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ABSTRACT

We consider decentralized time-varying stochastic optimization problems
where each of the functions held by the nodes has a finite sum structure.
Such problems can be efficiently solved using variance reduction techniques.
Our aim is to explore the lower complexity bounds (for communication
and number of stochastic oracle calls) and find optimal algorithms. The
paper studies strongly convex and nonconvex scenarios. To the best of our
knowledge, variance reduced schemes and lower bounds for time-varying
graphs have not been studied in the literature. For nonconvex objectives, we
obtain lower bounds and develop an optimal method GT-PAGE. For strongly
convex objectives, we propose the first decentralized time-varying variance-
reduction method ADOM-+VR and establish lower bound in this scenario,
highlighting the open question of matching the algorithms complexity and
lower bounds even in static network case.

1 INTRODUCTION

We consider a sum-type problem

i F = Fl 5 1
min, F(2) ; () (1)
where F;(z) = %2?21 fij(x). We assume that for each i = 1,...,m the set of functions

{fij}?zl is stored at node i. Decentralized optimization has applications in power system

control (Ram et al.| [2009; |Gan et all|2012), distributed statistical inference (Forero et al.,
2010; Nedi¢ et al. [2017)), vehicle coordination and control (Ren and Beard, 2008), distributed
sensing (Rabbat and Nowakl, 2004; |[Bazerque and Giannakis|, 2009). In most scenarios, the
data is generated in a distributed way. In applications such as federated learning (Konecny
et al., |2016; McMahan et al.l [2017)), centralized data processing is not allowed by privacy
constraints.

In this paper, we focus on time-varying networks. That is, between consequent data exchanges,
the topology of communication graph may change (Zadeh, [1961} Nedi¢, [2020)). The set of
nodes remains the same, while the set of edges changes. The instability of links practically
happens due to malfunctions in communication, such as a loss of wireless connection between
sensors or drones.

Our Contribution. We propose lower bounds in the strongly convex and nonconvex case,
an optimal algorithm in the nonconvex case, and an algorithm in the strongly convex case
with an open question about its optimality.

1. We propose a method for decentralized finite-sum optimization over time-varying graphs
ADOM+VR (Algorithm . The method is based on the combination of ADOM+ algorithm
for non-stochastic decentralized optimization over time-varying networks (Kovalev et al.|
2021a)) and loopless Katyusha approach for finite-sum problems (Kovalev et al., [2020a).

2. For nonconvex decentralized optimization over time-varying graphs, we propose an optimal
algorithm GT-PAGE (Algorithm [2). The main idea is to implement the PAGE gradient
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estimator (Li et all 2021)) for finite-sum problem into the gradient tracking (Nedic et al.,
2017).

3. We give lower complexity bounds for decentralized finite-sum optimization over time-
varying networks for strongly-convex (Theorem [4.3) and nonconvex (Theorem objectives
with taking into account the sensivity of smoothness constants from Assumptions
and 2.3

Algorithm Comp. Comm.
ADOM -
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EXTRA n i X (808 Ye|, 2022)
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2020) Alg. Bl this | " T = Xez
ADOM+VR A L paper
Alg this n+ nﬁ X\/; Lower VLA Xﬂ
paper bound n+ -0 22
tl;oweé nt | \/rm Th.
: }(1)u 1 max; % Hi this paper
this papr Table 2: Computational (the number of
stochastic oracle calls per node) and communi-
Table 1: Computational (the number of cation complexities of decentralized methods

stochastic oracle calls per node) and commu-
nication complexities of decentralized meth-
ods for finite-sum strongly convex optimiza-
tion over time-varying graphs. O(-) notation
and log(1/¢) factor are omitted. Comment
"static" means that the method only works
over time-static networks. Comment "dual"
means that the method is dual-based. For
notation, see Section

for finite-sum nonconvex optimization over
time-varying graphs. O(-) notation is omitted.
Comment "static" means that the method
only works over time-static networks. Here
Ls = max; j Lij from Assumption[2.1} L from
Assumption and L from Assumption
For notation, see Section

Related Work. Decentralized optimization over static and time-varying networks has been
actively developing in recent years. In (Scaman et al.l 2017, dual-based methods and lower
bounds for (non-stochastic) strongly convex optimization over static graphs were proposed.
Optimal primal methods were obtained in (Kovalev et al., 2020b). For time-varying networks,
non-accelerated primal (Nedic et al., [2017) and dual (Maros and Jaldén) 2018)) methods were
proposed. After that, accelerated algorithms were given in (Kovalev et al., 2021b]) for dual
oracle and in (Kovalev et all |2021a; |Li and Lin, |2021)) for primal oracle. These methods
match the lower complexity bounds for time-varying graphs developed in (Kovalev et al.,
2021a)).

Our paper is devoted to variance reduced schemes. Classical variance reduction methods
such as SAGA (Defazio et all [2014) and SVRG (Johnson and Zhang] |2013) allow to
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enhance the rates for stochastic optimization problems with finite-sum structure. Accelerated
variance reduced schemes require adding a negative momentum, also referred to as Katyusha
momentum (Allen-Zhul [2017)). Considering nonconvex problems, recent development starts
with (Reddi et al. [2016) and (Allen-Zhu and Hazan| |2016), where algorithms based on
SVRG were proposed. More recently, other modifications of SVRG scheme with the same
gradient complexity O (n + n?/3/e?) were proposed in (Li and Li, 2018), (Ge et al.| 2019)
and (Horvath and Richtarikl 2019). Moreover, optimal algorithms was presented, such as
Spider (Fang et al., |2018]), SNVRG (Zhou et al., 2020)), methods based on SARAH (Nguyen
et al.l |2017)) (e.g. SpiderBoost (Wang et al., |2018), ProxSARAH (Pham et al., 2020), Geom-
SARAH (Horvath et al} [2022)) and PAGE (Li et al., 2021)), which have O (n+ /n/e?)
gradient estimation complexity.

In strongly-convex decentralized optimization over static graphs, optimal dual variance
reduced method ADFS was proposed in (Hendrikx et al., 2019). The corresponding lower
bounds were provided in (Hendrikx et al., [2021)). In the narrower setting in (Li et al.l [2022b]),
the Acc-VR-EXTRA algorithm was introduced. To the best of our knowledge, the optimality
of this algorithm remains an open question. For variational inequalities, variance reduction is
also applicable (Alacaoglu and Malitsky} 2022). Moreover, several methods for decentralized
finite-sum variational inequalities were proposed in (Kovalev et al., [2022)) both for static and
time-varying networks. See an overview of methods for strongly-convex objectives in Table

In the nonconvex case, the result of first application of variance reduction and gradient
tracking to decentralized optimization for static graphs was the method D-GET (Sun et al.
2020). Later, algorithms GT-SAGA (Xin et al.l 2021bf), GT-HSGD (Xin et al., [2021al) and
GT-SARAH (Xin et al.||2022) were proposed, which improve the complexity of communication
rounds and local computations comparing to D-GET. A relatively new result was achieved by
the method DESTRESS ([Li et al., [2022a)), which is optimal in terms of local computations,
but ineffective in terms of number of communications in case of static graphs. This method
was improved into DEAREST (Luo and Ye, 2022)), which is optimal. Nevertheless, the
application of variance reduction has not been studied for the case of nonconvex decentralized
optimization over time-varying graphs. In Table [2] we present an overview of methods for
which it is possible to explicitly write out complexities in terms of constants of smoothness
and x. For an overview of other algorithms, see Table 1 in (Xin et al.,|2022) and Table 1 in
(Xin et al., [2021al).

Remark 1.1. It is necessary to clarify that optimality of DESTRESS and DEAREST is not
clear in terms of dependence on smoothness constants. Indeed, mentioned constants Ly, L

and L are sensitive to n. In Appendix we show that ratios /nL = L and nL = L, can
be achieved.

Paper Organization. We organize the paper as follows. In Section [2] we introduce notation
and assumptions on the objectives and communication network. In Section [3] we describe
our methods and give complexity results. Section describes ADOM+VR for strongly
convex objectives and Section [3.3]| covers GT-PAGE for nonconvex objectives. Lower bounds
are provided in Section[d Finally, in Section [6] we give concluding remarks.

2 NOTATION AND ASSUMPTIONS

Throughout this paper, we adopt the following notations: We denote by || - || = || - ||2 the
norm in Ly space. The Kronecker product of two matrices is denoted as A® B. We use D(X)
to denote some distribution over a finite set X. The sets of batch indices are denoted by 5,

expressed as S = (£1,...,&P), where & is a tuple of m elements, each corresponding to a
node, specifically &7 = ( {, .., &), with f{ being the index of the local function on i-th node
in j-th element of the batch. Also for each i = 1,...,m define S; = (¢},...,£?). Each node
maintains its own copy of a variable corresponding to a specific variable in the algorithm.
The variables in the algorithm are aggregations of the corresponding node variables:

&= (21,Ta,...,Ty) € RX™,
With a slight abuse of notation we will denote F(z) = >.", F;(z;) and VF(z) =
(VFi(x1),...,VFyu(zy)) . Linear operations and scalar products are performed component-
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wise in a decentralized way. Let us introduce an auxiliary subspace £ = {x € R¥>*™|z; = ... =
Ty }, respectively L1 = {z € R*™|zy + ... + 2, = 0}. We also let 2* = argmin, cga F(x)
or z* = argmin,cpaxm F(2), depending on the context.

Let us pass to assumptions on objective functions. Firstly, we assume that objectives are
smooth, which is a standard assumption for optimization. We introduce different concepts
of smoothness: Assumptions [2.1] 2:2] and 2.4 are used in Algorithm [T} Assumptions [2.2] and

are for Algorithm

Assumption 2.1. For each i = 1,...,m and 7 = 1,...,n function f;; is convex and
L;;-smooth, i.e. HVf”( ) — Vfij(@)]| < Lijlly — z||. For each ¢ = 1,...,m let us define

'*123 1 Lij maxZ{L}

Assumption 2.2. For each ¢ = 1,...,m function F; is L-smooth, i.e. |VF;(y) — VEF;(z)| <
Llly — =

Note that in the context of Assumption [2.1] and Assumption [2.2] the following holds for the
smallest possible L;; and L: L < L < nlL.

In the next assumption, we introduce average smoothness constants. That is used in analysis
of Algorithm

Assumption 2.3. For each i = 1,...,m function F; is ﬁ—average smooth, i.e.

L3 V£ ) = Vi @) < L2y —alP
p2

Finally, we introduce an assumption on strong convexity

Assumption 2.4. For each i = 1,...,m function F; is p-strongly convex, i.e. F;(y) >
Fi(z) + (VFi(z),y — ) + §lly — 3.

Decentralized communication is represented by a sequence of graphs {gk (V,&F) } o0
With each graph, we associate a gossip matrix W (k).

Assumption 2.5. For each & = 0,1,2,... it holds 1) [W(k)];; # 0 if and only if
(i,7) € E¥ or i = j, 2) ker W (k) D {(21,...,2,) ER" 12y = ... =x,}, 3) rangeW (k) C
{(z1,...,2,) € R": 3" | x; = 0}, 4) There exists x > 1, such that

IW(k)z —z||? < (1—x")||z|? for all x € {(z1,...,2,) ER": 3" 2, =0}. (2)

In particular, matrices W (k) can be chosen as W (k) = L(gk)/)\max(L(ng), where L(G*)
denotes a graph Laplacian matrix. Moreover, if the network is constant (G® = G), we have
X = Amax(L(G)) /AL (L(G)), i.e. x equals the graph condition number.

3 ALGORITHMS

In this section, we propose new methods for decentralized finite-sum optimization: Algorithm/[I]
for strongly convex case and optimal Algorithm [2] for nonconvex case. Both algorithms use
a variance reduction technique. The main idea of variance reduced methods is a special
gradient estimator. The estimator is computed w.r.t. a snapshot of the full gradient. If
the objective is a sum of ¢ functions, one recomputes the full gradient (over all samples)
once in O(q) iterations (Johnson and Zhang) [2013} |Allen-Zhul [2017). In a loopless approach
(Kovalev et al.| [2020a)) the full gradient is computed with a probability of order O(1/q) at
each iteration. In this paper, we use the latter technique.

We measure the complexity in two ways: number of communications and number of stochastic
oracle calls. The computational complexity of the algorithm iterations can be controlled
using mini-batching of the gradient. That is, we take b gradient estimations and average
them. If the batch size is large, the number of algorithm iterations decreases, but the number
of oracle calls per iteration is increased by b times. In Katyusha (Allen-Zhu, 2017)) it is
shown that an optimal batch size is b ~ y/n. In the analysis of Algorlthms and. we obtam
optimal batch sizes, as well.
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3.1 MULTI-STAGE CONSENSUS

There is a universal way to divide oracle and communication complexities of a decentralized
optimization method. Instead of performing one synchronized communication, let us perform
several iterations in a row. Following (Kovalev et al.| [2021a)), we introduce

W(k;T) =1, — IS0 (1, — W)

It can be shown that if we take T' = [x], then condition number of W (k; T') reduces to O(1).
To see that, note that for all x € £+ it holds

W (k:; Tz — x)|* < (1= x")"[lz]? < exp(-Tx~!) < e

In other words, by using multi-stage consensus we reduce x to O(1) by paying a [x] times
more communications per iteration.

Remark 3.1. For static networks, Chebyshev acceleration replaces multi-stage consensus
(Scaman et al., [2017). Term x in complexity is reduced to O(1) at the cost of performing
[/X| communications per iteration. (Static) gossip matrix W is replaced by a Chebyshev
polynomial P(W).

Algorithm 1 ADOM+VR

input: 29 9% m% w® € (RY)V, 20 € £+
G = w0 =20y =40, 2§ =20

for k=0,1,...,N —1do

3.2 STRONGLY CONVEX CASE

For the strongly convex case, we take
ADOM+ (Kovalev et al. [2021a)) as a

base decentralized method. We also x’; = nz* + Wk + (1-—m— 7'0) ’Ji
use a gradient estimator averaged over Sk ~ Db ({1,2,...,n}),py; =
a mini-batch and a negative Katyusha T ” nLi
momentum (Allen-Zhul, [2017; |Kovalev, (V )i b Z]ES np” [ fz]( ) -
et al., 2020a)). V fii(wh)]
k
Let us briefly discuss the idea of . +YFi @ -
ADOM+. The given optimization 7: «*th =" +na(zy 1)
problem can be written in decentral- —77 [Vk — ux —yk +1]
ized form as follows: 3: ];'H - l‘g + 7o (x k+1 — zk)
Ig;ﬂ&_l? F(x). % 5, with prob. p
: bl _ ) gk i

This can be further reformulated as fol- % wi m“,?” W?th prob. pz
lows, which is the basis for the ADOM+ w;’s  with prob. 1 —py —py
method: 10:  yp = oy + (1 - o1y}

i T A A A

min  max max x)— —||lx

xGRdX”l yeRdXTn ZGEL 2 _0 [ (yg + z ) + :L‘k—H]

120y =yp +oa(yt —yh)

1 2
—<y7$>—5||y+z|| ©13: Z;—Ulzk—F(l—O’l)Z?
) k1l _ Lk k_ ok
It is not difficult to show that in case 14 27 = 2" +70(zg )

v < u, this saddle point problem is _(W(k’) ®Id) [~ g + 2) +m”]
strongly convex, which means that it 15:  mf+tt = v~ (yk + 2F) + m#
fl}gs atslilnglets.oluic.iton (x*(i:{k’ z*) satis- —(W(k)® Id) [yt (yk + 25) + m*]
ying the op nna: y COH*I 1011*s. 16 }CH 2 C(W(k) © L)k + zg)
0=VF(") —va" —y", (3) 17: end for
0= V_l(y* +2%) + 2", (4) 18: return z'v
03y" + 2" (5)

The idea is described in more detail in (Kovalev et al., [2021a)).

Let us discuss the gradient estimator for strongly convex setup. Consider a minimization
problem min,cga g(z) = ¢ >1_; gi(). At step k, instead of the gradient Vg(z*) one uses
an estimator

=4 LiesVai(a®) = Vgi(wh)] + Vg(w*), (6)
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where S is a random batch of indices of size b, z* is the current iterate and wF is a reference
point at which the full gradient is computed. Gradient estimator (]3[) is used in such methods
as SVRG (Johnson and Zhang} |2013) and Katyusha (Allen-Zhu) 2017)).

Theorem 3.2. Let Assumptzons n . . and b > L/L hold. Then Algomthml
requires N iterations to yield ™ such that |[x *||? < e, where

NzO((%+(%+%+X) ﬁ)log%).
Corollary 3.3. In the setting of Theorem with b ~ max {\/nL/L, n\/p/L} and the

number of communications per iteration ~ x, the algorithm requires

@ (n + 4/ ”HL) log% oracle calls per node and O (X\/%log %) communications

to reach ||z — z*||? <e.
Proof. The proof may be found in Appendix [B] O

3.3 NONCONVEX CASE

For the nonconvex setup, we propose a method based on a combination of gradient tracking
and PAGE gradient estimator (Li et al. 2021). The main idea of this approach consists of
two parts.

Gradient Tracking. Gradient track- Algorithm 2 GT-PAGE
ing scheme can be written as in (Nedic

1: Input: Inltlal pomt 20 = (1, ® 1)xo, ?JO =

et al} [2017): VF (%), v° (1 1, ® I;)y°, step size n,

ka1 :Wk k’_|_VF( k+1)_VF( k) : 0rk+1—_7 g ey - (0} . i
Y Yy z x 3 "= ((I,, — W(k)) @ Ij)x" — nv

4: kopb({1,2,... i':l

Such an algorithm leads to y* being an 5i e ({k 7 73), Piy e i
approximation of the average gradient 5 (V )7, =Yty Ek (Vfij (") = V(i ))
from all devices in the network at each Al
iteration. 6yt = {ka(ka), w%th prob. p,
PAGE. The key meaning of PAGE is WV with prob. e
as follows. Calculating the full gradient 72 v = ((Im = W(k)) @ Ig)v" +y" —y

can be expensive, but finite-sum con- & end for No1
struction allows to count the batched ~ 9: return z chosen uniformly from {xk}k:_()
gradient, which is clearly lower in com-
putational cost. Moreover, PAGE update does not have any loops (as, for example, in
SVRG (Johnson and Zhang;, 2013))) and can be computed recursively as follows:

vk-i—l — %Z I:vgi(xk-‘rl) _ vgz(xk)] + vk’

€S

where S denotes a random set of indices of size b. Note that unlike estimator @ for strongly
convex case, PAGE estimator stores the gradient from previous iteration, not only the
gradient snapshot.

Theorem 3.4. Let Assumptions [2.3, [2.3 and [2-5 hold. Then, Algorithm [3 requires N
iterations to yield @V , which is randomly taken from {z*}n " such that E [IVE@EN)|1?] < €
where

X3LA<1+ <1—p)t2>

bpL?2
€2 3

N=0O

where A = F(xg) — F*.
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Corollary 3.5. In the setting of Theorem let b = \/EL, p = T#b and number of
communications per iteration x. Then Algorithm 9 requires

o (n + \/ZLA) oracle calls per node and O (XstA> communications

to reach accuracy ¢, i.e. E[|[VF(&V)[]?] < €2.

Proofs of Theorem [3.4] and Corollary [3.5] can be found in Appendix and Appendix [D-4]
respectively.

Remark 3.6. It should be clarified that in the case of time-static graphs the multi-step
communication procedure called Chebyshev acceleration allows us to go from x to ,/x in the
estimation on the number of communications.

4 LOWER BOUNDS

In this section, we present lower bounds for the strongly convex case in terms of (Hendrikx
et al.| [2021]) and for the nonconvex case. It is important to note that the setup for the
strongly convex case in which lower bounds are considered is different from the class of
problems for which the algorithm was analyzed, which will be discussed in more detail later.

Strongly Convex Case. Lower bounds for a static network for non-stochastic problems
were first presented in (Scaman et al. |2017)). It has been shown that to reach an e-solution

of the problem, the system requires €2 (w/xL/ wlog(1l /e)) communication iterations and
Q (\/L/u log(l/e)) computational iterations. In (Kovalev et al., 2021al), lower bounds for a

time-varying setting were presented, the differs occur in communication complexity, in partic-
ular one needs to perform (X\/L /ulog(1/ e)) communication iterations to reach e-solution.

Regarding stochastic setup, in (Hendrikx et al., 2021)), lower bounds of Q(,/xrs log(1/¢))
communication iterations and (n + /nkslog(1/¢)) oracle calls per node were presented,
where r, = max;{L;/j;} is the maximum of the condition numbers of functions at nodes,
and ks = max;{L;/u;} is stochastic condition number among local function at nodes. Also,
an optimal dual-based method was proposed.

Nonconvex Case. At first, lower bounds for finite-sum nonconvex problem were presented
in (Fang et all|2018]). It has been shown that for reaching e-accuracy (E [||VF($)H2] <é?)

Q(\/ﬁﬁ/ 62) gradient estimates is required. Moreover, this lower bound was extended in (Li
et al} 2021) to Q(n + /nL/€?).

Considering a decentralized optimization problem without variance reduction, there are both
estimates of lower bounds for static (e.g. (Yuan et al. |[2022))) and time-varying (e.g. (Huang
and Yuan, [2022)) graphs, which are equal to Q(,/xLA/€e?) and Q(xLA/e?) communications
respectively.

The combination of decentralized nonconvex optimization with variance reduction has been
studied only in the case of static graphs, e.g., in (Luo and Ye, 2022), where authors show

that lower bounds are Q(\/iﬁA/ez) and Q(n + \/ﬁﬁA/ez) in their assumptions for the
number of communication rounds and local computations per node respectively.

4.1 FIRST-ORDER DECENTRALIZED ALGORITHMS

Following (Kovalev et al.l [2021b]) and (Hendrikx et al. 2021)), let us formalize the concept
of a decentralized optimization algorithm. The procedure will consist of two types of
iterations: communicational iterations, in which nodes cannot access the oracle, but only
exchange information with neighbors, and computational iterations, in which nodes do not
communicate with each other, but only perform local computations in their memory. Let
time be discrete, each iteration k is either communicational or computational. For any vertex
i, denote by H;(k) the local memory at kth iteration. Then the following inclusions hold:
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1. For all 1 =1,...,m, if nodes perform a local computation at step k, local information is
updated as

Hi(k+1) C span(Uy_l{x,Vfij(x),VfiE(x) |z € ’Hz(k‘)})

2. For all i =1,...,m, if nodes perform a communicational iteration at time step k, local
information is updated as

Hi(k+ 1) C span (Ujef\ff H;(k)U ’Hl(k‘)) ,
where NF is neighbours of node i at kth step.

4.2 STRONGLY CONVEX CASE

In the strongly convex case, we formulate the lower bounds under slightly different assump-
tions. We let each function F; have its own smoothness and strong convexity parameters.

Assumption 4.1. For each i = 1,...,m function F; is u;-strongly convex and L;-smooth.

Assumption 4.2. For all i = 1,...,m, we have xp > L;/p; and ks > %2?21 Lij/ ;.

In this case, we allow functions on nodes to have different constants of strong convexity,
preserving the constraints on condition numbers. This plays a role in lower bounds, because
in the counterexample problem the strong convexity constants on the nodes can differ by a
factor of m.

Theorem 4.3. For any x > 24, for any k, > 0, there exists a constant ks > 0, a
time-varying network {G*}$° | on m nodes, the corresponding sequence of gossip matrices
{W(k)}32, satisfying Assumption and functions { f;;}, such that the problem satisfies
Assumptions[2.1], [4.4 and for any first-order decentralized algorithm holds

1 m n o |lzi—z*|?
m Zi:l Zj:l HI?j*I*lP > max {Tla T2} s
where

24+16N../(x—24) 4N, /n
— 2 — o 2n
T = (1 §nb+§+l> L <1 7 §m+n/3+n> )

N, is the number of communication iterations, Ny is the mazimum number of stochastic
oracle calls on any node, and x;; € H;(k), k is the number of the last time step.

Proof. The proof may be found in Appendix [C] O

Corollary 4.4. For any x > 0 and any kpy > 0, there exists a decentralized problem satisfying
Assumptions [21], [2.8, [{-1, and[[-3, such that for any first-order decentralized algorithm for
each node to reach an e-solution of problem , a minimum of N, communication iterations
and Ny stochastic oracle calls on some node are required, where

%m0 (s vamos (1)), %= o0 (s (1)),

As we can see, the obtained lower bound has different setting than the class of problems on
which the work of Algorithm [1|is analysed, the same problem is present in (Li et al.l |2020])
and (Kovalev et all 2022). This difficulty appears to arise in a decentralised setup, so the
question of how to make the lower bound correct, how to interpret it and what would be the
optimal primal algorithm in the case of static and time-varying network remains open. The
lower bounds are presented in Table Table [f}
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4.3 NONCONVEX CASE

In the nonconvex case, we use the same assumptions that for Algorithm [2]
Theorem 4.5. For any L > 0, m > 3, there exists a set { F;}1_; which satisfy Assumption|2.2
and Assumption and a sequence of matrices {W (k)}32, which satisfy Assumption

such that for any output &N of any first-order decentralized algorithm after N communications
and K local computations we get:

E[IVFGMIP] = 2 (352), E[IVPGEY)IP] = 0 (52L).

Proof. See Appendix [D.5 O

Corollary 4.6. In the setting of Theorem[[.5, the number of communication rounds N, and
local oracle calls Ny required to reach e-accuracy (E [|[VF(2N)|?] < €2) is lower bounded as

N€:Q<n+\/ﬁ2AI:)7 NCZQ(XELZA)7

€

respectively.

Remark 4.7. The lower bound for communication rounds Ny is obtained the following way.

From Theoremwe get Ny, = Q(y/nAL/e?). Additionally, in (Li et al., [2021) it was shown
that Ny = Q(n) even for non-distributed optimization. Consequently, we have

Ny =Q (max (n7 ‘/EAE)) =0 (n+ ﬁAE) .

€2 €2

The main idea of the proof starts from the example of "bad" nonconvex function (see
(Arjevani et al., 2023))). Next, we extend the lower bound for decentralized nonconvex
optimization over static graphs (see (Yuan et al.,2022)) by considering time-varying graphs
and finite-sum constructions. The lower bounds for nonconvex case are also presented in
Table 2

Remark 4.8. Since one of the main ideas of the proof of Theorem [£.5]is the selection of a
special sequence of time-varying graphs, that is why we get an estimate on the number of
communications ~ y. But, as has been shown in some papers (e.g., (Yuan et al. [2022)), a
lower bound on the number of communications for decentralized optimization on static graphs
is ~ /X. Applying the same topology to our proof and taking into account Remark we
can conclude that GT-PAGE is optimal for the case of static graphs as well.

5 NUMERICAL EXPERIMENTS

In this section, we present numerical experiments comparing the proposed methods of this
paper with state-of-the-art methods for both strongly convex and nonconvex problems.

5.1 SETUP

Datasets. We utilize LibSVM |Chang and Lin| (2011)) datasets in our experiments: a9a and
w8a. Each dataset in an individual experiment is randomly distributed among the agents in
the communication network.

Topology. We consider a random geometric graph with 50 vertices as the time-varying
structure of the network.

Loss function. As an objective functions we choose logistic loss with ls-regularization and
non-linear least squares loss for strongly convex and nonconvex problems respectively.
Optimization methods. For our experiments we implemented proposed algorithms
(Algorithm [1] and Algorithm [2]) with other existing approaches (see Fig. [1| and Fig. [2] for
more detail).
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5.2 RESULTS

Logistic regression Logistic regression Non-linear least squares Non-linear least squares
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(b) w8a (b) w8a

Figure 1: Comparison of communication and or- Figure 2: Comparison of communication
acle complexities of Algorithm [I|(ADOM+VR), and oracle complexities of Algorithm
ADOM+, Accelerated-GT (Acc-GT) and (GT-PAGE), GT-SARAH and DESTRESS
Accelerated-VR-Extra (Acc-VR-Extra) on lo- on non-linear least squares problem on Lib-
gistic regression problem on LibSVM datasets. SVM datasets.

Experimental outcomes are shown in Fig. [I] and Fig. 2] Regarding the logistic regression
problem, ADOM+VR, outperforms other methods with respect to the number of epochs, i.e.
the number of oracle calls. However, there is no gain in communication complexity compared
to state-of-the-art approaches. At the same time, for the non-linear least squares problem,
GT-PAGE behaves better with respect to other methods, but it does not demonstrate a
strong superiority.

6 CONCLUSION

This paper establishes lower bounds for stochastic decentralized optimization in both non-
convex and strongly convex scenarios. For the nonconvex case, we derived a lower bound of
Q (n + \/E.EA/EQ) for stochastic oracle calls at a certain node, and € (xLA/e?) for com-
munication rounds, while also proposing the optimal GT-PAGE algorithm. In the strongly
convex case, the lower bound of Q2 ((n + ‘/Tllﬁls) log(l/s)) for stochastic oracle calls and
Q (X«/ﬂb log(1/ s)) for communication iterations was introduced. The paper also proposes
the ADOM+VR algorithm, which optimal in terms of communication iterations. Despite it,
the questions of whether existing decentralised VR algorithms are optimal and whether there

is a similar lower bound for a narrower class of problems were highlighted. These questions
remain open in both time-varying and static scenarios, presenting a way for future research.
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A APPENDIX / SUPPLEMENTAL MATERIAL

We now establish the convergence rate of Algorithm [T} This proof is for the most part a
modified analysis of the ADOM+ algorithm with the addition of techniques corresponding
to variance reduction setting. The parts not affected by the change were kept for the sake of
completeness.

B PROOF OF THEOREM [3.2]

By Dp(z,y) we denote Bregman distance Dp(z,y) = F(x) — F(y) — (VF(y),z — y).
By Gr(z,y) we denote Gp(z,y) = Dr(z,y) — 5z —yll*.
Lemma B.1.

Ege [IIVF = VF(zp)|?] <2 (GF(w z*) = Gp (g, z"))

2L .
_7<VF( ) VF(x*)—Vx’;+Vx*,wk—x§>.

Proof. Firstly note, that if g¥ = Vfi(z’;) — Vfi(wF) + Vfi(w), then
Ei [lo" = VIhI] =B [IVfi(eh) = VSi(w) = B [V filah) = T fib)] ][]
<Ei [[V£ie") - Vfiw")|]] (8)
< 2L (f(w*) = (") = (Vf(a"), w* —2")).

Let us describe the main term

1

Eg [||(V’€);VFi(x’;,i)||2]:Es;s gznp [V fii(ah ) = V fis(wh)] + VE(w]) - V(2
jesk 1
Q38 || == [V s(eh) — VHish)] + VRl) - VA(aE)

—2&“ L [(Vfig(oh) — Vigla) = (Vi) = V@) ] + VE(h) - VEi(ah,)

np;;

(;) %IEJ» [ n;ij [ (Vf”( i) — Vfii(@®) — szi +va*) — (Vi (wh) = V fii(a*) — vw; + va*) |
(3) <= pij 2Li; b e (@) 2L; o kK
<YL I Gy (ah ) @ 2 (Gr(uka®) — G (0 0°) — (VG (0 )k —
j=1 Y
where
(1) is due to independency of (&}, &2,...,£0),
(2) follows from the inequality E [||¢]]?] < E [||€ + ¢||?] if E[¢] = 0 and c is constant,
(3) follows from () inequality,
(4) follows from p;; = L;;/(nL;) definition.

The required inequality is the simple consequence of the previous statement. O

Further we will assume that the basis of the expectation is clear from the context.
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Lemma B.2. Let 15 be defined as follows:

1
Tg:min{2,max{1,\{)ﬁ} 12} (9)
Let T, be defined as follows:
1 =(1-7)(1/m+1/2)"". (10)
Let 19 be defined as follows: B
L
T0 — TU) (].1)
Let n be defined as follows:
-1
27‘1
= (L . 12
1= (2 (e 55) &
Let a be defined as follows:
a=p/2. (13)
Let v be defined as follows:
v=pu/2. (14)

Let U* be defined as follows:
1 2 v
ok — (2 E_ 2 —(D koo Y k7*2) 1
s <n+04> [ — 27| + s, 2%) = 5 llag — 27| (15)

Then the following inequality holds:

1 . I W
k+1 _ Iad k k+1 o« k+1 %
vr §<1 2Om1n{1/L,b1/nL})\le+2]E[<y v,z x)]
+ —f 1o 1) (Gp(w", 2*) — Gp(zh,2%)) — Gp(ak,2*) - EGF(xk x*) (16)
Lb \'1 ’ 9’ o 2 P

Z * *
+ E(VF(QCZ) — VF(z*) - Z/I'I; +va*, Wk —x];).

Proof.

1 1 2 1

7||zk+1 7I*H2 —_ 7”:1:,}6 o z*HZ + *<Ik+1 o :L'k,.’EkJrl o JS*> o 7||1,k:+1 o :L'k||2.
Using Line [7] of Algorithm [I] we get

1 1
Sl = P = k- | + 2a(ah — 2L o - o)
n n

1
o 2<Vk o V:L"gc o yk+1,.’£k+1 o IL‘*> o E”xk+1 o :ZZkHQ

_ !

=~ — 2" + 20z}

— ¥ — karl +x*’karl . l‘*>

1
_ 2<Vlc _ V:%’gc _ yk+17xk+1 _ l‘*> _ E||:L,k+1 _ kaQ

1
< ~flak —a*|2 — afla**t — 2*[? + aflat — 2|
Ui
1
_ 2<vk _ V:C’; _ yk+1,(£k+1 _ x*> _ H||:Clc+1 _ $k||2.
Using optimality condition we get
1 1 1
Sl = P < st - )P - alla = )P ek — 2P - et - g2
n Ui

n
- 2<VF(33§) — VF(z*), 2" —2*) + 21/(3:]; —z*, kT — %)

15
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+ 2<yk+1 _ y*7xk+l _ x*> _ 2<vk: o VF(x/;)’xk:-‘rl _ .’E*>

Using Line [§] of Algorithm [T] we get

1 1
=l — a2 < ~la® — 2

T k+1 —[E*HZ

—aflz —I—oz||a:]g“—m*H2

—2(VF(a}) — VF(z*), 2"

* * 2
+2(yF —yr 2T gy - g(VF(l"g“)*VF(l’ ),

2
+ l(zk x x’;ﬁ'l xS) —2(Vk — VF(z];) - l/(a}’;

T2 g

k+1

1
= 5\\%"“ = 2| — alla™* —27|* + allag — 2*|* ~

x*) + 2u<m§ —z* 2k — %)

k
g

k)2
il

)

- xg)a szrl - ‘T*>

—2(VF(z ) VF(z*),z" —x)+2u<m§—x*,x’“—m)

+ 2y -yt et —at) - g(VF(I'g“) - VF(z"),

k k
o (e =t =l — I = o - 1)

—2VF = VF(a}), 2" — 2*).

k

2||l‘k+1
i
2||$k+1
S

g

k2
g

)

Using the L-smoothness property of Dp(z, z*) with respect to x, which is derived from the

L-smoothness of F(x), we obtain

1 1
- 2|2 < Sl - |2 - el - 2)? + allak - 27)? - 2||x’““ k|2
—2<VF(JU )= VF(z*),2" —x )+2v<x§—$*,zk—x*>
+ 2<yk+1 _ y*,l'k+1 _ x*> _ 7<VF(xlgc) _ VF(.QJ ) I;Jrl SC];>
T2
2 (e =2 =l =2 e = af?) 2V - VE ()t )
1
< guxk—w*||2—anwk“—x*u2+a||x’;—x*||2 e CA
—2(VF(x ) VF(z*),z" — 2 )—|—21/< k—x*,xk—$ ) 2(yR T — gy R )
2 *
E (Drte 2% = Dy ahoa) = Tl - o417
2 (e =2t =l =27 e~ 2f)?) 2V~ V(). ah )
1 L — 1
= et =P - et = ol - o (B2 ) e -
n T2 777
—2(VF($ )= VF(x*), 2% —2*) + 2v(ah — o o — 27y + 20—y ab - o)

2
T2
—2VF — VF(a}), 2" — 2*)
Using Line [ of Algorithm [T] we get

1 1
— [l —a? < Hllxk — 2" — af s — ¥ + allz) — 2|
L_V 1 E+1 k|2 k x\ Lk
# (B L) lab - bl - 2 Feh) - VPG
21 —m — 2
+¥<W(:¢’;) ~ VF(z"), 2k — 2b) + 22UV F(x
T1 T1
2v(l — 1 — 7 2UT
+¥<x§—xl},x§—m*>+ T0<x§—wk,x§—x
1 1
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* * 2 * *
Folft =yt ot o) - = (Dy(@h T at) - Dy(afa0))

2 (I =2l — o —a*IP) ~ 2V~ V(). 2" — o)

L—v 1
) ||xk+1 l;:||2

T2 777'2

1
= Lt — - ek P el — "+ (

— 2(VF(a}) — VF(z*), 2} — 2*) + 2v|ak — 2*||?

21 =1 — 2
+¥<VF(:L’S)—VF(;5*),$JC >+§<VF( ) VF((E*),wk—(Eg>
1 1
VL= T1 = T0) (b k2 k12 (ko 2VTo S S
+ o (g = 2312 + llzg — «*[I* — [l — 2|%) + < Ty —w",zy — ")
* * 2 * *
+ 20y — 2P — ) — Py (Df( ’;H,x )—Df(x’g“7x ))

+— (kaﬂ || - ||ac’g€ — a?*HQ) —2(Vk — VF(x’;),ka —z").

By applying p-strong convexity of Dp(x,z*) in z, following from p-strong convexity of F(x),
we obtain

ll|xk+1_x*”2Sl”xk_x*HQ k+1

—afz z*|* + al|lzg — o*|?

L—v 1 k+1 k2 ko k * (12 k )

+ (P22 = o3 ) I = ablP = 2Di(eho”) = laf = |2+ 20l = o)
2(1 — 1 — 7 . y

+ (710) (DF(ﬂclfc,x ) — Dp(x];,a: ) — ngl} —m§||2)

T1
2 2v
+ﬂ<VF( B - VF(r"), o — k) + TT0<mZ—wk7:rZ—m>
1
I/(I—Tl— ) * *
T(Hx’;—x’}l\zﬂ\x’;—x 12 = || — =*[|?)
* * 2 * *
+2<yk+1 -y 7xk+1_'/13 >_7_72 (Df(xl;+1ax )—Df(l‘];,x ))

+ — <||l‘k+1 | - Hxlg — x*||2) —2(VF - VF(xij),ka —z").

2(1 — 71 — 7 v
= L = o - et — a2+ ZEEDE) (Dl at) - Sk - )

T1
2 * * * *
— = (Dsat ) = Gl =) b2ty et )
1 1—7 l1—-7mn)v v
+2(— 0>DF(.’I}Z,$*)+<04_,U/+V+(O)_> ||x'g“—yc*||2
T2 T1 1 T2
L-v 1 k1 _ k2 A-—mn—7)v—p), & k|2
(B2 - )yt -t 4 SR =y
27‘0 2uTy
(VF( V)= VF(z*), 0" — af) + - (@ — ok b — o)
—2(Vk - (:c’g“),ack+1 —z").

Utilizing 1 as defined in , 71 as defined in , and considering that v < u, we derive

1 1
~a =P < St - at?

* 2(1_T2/2) *
—allz"*! — 2 ||2+TGr (', %)

F :L'fax
**G ( k+1’ *)+2<yk+17y*’l,k+171,*>
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27;0<(VF( )*V‘T];) 7(VF(I*)7V‘T*>,WIC7:CZ>

—2VF = VF(a}), a1 —a*).
Using a defined by and v defined by we get

1 2(1 — 2
,”szrl _'I*H2 < 7”1,]@ _ $*||2 _ aka+1 _ 33*”2 + ( 7—2/ )GF(JCI;,ZZ?*)
_ 7G ( k+17 *) + 2<yk+1 _ y*,$k+1 _ SU*>
* v z* 2LT1
- (DF<xg,x )= S llak —a*)?) — k! — 22
2 3(1-m)
2’7’0 « *
- —((VF(x )—ux];)—(VF(x ) —vx ),wk—x’;>

—2(Vk — VF(acg),ack'H —z").

Taking the expectation over i at the kth step, using that z* — z* is independent of i and
that E [V¥ — VF(z%)] = 0 we get

1 2(1 —mo/2
B [lo** o] < 1ot - a*|P - aB [t - o] + 202 g af )

2
. o) |:G ( I}-{-l’ *):|—|—2E [(yk+1—y*,xk+l—x*>]
T2
2LT1
— Gp(zh zt) — { E+1 kQ}
P a") ~ e s I af
27’0

- —((VF(x ) - I/SC];) — (VF(z*) — va*) ,wk — :cZ)
—2E [(VF — VF(a}), 2" — )]
Using L1neof Algorlthmland the Cauchy-Schwarz inequality for (V¥ —V F(z ) ’;‘H x§>
we get
!

1 2(1 —mo/2
B [lo** o] < 1ot - 0| - aB [l - o] + 202 g af )

- ZE (Gl o] + B[ -yt - a)

* -7 k B
— Gr(at,z )+ 50 E [IV* — VF ()2

+ 2OY(TEh) - vad) - (VP o) o~ ad)

Using lemma and 7y definition we get

1 * 1 * * 2(1 _T2/2) *
—E [[|l"*" —2*|°] < *||$k —a*|* — o [[la" ! — 2*|?] + TGF(QU?,% )

_ EE [G (x ;i“, *)} +2E [(yF ! —y* 2P — %)) — GF(JJI}»T*)

T2

Z 1 * * * *
+E ( —1) (Gp(wk,x )—Gp(x’;,x ) — (VF(x’;) —VF(z )—I/.’EI;-FI/.% ,wk —xZ))

2T * *

ﬁo (VF(ak) —vak) — (VF(a*) — va*) ,wk — k)

1 Y N 2(1 —7mo/2 N
= Lah o - o [t - 2] + 22 G ok 0

n T2

2

- ZE |G} o) + 2B [ -y at T - o)

T2

18



Under review as a conference paper at ICLR 2025

+ L£b (1 - 1) (GF(wkaz*) - GF(Z";,SC*)) — GF(SCI;,JZ*)

+ L—b<VF( MY - VF(z*) - l/svlgC + va*, Wk —:rS).

After rearranging and using ¥* definition we get
E [\IIQJFI] <max {1 —7/4,1/(1 +na)} ¥k + 2E [(y’”l — vyttt — x*)]

/1 1
i fb < - 1) (Gr(w",a7) = Grlag,2%)) = Gr(vg,27) = SGr(af, o)

+L—b<VF( ) VF(x )—V;L‘ + va” wk—xk>

(1—m1n{\/> \/>}>\I/k+2E MLyt 2 — 0]

+ é (1 _ 1) (GF(w , T )—GF($97$ )) _GF(%’x*) _ %Gp(x]},x*)

+ E<VF(1‘I;) — VF(z*) — V:U’; + va*,wh — x§>

The last inequality follows from 7, «, 79, 71, T2 definitions , , , and @D
Estimating the second term:

1 e 1 2T -1 1 27 -1
<1l-=<1-2(L ! <1-2(L 2
1+na — - 4( (T2+1—71>) - < <T2+1—72)>

S

INA
A
|
L
(=
3
_l’_
=~
5
g
"
|
[\&)
(an)
S=
o
=

ZOmaX{l,%}

Estimating the first term:

11
1—7'2/4<1—m1n{8 4,/;}

O
Lemma B.3. The following inequality holds:
* 1- Ul) * *
e [ e
1 1 1 (17)
(Lt L E_ %2 _ k41 _ k)2
(5 = ) Ik =971+ foz = o) I = 2

Proof. Lines [I0] and [T2] of Algorithm [T] imply

E+1 _

yitt = yy ooyt = yF)

g2
— y_f; 1oyttt - - (y§ —(1- al)y’j)

g
(1 — ) Y+ oyt + (2 - 02) y.
o1 g1

After subtracting y* and rearranging we get

(Wi =y + <02 - 1) (yg — ") = o2 (g — ") + (JZ - 02) (W —y").

01
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Multiplying both sides by 2t L gives
;Z(y’}“ -y + (1—@) (s —v") = (" =y ) + (1 —a1) (Wf — v).

Squaring both sides gives

k41 *1(2 ! k %12 k+1 k2
—— — -2
H -y ° + ( J2> lyg — v II* — p ( ) vy — gl
<oyt =y 1P+ (L= o)l — ytI%

Rearranging gives

. 1 1 " (1—-09) "
A -yt < - ( - ) L LA WS
o1 [P} 01

" 1
L - ||2+(1—) I — g2
02

Using Line [I2] of Algorithm [I] we get

* 1 1 * (1 - 01) *
S T e R = M R &
o1 092 01
- *Ily’“+1 YIIP + (o2 —o0) g =oM%
O
Lemma B.4. Let § be defined as follows:
B =1/(2L). (18)
Let 01 be defined as follows:
o1 =(1/oy +1/2)7%. (19)
Then the following inequality holds:
1 B k41 |2 B [ k+1 * 2}
(5+5) B0 =y 1P + o [l - )
1 * ﬂ( 02/2) * * *
< glly" —y ||2+7H — [P = 2B [(2" =2yt -y
— * * * B *
+ Gr(rg, @) = 207 'E [{yg + 2 — (" + 27,9 = y")] = Tllyg — v
poy 1 k41 k2
772 E +1_
(-5 Bl -
Z * *
+ b (Gp(w",z%) — GF( x*) — (VF(xZ) —VF(z*) — I/iC]; + va* wh — $§>) .
(20)
Proof.
i 1 T
0 0 0 ’ 0 '

Using Line [TT] of Algorithm [T] we get

1
Sy = St — 1P 28T — vk — Ly )

]l
0 y
1
=20 yg + 29) + 2Ly =yt — Syt =R
Using optimality condition we get

1 * 1 * * * *
5||y’“+1—y H2=§Ily’“—y 12+ 28(VF —vak — (VF(z*) —va™) + y* =y /" =)

20
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_ 1
=2 b 2l T ) — glly’“+1 —yF|?

1 * * *
:glly’“fy||2+2ﬂ< —vah — (VF(z*) —va*),y" ' — )

X _ o 1
= 28|y =yt =20yl + 2h) + 2T T —yr) — 5\\1/’““ —y¥|?
1 * * * *
< §||yk —y P+ BIVF —val — (VF(z*) — va™)||* = Blly* " — y*|?

1
=2 N (yk 4 2f) R ) — §||y’“+1 —y¥|%.

Taking expectation over i and using the property E [|[£[|?] = E [[|¢ —E[¢] [|?] + [[E[¢] [|* we
get

1
B ™ =y IP] < 5ly
=2 Ny + 2 + B R — )
1
= Sl =y 1P+ BE[|IVF = VF()[?]

Function F(z) — 4||z||* is convex and L-smooth, together with (B.1)) it implies

’“*y*||2+BIIVF(fE ) = vag — (VF(2") —va")|* = Blly"*" = y*|?

1 1 * * v * *
Sl =yt < 2t — I + 28T (Dp(eh a) — Sk — 277) — BE [y -y )]

_ N 1
—2E (v (yh + 28) + 2Ty — )] - 7 [ly*+" = y*|1%]

2L
+ Tﬁ (Gp(w x*) — GF(ZZ’S,IE*) - <VF(:ZZI;) —VF(z*) — Vz’g“ +va*, Wk fx’;>) .

Using B definition we get
1 * * *
E[lly" " =y II°] < 5lv* = v'lI* + Gr(ag, 2*) = BE [ly"" - y7||?]

_ N 1
—2F [(v M (yh + 2f) + 2"y — )] - i [lyo Tt —y*)1%]

L * * * *
+ s (Gp(w", z*) — GF(,’E’;,LC ) — (VF(xS) —VF(z*) — Z/SL']; + va*,wh — x];)) .

Using optimality condition we get

1 * 1 * *
E [Ily" —y* 1] < < lv" — v |I* = BE [|ly* " — y*|1?]
— 27 'E [(yg + 2 — (" + 27,y — )]

. N 1 *
—2E [(:ckH —a yttt —y >] - @E [Hykﬂ - yk”Q] + GF(x’;,x )

L * * *
Lb (Gr(wF,z*) — GF(Z”;,SC ) — <VF(SC’;) —VF(z )71/.%’54»1/% ,wk f:c’;)).

Using (17) together with o definition we get

1 1 . &4 . Bl —02/2)
E [[ly**t = y*|I?] < elly’c ~y' I - SE [y =y )1°] + Tl\y’}

B 2] B ez Bloa—a1)
5o B lf =y IP] = Gl =P R [ ]

+GF( g7 )_QV_lE [<y§+Z§_(y*+z*)vyk+l_y*>]

1
—2E [(a" T — o, yF ! —y*)] - oE [ly**+ — *1%]

—y*|?

Z * * *
+E (Gp(wh, z*) — GF(x’;,x ) — <VF(.Z‘S) — VF(x )—V.’ES—I—Z/SC ,wk —xl;)).
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1o w2 B k+1 ) 5(1—02/2) k *(2
< |k = _ g - PAZ 927 2) ke
< gly" =y 1P = SE ™ =y IF] + == == llys — vl

B k+1 ) Bk (12 BU% 1 k+1 k2
S LA i e 1 e e S
+Gr(rg,2") =207 'E [(yy + 25 — (y* +2%),5" " —y")]
—_9E [<$k+l o x*,yk+1 o y*>]

L
+—(Gp(wk7x*)—Gp(x’;,x*)—<VF(x’g“)—VF(m*)—ux’;+ux*7wk—x’;)).

Lb
Rearranging gives
1 B k B
24 P\g 1 %2 —E[ k+1_*2}
(5+5) Bl =y 1P + o [l — )
Lok 2, Bl—o02/2) 2 k+1 k
< Z ok ok _9FE +1 _ % +1 _ %
< gy’ =y P+ == == llvf vl [(z a*yy y")]
+ GF(QZ‘];,J?*) - 2V_1E [<y§ + Zgl; - (y* + Z*)ayk+l - y*>]

B . Boi 1
= s v 1P + 72—5 E [y - y*)?]

Z * * * *
+ T8 (Gp(wh, z*) — GF(Ig,x ) — <VF(.Z‘S) —VF(z*) — l/x]; + va*,wh — xlg)) .
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Lemma B.5. The following inequality holds:
[m* | < 8x*72 02 |lyy + 25 lIB + 4x (1 — (40 ™) Im" (1B — dx|Im™ . (21)
Proof. Using Line [I5] of Algorithm [T] we get
[m B = Iy~ gy + zg) +m" — (W(k) @ La) [y~ (yg + zg) +m"] |5
=P [y (yg + 2) +m*] = (W(k) @ T)P [yv7 (yg + 25) + m"] ||
Using property (2 we obtain

I3 < (1= x4 26
Using inequality |ja + b]|? < (1 + c)||a||2 + (1 + ¢ 1)||b]|? with ¢ = ﬁ we get
I+ < [( ) I3+ (1 200 — D) 202l + 243

< (1= (297 Y|Im" Hp +2x7° v lyg + 245
Rearranging gives

Im* 1B < 8x*v*v ™2 |lyy + 25 + 4x(1 = ()™ HlIm* B — dxllm™ 3.

O
Lemma B.6. Let ¥ be defined as follows:
2k =2k —Pmt. (22)
Then the following inequality holds:
e -1 - CE) | L o (R Uy P P
=2 yg g — (YT 42,2 =) TP (14 6X) [y + 2l
+ 25\|z§ —2°? + (276° - 9) ||z§ — 2R
(23)

Proof.

1 2
||Ak+1 *H2 _ 7”2]@ _ Z*||2 + 7<2k+1 _ ﬁk’ sk *> ||Ak+1 Ak||2.

The combination of Lines [14] and [15|in Algorithm [1| coupled with the definition of 2* in ,
imply
ghtl _ gk = 76(2’5 — zk) — ’yu_lP(yl’qC + z’;)
Hence,
1
TR =TI = S IR+ 2605 — 22— )
~ ¢

=T P )8 - ) 2

= Lt - o7 ek — P — 2 = Gt — 272 = 6k — 4P
— 21/_1<P(y]; + 25),2’“ — 2%+ W||5(z§ e y_lP(y’; + z’;)||2

< (i - 6) 155 — 22 1 28]k — 2|2 + 2]m B — ] — 2F|?

S By o) 2 2+ 2y — P Al P )

1 2 * *
< (7 — 5) 2% — 2*|12 + 26||z§ — 2| + (2762 - (5) ||z§ —2*)?
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— 2w (P(yg +2p), 2" = 2%) v Py + 2y)|
+ 26||mk||%3 + 2V_1<P(y§ + zg),mk).

Using the fact that z* € £+ for all k = 0,1,2... and optimality condition (5 we get
1 sk+1 * (|12 1 sk * (12 k * (12
gllz — 27" < ;—5 125 = 2|7 4 26]|zg — 27|

+ (2907 = 6) |z — 2" + v P llyl + 21l
=20 Nyy + 25 — (" +27),2F = 2%)
+ 20||m*||3 + 21/*1<P(y§ + 25),mk>.

Using Young’s inequality we get

1. N 1 .
L e < (7 - 6) 125 = 2|2 4 28125 — 2% 2 4 (2487 — 8) |12k — k)P
—w N yE 2l — (gt 7)) Tyl 4+ 2R
_ 1
+ 28]+ 370 2+ 251+ gt

Using we get
1 1
Lysker o < (,Y - 6) 15 = 22 4 26]|25 — 2* |2 4 (2967 — 8) [12% — 2*|?
—w N yF 2l — (), =) Rl + 2R

4
o I — o

+ 20| mF|B + 602Xyl + 2FIIp +

1 R * *
= (7 - 5) 2% — 2% +2(5Hz§ —2*? + (276 = 6) ||z;c — 2k

—w N yE 2l — (7)) w1+ 6X) s + 2 1B
_ 3v6\ 4

1— () '+ =) —
+( B+ 2 )37

4

k
Im* 1B — 3 Im I5-

Lemma B.7. The following inequality holds:
2(yy +zg — (" + 279"+ 25 = (Y +2) 2 2y + 2 — (v* )

(A-02/2) ( (24)
o2

+ Iyl + 28 — (" + 2917 = lvf + 25 — (" +2)11%) .

Proof.
2(yy + 25 — (" + 27, y" + 25 = (y* +27))
=2y + 25 — (" + 2P+ 20y 2y — (" +27) Y8 2 (g + )
Using Lines [10] and [T3] of Algorithm [I] we get
2ys + 26 — (W + 27,0 +2F = (v +27))
— 9" kg% a2, 20 —01), k% *y ok k(. k k
=2llyy + 24 — (v* + =)

1_01 * * N .
+<071)(||y§+35—(y R [ O R 1 177 I, S (Y ai | [

> 2|lyg + 25 — (y* + ")
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(1_01 ; * * ] ;
+ L2 (b — 2P — N + 25— (7 ).

Using o7 definition we get
2yy + 2y — (" + 200+ 25 = (" +2) > 2y + 25 — (v + 2P

(1 — 02/2) * * * *
i g oz = Pl 42— 7+ 2P)
O
Lemma B.8. Let  be defined by
¢=1/2. (25)
Then the following inequality holds:
=20y =yt g 2y — (T +2Y)
1 k k * *\ 12 k+1 k+1 * *\ (|2
< k- Gy +z>u I} —W P (g

+ 200 |[y" T — yF |2 - IIyg +z’“||p

Proof.
||yk+1 k+1 )|
= llyg + 25 = (" + 2P+ 2057 + 25 = (yg + 2g)wy + 25 — (" +27)
Flly 42 =l 4zl
<y + 25 = (0" + 2P+ 205 + 27 = (g + 29), g + 25 — (" +27))
+ 20y =yl 20 - ’“||2-
Using Line [T2] of Algorithm [T] we get
||yk+1 k+1 e
g lyg + 26 — (" + 27 + 202 (5" =¥y + 25 = (" + 7))
+205 |y — g7 20T = 2Ry 42— (v + ) 20 - 2l
Using Line [16|of Algorithm I and optimality condition we get

Iyt + 257 = (" + 29|

S Ik + 28 — (" + 2)17 + 20005 = yF yf + 28 — (7 + 27)) + 203l = oF)?
— 20((W(k) @ Ta)(ys + 25), us + 25 — (y" +27)) + 2C[(W (k) @ L) (v + z5)II>
= [lyh + 25 — (" + 2|7 + 202" —F yh + 25 = (v + =) + 203y - oF|
— 20((W (k) @ La) (yy + 25,y + 2g) + 2 (W (k) @ 1a) (yy + 2}) 1.

Using ¢ definition we get

Iy 4+ 25— (7 + 2P

S lyy + 25 — (" + 27 + 200y = 4%,y + 25 — (" + 2)) + 203 |y - F)1?
(W) DTS +25), 95 + 25 + SI(WR) @ L) + 25)]?

= llys + 25 — (4" + 2 + 202 (y" —¢F g + 25 — (y* +27)) + 205 ly"H — yF)?
~ SIOW ) © T + )7 — Sl + =51

Liow ) o 1)@k + 252

1
+ I W k) @ Ta)(yg + 2g) = (g + 2)I* + 3

2
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<lyg + 25 — (0 + 2P + 2020 —yF yh + 2h — (v + 27)) + 203y - oF|?
— S+ B S IOW () @ L)+ 25) — (0 + ).
= llyy + 25 — (" + 2> + 202 (" =¥y + 25 — (v + 29) + 203y — F|?
— Sl + I+ SIW () @ TP + 25) — Pk + =)

Using condition we get

Iy + 25— (7 + 291

S lyy + 25 — (" + 27 + 202 (" =y 0 + 25 — (" +27)) + 203 ly" T — o)
19|, k E
—(29) lyg + 211
Rearranging gives

— 2<yk+1 _ yk ylgc + Zk _ (y* + Z*>>

< *Hyg oy — (v +z )||2 - *II A A A |
+ 209 |ly" ! = y*)? - IIyg + 2%
O
Lemma B.9. Let § be defined as follows:
1
e 2
17L (27)
Let 7 be defined as follows:
v
28
Y= Thogy (28)
Let 0 be defined as follows:
v
=, 29
1oy (29)
Let o9 be defined as follows:
__VH
= . (
g9 30)
16x\/z
Let \IIZZ be the following Lyapunov function
1 B * ﬁ * 1 2 *
W= (G4 5 ) I =P ol = o7+ S - P
0 2 209 ¥ (31)
4z Yk Lk * L R(2
+ QHW o+~ llvs + 27 = (W™ + 2D
Then the following inequality holds:
k+1 \/> k k—+1 * k41 * k%
E [yt <1 32X\F)\Ij —2F [(«""! —2*, " —y")] + Gp(ay, 2*)
L
+ s (Gp(wh,z*) — GF(x’;,x*) - <VF(.Z’];> —VF(z*) — Z/.TS + va*,wh — xlg)) .
(32)

Proof. Combining and gives

1 IB ﬁ * 2 *
(5+5) BOW =0 IP] + oo [l =y IP] + St =+

4
. R

3y

1 375\ 4 1
<|[Z_§ sk %2 1— (4 k|12 Tk x12
< (S-o) e - (1- )+—2>%Wﬂp+ﬂy vl
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/8(1 - ‘72/2) k ) -1
AR 72l 2k — —_92
205 vy — | v

— 2w E [(yF 42— (g 27), g = )] w2 (4 6x) lyE + 2R
60’2 1 * 6 *
(7 = 5 JE LW = oFIP) 202y — 2P = Tl — vt )P
4 0 4
—_ 9k ka-‘rl _ x*,yk+1 _ y*>] + (2752 _ (5) HZS _ Zlc||2 + Gp(x’;,x*)

+ o+ 25 — (" +2°)0" + 25— (v +2%))

L
+—(Gp(w ,x¥) — GF(IES,ZE*)7<VF(£E];)7VF(£E*)7I/I];+VI*,W]€7I§>).

Lb
Using and ( we get
(é + 2) E [W“ ) B [l = g ] S I
<(3-o)hr-p (1 O 32”5) et + Zls* — 1P
+ B o 2yl b 2f — (7 2
- u—1(10—2 7/ (lyf +2F = (" + Z*)H2 —llyg + 25 — (" +24)|°)
£t I - U [l ]

+ 207 ok [|lyF T — F 7] - @Hyﬁ + 20+ (L+6x) vl + 251

Bos 1 .
+ (222 - ) RO - 17+ 281 - 1P

ﬁ * * *
- ley’; —y*|I? = 2B [(2" 1! — 2*, Pt — )]

+ (2752 — 5) ||z§ — 2812 + GF(xlg,m*)

Lb (Gp(wh,z*) — GF(x’g“,x*) - (VF(xz) —VF(z") — V.%‘Z + vzt wh — 335))
_ 3v0\ 4 1
N *(|2 _ 1 A k|2 Tk k2
= (2o i - (1= 0 4 2 i+ gt - o)
5(1_02/2) k *((2 V_1(1_02/2) k k * *\ (2
+ o lyf —y*II” + p lyf + 25 = (y" + 27|

v * *
——E [l + 25+ = (" + 29|17

1 (1-02/2)

R R e A R

02

_ vt Bo3 _ 1
# (w2 000 - g Y b 24+ (2 + 2o = ) B (I P

20
+ (2'752 —6) ||z§ ) ) [(:ckH — ¥yt — y )] + GF(:U];;(E*)

L
+ b (GF(wk,x*) - GF(x’;,x*) - (VF(x];) — VF(z*) — Vx’; + v, wh — 1’5
1 sk )2 1, 30 4 k2 o Lok )2
= (== - 1— (4 20 = Z gk —
<7 5) 127 = 27| +< ()™ + 37\\77% I+ 5lly" =7l

1—09/2 “1(1 = 0y/2
BU=02/2) ko 4 L= 02/2) (0202/)

k k(% *) (12
T ) s + 2% = (" + =)

——E[ny’f“ A= (4 2]
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I3 31
+20]17g — 2* 117 = Jllug — 11 = 5 llyg + 2 — (0" + 2P+ (2907 = 8) |15 — 2|

—1
-2 v k k2 Bos 03 -1 1 k+1 k|2
# (w0 - o Y+ b+ (27 4 2o = g E A - P
+ oE [<$k+1 _ x*,yk+1 _ y*>] + GF(J?Z,.’II )

+—(Gp(w ") — Gp(x’;7x*)—(VF(xZ)—VF(x*)—Vx];—&—z/x*,wk—xg)).

Lb
Using (3 definition and v definition we get
(545 ) B0 0]+ i [l = g1+ 2 = ot et
<(2-0)1et e (1- a0+ 3’;5) I+l oI
4 AL=0n/) ;0‘;2/ e L T R R

_ TE [” k+1 _’_Zl;+1 (y* +Z*)||2]
* * 3 * *
+20z) — 2*||* - 87||y§ S ﬁlly’; +2p = (" + 2P+ (2987 =) |25 — 21

_ v1 Bo3 _ 1
# (w2 00 - oY g+ b1+ (222 v 2ion = ) B (I - o)

—2E [(mk“ —z* - y")] + Gp(x];,x )

Z * * * *
+E (Gp(w*, )—GF(JJ];,.’I} ) — (VF(x];) — VF(z )—Vx’;—&—mc LWk —x’;)).

Using ¢ definition we get

1 B i 1 4
2P\ g +1 [ k+1 * 2} Losk+1 2 L % k12
(545 B0 =)+ o [l =y IP] 4 D180 = 2P 4 o b
1 3y 4 1
<[(Z_=5 sk _x2 1— (4 -1 a k12 ok %12
<(Z-o)1 -2 +( @0 +222) LI + gl - o)
Bl —02/2) 2, v (1 - 02/2) k k * "N
+ 202 lyf — v II” + po. lyf + 25 — (¥ + 27)|l

_ 7E |:||yk:+1 + zl;+l _ (y* + Z*)HQ]
n ~2(146 v k| k2 32 9,1 lE k+1 k2
w1+ X)—@ lyg + 24l + 1 + o2~ 5 [y = y*|1?]
+ (2907 = 6) ||zg — 27|17 = 2B [(«"F! — 2% o — )] + Gp(a), 27)
Z * * * *
+ s (Gp(wk,m ) — GF(J:];,JJ ) — <VF($§) —VF(z*) — Vxl; + va* Wk — xlg)) .

Using -y definition we get

1 8 i 4
2P\ g +1 [ 41 o« } skl _ o *)12 L F 1kt
(5+5) 0 = o IP] + o [l = 1P+ St = oo St
1 375 4 1
< 7_6 sk %12 1—(4 1 = k2 - k_ %2
<(S-0)1k-x) +< @0+ 20) Lt + Lot o)
ﬂ(170—2/2) * V71(170—2/2) * *
+7202 lyf =y IP + ——— =l 25 = "+

- —E [l + 2541 = 7 + 2P
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Bo _ 1
(2o 0= )BT =17+ (287 - ) s -
—_ 9 ka-‘rl _ x*,ka _ y*>] + GF(Q,‘];,.T?*)

+ L (Gp(wk,x*) - Gp(x’;,x*) - <VF($’;) —VF(z*) - V:L‘I; + v, wh — x’;)) .

Lb
Using 6 definition together with , and gives
1 B k 4
2P\ g +1 o« [ k+1 * } k1l x2 o F ke
(545 ) B =)+ o L™ = I 20 = 02 4 L

1 378\ 4 1
<[Z_—5% sk _*)12 1— (4 1 e k|12 Tk o x12
<(2-0)1e zn+( @07+ 50 ) g lmt I + gl =]

B(1—09/2 " vl —09/2
2 02

v * *
———EMw“ A (42

(2752 - ) ||Zg - Zk”2 —2E [<zk+1 - 'T*7yk+1 - y*>] + GF(':E57I*)

lyf + 25 — (y* + 29|17

_|_

L * * * *
+ s (Gp(w", z*) — GF(mg,x ) — (VF(J:];) —VF(z") — sz + va*,wh — xf;)) .
Using -y definition and ¢ definition we get

1 g & . 4
1 2\R +1 E[ k41 o« } b+l _e2 kL2
(9 + 2) [lly y* 7] t3 Iy =7l || =+ 37”7" 5

1 4 1
<[ 25V sk — 212 (1 — (8v)1) IR+ Sk — o*]2
< (2-0) 1 =P (1= B0 I IR + gl -]

— O 1-0o
B(l 2/2)Hyk7y*||2+1/ (102 2/2)

k k * *\ (12
Zy — z
20 lyf + 2% — (y" + 27|

+

——4HM“1 A= (4 2]
—_9E R k+1 x*,yk+1 o y*>] + GF((EI;,x*)
Z * * * *
+ s (Gr(wF,z*) — GF(:L'S,SC ) — <VF(£C];) —VF(z") — I/SC]; + va*,wh — x];)) .
After rearranging and using \IJk definition we get
Eh%jﬂsmeU1+wwm—%u—v®A1—aﬂm(1—8x )} vy,
- 2E [<xk+1 - x*vykJrl - y*>] + GF(.Z‘];,CC )
L
+ s (Gp(wh,z*) — GF(a:g,x*) - <VF(.Z‘§) — VF(z*) — 1/3:5 + va*,wh — xf;))
()
32)(\@ Y
—2E ka—&-l _ m*,yk+1 _ y*>] + GF(xg,x*)

L * * * *
+fb(G W )—Gp(x’;,x )—(VF(x’;)—VF(x )—l/x’g“—f—l/x ,wk—m’;>).

Lemma B.10. Let X\ be defined as follows:

n (1 L
A=T (2 + Lbﬁ)' (33)
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Let py be defined as follows:

P = N (34)
Let py be defined as follows: B
- = (35)
P2 = NLbr,

Then the following inequality holds:
E[¥h + Wy + )\GF( R )]

=\'- *mm (U9 + Ty, + AGE(W*,2%)). (36)
( { \/; nL\/7 xf})

Proof. Combining and @ 32) gives

B Uk 4 wht] < (1—mm{[ f ors (1- 20w,
LleGF( ") + LblGF(w , %) — *GF(xfa z")

L L k * 1 k *
GF( ")+ LleGF(w , ") 2Gp(xf,x ).

LbT 1
Using @D we get the following inequality:

E [Gr("! 2")] < piGr(af, a*) + p2Gr(zy,2*) + (1 = p1 = p2)Gr(w",z%).  (38)
Multiplying on A and combining with we get
E [UEt! + O 4 AGp (Wt 2%)]

< <1 — 3% min {b\/nTL x{/ﬁfD (UF 4+ W5) + A1 = p1)Grp(wk,a*).

Estimating p;, using 7 and 7 definitions ,
1

b (oL L\ b 1+ 2L
p1= n 2 Lbn n Lbry
imin 1 —2Z - = min b b2LT1
2n "\ Lbny 20’ 4nl

2 2
> min { b bLT2} min{b,bLmin{l,maX{l,\/ﬁ} M}}
2n” 10nL 2n" 10nL 2 b L
b B*L VL vn 7 } { b B2L [pu }
> min max ¢ 1, — — > > minq —, =1/ =7 -
{2n 20nL’ 10nL X{ b } VI 200" 10nL \ L
Therefore we conclude
E [t + Wt 4 AGp (M 2%)]

1_7 k k k * )
_( mln{ ’/nL nL” X\F}) (Uh + W5, + AGp(w”, z%))
This implies

E [UF + U5, + AGp(w®, 2")]

_<1mm{ \/:Lsz\f xf}> (U0 + 0.+ AGp(a°,2%)).
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Using W¥ definition we get
E [ka — :E*||2] <nE [\I/k] <nE [\Ilk + \Ilk + AGp(wh, a:*)]

_(l—mln{ \/; nL[Xf}> (U9 + ¥, + AGp(w’,z%)).

Choosing C' = n(¥9 + \I/O + AGp(w¥, 2*)) and using the number of iterations

k = 32max {Z f\/7 \/7 \/7}log
n n (L nL |L L 1
ool )

we get
lz* —2*|* < e.
Therefore the number of iterations of Algorithm (/1] i is bounded by
= 1 / 1 / \ / 1
which concludes the proof. O

Let’s prove the Corollary

Proof. The choice of the number of communication iterations ~ y per algorithm iteration

and a specific choice of b = max{\/nL/L,n+/u/L} provides the following upper bound on
the number of algorithm iterations:

N:(’)<\/Elog1>.
I €

From this, it immediately follows that the upper bound on the number of communications is

as follows:
L 1
@) (x“log) .
1 €

Now, let’s estimate the number of oracle calls at each node. It is not difficult to show the
following upper bound:

No=0O|[n++vn £er £+% L log1 =0 n++/n L log;1 ,
7 wo bL\l € I €

which completes the proof.

C  PROOF OF THEOREM [4.3]

The high-level concept underlying lower bounds in decentralized optimization involves
creating a decentralized counterexample problem, where information exchange between two
vertex clusters is slow. More specifically, the vertices in the counterexample are divided into
three types: the first type can potentially “transfer” the gradient from even positions to the
next, introducing a new dimension, the second type can do so from odd positions, the third
type does nothing. We take a “bad” function for the corresponding optimization problem
and divide it by the corresponding node types in such a way that different clusters contain
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components of the "bad" function that can approach the solution only after “communicating”
with nodes from another cluster.

As our graph counterexample, we will use the graph from [Metelev et al.[ (2024) because it
allows us to obtain a lower bound not only in the setting of “changing graphs” but also in
the setting of “slowly changing graphs”, which will be a good addition.

Let’s define T, as a graph consisting of two “stars” with sizes a + 1 and b+ 1, whose centers
are connected to an isolated vertex. In total, the graph will have a 4+ b + 3 vertices.

Let’s say the left part of the graph P; is the set of a + 1 vertices of the first star, and the
right part P is correspondingly the set of b+ 1 vertices of the second star. The middle vertex
U, 1S the vertex connected to the centers v; and v, of the left and right stars, respectively.

If v € Py, we define the “hop to the right” operation as follows: remove the edge (v, v,,) and
add the edge (v,v,). As a result, v,, ceases to be the middle vertex, being replaced by the
vertex v. The operation “hop to the left” is defined in the same way.

Now, let’s describe the sequence of graphs that will make up the changing network. The first
graph will be of the form Ty ,,,—3, followed by a series of “hops to the left”, which increase the
left part P; of the graph and decrease the right. This will continue until the graph 75,39
appears. After this, a series of “hops to the right” occur until the network returns to its
original form. Then, the cycle repeats.
Lemma C.1. For this sequence of graphs, there exists a corresponding sequence of positive
weights (Ar)5e, and a sequence of Laplacian matrices (W (k))3,, for these weighted graphs,
such that it satisfies[2.5 with

x < 8m. (39)

Proof. This is a direct consequence of Lemma 8 from |Metelev et al.| (2024). O

Note that vertices v; and v, in the process of changing the network are always on the left
and right parts, respectively. Denote by {g;},:y € f2 — R the set of auxiliary functions
corresponding to the vertices:

Ellyll® + Lo H) [(y1 — 12+ 307 (yar — yors1)?] s i =y,

gi(y) = < &llyl* + (L4“) > (Yar—1 — yar)?, i =V, (40)
s Iy, i ¢ (v}
Let’s describe the local functions on the nodes: let « € ¢, then define f;;(z) = g;(x;), where
x; € {3. Accordingly, it turns out that f;; : x € {3 — R, but its gradient affects only the jth
subspace of £%, in which zj, = 0 for k # j. Hence, Fj(z) = + 22:1 gi(xj).

Such a structure allows achieving that the “transfer” of the gradient to the next dimension
in each subspace occurs once every 2(m) = (x) communication iterations.

The solution to this optimization problem will be the vector (z*,...,2*) € £, z* =

lad. )er :fm_
( y4,49", )E 2, 4 \[L/H+1+3

Let (e1,e2,...,e,) be sets of vectors that form a basis in the space 3. Let x;; denote the
coordinates along a set of vectors e; on the variable on the ith node.

Following the ideas of [Hendrikx et al.| (2021)), consider the expression
A m n .
ASN Ny — 2t
i=1 j=1
Let’s define the quantities k; = min{k € No|Vl > k,Vi € {1,...,m} — z;;; = 0}. Using this

definition and the convexity of qQ“’ we get

2 n )
Zcf’” > 1_q2q" =1k, (41)

71—q
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Let T, and T, be the number of communication rounds and the number of oracle calls at
node vy, respectively. Between the network state Tp ,,,—3 and the next such state there are
2m — 6 communication iterations, during which two “transfers” of the gradient from an odd
position to an even one cannot occur. Therefore we get

kj <1+ (42)

C
m—3
Note that each j corresponds to at least [k;/2] oracle calls to the function f;; for i = v,
hence we get

>k <o (43)
j=1
Using , and we get
242t./(m—3) 4ts/n
2 2
A> 2 max{ [1- ———— -

=7 _ 2
I=q VEL/ Lt VEL/p+ Lt
(44)
Based on the form of the function we can conclude that ks = % = nky, then using 2° = 0,

qu - gz:"‘||2 =(1-¢*~! and we get
||1Uzj —a*|]?
— ZZ R

=1 j=1
24+16t./(x—24) 4ts/n

2 2
>max{ [1- —=— - i

Vi + 341 Vny/3ks /34

which concludes the proof.

D PROOFS FOR ALGORITHM 2

Before we start, let us denote

M(k) = (I, — W(k)) ® Iy (45)
and
1
pP= ; (46)

for the convenient analysis. Moreover, we need to introduce some definitions as

1
= —(1,) 91",
m

1
= — (1) @Iy)F,
m

Sk =(SF,...,5%),
Vg F(x k) = (VSkFl(x’f) vsﬁsz(x’;)) e R™,

Vi F(x Z Vfij(@

JGSk

Also we need to formulate some useful propositions:

Proposition D.1. If 1 = L(1] @ 1,)y°, then for any k > 1, according to Algorithm@ we
get

1
—k T k
=—(1 I , 47
v m( m ® d)y ( )
and

#H =zt - LT oIyt (48)
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Proof. We prove it using the induction. For k = 0 it is trivial because of start point. Now
suppose that at the k-th iteration, the relation is true:

1
ok = f(ll; 2y Id)yk.
m

Hence, at the (k + 1)-th iteration, we have

o 1
gkt = E(l;’z ® Id)vlﬁ'1

1 1 1
71T I k 71T I Mk_]:m k 71T I k+1 _ k
m(m® 4)v +m(m® a)(M(k) a)v +m(m® a) (v y")

1 1
— 1T I k - ]_T I k+1 _ K
— (1, @ Lg)o" + — (1, @ 1a) (y y")

1

= (1, @ Ty,
where the third line follows from Assumption [2.5
(1, @ 1a)(M(F) = Lpa) = = (L, @ L) (W(k) @ Lg) = —(1, W(k) © I;) = 0.

Thus, we complete the proof of . For ,

1
P =28 4 (1, © 1) (M(k) — Lya)a* - %(1; ® I,)o

(
K i

=zt —pot =zF - L] L)k
m

O

Proposition D.2. If W(k) satisfy Assumption and M(k) is taken from , then
Vo € R™ we have

IM(E)z ~ (L © L)L, @ Tl < (1= p)llz — - (L @ L)L, & Lal? (49

Proof. Note that
M(K) (1 L) = (L = W) © 1) (1 ©1La) = (L = W)L, 91) = 1, & L
Therefore,
1 T 2 1 T 2
M2~ - (1 9 L)L, @ Tal? = M) (2~ (1, @ L)AL, 9T ) P

Decomposing z — +(1,, ® I4)(1,], ® I)x by eigenvectors of M(k) and using that

m

1
1 (Lg——1,1 @1;) ) =0,
md( d m( m ® d))

we claim the final result.
Remark D.3. The proposition above is equivalent to

IM(k)a* — (1 @ Ta)2"[* < (1 = p)la* — (1 @ Ta)2*|*.

D.1 DESCENT LEMMA

Lemma D.4. (Descent lemma) Let Assumption and Assumption hold. Then,
after k iterations of Algorithm[3, we get

. . L?
EF(*!) < EF(z") - JEIVF(E)|? + LE|VF (") = y* |2 + ToEle* — (1, © L)z
m m
2
n_nL ~k|2
—(2-2=Z)E .
(2-ZF) mier (50)
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Proof. Starting with L-smoothness:

’L
(") < F@*) —n (0", VF@")) + T2 |4
2
ky 7 . - n kY L,
= F(z") = JIVE@E)|? = JIo"? + JIVEE*) )7 + 12|14

2
_ 7 _ Ul _ _ n 0L\, _
= F(@") = SIVF@IP + ZIVF@@*) - o"|]* — (2 - ) *)?

1 n  n?LY\ , _
- et - (2= ) It

< F(z%) - gHVF(:fk)HQ + %H(lm ®1)VF (") = VF(z") + VF(2") — y*|?

_ ﬂ_ﬂ 1552
2 2

_ _ n _
< F(a%) = JIVE@E)|? + 5| VE @)

<F7k_QVF7k2 EVF k\ _ k2 ﬁ k_l Ika
< F@) = JVF@IP + LIVF@) = 12 + 2 ot = (L 9 L)

2
n LY e
S A 51
(2-ZF) 112 61
where in the last inequality we use (a + b)? < 2a® + 2b2. Taking the expectation, we claim
the final result. O

D.2 AUXILIARY LEMMAS

Lemma D.5. Let Assumption[2.3 holds. Hence, after k iterations the following is fulfilled:
1—p)L?
E[VF(@*) — | < (1 - pEIVFE") - o2 + Lo et a2

Proof.
E|VF(@* ) —y**|? = pE|VF (") — VF(«* )|

+ (1= pE[VF(E") =y = Vg F(a") + Ve F (") |2

— (1 = PE|VF @) = VE(@h) + VF(ah) — g = Vg F(a*) + Ve F(ab) 2
= (1 =pE|VF (") = VF(2") = Var F(«" 1) + Vg F(a*)||?

+ (1= pE|VF(@*) — y*|?, (52)
Rewriting Vgr F(x) as claimed before, using that E||X — E_f(HQ < E|| X%, clarifying that
iort(ﬁaciens in one batch are chosen independently and using the L-average smoothness, one can

1—p)L?
E[VF(*) — "1 < (1 - pBIVFEY) o2 + EoP gt ok (s3)

what ends the proof. O

Remark D.6. The proof is similar to the proof of Lemma 3 in |Li et al.|(2021), but we write
it for each node in the same time.

Now we need to bound some extra terms for our Lyapunov’s function. We use the next
notation

0 = Blla* — (1, © L)z*|?,
0 = ot — (1, © L)o* |
Lemma D.7. Let Assumption [2.5 holds. Therefore, for the Algorithm[3, we have

P\ o, 317 ok
aftt < (1- 5) of + =0k,

P\ ok, 3 ; :
5t < (1 - 5) Q5 + ;EHka — ¥
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Proof. Substituting the iteration of Algorithm |2[into Q’f“, we get
||{Ek+1 _ (1m ® Id).’fk+1 ”2

= |[M(k)a* —m* — (1, ® Ta)7" + (L, @ La)no"|®

< (14 B)(1 - p)lla* — (1 @ L) + (1 " ;) Pt — (L © Lo |

_ 2 )
< (1-2) Ia* = (L © L)a*|? + (1 + p) Plo* — (1, @ 10)o"||?

p & k2 37]2 k —k112
< (175) 2* — (1,, © I)Z"| +7llv — (L @ L)0"|I%, (54)

where we choose 3 = £. For Q5+ respectively
[0 = (L @ T)oH 2 = [~ (L @ )" + (L © T)* — (L, @ Lo 2
= [0* = (1 @ L))o |2 = m o — o2
< Pt — (1, @ L))ok |2
Thus by the update rule of Algorithm [2} one can obtain
[V = (L @ L) < [0 = (1,0 @ Lg)0" |2

— MO + g — g — (L © L)
P _ 2
< (1= 5) It = TP 4 (142 ) I - P

p _ 3
< (1) I = @ TP+ g - I (69)

Taking the expectation in both bounds, we claim the final result. O

As a consequence of Lemma and Lemma [D.7] we need to bound some redundant
expressions.

Lemma D.8. Let Assumptions Assumption and hold. Then, after k iterations
of Algorithm[3, we get

Ely* " — o¥|* < (14 p)L°E|la" " — 2*|* + 2pE[|VF (%) - ¢*|1%,
E[|lz*+! — 2¥|? < 2CE[2* — (1, ® 1)Z%) + 20°E|[v* — (1,0 ® Lo)0"|* + 20’ mE||o"||?,
where C = maxy, [|[M(k) — Lnal|? = maxg omax(M(k) — Lng)? < 4.

Proof. Start with substituting y**!:
Elly** — y*|> = pE[[VF (") = "> + (1 = p)E||Vsr F (2" ) — Vg F(«*)||?
= pE||VF (") = VF(a*) + VF(2*) — " |
+ (1= p)E| Vg F(z"*1) — Vgu F(a*)|?

B
+ (1= p)E|[Vse F (") — Vg F(a*)|%. (56)

Let us bound the last term in . We have

1
< p(1 + BLE[* — |2 1 p (1 ; ) E|VF(@) - |

E|VsF (") = Var PP =EY |V Fi(af ) — Ve Fy(h)|?

=1

:EZ”% ST Vel = Y fi(ah)|?

=1 te{sf}
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—EY ol Y V) - V)P

i=1 ee{st}
1

SEY. 7 Y IVfulaf*) = Viielal)|?
i=1 " re{s}}

<EY L ek e

=1 ee{sf}
m

—EY_ Lo} - af|?
i=1

= LPE| 2" — 2|2 (57)
Hence, substituting into , choosing 8 as 1 and using L < L (because of Jensen’s
inequality), one can obtain
Ely* ' =¥ < (1 +p) LElla™*" — 2|® + 2pE||VF (%) — y*|1%. (58)
The second expression can be bounded in the following way:
2"+t — 2P = [[(M(k) = Tna)z® — no*|®
= [[(M(k) = Lna)(a* — (1 ® La)z") — no||?
< 202" — (1 @ Te)2*|” + 20| |0*]”
= 2C|z"* — (1, @ Tg)Z"||2 + 202 ||0* — (1 @ La)0"||% + 20%m|0¥]2. (59)

Taking the expectation, we claim the final result. O

Now we denote some expressions from Lemma [D.5] and Lemma [D.8] as follows
AF =E|VF(*) -y,
Ak = B2kt — 2|2,
Consequently, substituting the bound of a first expression from Lemma [D.§|in Lemma [D.7]
we get
ot < (1- g) Ok + 3229’;,

3 ~
Okl < (1 - g) Qb+ ;(sz’f + (14 p)L2Ak). (60)

Moreover, we can write

_ T2
AkJrl < (1 7p)Ak + (1 ;Q)L Al’zc7

AF <200 + 202k + 20?mE||0*|2.
D.3 PROOF OF THEOREM [3.4]

Proof. Rewriting the descent lemma in new notation, we have
L? n  n’L
EF (7)) < EF(z%) — ZR|IVF@E)12 + LAk + 1=gk — (1 02 g g2,
(#+1) < BF(¥) - TRIVE@)? + Lok + 2ok - (1 T2 Bl
Also we can construct a Lyapunov’s function in the following way:
®), = EF(z%) — F* 4+ CoAF + 51QF + 5,05, (61)

Then, adding some terms to the left-hand side of descent lemma mentioned above, one can
obtain

(I)k+1 = EF(karl) - F* + CoAkJrl + 81Q]f+1 + SQQ§+1
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m 2 2

1—p)L? 3n?
+Co ((1 —p)A* 4 (”)A’;> + 51 <(1 - g) ok + ZQ’;)

L? 2L
<EF(@) - F - JEIVF@P + 2k + Toat - (1 - 5 ) Ejot?
m

b
3 .
+32((1—g)fé+-p@pAk+<1+pﬂﬂA®).

Grouping the terms, we get

, 6
Bur <EF() - F* - TBIVFEP + A% (- pico+ 2+ 222
s (L7 _P K (31751 P
+Ql(m+(1 2)81>+Q2< p +(1 2)82
_\]2 72 2
4 Ak ((1 pb)L Co , 3(1+p)L s2> B (n B nL) E[lo* . (62)
P

Hence, denoting

6
A=(1-p)Co+ -+ L2,
mp

(1 —p)L2Cy N 3(1 4 p)L2s,

B:
b P ’
L2
C:L—‘r(l—B)Sh
m 2
2
1)2377 Sl-i—(l—B)SQ,
p 2

and substituting these constants into , we get
Oy <EF(FF) — F* - gEHVF(gzk)n? + AA* + CQF + DQE + BAY
2
n _n°L k2
(£ -L=)E .
(2-7F) Eret (63)
Using the definition of A* and Lemma in , we finally have
By <EF(EF) - F* - gEnvp(sz + AAF 1 (C +2CB)QF + (D + 202 B)Qk
2
(n oL, k12
(2 5 2n nB) E||2"]
= EF(Z") — F* + 5,08 + 5,08 + AAF gEHVF(gzk)Hz
~ n_ 7L
+(C+2CB — 51)% + (D +21°B — s52)Q% — (2 -5 - 2772mB) E|7*|2.  (64)

Looking at the form of the descent lemma, we want to require the following:

1. Gy = A.

2. 1L _92mB >0.

(IS

3. C+20B—s, <0.
4. D+2n°B — 55 <0.

Before we start to solve this system relative to 7, we assume the following form of constants
s1 and so:

_ Cl(papa b>L2
S1 = mL )
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5o — C2(pap> b)L

= = 65
.= 2Lk (65)
First part
From the first requirement we get
6s
Cop=—L 4222, (66)
mp P

Second part
From the second requirement:

nowL ((1 —p)L*Cy | 301+ p)ﬁ252>
2 2 b P)

> 0. (67)

After substituting C into @, we have

> 0.

n ﬂ B 23 (1 — p) L2 B 120%m(1 — p)L2s, B 6n2m(1 + p)L2s,
2 2 bp bp p
Using , one can obtain
n L 2°(1—p)L? 121 —p)Lea(p,pb) 6P (L+p)Les(pipib)
2 2 bp bp p -7
Dividing both sides by 7:

L L 2’(L-p)L? 125(1—p)Les(p,p,b)  6n(1+p)Lea(p,p.b)

2 2 bp bp p -
Multiplying the left side by 2 and entering a variable r = nL,

4 — p)r2L? ~ 24(1 = plea(pyp,b)r 12(1 +p)ea(p,p, b)r

0.

1— > 0. 68
bpL? bp p - (68)
Consequently, we could consider the next inequality
41 —p)r2L? 36 b
1—p— ( p)r _ 02(p5p7 )’I" > (. (69)

bpL? p -

Since %{p) + 12(1 + p) < 36, if ro = noL satisfies , then r( satisfies too. Hence,
we could solve (69) to find a bound on r. Therefore,

2 A
_ (1 4 M) + \/(1 + 3602(P;P;b)> + 16(;};1’2)112

r < - ’
- 8(1—p)L2
bpL?
B 2
= - —.
36¢2(p,p,b) 36¢2(p,p,b) 16(1—p) L2
(vt o 1 2o i
Then,
n< 2

- =
I ((1+ 3662(5,}),1))) +\/(1+ 36<:2(pp,p,b)) 4 16(;pL;;)L2>

Using (a + b)? < 2a? + 2b%, we claim that
2

L ((1 + M) + \/2 + 25920/’5;gp,p$b) + 16(;p—Lp2)L2>

n <
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Third part
From the third requirement one can obtain

L2 ~ [ (1—p)L? 1 L2
L+(1_B) o 400 (LZpLPCo 30 4pLs) (1)
m 2 b

Substituting Cy in :

L2 2C(1 — p)L? 6 6C(1 L?
n_ﬂ81+<m<ﬁ+82)+<+p>82
m mp  p

2 b

Hence, we get

nL? p n 20(1 — p) L%y n 125,C(1 — p) L2 N 6C (14 p)L2sy

27! bmp bp p

Combining two last terms:
nL? p 2C(1—p)L2n  CL%sy (12(1 —p)
— — =51+ + b

6(1 <0.
551 b P + 6( —|—p)>_

Grouping terms with 7:

L2 2C(1 —p)lL? Of2sy (12(1 —
D (L (1-p) Py CL?sy (12(1 —p)
m bmp 2 b

+6(1 +p)) <0.

Using the , one can obtain

L? 20(1—p)L? CLeay(p,p,b) [12(1 — ,p,b)L2
D (L (1-p) N ca(psp,b) ((12( p)+6(1+p) Sq(pp L7
m bmp pm b 2mL
Consequently,
oi? [ 20(1—p)i?\ | 20Les(p,p.b) (12(1—p) e1(p,p, )1
1 6(1 < 227
pm ( bpL? + pm b +6(l+p)) < mL
Multiplying both sides by 7:
2nL 2C(1—p)L*\ | 2Cca(p,p,b) (12(1 - p) c1(p,p,b)L
— |1 6(1 < 72
Then, we can consider next inequality
2nL 2C(1 — p) L2 36Ccs(p, p, b)
11 <
( + pr2 + p2 = C (pvpy b)7 (73)

where we use %{p) +6(1+p) <18 — 6p < 18. Hence, if we choose 7 equal to some 7 at
which holds, then (72 holds too. Therefore, we can bound 7:

pei(ppb)L?  36Cca(p,p,b)
L2

ns 2C(1 )g2
2L (1+ 201
Using L>L:
_ 36Cc2(p,p,b)
) < pe(psp,b) 25(71 2 (74)
—-p
2L (1 + W)
Fourth part
From the fourth requirement, we get:
3n? 1—-p)L2Cy  3(1+p)L?
”p51+(1’2))52+2n2(( pb) 0, 3 +§) 2) _s, <o (75)
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Substituting the , we have

2 . 372 . 272 2 72
s P 20 —p)n°L” | 1201 —p)nL7sy  Oy7(L+p)L7so <0,
2 bmp bp p

Then, after combining last two terms, we get

3n? 21 —p)BL?  n2L%s, (12(1 —
U RN (A —pp’L® | 9"°L%s; (12(1 —p)
2 bmp p b

+6(1 +p)) <0.

Using the , one can obtain

3’eL(p,p, b2 pes(pp )L 201~ p)n’L?

mpL 2m L2 bmp
2L b) [12(1 —
pm b
Consequently,
nL (3nei(p,p.b)L*  2p(1 = p)*L?  nes(p,p,b) (12(1 - p)
— 6(1
o ( mIL? * bmpL * m b +O(L+p)
b)L
_realpp L (76)
2mL?
If we choose ) < £, then we could consider next inequality
3nci(p,p b)L? | 2p(1 = p)*L? | nea(p,p,b) (12(1 - p)
1
mL? bmpL + m b +6(1+p)
b)L
_relppb)L (77)
2mL?

If ([77)) holds for some 79, where noL < p, then holds respectively. Hence, we could solve
(77) relative to 7. For convenience, multiply both sides of the equation by m:

3ne1(p,p, b)L? 2p(1 — p)n?L?
L2 bpL

12(1 — p)

C ) abL
+nea(p,p,b) (b +6(1 +p)> _re2lpp, D)L

212

<0

Moreover, we could use M +6(1+p) <18 and p < 1. Therefore, using L < L, we can
consider

L 2(1 —p)n*L*  pealp,p,b)L
72 (3nc1(p, p, b) + 18nca(p, p, b)) + Wl o2 =0 (78)
Then, if 7y satisfies (78)), consequently it satisfies (77)) and (76]). So, we could solve ([78):
2(1 - p)n?L? L pea(p,p, b)L
—_—t+ 3 b) +18 b)) - —————— <0.
pr + L2 ( C1(p7p, ) + CQ(pvpu )) 9] 2 =~

Solving the inequality, we get

— (3¢1(p,p, ) + 18¢2(p, 2, b)) + 1/ (Be1 (.1, b) + 18¢a(p, p, ) + 22 eealed)

ns 4(1—p) L2
bpL
_ 4pca(p, p, b)
4L (<3cl<p,p, b) + 18ca(p,p,b)) + 1/ (3e1(p,p, ) + 18ca(p, p, ) + 2d eealond) )
pcz(p, p, b)

L (<3c1<p,p7 b) + 18ca(p, ;b)) + 1/ (3e1(p,p, b) + 18ca(p, p, b)) + S eealond) ﬁ)
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Using that (a + b)? < 2a% + 2b and L—4 < %, we can give a bit rough estimate of 7:

n < pC2 (papa b) - )
L (301(/)7177 b) + 18c2(p, p,b) + \/180%(/)7;0, b) + 648c3(p, p, b) + Wfi)
(79)
Selection of ¢ (p,p,b) and cx(p, p,b)
Let us take these parameters in the following way
~ (1-pL?> 1
b) =2C(1 — 4+ =
Cl(p7p7 ) ( +p) pr2 + C )
2
N
psp;b :
2l )= 18C
From , we get
n< .
2
L ((1+2C£) \/2+ e >
Consequently, we could roughen the estimate by p <1
n< : (80)
(1—p)L2
L <( ) \/2 T prp2) >
From , one can obtain
2C(p+ p?) (\/ onl? é) 2p
= 2c 20(1—p)L2 ’
2L (1+ 290RE )
Hence, final bound is
202 +20(p* + p)y/ G
U 2C(1—p)L2 - (81)
-p
L (1 + 2002 )
From , we have
3
0 < £
2
~ ~ _p)[.2 2 ~ )2 4 —p)p3L2
18CL | 6C(1 + p) ( i é) +&+ \/7202(1 +p)? ( U-nl 4 é) + 2 Hpek
Using that (a + b)? < 2a® + 2b? and p < 1, we claim
n< (82)

p
18CL (12 +14 125@ + \/ 288 + 2 4 BCAnLE 2;15;;’)5)
From 7 < £ and bounds (80), (81) and (82) the next result follows:

Ppy1 < P — *E”VF( 917
Summarizing over ¢, we claim

N—-1
2(®g — ®y)
E|VF(z")|? < 2——
N};Hv W< ==
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where &, = F(2°) — F* = A because of initialization. =~ Hence, for reaching

N1
+ 3 E|VF(z")|]? < €2, we need
k=0

iterations. Choosing 2V uniformly from {zF}2 "', we claim the final result. O

D.4 ProoF OoF COROLLARY [3.5]

Proof. First, we need to clarify that multi-stage consensus technique allows to avoid x>
factor in Theorem [3:4] but apply x to a number of communications. Hence, choosing

b— vnlL b
| nL2

TP = o We get
N =0 =0
comm 62 62

Moreover, number of local computations (in average) is equal to

LA [ 2ny/nk
=n+CX2 n\/ﬁLA
€ n+nk

vnLA

€2

:(’)(n—k\/ﬁfA),

1+ Neomm(pn + (1 = p)b) ) <n+Cyx

€

where C' is a constant from O(-). This finishes the proof. O

D.5 LOWER BOUNDS FOR NONCONVEX SETTING

The main idea of lower bound construction is to provide an example of a bad function for
which we can estimate the minimum required number of iterations or oracle calls to solve
the problem. Hence, we need to consider some class of problems, oracles, and algorithms
among which we shall dwell.

Before we start, let us propose some additional facts for a clear proof.

Consider the next function:

where

B(z) = e / e~ % dt. (84)

It has already been shown in |Arjevani et al.| (2023)) (see Lemma 2) that [(x) satisfies the
following properties:

1. Vo € R [(z) —inf, I(z) < Agd with Ag = 12.
2. l(z) is Lo-smooth with Ly = 152.
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3. Vo € R? ||VI(7)]|oo < Go with Gy = 23.
4. Ve e R : [z], = 0 [|[VI(z)||s > 1.

Moreover, let us introduce the next definition

prog(z) = {O z=0; (85)

maxi<;<a{j : [z]; # 0} otherwise.
Hence, the function f is called zero-chain, if

prog(V f(z)) < prog(z) + 1.

This means that if we start at point x = 0, after a gradient estimation we earn at most one
non-zero coordinate of x. What is more, I(z) is zero-chain function.
Let us formulate an auxiliary lemma which helps to estimate the lower bound.

Lemma D.9. Consider the function l(x) which is defined above. Suppose that

h(z) = —0()e(l2]) + Y (\I/(—[x}jfl)‘b(—[x]j)—‘I’([x]jfl)@([ﬂc]j))7

j odd; j>2

()= > (W(=[a],_)®(~ [a],) - w(la],_,)@(1a],))

J even

Hence, if we divide lAZ(x) into n parts in the following way:

Zz(x) = %Zim(.f),
k=1
where
) —nWe(l)+ P n (W(= ;)@ (= [a]) — w(lal; )@ (), k=1
l1k($) = j>2, j=1 mod 2n

S (Ul []) - B, )P (,)) 1

Jj=2k—1 mod 2n
br@) = Y (W= (el )@(= [e]) — w(le];_)(1a],))
j=2k mod 2n

then
I~ or -
- D IVEn(y) = Vig(@)|* < nLg|ly — |
k=1
fori=1,2 and for all z,y € R?.

Proof. Let us consider the structure of Vi, (). This part of [;(z) depends only on some
coordinates of z. Hence, given the definition of each slice, we can identify which coordinates

of i,k(x) can be non-zero. For example, Vill(x) can be non-zero only in components
1,2n,2n + 1,4n,4n + 1,... because this function depends only on these coordinates.

Moreover, since n > 2 (when n = 1, the fact above is obvious), if we consider ;(z) and

l;j(x), then there is no intersection of sets of potentially non-zero coordinates of gradients of
these functions due to the construction. Using that full gradient is

. 1N -
Vii(z) = —~ > Vi(x),
k=1
one can obtain

1 & - - ~ A
- D IVEin(y) = Vi(@)|* = || Vi(y) - Vii@)|* < nLlly — .
k=1
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Remark D.10. Lemma [D.9] asserts that in essence the function under consideration and its
pieces satisfy the assumptions from Theorem The main effect consists of the scaling
factor ﬁ

Proof of Theorem [4.5]

Proof. We need to introduce functions F;, structure of a time-varying graphs and mixing
matrices respectively to construct the lower bound. Then, we can consider next functions

h@) = T | —¥OR(el) + 3 (9= la],-)@(= [a],) = W(la],_)@(),) |
3 7 odd
@) =y | 2 (W lel, )@= fe]) — ¥(lal,_)2(0a])

As a sequence of graphs, we take star graphs, for each of which the center changes with
time according some rules, which we explain later. We derive the mixing matrix from the
Laplacian matrix of the graph at the moment ¢ in the next way:

o
Amaaz (L(t))

This matrix is obviously a mixing matrix by reason of symmetry and doubly stochasticity.
Moreover, p(t) =1 — ua(W(t)), where us(W (%)) is the second largest eigenvalue of W (t).
Consequently, using the spectrum of L(t), one can obtain that p(t) = p = %

Let us specify the functions F; at each node:

W) =1- L(t).

L% (z) 1<i<[2] sies,

3L
Fi(x) = ggfb (L) [2]+1<i<2[2]<iebls,
0 otherwise < i € S,

where we clarify C later.

Also we need to separate each function into n blocks. It is enough to divide F;(z) according
to Lemma[D.9| with corresponding multiplicative constants. Therefore, since [, (z) and lo(z)
are 3Lg-smooth, F;(z) is L-smooth for every C > 0.

We also can bound F(0) — inf,, F(x) using

: 1 & , LC?*Aod
F(0) —inf Fx) < — ;(Fi(x) — inf Fife)) £ ==
Hence, we need
2
LC*Agd <A
3L -

Now we are ready to divide our proof into three parts.

Number of communications

We want the transfer of information between sets S; and S5 to not occur for as long as
possible. This requires that the center of the star graph is not a vertex from S7 or Sy, or it
is not a vertex of S3 that already has information from other sets of vertices. Therefore, let
us specify the changes of the graphs with time according to the following principle: first we
go through all the vertices of the set Ss3, and after that we choose the vertex that allows the

m
exchange of information between S; and S,. Then, mentioning that L 3~ F;(z) = gfozl (%)
i=1

and

= prog(z) + 1 (prog(x) is even and i € S1) or (prog(zx) is odd and i € Ss);

prOg(vFZ (.’L’)) { S prog(];) otherWiSe,
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we claim that for increasing the prog(z) at 1 we need at least m — 2[%1 + 1 iterations
(without considering local computations). Therefore, after N iterations

N
= N< | ———— )
prog(N) 1§i§ﬂr§{a§§tSNprog(wz) < {m—ﬂ’ﬂ +1J +1

Also it is easy to make sure that if m > 3, then m — 2[%] +12> 7. Then

prog(N) < mJ .y

Number of local computations

Here we use the same idea as in first part. Let us consider the next oracle computation:
we take one of pieces on each node uniformly, i.e. P{block with index k is chosen} = 1 for
every k = 1,...,n. Hence, at the current moment, we need a specific piece of function,
because according to structure of {(z), each gradient estimation can "defreeze" at most one
component and only a computation on a certain block makes it possible. Let us define the

number of required gradient calculations as ng,,4. Therefore,

oo . i—1
1 (n—1
E{navg} = § E ( n ) =n,

i=1

where % ("T’l)ifl is a is the probability that at i-th moment we take the correct piece. Thus,

after K local computations on each node we can change at most {%J + 1 coordinates.
Final result

Hence, if considered algorithm makes N communications and K local computations on each
node, then

AN K
prog(N,K) = max prog(z!) < min (\‘mJ +1, \‘ J + 1)

1<i<m, 0<t<N n

Consequently, for every N > 7 and K > n consider
d=24min| |—|,|—1| ).
m n

) (16N 4K)
d<min| —,— ).
m ' n

It is easy to verify thar

Moreover, we choose C' as

oo 3LoA :
N LAomin(%,%) '

Hence, clarifying that prog(N, K) < d, we have

L2C? L2C?
E[|VF(@N)|? > min [|[VF(@EN)|? = in |VI(zn)]? >
IVEGEN)IP 2 min [VFGE)|” = S5 min [VIE0I 2 57
LAmMm LAn LAm LAn
= max , > +
48N LoAg 12K LoAg 96N LoAg 24K LoAg

_q LAm+LAn
o N K )’

where the second inequality holds from fourth property of ().
Consequently, applying Lemma to {F;}, and noting that xy = © (m), we finish the
proof. O
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