaps containing merely
a single data tuple—the learned behavior policy in our method may be inaccurate. In this case, for a
safe backup, we recommend the on-policy evaluation method. The future work of our paper is to
extend the constrained variance minimization technique to temporal difference learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Achiam, J., Held, D., Tamar, A., and Abbeel, P. (2017). Constrained policy optimization. In
International conference on machine learning, pages 22–31. PMLR.

Agrawal, A., Verschueren, R., Diamond, S., and Boyd, S. (2018). A rewriting system for convex
optimization problems. Journal of Control and Decision, 5(1):42–60.

Altman, E. (2021). Constrained Markov decision processes. Routledge.

Berkenkamp, F., Turchetta, M., Schoellig, A., and Krause, A. (2017). Safe model-based reinforcement
learning with stability guarantees. Advances in neural information processing systems, 30.

Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004). Convex optimization. Cambridge university
press.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.
(2016). Openai gym.

Brunke, L., Greeff, M., Hall, A. W., Yuan, Z., Zhou, S., Panerati, J., and Schoellig, A. P. (2022). Safe
learning in robotics: From learning-based control to safe reinforcement learning. Annual Review
of Control, Robotics, and Autonomous Systems, 5(1):411–444.

Chervonyi, Y., Dutta, P., Trochim, P., Voicu, O., Paduraru, C., Qian, C., Karagozler, E., Davis, J. Q.,
Chippendale, R., Bajaj, G., Witherspoon, S., and Luo, J. (2022). Semi-analytical industrial cooling
system model for reinforcement learning.

Chow, Y., Nachum, O., Duenez-Guzman, E., and Ghavamzadeh, M. (2018). A lyapunov-based
approach to safe reinforcement learning. Advances in neural information processing systems, 31.

Chua, K., Calandra, R., McAllister, R., and Levine, S. (2018). Deep reinforcement learning in
a handful of trials using probabilistic dynamics models. In Advances in Neural Information
Processing Systems.

Deisenroth, M. P. and Rasmussen, C. E. (2011). PILCO: A model-based and data-efficient approach
to policy search. In Proceedings of the International Conference on Machine Learning.

Farahmand, A.-m. and Szepesvári, C. (2011). Model selection in reinforcement learning. Machine
learning, 85(3):299–332.

Garcıa, J. and Fernández, F. (2015). A comprehensive survey on safe reinforcement learning. Journal
of Machine Learning Research, 16(1):1437–1480.

Geweke, J. (1988). Antithetic acceleration of monte carlo integration in bayesian inference. Journal
of Econometrics.

Gu, S., Yang, L., Du, Y., Chen, G., Walter, F., Wang, J., and Knoll, A. (2022). A review of safe
reinforcement learning: Methods, theory and applications. arXiv preprint arXiv:2205.10330.

Hanna, J. P., Thomas, P. S., Stone, P., and Niekum, S. (2017). Data-efficient policy evaluation through
behavior policy search. In Proceedings of the International Conference on Machine Learning.

Hesterberg, T. (1995). Weighted average importance sampling and defensive mixture distributions.
Technometrics.

Huang, S., Dossa, R. F. J., Ye, C., Braga, J., Chakraborty, D., Mehta, K., and Araújo, J. G. (2022).
Cleanrl: High-quality single-file implementations of deep reinforcement learning algorithms.
Journal of Machine Learning Research.

Jiang, N. and Li, L. (2016). Doubly robust off-policy value evaluation for reinforcement learning. In
Proceedings of the International Conference on Machine Learning.

Kakutani, S. (1945). Markoff process and the dirichlet problem. Proceedings of the Japan Academy.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly, E., Kalakr-
ishnan, M., Vanhoucke, V., et al. (2018). Scalable deep reinforcement learning for vision-based
robotic manipulation. In Conference on robot learning.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of the
International Conference on Learning Representations.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques.
Mit Press.

Le, H. M., Voloshin, C., and Yue, Y. (2019). Batch policy learning under constraints. In Proceedings
of the International Conference on Machine Learning.

Li, L. (2019). A perspective on off-policy evaluation in reinforcement learning. Frontiers of Computer
Science.

Liu, S. and Zhang, S. (2024). Efficient policy evaluation with offline data informed behavior policy
design. In Proceedings of the International Conference on Machine Learning.

Liu, Y., Halev, A., and Liu, X. (2021). Policy learning with constraints in model-free reinforcement
learning: A survey. In The 30th international joint conference on artificial intelligence (ijcai).

Maei, H. R. (2011). Gradient temporal-difference learning algorithms. PhD thesis, University of
Alberta.

Marivate, V. N. (2015). Improved empirical methods in reinforcement-learning evaluation. Rutgers
The State University of New Jersey, School of Graduate Studies.

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J. W., Songhori, E., Wang, S., Lee, Y.-J., Johnson, E.,
Pathak, O., Nazi, A., et al. (2021). A graph placement methodology for fast chip design. Nature.

Moldovan, T. M. and Abbeel, P. (2012). Safe exploration in markov decision processes. arXiv
preprint arXiv:1205.4810.

Mukherjee, S., Hanna, J. P., and Nowak, R. D. (2022). Revar: Strengthening policy evaluation
via reduced variance sampling. In Proceedings of the Conference in Uncertainty in Artificial
Intelligence.

Nachum, O., Chow, Y., Dai, B., and Li, L. (2019). Dualdice: Behavior-agnostic estimation of
discounted stationary distribution corrections. In Advances in Neural Information Processing
Systems.

Nocedal, J. and Wright, S. J. (1999). Numerical optimization. Springer.

Owen, A. B. (2013). Monte carlo theory, methods and examples.

Precup, D., Sutton, R. S., and Singh, S. P. (2000). Eligibility traces for off-policy policy evaluation.
In Proceedings of the International Conference on Machine Learning.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons.

Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method. Wiley.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on approx-
imating dynamic programming. In Proceedings of the International Conference on Machine
Learning.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd Edition). MIT
press.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sutton, R. S., Mahmood, A. R., and White, M. (2016). An emphatic approach to the problem of
off-policy temporal-difference learning. Journal of Machine Learning Research.

Sutton, R. S., Szepesvári, C., Geramifard, A., and Bowling, M. H. (2008). Dyna-style planning
with linear function approximation and prioritized sweeping. In Proceedings of the Conference in
Uncertainty in Artificial Intelligence.

Thomas, P. S. (2015). Safe reinforcement learning. PhD thesis, University of Massachusetts Amherst.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based control. In
Proceedings of the International Conference on Intelligent Robots and Systems.

Towers, M., Kwiatkowski, A., Terry, J., Balis, J. U., De Cola, G., Deleu, T., Goulão, M., Kallinteris,
A., Krimmel, M., KG, A., et al. (2024). Gymnasium: A standard interface for reinforcement
learning environments. arXiv preprint arXiv:2407.17032.

Trinh, T. H., Wu, Y., Le, Q. V., He, H., and Luong, T. (2024). Solving olympiad geometry without
human demonstrations. Nature.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H.,
Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre,
L., Cai, T., Agapiou, J. P., Jaderberg, M., Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V.,
Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gülçehre, Ç., Wang, Z., Pfaff, T., Wu, Y., Ring, R.,
Yogatama, D., Wünsch, D., McKinney, K., Smith, O., Schaul, T., Lillicrap, T. P., Kavukcuoglu, K.,
Hassabis, D., Apps, C., and Silver, D. (2019). Grandmaster level in starcraft II using multi-agent
reinforcement learning. Nature.

Wachi, A., Shen, X., and Sui, Y. (2024). A survey of constraint formulations in safe reinforcement
learning. arXiv preprint arXiv:2402.02025.

Wachi, A. and Sui, Y. (2020). Safe reinforcement learning in constrained markov decision processes.
In International Conference on Machine Learning, pages 9797–9806. PMLR.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning.

Zhang, S. (2022). Breaking the deadly triad in reinforcement learning. PhD thesis, University of
Oxford.

Zhang, S. (2023). A new challenge in policy evaluation. Proceedings of the AAAI Conference on
Artificial Intelligence.

Zhong, R., Zhang, D., Schäfer, L., Albrecht, S. V., and Hanna, J. P. (2022). Robust on-policy sampling
for data-efficient policy evaluation in reinforcement learning. In Advances in Neural Information
Processing Systems.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOFS

A.1 PROOF OF LEMMA 1

Proof. ∀s, ∀µ ∈ Λ,

Ea∼µ[ρ(a|s)r(s, a)] =
∑

a∈{a|µ(a|s)>0}

µ(a|s)π(a|s)
µ(a|s)

r(s, a)

=
∑

a∈{a|µ(a|s)>0}

π(a|s)r(s, a)

=
∑

a∈{a|µ(a|s)>0}

π(a|s)r(s, a) +
∑

a∈{a|µ(a|s)=0}

π(a|s)r(s, a) (µ ∈ Λ)

=
∑
a

π(a|s)r(s, a)

=Ea∼π[r(s, a)].

A.2 PROOF OF LEMMA 2

Proof. To prove Lemma 2, we express the objective function as

Ea∼µ[ρ(a|s)2r(s, a)2] =
∑

a∈{a|µ(a|s)>0}

π(a|s)2r(s, a)2

µ(a|s)
.

To prove the problem is convex, we begin by examining the feasible set of each constraint separately.

In the first constraint of Λ (2),

∀s, a, µ(a|s) = 0 =⇒ π(a|s)r(s, a) = 0. (20)

The feasible set of (20) is a linear subspace of R|A| defined by a set of linear equations. Thus, this
feasible set is convex.

Next, we decompose the other constraint of Λ (2), µ(·|s) ∈ ∆|A|−1 ∀s, into two subconstraints:∑
a

µ(a|s) = 1, (21)

∀a, µ(a|s) ≥ 0. (22)

For all s, the feasible set in (21) can be written in the vector form as

1T−→µs = 1, (23)

where 1 ∈ R|A| is the vector of ones defined as

1
.
=

1...
1

 ,

and −→µs ∈ R|A| is defined as

−→µs
.
=

 µ(a1|s)
...

µ(a|A||s)

 .

Since (23) is linear, the constraint (21) is affine and thus convex (Boyd et al., 2004).

For all s, the feasible set of (22) is the non-negative orthant, defined as

R|A|
+

.
= {µ(·|s) ∈ R|A| | µ(a|s) ≥ 0,∀a}.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Since the non-negative orthant forms a convex cone and is known to be a convex set (Boyd et al.,
2004), we conclude that this constraint’s feasible set is convex.

Next, we define the vector of costs for all s as

cs
.
=

 c(s, a1)
...

c(s, a|A|)

 .

Then, for all ϵ and s, the safety constraint (8) can be rewritten as

c⊤s
−→µs ≤ δϵ(s),

which is a linear inequality in µ. Thus, its feasible set is in a convex half-space. Because all the
constraints are convex, we conclude that the feasible set F in (9) is convex.

Finally, we examine the minimization objective (7), where π and r are fixed and independent of the
behavior policy µ. For all s, we express the objective function as

Ea∼µ[ρ(a|s)2r(s, a)2] =
∑

a∈{a|µ(a|s)>0}

π(a|s)2r(s, a)2

µ(a|s)
.

Then, for each a, we decompose the objective function as

fa(µ(a|s))
.
=

π(a|s)2r(s, a)2

µ(a|s)
. (24)

Taking the first and second derivatives of fa, we get

f ′
a(µ(a|s)) = −π(a|s)2r(s, a)2

µ(a|s)2
,

f ′′
a (µ(a|s)) =

2π(a|s)2r(s, a)2

µ(a|s)3
.

Since ∀s, a, f ′′
a (µ(a|s)) ≥ 0, we know that (24) is convex for all a. Then, as a summation of convex

functions, (7) is also convex. In conclusion, by the convexity of the feasible set F and the objective
function (7), we obtain the convexity of the constrained optimization problem in Lemma 2.

For feasibility, note that by Lemma 3, π ∈ F , which is the feasible set. Thus, we confirm the
feasibility in Lemma 2.

A.3 PROOF OF LEMMA 4

Proof. We proceed via induction. For t = T − 1, we have

E
[
GPDIS(τ

µt:T−1

t:T−1) | St

]
=E [ρtRt+1 | St] = E [ρtqπ,t(St, At) | St]

=EAt∼πt(·|St) [qπ,t(St, At) | St] (Lemma 1)

=vπ,t(St).

For t ∈ [T − 2], we have

E
[
GPDIS(τ

µt:T−1

t:T−1) | St

]
=E

[
ρtRt+1 + ρtG

PDIS(τ
µt+1:T−1

t+1:T−1) | St

]
=E [ρtRt+1 | St] + E

[
ρtG

PDIS(τ
µt+1:T−1

t+1:T−1) | St

]
=E [ρtRt+1 | St] + EAt∼µt(·|St),St+1∼p(·|St,At)

[
E
[
ρtG

PDIS(τ
µt+1:T−1

t+1:T−1) | St, At, St+1

]
| St

]
(Law of total expectation)

=E [ρtRt+1 | St] + EAt∼µt(·|St),St+1∼p(·|St,At)

[
ρtE

[
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

]
| St

]
(Conditional independence and Markov property)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

=E [ρtRt+1 | St] + EAt∼µt(·|St),St+1∼p(·|St,At) [ρtvπ,t+1(St+1) | St] (Inductive hypothesis)

=EAt∼µt(·|St) [ρtqπ,t(St, At) | St] (Definition of qπ,t)

=EAt∼πt(·|St) [qπ,t(St, At) | St] (Lemma 1)

=vπ,t(St),

which completes the proof.

A.4 PROOF OF THEOREM 1

Proof. We first define the set of feasible policies as

F .
= {µ ∈ Λ | ∀ϵ, t, s,Ea∼µt

[vcµ,t(s)] ≤ δϵ,t(s)}. (25)

We begin by examining each constraint. In the first constraint of Λ (11),

∀t, s, a, µt(a|s) = 0 =⇒ πt(a|s)qπ,t(s, a) = 0. (26)

The feasible set of (26) is a linear subspace of R|A| defined by a set of linear equations. Thus, this
feasible set is convex.

Next, we decompose the other constraint of Λ (11), µt(·|s) ∈ ∆|A|−1, into two constraints:∑
a

µt(a|s) = 1, (27)

∀a, µt(a|s) ≥ 0. (28)

For all t and s, in (27), the feasible set can be written as

1⊤−−→µs,t = 1, (29)

where 1 ∈ R|A| is the vector of ones and −−→µs,t ∈ R|A| is defined as

−−→µs,t
.
=

 µt(a1|s)
...

µt(a|A||s)

 .

Since (29) is linear, the feasible set of constraint (27) is affine and thus convex (Boyd et al., 2004).

For all t and s, the feasible set for the constraint in (28) is the non-negative orthant, defined as

R|A|
+

.
= {µt(·|s) ∈ R|A| | µt(a|s) ≥ 0,∀a}.

Since the non-negative orthant forms a convex cone and is known to be a convex set (Boyd et al.,
2004), we conclude that this constraint is convex.

Next, we define the vector of the state-action value function for the cost c for each s as

qµ,t
.
=

 qcµ,t(s, a1)
...

qcµ,t(s, a|A|)

 .

Then, for all ϵ, t and s, the safety constraint (16) can be rewritten as

q⊤
µ,t

−−→µs,t ≤ δϵ,t(s),

which is a linear inequality in µt. Thus, its feasible set is a convex half-space. Because all the
constraints’ feasible sets are convex, we conclude that the feasible set F in (25) is convex.

To prove Theorem 1, we express the objective function as

Ea∼µt [ρ
2
t r̃t(s, a)] =

∑
a∈{a|µt(a|s)>0}

πt(a|s)2r̃t(s, a)
µt(a|s)

,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where r̃ in (14) is defined as

r̃t(s, a)
.
=

{
rπ,t(s, a)

2 t = T − 1,

νπ,t(s, a) + qπ,t(s, a)
2 + ESt+1

[
V
(
GPDIS(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| s, a

]
t ∈ [T − 2].

Here, r̃t can be learned with logged offline data, as detailed in Algorithm 1, and it is unrelated to µt.
Then, for each a, we decompose the objective function as

fa(µt(a|s))
.
=

πt(a|s)2r̃t(s, a)
µt(a|s)

. (30)

Taking the first and second derivatives of fa, we get

f ′
a(µt(a|s)) = −πt(a|s)2r̃(s, a)

µt(a|s)2
,

f ′′
a (µt(a|s)) =

2πt(a|s)2r̃(s, a)
µt(a|s)3

.

Notice that the extended reward r̃ defined in (14) is non-negative, since all the summands are non-
negative. Thus, ∀t, s, a, f ′′

a (µt(a|s)) ≥ 0, and we know that (30) is convex for all a. Then, as a
summation of convex functions, (15) is also convex. In conclusion, by the convexity of the feasible set
F and the objective function (15), we obtain the convexity of the constrained optimization problem
in Theorem 1.

For feasibility, we show that the set of feasible policies (25) is non-empty. Because ϵ ∈ [0,∞), for
the safety constraint, we have

Ea∼πt
[vcµ,t(s)] ≤ (1 + ϵ)Ea∼πt

[vcµ,t(s)] = δϵ,t(s).

By the definition of Λ (11), ∀t, πt ∈ Λ. Therefore, the set of feasible policies (25) is non-empty.
Thus, the constrained optimization problem in Theorem 1 is feasible.

A.5 PROOF OF THEOREM 2

To prove Theorem 2, we first restate a recursive expression of the variance V
(
GPDIS(τ

µt:T−1

t:T−1) | St

)
for all µ ∈ Λ from Liu and Zhang (2024), and present its proof for completeness.
Lemma 6. For any µ ∈ Λ, for t = T − 1,

V
(
GPDIS(τ

µt:T−1

t:T−1) | St

)
= EAt∼µt

[
ρ2t q

2
π,t(St, At) | St

]
− v2π,t(St),

for t ∈ [T − 2],

V
(
GPDIS(τ

µt:T−1

t:T−1) | St

)
=EAt∼µt

[
ρ2t

(
ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St

)
| St, At

]
+ νπ,t(St, At) + q2π,t(St, At)

)
| St

]
− v2π,t(St).

Proof. For completeness, we provide the proof from Liu and Zhang (2024). We proceed via induction.
When t = T − 1, we have

V
(
GPDIS(τ

µt:T−1

t:T−1) | St

)
=V (ρtr(St, At) | St)

=V (ρtqπ,t(St, At) | St)

=EAt

[
ρ2t qπ,t(St, At)

2 | St

]
− vπ,t(St)

2,

When t ∈ [T − 2], we have

V
(
GPDIS(τ

µt:T−1

t:T−1) | St

)
(31)

=EAt

[
V
(
GPDIS(τ

µt:T−1

t:T−1) | St, At

)
| St

]
+ VAt

(
E
[
GPDIS(τ

µt:T−1

t:T−1) | St, At

]
| St

)
(Law of total variance)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

=EAt

[
ρ2tV

(
r(St, At) +GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At

)
| St

]
+ VAt

(
ρtE

[
r(St, At) +GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At

]
| St

)
(By (1))

=EAt

[
ρ2tV

(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At

)
| St

]
+ VAt

(
ρtE

[
r(St, At) +GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At

]
| St

)
(Deterministic reward r)

=EAt

[
ρ2tV

(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At

)
| St

]
+ VAt

(ρtqπ,t(St, At) | St) .

Further decomposing the first term, we have

V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At

)
(32)

=ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At, St+1

)
| St, At

]
+ VSt+1

(
E
[
GPDIS(τ

µt+1:T−1

t+1:T−1) | St, At, St+1

]
| St, At

)
(Law of total variance)

=ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ VSt+1

(
E
[
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

]
| St, At

)
(Markov property)

=ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ VSt+1 (vπ,t+1(St+1) | St, At) . (Lemma 4)

Then, plugging (32) back to (31) yields

V
(
GPDIS(τ

µt:T−1

t:T−1) | St

)
=EAt

[
ρ2t

(
ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ VSt+1(vπ,t(St+1) | St = s,At = a)

)
| St

]
+ VAt

(ρtqπ,t(St, At) | St)

=EAt

[
ρ2t

(
ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ VSt+1(vπ,t(St+1) | St = s,At = a)

)
| St

]
+ EAt

[
ρ2t qπ,t(St, At)

2 | St

]
− (EAt

[ρtqπ,t(St, At) | St])
2

=EAt

[
ρ2t

(
ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ VSt+1

(vπ,t(St+1) | St = s,At = a)
)
| St

]
+ EAt

[
ρ2t qπ,t(St, At)

2 | St

]
− vπ,t(St)

2, (Lemma 1)

=EAt

[
ρ2t

(
ESt+1

[
V
(
GPDIS(τ

µt+1:T−1

t+1:T−1) | St+1

)
| St, At

]
+ νπ,t(St, At) + qπ,t(St, At)

2
)
| St

]
− vπ,t(St)

2, (Definition of ν)

which completes the proof.

Then, with the extended reward r̃ in (14) defined as

r̃t(s, a)
.
=

{
rπ,t(s, a)

2 t = T − 1,

νπ,t(s, a) + qπ,t(s, a)
2 + ESt+1

[
V
(
GPDIS(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| s, a

]
t ∈ [T − 2],

we can express the variance in a succinct form

V
(
GPDIS(τ

µ∗
t:T−1

t:T−1) | St = s
)
= Ea∼µ[ρ

2
t r̃t(s, a)]− vπ,t(s)

2, ∀s, t. (33)

Now, we restate Theorem 2 and present its proof.
Theorem 2. The behavior policy µ∗ reduces variance compared with the on-policy evaluation
method.

∀t, s,V
(
GPDIS(τ

µ∗
t:T−1

t:T−1) | St = s
)
≤ V

(
GPDIS(τ

πt:T−1

t:T−1) | St = s
)
.

In Appendix A.4, we show that ∀t, πt ∈ F , where F in (25) is the set of feasible policies for the
constrained optimization problem in Theorem 1. Recall that µ∗

t is defined as the optimal solution to
the problem (15), i.e.,

µ∗
t
.
=argmin

µt∈F
Ea∼µt [ρ

2
t r̃(s, a)]. (34)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Thus, ∀t, s,

V
(
GPDIS(τ

µ∗
t:T−1

t:T−1) | St = s
)

=Ea∼µ∗
t
[ρ2t r̃t(s, a)]− vπ,t(s)

2 (By (33))

≤Ea∼πt [ρ
2
t r̃t(s, a)]− vπ,t(s)

2 (By (34) and πt ∈ F)

=V
(
GPDIS(τ

πt:T−1

t:T−1) | St = s
)
, (By (33))

which completes the proof.

A.6 PROOF OF THEOREM 3

Proof. We first prove the variance reduction property.

V
(
GPDIS(τ

µ∗
0:T−1

0:T−1)
)

=ES0

[
V
(
GPDIS(τ

µ∗
0:T−1

0:T−1) | S0

)]
+ VS0

(
E
[
GPDIS(τ

µ∗
0:T−1

0:T−1) | S0

])
(Law of Total Variance)

=ES0

[
V
(
GPDIS(τ

µ∗
0:T−1

0:T−1) | S0

)]
+ VS0

(vπ,0(S0)) (By Lemma 4 and µ∗ ∈ Λ)

≤ES0

[
V
(
GPDIS(τ

π0:T−1

0:T−1) | S0

)]
+ VS0 (vπ,0(S0)) (Theorem 2)

=ES0

[
V
(
GPDIS(τ

π0:T−1

0:T−1) | S0

)]
+ VS0

(
E
[
GPDIS(τ

π0:T−1

0:T−1) | S0

])
(By Lemma 4 and π ∈ Λ)

=V
(
GPDIS(τ

π0:T−1

0:T−1)
)
. (Law of Total Variance)

Next, we prove the safety constraint satisfaction.

Jc(µ∗)

=
∑
s

p0(s)v
c
µ∗,0(s)

=
∑
s

p0(s)Ea∼µ∗
0
[qcµ∗,0(s, a)]

≤
∑
s

p0(s)δϵ,0(s) (Theorem 1)

=
∑
s

p0(s)(1 + ϵ)vcπ,0(s) (By (13))

=(1 + ϵ)
∑
s

p0(s)v
c
π,0(s)

=(1 + ϵ)Jc(π),

which completes the proof.

A.7 PROOF OF LEMMA 5

Proof. ∀s, a, when t = T − 1, r̃t(s, a) = rπ,t(s, a)
2, as defined in (14). For t ∈ [T − 2],

r̃t(s, a)

=νπ,t(s, a) + qπ,t(s, a)
2 + ESt+1

[
V
(
GPDIS(τ

µ∗
t+1:T−1

t+1:T−1) | St+1

)
| s, a

]
(By (14))

=νπ,t(s, a) + qπ,t(s, a)
2

+
∑
s′

p(s′|s, a)
[
EAt+1∼µ∗

t+1

[
ρ2t+1

(
ESt+2

[
V
(
GPDIS(τ

µ∗
t+2:T−1

t+2:T−1) | St+2

)
| St+1, At+1

]
+νπ,t+1(St+1, At+1) + qπ,t+1(St+1, At+1)

2
)
| St+1 = s′

]
− vπ,t+1(s

′)2
]

(By Lemma 6)

=νπ,t(s, a) + qπ,t(s, a)
2 +

∑
s′

p(s′|s, a)
[
EAt+1∼µ∗

t+1

[
ρ2t+1r̃π,t+1(St+1, At+1) | St+1 = s′

]
−vπ,t+1(s

′)2
]

(By (14))

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

=νπ,t(s, a) + qπ,t(s, a)
2 +

∑
s′,a′

p(s′|s, a)
[
ρt+1πt+1(a

′|s′)r̃π,t+1(s
′, a′)− vπ,t+1(s

′)2
]
.

=VSt+1 (vπ,t+1(St+1) | St = s,At = a) + qπ,t(s, a)
2

+
∑
s′,a′

p(s′|s, a)
[
ρt+1πt+1(a

′|s′)r̃π,t+1(s
′, a′)− vπ,t+1(s

′)2
]

(Definition of ν)

=ESt+1

[
vπ,t+1(St+1)

2 | St = s,At = a
]
− ESt+1

[vπ,t+1(St+1) | St = s,At = a]
2

+ qπ,t(s, a)
2 +

∑
s′,a′

p(s′|s, a)
[
ρt+1πt+1(a

′|s′)r̃π,t+1(s
′, a′)− vπ,t+1(s

′)2
]

=
∑
s′

p(s′|s, a)vπ,t+1(s
′)2 − (qπ,t(s, a)− r(s, a))2 + qπ,t(s, a)

2

+
∑
s′,a′

p(s′|s, a)ρt+1πt+1(a
′|s′)r̃π,t+1(s

′, a′)−
∑
s′

p(s′|s, a)vπ,t+1(s
′)2

=2qπ,t(s, a)r(s, a)− r(s, a)2 +
∑
s′,a′

p(s′|s, a)ρt+1πt+1(a
′|s′)r̃π,t+1(s

′, a′)

=2qπ,t(s, a)r(s, a)− r(s, a)2 + Es′∼p,a′∼π

[
πt+1(a

′|s′)
µ∗
t+1(a

′|s′)
r̃π,t+1(s

′, a′)

]
.

B EXPERIMENT DETAILS

B.1 GRIDWORLD

Environment Size On-policy MC Ours ODI ROS

1,000 1.000 0.547 0.460 0.953
27,000 1.000 0.575 0.484 0.987

Table 3: Relative variance for estimators on Gridworld. The relative variance is defined as the variance
of each estimator divided by the variance of the on-policy Monte Carlo estimator. Numbers are
averaged over 900 independent runs (30 target policies, each having 30 independent runs). Standard
errors are plotted in Figure 1.

Env Size On-policy MC Ours ODI ROS Saved Cost Percentage

10 1000 472 738 1035 (1000 - 472)/1000 = 52.8%
30 1000 487 765 1049 (1000 - 487)/1000 = 51.3%

Table 4: Cost needed to achieve the same estimation accuracy that on-policy Monte Carlo achieves
with 1000 episodes on Gridworld. Each number is averaged over 900 runs. Standard errors are
plotted in Figure 2.

We test Gridworlds with n3 = 1, 000 and n3 = 27, 000 states. For a Gridworld with size n3, we set
its width, height, and time horizon T all to be n. The action space contains four possible actions: up,
down, left, and right. After taking action, the agent has a probability of 0.9 to move accordingly and
a probability of 0.1 to move uniformly at random. When the agent runs into a boundary, it stays in
the current position. We randomly generate the reward function r(s, a) and cost function c(s, a). We
consider 30 randomly generated target policies with various performances. The ground truth policy
performance is estimated using the on-policy Monte Carlo method by running each target policy for
106 episodes. We test two different sizes of the Gridworld with a number of 1, 000 and 27, 000 states.

The offline dataset of each environment contains a total of 1, 000 episodes generated by 30 policies
with various performances. The performance of those policies ranges from completely random
initialized policies to well-trained policies in each environment. For example, in Hopper, the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

performance of those 30 policies ranges from around 18 to around 2800. We let offline data be
generated by various policies to simulate the fact that offline data are from different past collections.

We learn functions qπ,t, qcπ,t, and r̂π,t using Fitted Q-Evaluation algorithms (FQE, Le et al. (2019))
by passing data tuples in Dν from t = T − 1 to 0. Notably, Fitted Q-Evaluation (FQE, Le et al.
(2019)) is a different algorithm from Fitted Q-Improvement (FQI). Fitted Q-Evaluation is not prone
to overestimate the action-value function qπ,t because Fitted Q-Evaluation does not have any max
operator and does not change the policy. We tune all hyperparameters offline based on Fitted
Q-learning loss. We choose a one-hidden-layer neural network and test the neural network size
with [64, 128, 256] and choose 64 as the final size. We test the learning rate for Adam optimizer
with [1e−5, 1e−4, 1e−3, 1e−2] and choose to use the default learning rate 1e−3 as learning rate for
Adam optimizer (Kingma and Ba, 2015). All benchmark algorithms are learned using their reported
hyperparameters (Zhong et al., 2022; Liu and Zhang, 2024). Each policy has 30 independent runs,
resulting in 30 · 30 = 900 total runs. Therefore, each curve in Figure 1, Figure 2 and each number
in Table 1, Table 3 and Table 4 are averaged from 900 different runs over a wide range of policies
indicating strong statistical significance.

B.2 MUJOCO

Figure 4: MuJoCo robot simulation tasks (Todorov et al., 2012). Environments from the left to the
right are Ant, Hopper, InvertedDoublePendulum, InvertedPendulum, and Walker.

On-policy MC Ours ODI ROS

Ant 1.000 0.835 0.811 1.032
Hopper 1.000 0.596 0.542 1.005
I. D. Pendulum 1.000 0.778 0.724 0.992
I. Pendulum 1.000 0.439 0.351 0.900
Walker 1.000 0.728 0.696 0.908

Table 5: Relative variance of estimators on MuJoCo. The relative variance is defined as the variance
of each estimator divided by the variance of the on-policy Monte Carlo estimator. Numbers are
averaged over 900 independent runs (30 target policies, each having 30 independent runs).

On-policy MC Ours ODI ROS

Ant 1.000 0.897 1.397 1.033
Hopper 1.000 0.930 1.523 1.021
I. D. Pendulum 1.000 0.876 1.399 1.012
I. Pendulum 1.000 0.961 1.743 0.990
Walker 1.000 0.953 1.485 1.061

Table 6: Average trajectory cost on MuJoCo. Numbers are normalized by the cost of the on-policy
estimator. ODI and ROS have much larger costs because they both ignore safety constraints. Our
method is the only method consistently achieving both variance reduction and safety constraint
satisfaction.

MuJoCo is a physics engine containing various stochastic environments, where the goal is to control
a robot to achieve different behaviors such as walking, jumping, and balancing. We construct 30

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

100 101 102 103

Cost Budget

10 1

100

Es
tim

at
io

n
Er

ro
r

Ant
On-policy MC
Ours
ODI
ROS

100 101 102 103

Cost Budget

10 1

100

Hopper
On-policy MC
Ours
ODI
ROS

100 101 102 103

Cost Budget

10 1

100

InvertedDoublePendulum
On-policy MC
Ours
ODI
ROS

100 101 102 103

Cost Budget

10 1

100

InvertedPendulum
On-policy MC
Ours
ODI
ROS

100 101 102 103

Cost Budget

10 1

100

Walker
On-policy MC
Ours
ODI
ROS

Figure 5: Results on MuJoCo with log-scale y-axis to show the error does not converge. Each curve
is averaged over 900 runs (30 target policies, each having 30 independent runs). Shaded regions
denote standard errors and are invisible for some curves because they are too small.

policies in each environment (resulting a total of 150 policies) with a wide range of performance
generated by the proximal policy optimization (PPO) algorithm (Schulman et al., 2017) with the
default PPO implementation in Huang et al. (2022). Original MuJoCo environments are Markov
decision processes (MDP) and do not have cost functions. We enhance it with cost functions to make
it constrained Markov decision processes (CMDP). Specifically, the cost of the MuJoCo environments
is built on the control cost of the robot. The control cost is the L2 norm of the action and is proposed
by OpenAI Gymnasium (Brockman et al., 2016). This control cost is motivated by the fact that large
actions in robots induce sudden changes in the robot’s state and may cause safety issues.

We set each MuJoCo environment to have a fixed time horizon 100 in OpenAI Gymnasium (Towers
et al., 2024). Since our methods are designed for discrete action space, we discretize the first
dimension of MuJoCo action space. The remaining dimensions are controlled by the PPO policies
and are deemed as part of the environment. The offline dataset of each environment contains 1, 000
episodes generated by by 30 policies with various performances, following the same method as in
the Gridworld environments. Functions qπ,t, qcπ,t, and r̂π,t are learned the same way as in Gridworld
environments. Our algorithm is robust on hyperparameters. All hyperparameters in Algorithm 1
are tuned offline and are the same across all MuJoCo and Gridworld experiments. Each policy in
MuJoCo also has 30 independent runs, resulting in 30 · 30 = 900 total runs. Therefore, curves in all
figures are averaged from 900 different runs over a wide range of policies indicating strong statistical
significance.

22

	Introduction
	Related Work
	Background
	Constrained Variance Minimization for Contextual Bandits
	Constrained Variance Minimization for Sequential Reinforcement Learning
	Learning the Optimal Behavior Policy
	Empirical Results
	Conclusion
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 4
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Lemma 5

	Experiment Details
	GridWorld
	MuJoCo

