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Abstract
Machine learning practitioners often face signifi-
cant challenges in formally integrating their prior
knowledge and beliefs into predictive models, lim-
iting the potential for nuanced and context-aware
analyses. Moreover, the expertise needed to inte-
grate this prior knowledge into probabilistic mod-
eling typically limits the application of these mod-
els to specialists. Our goal is to build a regres-
sion model that can process numerical data and
make probabilistic predictions at arbitrary loca-
tions, guided by natural language text which de-
scribes a user’s prior knowledge. Large Language
Models (LLMs) provide a useful starting point
for designing such a tool since they 1) provide
an interface where users can incorporate expert
insights in natural language and 2) provide an op-
portunity for leveraging latent problem-relevant
knowledge encoded in LLMs that users may not
have themselves. We start by exploring strate-
gies for eliciting explicit, coherent numerical pre-
dictive distributions from LLMs. We examine
these joint predictive distributions, which we call
LLM Processes, over arbitrarily-many quantities
in settings such as forecasting, multi-dimensional
regression, black-box optimization, and image
modeling. We investigate the practical details
of prompting to elicit coherent predictive distri-
butions, and demonstrate their effectiveness at
regression. Finally, we demonstrate the ability
to usefully incorporate text into numerical pre-
dictions, improving predictive performance and
giving quantitative structure that reflects qualita-
tive descriptions. This lets us begin to explore
the rich, grounded hypothesis space that LLMs
implicitly encode.
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1. Introduction
Incorporating prior knowledge into predictive models is
highly challenging which can restrict the scope for detailed,
context-sensitive analysis. In addition, the skill required
to incorporate this prior knowledge into probabilistic mod-
elling can restrict the use of these models to experts. In this
work, our objective is to develop a probabilistic prediction
model that facilitates user interaction through straightfor-
ward, natural language. For this purpose, we explore strate-
gies for eliciting explicit, coherent numerical predictive
distributions from LLMs.

Why go to so much effort to elicit predictions from a
slow, expensive, and sometimes inconsistent model like
an LLM? We expect their hypothesis class to be both rich,
and grounded in exactly the kinds of high-level side infor-
mation that we currently struggle to communicate to our
numerical models. For instance, knowing that prices rarely
go below zero, that certain kinds of sensors can saturate at
particular values, or that trends almost always eventually
level off, are easy to express in natural language, but not
straightforward to incorporate into a model without getting
lost in difficult-to-specify details about aspects of the do-
main that aren’t well understood. To summarize, we want
to develop such a model because it would allow users to 1)
provide prior, potentially expert, information to the model
about the problem setting in plain-language rather than at-
tempting to capture this information in closed form priors
(e.g. Gaussian Process kernels) and 2) it would allow users
to access problem-relevant latent knowledge encoded in
LLMs that users may not have themselves.

LLMs have recently been shown to be able to condition
on the particular task being solved, leveraging contextual
information to make better predictions or decisions (Stanton
et al., 2022; Choi et al., 2022). They have also been shown
to competitively predict time series based only on a text
tokenization of numerical data (Gruver et al., 2023). In this
work, we further push in both these directions; 1) using
LLMs for numerical prediction tasks going beyond one-
dimensional time series forecasting to multi-dimensional
regression and density estimation and 2) exploring the abil-
ity of these models to condition on both numerical data and
rich, unstructured text to improve these predictions.
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Figure 1. Predictive distributions from an LLMP conditioned on both data and text information. The tenth-percentiles from 50 samples
are visualized in faded blue and the median is presented in dark blue with five random samples shown in various colours.

In this paper we make the following contributions:

• We define LLM Processes (LLMPs) using methods we
develop for eliciting numerical predictive distributions
from LLMs.1 LLMPs go beyond one-dimensional time
series forecasting to multi-dimensional regression and
density estimation. We propose two approaches for defin-
ing this joint predictive distribution over a collection of
query points and evaluate their compatibility in principle
with the consistency axioms necessary to specify a valid
statistical process.

• We develop effective prompting practices for elicit-
ing joint numerical predictions. We investigate various
methods for conditioning LLMs on numerical data, in-
cluding prompt formatting, ordering, and scaling. We
characterize which schemes perform best on a set of syn-
thetic tasks.

• We show that LLMPs are competitive and flexible re-
gressors even on messy data. Through an extensive set
of synthetic and real world experiments, including im-
age reconstruction and black-box function optimization,
we evaluate the zero-shot regression and forecasting per-
formance of LLMPs. We demonstrate that LLMPs have
well-calibrated uncertainty and are competitive with Gaus-
sian Processes (GPs), LLMTime (Gruver et al., 2023),
and Optuna (Akiba et al., 2019). We show that LLMPs
use in-context learning to automatically leverage infor-
mation from related datasets, can easily handle missing
datapoints, perform image reconstruction, and output mul-
timodal predictive distributions.

• Lastly, we demonstrate the ability to usefully incorpo-
rate problem-relevant information provided through
unstructured text into numerical predictions, visual-
ized in Figure 1, resulting in quantitative structure that

1Source code available at: https://github.com/
requeima/llm_processes

reflects qualitative descriptions. Other additions such as
labelling features using text and specifying units allow
LLMPs to make use of usually-ignored side information.

2. LLM Processes: Defining a Stochastic
Process That Can Condition on Text

Our goal for this section is to use an LLM to elicit joint
predictive distributions over arbitrary sized target sets that
we can guide and modify using natural language. Please
see Appendix D for a discussion on work related to our
method. Formally, given a set of input and output ob-
servations Dtrain = {(xi, yi)}Mi=1 and some text, T , we
would like to elicit the predictive distribution defined by
an LLM at a collection of targets {(x∗

j , y
∗
j )}Nj=1 denoted

pLLM(y∗1 , . . . , y
∗
N | x∗

1, . . . , x
∗
N , Dtrain, T ).

Rejection sampling from an LLM allows us to access what
we may interpret as the LLM’s predictive distribution and
gain insights into the model’s inductive biases; sampling
from the LLM’s categorical distribution over text tokens
while ignoring non-numerical tokens yields numerical sam-
ples from the LLM. The process of sampling from an LLM
is depicted in Figure 2 and Algorithm 1 with sample prompts
in Appendix C. Since an accurate sampling-based empirical
distribution incurs a high computational cost, next we define
an approach to elicit continuous likelihoods from an LLM.

Continuous Marginal Likelihoods From an LLM. We
approximate a continuous density over our target values by
discretizing the space using bins with arbitrarily fine pre-
cision, similar to the method used in Gruver et al. (2023).
Crucially, this hierarchical approach allows us to compute
the probability of a bin with width 10−n. For example, if
n = 1 then Pr{y ∈ [1.0, 1.1)} = p(1)p(.|1)p(0|1.) because
‘1.0’ is a prefix for all y ∈ [1.0, 1.1) . We can convert prob-
ability mass to probability density by assuming a uniform
distribution within each bin, and dividing the mass by the
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Figure 2. Sampling from an LLM using either independent marginal or autoregressive sampling.

bin width. A visualization is in Figures H.2 to H.4.

Unlike (Gruver et al., 2023), we do not rescale the values to
remove decimal places. We hypothesize that such scaling
removes prior information communicated to the LLM via
the scale of the problem. We examine the effect of scaling
values in Section 3. We also differ from (Gruver et al., 2023)
by including a terminal token after every value in our prompt
– for example, given a terminal token ⟨t⟩, we represent 12
as 12⟨t⟩. Including a terminal token prevents numbers of
varying orders of magnitude to share the same prefix – i.e.
p(1)p(2|1)p(⟨t⟩|12) no longer includes the probability of
numbers in [120, 130), [1200, 1300), etc.

Note that this approach does not guarantee that P (12⟨t⟩)
yields the mass assigned by the LLM to values in the bin
[12, 13) but we empirically observed that our predictive
distribution closely matches the sampling distribution to our
satisfaction. See Section H.1 for details and comparisons.

Defining an LLM Process. Thus far we have established
a procedure defining the predictive distribution at a single
target location, pLLM(y∗n | x∗

n, Dtrain, T ). We now outline
two methods which we call independent marginal (I-LLMP)
and autoregressive (A-LLMP) predictions, for defining the
joint predictive distribution over a collection of target points:

pI-LLMP(y
∗
1 , ..., y

∗
N | x∗

1, ..., x
∗
N , Dtrain, T ) =

N∏
n=1

pLLM(y∗n, | x∗
n, Dtrain, T ) (1)

pA-LLMP(y
∗
1 , ..., y

∗
N | x∗

1, ..., x
∗
N , Dtrain, T ) =

N∏
n=1

pLLM(y∗n | y∗1 , ..., y∗n−1, x
∗
1, ..., x

∗
n, Dtrain, T ) (2)

We note that Equation (1) satisfies the Kolmogorov Exten-
sion Theorem (Oksendal, 2013) therefore defining valid
stochastic process (see Appendix A.3). However, it assumes
conditional independence given the training set and model
weights and the stochastistity represented by the model is
via independent marginals. Equation (2) takes inspiration
from the autoregressive structure of the LLMs predictive
distribution and should yield much richer predictive distri-

butions as we are now able to model dependencies between
output variables. However, this definition is no longer guar-
anteed to give us a valid stochastic process as the predictive
distribution is now target order dependent and will likely fail
the Kolmogorov exchangability condition. We investigate
both of these questions in Section 3.

Connection to Neural processes Neural Processes (NPs)
(Garnelo et al., 2018) are a class of meta-learning mod-
els parametrized by neural networks and trained to learn
a map from training (context) sets to predictive distribu-
tions, pθ(y∗1 , . . . , y

∗
N | x∗

1, . . . , x
∗
N , Dtrain). The definitions

in Equations 1 and 2 take inspiration from the joint distribu-
tions defined by Conditional NPs (Garnelo et al., 2018) as
independent marginals conditioned on the training/context
set and Autoregressive NPs (Bruinsma et al., 2023) utiliz-
ing the chain rule of probability, respectively. Through this
lens, LLMPs can be viewed as examples of NPs. However,
NPs are directly trained to output this predictive distribution
where as LLMPs are repurposing pretrained LLMs.

Multi-dimensional Density Estimation and Handling
Missing Data. We highlight that, through the flexibility
of the LLM prompt, we do not have to draw a distinction be-
tween which variables, or variable dimensions are to be mod-
elled or conditioned and can easily handle missing values.
Suppose we have a collection of variables {x1, . . . , xn} and
{y1, . . . , ym} (or more), some subset of which we would
like to regress on (including x and y-values) and the remain-
der we wish to condition on. To do so using an LLMP, we
simply construct the training prompt such that the variables
we would like to regress on occur at the end of the prompt
and are blank (generated) when sampling from the LLMP.
If any values are missing they can simply be removed from
the prompt.

3. LLMP Configuration
In all of the experiments, we use six different open source
LLMs: Mixtral 8×7B, Mixtral-8×7B-Instruct (Jiang et al.,
2024), Llama-2 7B, Llama-2 70B (Touvron et al., 2023),
Llama-3 8B, and Llama-3 70B (AI@Meta, 2024). Our
primary metrics are negative log probabilities of the model

3



LLM Processes: Numerical Predictive Distributions Conditioned on Natural Language

1

0
NL

L
Prompt Formatting

Sigmoid-10 Quadratic-20 Linear+Cosine-75
0.00

0.05

0.10

M
AE

 _,_
 x_y_

 _,_\n
 _, _\n

 (_, _)
 x=_, y=_\n

1

0

NL
L

Training Data Ordering

Sigmoid-10 Quadratic-20 Linear+Cosine-75
0.0

0.1

0.2

M
AE

 distance
 random

 sequential

0

5

NL
L

Prompt y Scaling

Sigmoid-10 Quadratic-20 Linear+Cosine-75
0.000
0.025
0.050

M
AE

[0, 1]
[-1, 1]

[0, 10]
[-1000, 1000]
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evaluated at the true function values f(x∗) averaged over
the target locations (NLL) and Mean Absolute Error (MAE)
between the predictive median and the true function value.
Unless otherwise stated, we use 50 samples from the LLM
at each target location x∗ and compute the median and the
95% confidence interval of the sample distribution. Since
the LLMs used in our experiments have undisclosed training
sets, we address the steps taken to mitigate the issue of data-
leakage in Appendix F. Additional implementation details
are in Appendix G.

Prompt Engineering. We perform a set of experiments
for determining the best LLMP prompt configuration. We
use the Sigmoid, Quadratic, and Linear+Cosine functions
with 10, 20 and 75 training points, respectively (see Ap-
pendix E.1) with I-LLMP using the Mixtral-8×7B LLM.

• Prompt Formatting Two separators are required to achieve
the best performance. One to separate the x and y values
within a pair and another to separate the x, y pairs. Fig-
ure 3 (left) demonstrates that , \n is the best option in
terms of performance and token efficiency.

• Prompt Ordering Figure 3 (middle) shows that ordering
the training points by distance to the current target point is

best, outperforming both random and sequential ordering.
We posit that ordering by distance provides a hint to the
LLM to weigh the contribution of closer training points
to the current target point to a greater degree.

• Prompt y-Scaling Figure 3 (right) shows that performance
degrades as the range of the y components of the training
points increases and when incorporating negative values.
This is due to the fact that when the range is wider, the
LLM must accurately generate more numerical digits and
potentially a negative sign when predicting f(x∗).

• top-p and Temperature Figure H.9 shows that perfor-
mance is surprisingly insensitive to varying the LLM nu-
cleus sampling parameter top-p (Holtzman et al., 2020)
and LLM softmax temperature.

Autoregressive vs Independent Marginal Predictions. In
this series of experiments we examine two questions: first,
does the autoregressive defininiton of the joint predictive
likelihood (A-LLMP) in Equation (2) improve performance
versus the independent marginal definition of Equation (1)
(I-LLMP). Second, “how close” is A-LLMP to a stochastic
process in terms of performance variability across query
orderings.
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Figure 6. Fashion-MNIST Mixtral image reconstruction results. The blue pixels indicate unobserved.

We first look at log-likelihoods and MAE for A-LLMP and
I-LLMP using the random and distance training point order-
ings discussed earlier. Results can be seen in Figure 4 (left).
Similar to our findings earlier, ordering the training values
according to distance to target has a large effect, improving
performance for both I-LLMP and A-LLMP. Unsurpris-
ingly, the richer joint distribution given by A-LLMP gives
us better predictive performance.

We next examine the variability in performance of A-LLMP
when different autoregressive target orderings are used to
get a sense of how far our method is from a stochastic pro-
cess (which would be permutation invariant in the target
points). The results of using ten sets of randomly ordered
target points compared to I-LLMP and the ground truth
log-likelihood of the test sample under the generative dis-
tribution are presented in Figure 4 (center). Note that the
training data is distance sorted in all cases. We also present
the result when ordering target points according to distance
to the closest training point, from smallest to largest. We
make three key observations: first, log-likelihood perfor-
mance of all A-LLMP orderings is better than I-LLMP.
Second, the variance of random orderings is small on the
scale of the log-likelihood of the generative model. And
third, distance ordering the targets gives better or at least
competitive performance with a random ordering. These re-
sults present practitioners a choice: do you care more about
using a valid statistical process or obtaining good predictive
performance? If it is the latter, you would be better served
using A-LLMP.

4. Evaluating LLMP Performance
In this series of experiments, we evaluate the performance
of LLMPs in a wide variety of settings. Additional details

and results for all experiments in this section can be found
in Appendix I.

1D Synthetic Data Experiments. To show that LLMPs
are a viable regression model with well-calibrated uncer-
tainties, we benchmark in Table 1 our A-LLMP method
against a GP on the Function Dataset (Appendix E.1). The
GP uses an RBF kernel with optimized length scale and
noise. The Mixtral-8×7B A-LLMP achieves the highest
log-likelihoods averaged over 7 function sizes and 3 seeds
on 10 out of 12 of the functions and equal or better MAE
on 8 of the functions. Visualizations of the predictive dis-
tributions and plots of MAE and A-LLMP are shown in
Appendix I.1. To verify that LLMPs are able to produce
non-Gaussian, multimodal predictive distributions we sam-
pled training data from synthetic, multimodal generative
distribution (experimental details in Appendix I.2). The
Llama-3-70B LLMP predictive distribution is visualized in
Figure 4 (right).

Table 1. Mean and standard error of MAE and Avg log p(y) av-
eraged over over the seven training set sizes and 3 seeds of each
function for Mixtral A-LLMP and a GP with an RBF kernel.

GP MIXTRAL

FUNCTION MAE ↓ AVG logp(y) ↑ MAE ↓ AVG logp(y) ↑

BEAT 0.33±0.01 -0.97±0.23 0.31±0.01 0.78±0.03
EXPONENTIAL 0.32±0.12 1.03±0.31 0.08±0.01 1.56±0.04
GAUSSIAN WAVE 0.20±0.02 0.11±0.21 0.24±0.01 0.08±0.08
LINEAR 0.11±0.04 1.45±0.22 0.05±0.00 2.38±0.08
LINEAR + COSINE 0.16±0.02 0.64±0.18 0.19±0.01 0.15±0.10
LINEAR × SINE 0.12±0.03 1.38±0.22 0.05±0.00 1.90±0.02
LOG 0.09±0.03 1.57±0.19 0.04±0.00 2.20±0.02
QUADRATIC 0.07±0.01 0.40±0.29 0.07±0.01 1.35±0.03
SIGMOID 0.37±0.05 -0.03±0.21 0.51±0.04 0.80±0.04
SINC 0.08±0.02 1.44±0.20 0.08±0.02 1.96±0.03
SINE 0.22±0.02 -0.23±0.32 0.27±0.02 -0.14±0.11
X × SINE 12.79±1.07 -12.64±1.42 12.45±1.37 -3.30±0.23

Comparison to LLMTime. Figure 5 demonstrates that
A-LLMP yields superior results in terms of MAE and NLL
when compared to LLMTime using Llama-2-7B on a fore-
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casting task using the weather dataset (described in Ap-
pendix E.2). Additional plots with missing training data are
in Appendix I.3. We posit that A-LLMP betters LLMTime
due to the fact that 1) A-LLMP naturally handles irregularly
spaced x and y data whereas LLMTime uses only regularly
spaced y information requiring imputation with NaN values
where data is missing; and 2) A-LLMP performs no scal-
ing on y values in contrast to LLMTime that scales data to
eliminate the use of decimals and normalize the range of the
data and as a result removes information that the LLM can
potentially leverage.

In the next three experiments we showcase the ability of
LLMPs to handle multi-dimensional data.

Image Reconstruction. As a 2-dimensional input experi-
ment, Figure 6 shows reconstruction results from images
drawn from the Fashion-MNIST dataset (Xiao et al., 2017).
We convert pixel data into prompt data points by forming
a series of (row, column, pixel value) tuples. Additional re-
sults and details are in Appendix I.4. Using 20% train pixels,
the basic form is captured and at 50%, the reconstruction is
accurate despite the sharp pixel intensity transitions.

Black-Box Function Optimization. Black-box optimiza-
tion involves minimizing or maximizing a function where
there is only access to the output of a function for a speci-
fied input. We benchmark the ability of LLMPs to perform
maximization on six commonly used multi-dimensional

functions. We compare our results using Llama-2-7B to
Optuna (Akiba et al., 2019), a commercial hyperparame-
ter optimization framework. Results and implementation
details are in Appendix I.5. In all cases, LLMPs obtain as
good or better approximation to the true maximum value in
a fewer number of trials.

Simultaneous Temperature, Rainfall, and Wind Speed
Regression. To examine how well an LLMP can model
multi-dimensional outputs, we compare LLMP regression
to a multi-output GP on the weather dataset described in
Appendix E.2. Figure 7 shows the results for the Llama-3-
8B LLM (top) and a 3 output RBF kernel GP with trained
hyperparameters (bottom). The LLM is similar to and in
most cases better than the GP in terms of MAE and NLL.

In-context Learning Using Related Data Examples. In
this experiment, we investigate LLMPs’ ability to learn from
similar examples in-context to predict average monthly pre-
cipitation across 13 Canadian locations (Environment and
Climate Change Canada, 2024), one from each province
and territory. For each location, we use the Mixtral-8×7B
A-LLMP to forecast 32 months of average precipitation
values given the previous four month observations taken
from a random historical three-year period between 1913-
2017 (conditional on data availability). It is then provided
with 1-12 examples of random three year periods of his-
torical values from the same location in-context. Results
shown in Figure 8 and experimental details in Appendix I.6.
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Figure 9. Results of a Mixtral-8x7B Instruct I-LLMP predicting US housing prices. Left: Predictions for 10 randomly selected houses
using index style 1) and 5). Xs are mean predictions using 30 samples from the LLMP and error bars indicate 2 standard deviations.
Centre and right: Average MAE and NLL performance of the LLMP over 10 experiments with error bars representing the standard error
for experiments from Section 5.

Conditioning the LLMP on historical examples improves
performance saturating after 4 years, and degrading slightly
thereafter. Generally, the LLMP is able to use the examples
to pick up on seasonal trends from history. We note that
some locations do not have obvious or strong seasonal pat-
terns but examples still help performance in these cases (see
Appendix I.6).

5. Conditioning LLMPs on Textual
Information

One of the most exciting directions of LLMPs is the poten-
tial to incorporate prior information about problems via text.
Now that we can examine functional predictive distributions
of LLMs, we can begin to explore their rich prior over func-
tions by conditioning on both text and numerical data. In
this section we present two experiments with details and
additional experiments presented in Appendix J.

Scenario-conditional Predictions. In this experiment, we
examine the influence of text providing information about
various synthetic problem settings on the predictive distri-
bution of an LLMPs. In all of the following examples, we
provide the same two synthetic training points to the LLMP
but change the prompting text that comes before the training
data. We then use A-LLMP with Llama-3-70B to forecast
trajectories 50 steps ahead. We begin by examining the pre-
dictive distribution with no prompt (Figure 10a). We prompt
the LLMP to generate daily temperature measurements in
degrees Celsius from Montreal in January (Figure 10b) and
May (Figure 10c), and monthly precipitation values from
San Diego, CA (Figure 10d) and Singapore (Figure 10e).
Figure 1 Shows the results of prompting the LLMP to gen-
erate (left) a stock price financial time series (centre) for a
company that eventually goes out of business and (right) for
a company whose price goes to zero on day 30.

Indeed, the LLMP modifies the predictive distribution ac-
cordingly relative to the no prompt predictions. We highlight
the following observations: first, for prompts b) and c), the
model moves about half of its predictive mass below zero

for temperatures beginning in January and above zero for
the May temperatures. Second, the LLMP is able to recall
actual historical trends for average monthly precipitation
for Singapore and San Diego to condition on prompts d)
and e). Despite getting the trend correct, we note that the
median prediction in d) seems to be biased toward the train-
ing values and not reflective of the actual monthly median.
Last, for stock price simulations, the model places all of its
density on positive numbers since it is modelling prices. It
is able to produce realistic trajectories and decreases them
in expectation when prompted that the company goes out
of business. The model is able to condition on the fact that
the price goes to zero on day 30 which correctly interprets
the meaning of the x-values as days starting from 0, that
the y-axis is the price and the phrase “price goes to zero”
corresponds to a y-value of zero.

Labelling Features Using Text. In the following example,
we examine the performance of a Mixtral-8x7B Instruct I-
LLMP on predicting American housing prices. The dataset
(Larcher, 2023) contains 39980 housing prices and various
variables around housing and demographics for the top 50
American cities by population. Note that this dataset was
generated on 12/09/2023, however it contains data from
the 2020 US Census and the 2022 American Community
Survey (ACS) so we cannot guarantee that models did not
see data within this dataset during training.

For each prediction task, we show the I-LLMP 10 randomly
selected training examples from the dataset and predict on
20 randomly selected test examples. In the prompt, before
the numerical value (price) we provide a string which en-
codes the datapoint index/features that the model can use.
For our first experiment we examine the behaviour of the
LLMP when more features are added to the prompt. We
experiment with five ways of indexing the training and test
points; For case (1), we provide latitude and longitude of
the house as numerical values (eg. 32.74831, -97.21828)
converted to strings similar to our method in previous ex-
periments. For the remaining 4 cases, we provide additional
labeled features, adding more features for each case with
the prompt for case (5) containing all labelled features, illus-

7



LLM Processes: Numerical Predictive Distributions Conditioned on Natural Language

0 10 20 30 40 50

0

1

2

3

4

(a) No prompt

0 10 20 30 40 50
15

10

5

0

5

10

15

20

(b) Montreal daily temp. in Jan.

0 10 20 30 40 50
15

10

5

0

5

10

15

20

(c) Montreal daily temp. in May

0 10 20 30 40 50
0

2

4

6

8

10

(d) Monthly precip. in Singapore

0 10 20 30 40 50
0

2

4

6

8

10

(e) Monthly precip. in San Diego

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

2

4

6

8

10

12

Av
er

ag
e 

Pr
ec

ip
ita

tio
n 

(in
ch

es
)

Average Monthly Precipitation: San Diego vs. Singapore
San Diego
Singapore

(f) Actual monthly averages

Figure 10. a) - e) predictive distributions from an A-LLMP using LLama-3-70B under various scenario prompts. Black points are two
training points given to the LLM process, the same values for each scenario. The tenth-percentiles from 50 samples are visualized in faded
blue and the median is presented in dark blue with five random samples shown in various colours. Figure f) shows the actual average
monthly rainfall for Singapore from 1991-2020 (Climatic Research Unit, 2024) and San Diego from 2000-2024 (Nat, 2024).

trated with the following example: (2) Location: Fort Worth,
Texas, Latitude: 32.74831, Longitude: -97.21828, (3) Zip
Code: 76112, Median Household Income: 71452.0, (4) Zip
Code Population: 42404 people, Zip Code Density: 1445.0
people per square mile, (5) Living Space: 1620 square feet,
Number of Bedrooms: 3, Number of Bathrooms: 2. This
procedure is repeated 10 times to compute statistics. Results
are presented in Figure 9 (left, centre). Note that the LLMP
is able to take advantage of the additional features provided
to improve predictive performance.

To see examine the effect of adding text labels to the fea-
tures, we ran another set of experiments on 10 new ran-
dom datasets providing the LLMP with either labeled or
unlabelled numerical features. The following are example
feature strings: (i) “30.45738, -97.75516” (ii) “Location:
Austin, Texas, Latitude: 30.45738, Longitude: -97.75516”
(iii) “30.45738, -97.75516, 78729, 107830.0, 30907, 1216.1,
1349, 3” (iv) “Location: Austin, Texas, Latitude: 30.45738,
Longitude: -97.75516, Zip Code: 78729, Median House-
hold Income: 107830.0, Zip Code Population: 30907 peo-
ple, Zip Code Density: 1216.1 people per square mile,
Living Space: 1349 square feet, Number of Bedrooms: 3,
Number of Bathrooms: 2”. Results of this experiment are
presented in Figure 9 (right). Note that the LLMP is not
able to use the raw feature values to improve performance
from only 10 training examples, but is able to do so with
labelled features suggesting that LLM is able to utilize the
latent relationship between the feature and the price once
the feature is identified. We found that the Mixtral-8×7B
Instruct model had the best performance on this task and
was able to utilize text information better (results for other

models in Appendix J.2).

6. Discussion, Limitations, and Societal Impact
Discussion. We defined LLMPs for eliciting numerical
predictive distributions from LLMs and when used as a
zero-shot muti-dimensional regression model are compet-
itive with GPs. Excitingly, we demonstrated the ability
to condition on text to improve predictions and probe the
LLMs’ hypothesis space. An interesting extension would
be to condition on other modalities in addition to text.

Limitations. Along with the flexibility of LLMs, LLMPs
inherit their drawbacks. Maximum context sizes limit the
size of tasks we can apply this method to and the amount of
textual information we can condition on. LLMPs are also
significantly more computationally expensive compared to
Gaussian Processes and standard regression methods. All
of experiments were performed on readily available open
source LLMs that are smaller and generally less capable
compared to proprietary LLMs.

Societal Impact. Our work has demonstrated a new and
useful zero-shot approach for generating probabilistic pre-
dictions using text to augment numerical data. It has the
potential to allow practitioners from fields such as medical
research and climate modelling to more easily access proba-
bilistic modelling and machine learning. Like all machine
learning technology, there is potential for abuse, and pos-
sible consequences from incorrect predictions made with
LLMPs. Also, we do not know the biases in the underlying
LLMs and what effect they may have on LLMPs output.

8



LLM Processes: Numerical Predictive Distributions Conditioned on Natural Language

Acknowledgements
James Requeima and David Duvenaud acknowledge fund-
ing from the Data Sciences Institute at the University of
Toronto and the Vector Institute. Dami Choi was sup-
ported by the Open Phil AI Fellowship. Richard E. Turner
is supported by gifts from Google, Amazon, ARM, and
Improbable. We thank Anna Vaughan for help with the
weather datasets and discussions. We also thank Will Teb-
butt, Matthew Ashman, Stratis Markou, and Aristeidis Panos
for helpful comments and suggestions.

References
Climate Data. National Weather Service, 2024. URL
https://www.weather.gov/wrh/Climate?
wfo=sgx. Accessed: 2024-05-06.

AI@Meta. Llama 3 model card. 2024. URL
https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
Optuna: A next-generation hyperparameter optimization
framework. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data
mining, pp. 2623–2631, 2019.

Binz, M. and Schulz, E. Turning large language models
into cognitive models. arXiv preprint arXiv:2306.03917,
2023.

Bruinsma, W. P., Markou, S., Requiema, J., Foong, A. Y.,
Andersson, T. R., Vaughan, A., Buonomo, A., Hosking,
J. S., and Turner, R. E. Autoregressive conditional neural
processes. arXiv preprint arXiv:2303.14468, 2023.

Choi, K., Cundy, C., Srivastava, S., and Ermon, S. Lmpriors:
Pre-trained language models as task-specific priors. arXiv
preprint arXiv:2210.12530, 2022.

Climatic Research Unit, U. o. E. A. Observed
Historical Climate Data for Singapore. World
Bank Climate Knowledge Portal, 2024. URL
https://climateknowledgeportal.
worldbank.org/country/singapore/
climate-data-historical. Accessed: 2024-05-
06.

Coda-Forno, J., Binz, M., Akata, Z., Botvinick, M., Wang,
J. X., and Schulz, E. Meta-in-context learning in large lan-
guage models. arXiv preprint arXiv:2305.12907, 2023.

Das, A., Kong, W., Sen, R., and Zhou, Y. A decoder-
only foundation model for time-series forecasting. arXiv
preprint arXiv:2310.10688, 2023.

Dutordoir, V., Saul, A., Ghahramani, Z., and Simpson, F.
Neural diffusion processes. In International Conference
on Machine Learning, pp. 8990–9012. PMLR, 2023.

Environment and Climate Change Canada. Monthly
total of daily adjusted total precipitation. Online,
2024. URL https://www.canada.ca/en/
environment-climate-change/services/
climate-change/science-research-data/
climate-trends-variability/
adjusted-homogenized-canadian-data/
precipitation-access.html. Accessed: April
2024, Last updated: 2017-08-09.

Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q., and
Wilson, A. G. Gpytorch: Blackbox matrix-matrix gaus-
sian process inference with gpu acceleration. In Advances
in Neural Information Processing Systems, 2018.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What
can transformers learn in-context? a case study of sim-
ple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T.,
Saxton, D., Shanahan, M., Teh, Y. W., Rezende, D., and
Eslami, S. A. Conditional neural processes. In Interna-
tional conference on machine learning, pp. 1704–1713.
PMLR, 2018.

Gramacy, R. B. and Lee, H. K. Cases for the nugget in mod-
eling computer experiments. Statistics and Computing,
22:713–722, 2012.

Grigore, B., Peters, J., Hyde, C., and Stein, K. Methods to
elicit probability distributions from experts: a systematic
review of reported practice in health technology assess-
ment. Pharmacoeconomics, 31:991–1003, 2013.

Gruver, N., Finzi, M., Qiu, S., and Wilson, A. G. Large
language models are zero-shot time series forecasters.
arXiv preprint arXiv:2310.07820, 2023.

Han, C., Wang, Z., Zhao, H., and Ji, H. Explaining emergent
in-context learning as kernel regression. arXiv preprint
arXiv:2305.12766, 2023.

Hegselmann, S., Buendia, A., Lang, H., Agrawal, M., Jiang,
X., and Sontag, D. Tabllm: Few-shot classification of
tabular data with large language models. In International
Conference on Artificial Intelligence and Statistics, pp.
5549–5581. PMLR, 2023.

Hoffman, M. W. and Shahriari, B. benchfunk. https:
//github.com/mwhoffman/benchfunk, 2015.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. The
curious case of neural text degeneration. In International
Conference on Learning Representations, 2020.

9

https://www.weather.gov/wrh/Climate?wfo=sgx
https://www.weather.gov/wrh/Climate?wfo=sgx
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://climateknowledgeportal.worldbank.org/country/singapore/climate-data-historical
https://climateknowledgeportal.worldbank.org/country/singapore/climate-data-historical
https://climateknowledgeportal.worldbank.org/country/singapore/climate-data-historical
https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/climate-trends-variability/adjusted-homogenized-canadian-data/precipitation-access.html
https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/climate-trends-variability/adjusted-homogenized-canadian-data/precipitation-access.html
https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/climate-trends-variability/adjusted-homogenized-canadian-data/precipitation-access.html
https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/climate-trends-variability/adjusted-homogenized-canadian-data/precipitation-access.html
https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/climate-trends-variability/adjusted-homogenized-canadian-data/precipitation-access.html
https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/climate-trends-variability/adjusted-homogenized-canadian-data/precipitation-access.html
https://github.com/mwhoffman/benchfunk
https://github.com/mwhoffman/benchfunk


LLM Processes: Numerical Predictive Distributions Conditioned on Natural Language

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., Casas, D. d. l., Hanna,
E. B., Bressand, F., et al. Mixtral of experts. arXiv
preprint arXiv:2401.04088, 2024.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A.,
Rosenbaum, D., Vinyals, O., and Teh, Y. W. Attentive
neural processes. arXiv preprint arXiv:1901.05761, 2019.

Larcher, J. American house prices, 2023. URL https:
//www.kaggle.com/dsv/7162651.

Lipkin, B., Wong, L., Grand, G., and Tenenbaum, J. B. Eval-
uating statistical language models as pragmatic reasoners.
arXiv preprint arXiv:2305.01020, 2023.

Liu, T., Astorga, N., Seedat, N., and van der Schaar, M.
Large language models to enhance bayesian optimization.
arXiv preprint arXiv:2402.03921, 2024.

Markou, S., Requeima, J., Bruinsma, W., and Turner, R.
Efficient gaussian neural processes for regression. arXiv
preprint arXiv:2108.09676, 2021.

Nguyen, T. and Grover, A. Transformer neural processes:
Uncertainty-aware meta learning via sequence modeling.
arXiv preprint arXiv:2207.04179, 2022.

Oksendal, B. Stochastic differential equations: an intro-
duction with applications. Springer Science & Business
Media, 2013.

OpenWeather. Weather API, 2024. URL https://
openweathermap.org/api. Accessed: 2024-03-
07.

Pesut, L. Who models the models that model
models? an exploration of gpt-3’s in-context
model fitting ability. URL https://www. alignment-
forum. org/posts/c2RzFadrxkzyRAFXa/who-models-the-
models-that-model-models-an-exploration-of, 2022.

Schulz, E., Tenenbaum, J. B., Duvenaud, D., Speekenbrink,
M., and Gershman, S. J. Compositional inductive biases
in function learning. Cognitive psychology, 99:44–79,
2017.

Stanton, S., Maddox, W., Gruver, N., Maffettone, P., De-
laney, E., Greenside, P., and Wilson, A. G. Accelerating
bayesian optimization for biological sequence design with
denoising autoencoders. In International Conference on
Machine Learning, pp. 20459–20478. PMLR, 2022.

Thompson, W. R. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3-4):285–294, 1933.

Thompson, W. R. On the theory of apportionment. Ameri-
can Journal of Mathematics, 57(2):450–456, 1935.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Vacareanu, R., Negru, V.-A., Suciu, V., and Surdeanu, M.
From words to numbers: Your large language model
is secretly a capable regressor when given in-context
examples. arXiv preprint arXiv:2404.07544, 2024.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms, 2017.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. arXiv preprint arXiv:2111.02080, 2021.

Xue, H. and Salim, F. D. Promptcast: A new prompt-
based learning paradigm for time series forecasting. IEEE
Transactions on Knowledge and Data Engineering, 2023.

Zhang, M., Desai, N., Bae, J., Lorraine, J., and Ba, J. Using
large language models for hyperparameter optimization.
In NeurIPS 2023 Foundation Models for Decision Making
Workshop, 2023.

10

https://www.kaggle.com/dsv/7162651
https://www.kaggle.com/dsv/7162651
https://openweathermap.org/api
https://openweathermap.org/api


LLM Processes: Numerical Predictive Distributions Conditioned on Natural Language

A. LLM Processes: Defining a Stochastic Process That Can Condition on Text
In this section we elaborate on the explanations and definitions in Section 2. Our goal is to use an LLM to elicit joint
predictive distribution over arbitrary sized target sets that we can guide and modify using plain language. Formally, given a
set of observations Dtrain = {(xi, yi)}Mi=1 and some text, T , we would like to elicit the predictive distribution defined by an
LLM at a collection of targets {(x∗

j , y
∗
j )}Nj=1 denoted pLLM(y∗1 , . . . , y

∗
N | x∗

1, . . . , x
∗
N , Dtrain, T ). To achieve the goal, we

can can keep in mind two interpretations of what we mean by a predictive distribution defined by an LLM. First, we can
interpret the LLM as maintaining having a predictive distribution over numerical values, which we can probe by sampling
from the LLM. This interpretation is beneficial if we believe that the LLM has learned useful prior information that we
would like to access via its beliefs about these numerical values and for our goal of guiding the predictive distribution using
text. The other interpretation is more empirical: we simply use the LLM as a tool to define a valid predictive distribution
and evaluate how well this definition performs on test cases. Our approach is a combination of the two philosophies – we
will propose a method defining a predictive distribution that is valid and performs well on test cases, but closely matches
what we think of as the LLM’s underlying distribution.

A.1. Continuous Marginal Likelihoods From an LLM

As discussed in Section 2, we use a method similar to the one proposed by Gruver et al. (2023); we approximate the
continuous density by discretizing the space using bins with arbitrarily fine precision. Let’s assume a fixed number of
decimal places n, and that LLMs generate one digit at a time2. The key idea is that each new digit can be viewed as being
generated from a categorical distribution with the probabilities p given by a softmax over numerical tokens. Crucially,
this hierarchical approach allows us to compute the probability of a bin with width 10−n. For example, if n = 1 then
Pr{y ∈ [1.0, 1.1)} = p(1)p(.|1)p(0|1.) because ‘1.0’ is a prefix for all y ∈ [1.0, 1.1) . We can convert probability mass
to probability density by assuming a uniform distribution within each bin, and dividing the mass by the bin width. A
visualization of this construction can be viewed in Appendix H.1.

The method in (Gruver et al., 2023) has two main shortcomings for our purposes: first, the authors propose to scale all
y ∈ Dtrain to eliminate decimals from their numerical representation. For example, for a precision of 2 decimal places, the
numbers 0.123, 1.23, 12.3, and 123.0 will be transformed to 12, 123, 1230, and 12300 respectively. Scaling removes prior
information communicated to the LLM via the scale of the problem. For example, it is likely that the LLM has encountered
financial data with decimal places. Potentially, it also makes it more difficult to communicate prior information about the
problem to the LLM via text.

Second, probabilities of all sequences of integers given by an LLM contain the mass of all values that also start with that
sequence. We can think of this as the problem of not knowing when the LLM intends to terminate a value. For example, if
y = 12, Pr{y ∈ [12, 13)} ≠ p(1)p(2|1) since p(1)p(2|1) includes the probability of all numbers with ‘12’ as a prefix – this
includes [12, 13) but also [120, 130), [1200, 1300) and so on.

A.2. The LLM Process Method

We follow Gruver et al. (2023) and discretize the continuous space with bins of width 10−n, computing the probabilities
for each bin using the hierarchical softmax approach. However, different from their approach we 1) keep values at their
original scale, and 2) include a terminal token after every value – for example, given a terminal token ⟨t⟩, we represent
12 as 12⟨t⟩ and 120 as 120⟨t⟩. Including a terminal token prevents numbers of varying orders of magnitude from sharing
the same prefix – i.e. p(1)p(2|1)p(⟨t⟩|12) no longer includes the probability of numbers in [120, 130), [1200, 1300), and
so on. After we compute the mass of a bin via hierarchical softmax, we divide the mass by the bin width 10−n to get an
estimate of the density value. This procedure defines a valid predictive distribution over y-values, and we call this elicitation
method ‘logit-based’ since we derive probabilities from the logits directly instead of sampling. Pseudocode can be found in
Algorithm 2.

It must be noted that this approach does not guarantee that P (12⟨t⟩) yields the mass assigned by the LLM to values in the
bin [12, 13). However, we note that our method defines a valid predictive distribution and we empirically observed that our
predictive distribution closely matches the sampling distribution to our satisfaction (see Appendix H.1).

2The models we evaluate are trained with tokenization schemes that tokenize each digit in a number separately. Gruver et al. (2023)
include a space between each digit for tokenizers that do not tokenize each digit separately.
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A.3. Defining an LLM Process

So far we have established a procedure for defining the predictive distribution at a single target location, pLLM(y∗n |
x∗
n, Dtrain, T ). We now discuss how to define the joint predictive distribution over a collection target points. In particular, we

would like to define a stochastic process via its finite-dimensional marginal distributions ρx1,...,xN
defined over locations

x1, . . . , xN . The Kolmogorov Extension Theorem (Oksendal, 2013) states that such a collection defines a stochastic process
if it satisfies

1. Exchangeability: Given any permutation π of the integers {1, . . . , N}

ρx1,...,xN
(y1, yN ) = ρxπ(1),...,xπ(N)

(yπ(1), yπ(N))

2. Consistency: if 1 ≤M ≤ N then

ρx1,...,xM
(y1, . . . , yM ) =

∫
ρxπ(1),...,xπ(N)

(yπ(1),yπ(N)) dyM+1 . . . dyN

In Equation (1) we define a collection of joint distributions by defining a factorized distribution over target locations
x∗
1, . . . , x

∗
N :

pI-LLMP(y
∗
1 , . . . , y

∗
N | x∗

1, . . . , x
∗
N , Dtrain, T ) =

N∏
n=1

pLLM(y∗n, | x∗
n, Dtrain, T )

where pLLM(y∗n, | x∗
n, Dtrain, T ) is defined above.

This definition satisfies the Kolmogorov Extension Theorem and so it defines a valid stochastic process. However, it assumes
conditional independence given the training set and model weights and, conditional on these variables, the stochastistity
represented by the model is via independent marginals. Taking inspiration from the autoregressive structure of the LLMs
predictive distribution, we can write the joint distribution according to the product rule:

pA-LLMP(y
∗
1 , . . . , y

∗
N | x∗

1, . . . , x
∗
N , Dtrain, T ) =

N∏
n=1

pLLM(y∗n | y∗1 , . . . , y∗n−1, x
∗
1, . . . , x

∗
n, Dtrain, T )

Where, the previous target location is autoregressively added to the conditioning data via the LLM prompt. This should
yield much richer predictive distributions as we are now able to model dependencies between output variables. However,
this definition is no longer guaranteed to give us a valid stochastic process as the predictive distribution is now target order
dependent and most likely will fail the Kolmogorov exchangability condition. We investigate these questions in Section 3.
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B. LLM Processes Pseudocode

Algorithm 1 Pseudocode for sampling numbers from an LLM

N ← Number of desired samples
samples← [ ]
while len(samples) < N do

out← model.generate(prompt)
if out is a number then

samples.append(out)
end if

end while

Algorithm 2 Pseudocode for computing the log pdf of y

n← number of digits after decimal point
nonnum idxs← tokens /∈ tokenize([‘0’, ‘1’, . . . , ‘9’, ‘-’, ‘.’, ‘⟨t⟩’])
full text← prompt + str(y)
y idxs← indices of the tokens that correspond to y in full text
logits← model(full text)
y logits← logits[y idxs]
y logits[nonnum idxs]← -100
y logpmf← CrossEntropy(logits = y logits[:-1], targets = str(y)[1:]).sum( ) ▷ Mass of bin that includes y
y logpdf← y logpmf + n log 10 ▷ Convert mass to continuous likelihood

13
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C. Sample Prompts
Figure C.1 depicts three observed training points and four target locations. Below are sample prompts for various
configurations discussed in the paper. T refers to problem related text.

Observed Point

Target Locations

𝑥

𝑦

𝐴𝑥, A𝑦

𝐵𝑥 , B𝑦

𝐶𝑥, C𝑦

𝐷𝑥
∗ 𝐸𝑥

∗ 𝐹𝑥
∗ 𝐺𝑥

∗

Figure C.1. Three observed training points and four target locations which serve as the basis for the example prompts.

Independent Marginal Prompts

Sequential:

“T ⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩Cx, Cy⟨t⟩D∗
x”

“T ⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩Cx, Cy⟨t⟩E∗
x”

“T ⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩Cx, Cy⟨t⟩F ∗
x ”

“T ⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩Cx, Cy⟨t⟩G∗
x”

Random:

“T ⟨t⟩Cx, Cy⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩D∗
x”

“T ⟨t⟩Cx, Cy⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩E∗
x”

“T ⟨t⟩Cx, Cy⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩F ∗
x ”

“T ⟨t⟩Cx, Cy⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩G∗
x”

Distance:

“T ⟨t⟩Cx, Cy⟨t⟩Bx, By⟨t⟩Ax, Ay⟨t⟩D∗
x”

“T ⟨t⟩Cx, Cy⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩E∗
x”

“T ⟨t⟩Ax, Ay⟨t⟩Cx, Cy⟨t⟩Bx, By⟨t⟩F ∗
x ”

“T ⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩Cx, Cy⟨t⟩G∗
x”

14
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Autoregressive Prompts

Sequential:

“T ⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩Cx, Cy⟨t⟩D∗
x”

“T ⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩Cx, Cy⟨t⟩D∗
x, D

∗
y⟨t⟩E∗

x”

“T ⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩Cx, Cy⟨t⟩D∗
x, D

∗
y⟨t⟩E∗

x, E
∗
y⟨t⟩F ∗

x ”

“T ⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩Cx, Cy⟨t⟩D∗
x, D

∗
y⟨t⟩E∗

x, E
∗
y⟨t⟩F ∗

x , F
∗
y ⟨t⟩G∗

x”

Random:

“T ⟨t⟩Cx, Cy⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩D∗
x”

“T ⟨t⟩Cx, Cy⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩D∗
x, D

∗
y⟨t⟩E∗

x”

“T ⟨t⟩Cx, Cy⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩D∗
x, D

∗
y⟨t⟩E∗

x, E
∗
y⟨t⟩F ∗

x ”

“T ⟨t⟩Cx, Cy⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩D∗
x, D

∗
y⟨t⟩E∗

x, E
∗
y⟨t⟩F ∗

x , F
∗
y ⟨t⟩G∗

x”

Distance:

“T ⟨t⟩Cx, Cy⟨t⟩Bx, By⟨t⟩Ax, Ay⟨t⟩D∗
x”

“T ⟨t⟩Cx, Cy⟨t⟩D∗
x, D

∗
y⟨t⟩Ax, Ay⟨t⟩Bx, By⟨t⟩E∗

x”

“T ⟨t⟩D∗
x, D

∗
y⟨t⟩Ax, Ay⟨t⟩E∗

x, E
∗
y⟨t⟩Cx, Cy⟨t⟩Bx, By⟨t⟩F ∗

x ”

“T ⟨t⟩D∗
x, D

∗
y⟨t⟩Ax, Ay⟨t⟩E∗

x, E
∗
y⟨t⟩Bx, By⟨t⟩F ∗

x , F
∗
y ⟨t⟩Cx, Cy⟨t⟩G∗

x”
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D. Related Work
In this section, we discuss work related to eliciting distributions from LLMs including forecasting, regression, and in-context
learning among others. We also discuss related work on LLM hyperparameter optimization, eliciting priors from LLMs,
eliciting distributions from humans, and finally neural processes.

LLM Forecasting The most closely related work to ours is LLMTime (Gruver et al., 2023). LLMTime is capable of zero-
shot extrapolation of one-dimensional time series data at a level comparable to trained purpose-built approaches. In addition,
they develop a method for eliciting marginal probability distribution functions from LLM posteriors over functions, which
we build on. They also begin to investigate the effect of conditioning on text. In contrast, we focus on (i) interpolation with
multi-dimensional inputs and outputs; (ii) eliciting joint distributions over functions, not just marginals; and (iii) exploring
the ability of models to condition simultaneously on both numerical data and text. More recently, TimesFM (Das et al.,
2023), a foundation model for one-dimensional zero-shot times series forecasting was introduced. However, TimesFM
does not support interpolation or higher dimensional data and does not consider distributions. PromptCast (Xue & Salim,
2023) performs zero-shot time series forecasting by combining numerical data and text in a question answer format. Our
approach for combining problem specific text along with numerical data differs in that it handles both interpolation and
extrapolation and does not rely on a question-answer format. Hegselmann et al. (2023) utilize LLMs to do zero-shot and
few-shot classification on tabular data that compares favorably to standard ML approaches.

LLM Regression Pesut (2022) do some initial investigations into the use of LLMs as regressors on 1D synthetic functions.
Our work greatly expands on these early investigations. Vacareanu et al. (2024) is concurrent work that shows that LLMs
are capable linear and non-linear regressors. However, their work does not condition on any textual information, compute
log probabilities, compare to Gaussian Processes, investigate the the effect of prompt formatting, or employ auto-regressive
sampling.

In-context learning (ICL) in LLMs Xie et al. (2021) point out that ICL can be seen as being equivalent to Bayesian
inference in a latent variable model. More recently, (Han et al., 2023) explain in-context learning in LLMs as kernel
regression. Garg et al. (2022) train transformers to do in-context learning on various function classes including linear (up
to 50 dimensions), decision trees, and two-layer ReLU networks. Coda-Forno et al. (2023) demonstrate that LLMs are
capable of meta-in-context learning and that performance on 1-D linear regression and two-armed bandit tasks improves
with multiple examples.

LLM Hyperparameter Optimization Zhang et al. (2023) and Liu et al. (2024) use LLMs to perform hyperparameter
optimization, showing that LLMs can condition on a mixture of textual data as numerical observations to effectively optimize
hyperparameters in machine learning models.

Eliciting priors from LLMs Binz & Schulz (2023) fine-tune LLMs on data from psychological experiments to achieve
accurate representations of human behavior. Choi et al. (2022) show how using an LLM to assess the importance of features
or the causal relationship between variables that can improve performance on tasks. Lipkin et al. (2023) find that LLMs can
derive human-like distributions over the interpretations of complex pragmatic utterances.

Eliciting distributions from humans Schulz et al. (2017) look at compositional inductive biases in function learning,
showing humans have compositional structure in their priors on functions. (Grigore et al., 2013) catalogue standard strategies
for eliciting distributions from expert humans.

Neural processes Neural Processes are a class of meta-learning models trained to learn a map from training (context) sets to
predictive distributions, pθ(y∗1 , . . . , y

∗
N | x∗

1, . . . , x
∗
N , Dtrain). These models are parameterized using a neural network and

there have been various proposals for different architectures using attention (Kim et al., 2019), transformers (Nguyen &
Grover, 2022), Gaussian Process output layers (Markou et al., 2021), and diffusion models (Dutordoir et al., 2023). The
definitions of the joint distributions in equations 1 and 2 take inspiration from the joint distributions defined by Conditional
Neural Processes (Garnelo et al., 2018) as independent marginals conditioned on the training/context set and Autoregressive
Neural Processes (Bruinsma et al., 2023) utilizing the chain rule of probability, respectively. Through this lens, LLMPs can
be viewed as examples of Neural Processes. LLMPs differ from standard NPs in two main ways: (i) Training objective:
Neural Processes are meta-trained using maximum likelihood to optimize p(y∗|x∗, Dtrain) directly. LLMPs have a very
indirect training procedure – they are trained to be language models i.e. autoregressive token predictors. One of the
contributions of this paper is the demonstration that, despite this, they can perform zero-shot probabilistic regression.
(ii) Architecture: NPs have an output layer that parametrizes the predictive distribution over targets directly. Since LLMPs
are repurposing language models for regression, we need to define the mapping from distributions over language tokens to
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distributions over target variables. We note that LLMs themselves can be viewed as AR-CNPS (Bruinsma et al., 2023) with
a fixed, predefined target ordering.

E. Dataset Details
This section provides details on the various datasets used in the experiments

E.1. Function Dataset

We use the 12 synthetic function datasets (Linear, Exponential, Sigmoid, Log, Sine, Beat Inference, Linear + Cosine, Linear
× Sine, Gaussian Wave. Sinc, Quadratic, X × Sine) from Gruver et al. (2023) each of which consists of 200 discrete points.
We construct 7 datasets each with 10 random seeds for each function with a subset of 5, 10, 15, 20, 25, 50, and 75 randomly
training points sampled from the original 200 points. We add Gaussian noise with µ = 0 and σ = 0.05 to the training points
and then round the values to 2 decimal places. Unless otherwise stated, we use 40 equally spaced target points to sample at.

E.2. Weather Dataset

The dataset was queried from OpenWeather (2024) and consists of daily high temperature, precipitation, and wind speed
readings for 86 consecutive days commencing on December 12, 2023. The data was recorded after the release dates of the
Llama-2 and Mixtral-8x7B LLM release dates to avoid any data leakage into the LLM datasets.

For the ”Comparison to LLMTime” experiment, We used the first 50 readings of the temperature data for training data and
ask LLMTime and LLMPs to predict/forecast the final 36 values. The authors of LLMTime suggest the method can handle
missing values by inputting NaN values in their place. Since LLMPs can work with irregularly spaced and missing data, we
also compare the methods with a reduced number of randomly spaced training points.

For the ”Simultaneous Temperature, Rainfall, and Wind Speed Regression” experiment we used 30 randomly chosen training
points within the first 76 points, leaving the last 10 for extrapolation.

F. Data Leakage
It is likely that LLMs used in our experiments have been exposed during training to some of the real-world data that we
use in our experiments which would give it an advantage against other models. However, we feel confident that the LLMs
tested were not simply recalling memorized data – note that in all cases the LLMPs produces a full distribution and not
just a deterministic value – and we have taken steps in our experiments to mitigate this issue. When synthetic functions or
Fashion MNIST data (Xiao et al., 2017) is used, we have altered the original data via subsampling, rescaling and in some
cases adding noise to the datapoints. Any data used from the internet was altered from its original form when given to the
model. Some datasets (in particular the Weather Dataset described in Appendix E.2), were explicitly chosen to be recorded
after the release dates of the LLMs that they were evaluated on.
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G. Additional Implementation Details
PyTorch is used as the basis for all of the experiments, with the exception of the Gaussian Processes baselines that are
implemented using the GPyTorch package (Gardner et al., 2018).

The experiments using the Mixtral 8×7B, Mixtral-8×7B-Instruct (Jiang et al., 2024), Llama-2 70B (Touvron et al., 2023),
and Llama-3 70B (AI@Meta, 2024) LLMs were run on two NVidia A100 GPUs with 80 GB of memory. The experiments
using the Llama-2 7B (Touvron et al., 2023) and Llama-3 8B (AI@Meta, 2024) LLMs were run on one NVidia 3090 GPU
with 24 GB of memory. The total compute used in the paper exceeded 600 GPU hours.

No training was done in our LLM experiments, we simply input the prompt to the LLM and ran it forward to get a prediction
for a particular target point.

Processing times varied as a function of:

• The GPU used.

• The length of the prompt.

• The number of target points queried.

• The number of tokens required to be generated for a particular target point.

• The number of samples taken at each target point.

Example Experiment processing times:

1D Synthetic Data Experiments:

• LLM: Mixtral-8×-7B

• GPU: 2 × Nvidia A100, 80 GB

• Parameters: A-LLMP, 40 target points, 50 samples, log probabilities

• Tasks: 12 functions x 3 seeds x 4 sizes

• Approximate Time: 19.6 hours

Black Box Optimization:

• LLM: Llama-2 7B

• GPU: 1 × Nvidia A100, 80 GB

• Parameters: I-LLMP, 500 target points, 1 sample

• Tasks: 6 functions, 100 trials

• Approximate Time: 20 hours
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Fashion MNIST Image Reconstruction:

• LLM: Mixtral-8×-7B

• GPU: 2 × Nvidia A100, 80 GB

• Parameters: I-LLMP, 400 target points, 50 samples

• Tasks: 6 images x 2 sizes

• Approximate Time: 15 hours

Simultaneous Temperature, Rainfall, and Wind Speed Regression

• LLM: Llama-3 8B

• GPU: 1 × Nvidia 3090, 24 GB

• Parameters: A-LLMP, 40 target points, 50 samples

• Tasks: 6 functions, 100 trials

• Approximate Time: 31 minutes
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H. Additional Configuration Results
H.1. Comparing Sampling and Logit Based Distributions

We first investigate whether our logit-based method of eliciting distributions (Appendix A.2) match the sampling distribution
of the LLM. In order to estimate the true distribution, we obtain 1000 samples from the LLM at each target location, and fit
a histogram using the same bins as our logit-based method. Figures H.2 to H.4 show that our method yields a distribution
that is visually similar to the one obtained by sampling.

(a) Llama-7B (b) Mixtral 8×7B

Figure H.2. Visualization of the predictive densities estimated via sampling (middle) and model logits (bottom) for the Sigmoid function
with 10 training points (shown in white). Cross section histograms (top) are presented at x = 50, 100 and 150.

(a) Llama-7B (b) Mixtral 8×7B

Figure H.3. Visualization of the predictive densities estimated via sampling (middle) and model logits (bottom) for the Quadratic function
with 20 training points (shown in white). Cross section histograms (top) are presented at x = 50, 100 and 150.
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(a) Llama-7B (b) Mixtral 8×7B

Figure H.4. Visualization of the predictive densities estimated via sampling (middle) and model logits (bottom) for the Linear + Cosine
function with 75 training points (shown in white). Cross section histograms (top) are presented at x = 50, 100 and 150.
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H.2. Additional Prompt Format Results

Figure H.5 shows NLL and MAE for various prompt formats and 3 LLMs. Tables H.1 and H.2 show the tabular versions of
prompt formatting results.

Overall, LLMPs tested are robust to the prompt format. The results indicate that two separators are required to achieve the
best performance. One to separate the x and y values within a pair and another to separate the x, y pairs. The , format uses
a comma to separate within a pair and nothing to separate the pairs and it has the worst results. The x y format uses letter
prefixes to separate values and pairs with improved metrics. Trading off token efficiency and performance, , \n is the best
option as it uses only one comma to delimit x and y and \n to delimit x, y pairs. However, given that some regions use a
comma as a decimal place, we use , \n prompt format in our experiments as it comparable performance and only uses one
additional space per pair. The ( , ) and x= , y= \n formats are more human readable, but the extra tokens do not improve
performance.

1.0

0.5

0.0

NL
L 

Sigmoid - 10 Observed

1

0
Quadratic - 20 Observed

0.5

0.0
Linear+Cosine - 75 Observed

Prompt Formats
 _,_
 x_y_
 _,_\n
 _, _\n
 (_, _)
 x=_, y=_\n

Llama-2-7B Llama-2-70B Mixtral-8x7B
0.00

0.05

M
AE

 

Llama-2-7B Llama-2-70B Mixtral-8x7B
0.00

0.05

Llama-2-7B Llama-2-70B Mixtral-8x7B
0.00

0.05

0.10

Figure H.5. NLL and MAE for various prompt formats and each LLM. The height of each bar is the mean of 10 random seeds that
determine the locations of the observed points. The small black lines at the top of each bar indicates the standard error. The two ’ ’
characters in the legend indicate the positions the x and y values. \n indicates the newline character. From left to right, the prompts are
ordered from the most to least token efficient.

Table H.1. NLL for various prompt formats and each LLM. Each entry is the mean and standard error of 10 random seeds that determine
the locations of the observed points. From left to right, the prompts are ordered from the most to least token efficient. The number below
each function indicates the number of observed points.

Function LLM , x y , \n , \n ( , ) x= , y= \n

Sigmoid Llama-2-7B -0.963±0.056 -0.768±0.072 -1.140±0.051 -1.194±0.055 -1.192±0.048 -1.116±0.055
10 Llama-2-70B -0.956±0.053 -0.897±0.104 -1.335±0.053 -1.329±0.056 -1.231±0.054 -1.293±0.072

Mixtral-8x7B -0.861±0.067 -0.940±0.069 -1.135±0.057 -1.276±0.066 -1.348±0.062 -1.306±0.067

Quadratic Llama-2-7B -0.882±0.036 -0.824±0.039 -1.269±0.032 -1.266±0.032 -1.293±0.029 -1.263±0.023
20 Llama-2-70B -0.980±0.035 -1.207±0.042 -1.482±0.034 -1.489±0.037 -1.445±0.032 -1.540±0.032

Mixtral-8x7B -0.976±0.028 -1.179±0.040 -1.371±0.033 -1.401±0.038 -1.459±0.039 -1.459±0.039

Linear + Llama-2-7B -0.362±0.012 -0.445±0.022 -0.645±0.029 -0.632±0.034 -0.613±0.028 -0.676±0.033
Cosine Llama-2-70B -0.386±0.012 -0.611±0.027 -0.679±0.021 -0.673±0.024 -0.718±0.029 -0.769±0.030
75 Mixtral-8x7B -0.368±0.013 -0.600±0.029 -0.785±0.038 -0.778±0.036 -0.723±0.031 -0.782±0.030
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Table H.2. Mean Average Error (MAE) for various prompt formats and each LLM. Each entry is the mean and standard error of 10
random seeds that determine the locations of the observed points. From left to right, the prompts are ordered from the most to least token
efficient. The number below each function indicates the number of observed points.

Function LLM , x y , \n , \n ( , ) x= , y= \n

Sigmoid Llama-2-7B 0.062±0.004 0.069±0.006 0.056±0.005 0.061±0.004 0.060±0.004 0.053±0.004
10 Llama-2-70B 0.070±0.008 0.060±0.006 0.047±0.005 0.049±0.004 0.054±0.005 0.047±0.005

Mixtral-8x7B 0.071±0.006 0.058±0.005 0.052±0.005 0.047±0.005 0.046±0.003 0.045±0.004

Quadratic Llama-2-7B 0.075±0.005 0.070±0.004 0.062±0.004 0.059±0.004 0.051±0.002 0.056±0.002
20 Llama-2-70B 0.066±0.003 0.055±0.003 0.044±0.002 0.046±0.003 0.050±0.003 0.040±0.002

Mixtral-8x7B 0.065±0.003 0.051±0.003 0.047±0.002 0.049±0.003 0.048±0.003 0.045±0.003

Linear + Llama-2-7B 0.122±0.004 0.112±0.002 0.093±0.004 0.097±0.005 0.088±0.004 0.085±0.004
Cosine Llama-2-70B 0.110±0.003 0.087±0.004 0.074±0.002 0.074±0.003 0.074±0.003 0.074±0.004
75 Mixtral-8x7B 0.119±0.003 0.092±0.005 0.079±0.004 0.080±0.004 0.083±0.004 0.075±0.004
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H.3. Additional Prompt Ordering Results

We consider the effect of three different orderings of the training data Dtrain in the prompt:

• Sequential: (xi, yi),∈ Dtrain are ordered sequentially from smallest to largest xi, regardless of the location of the target
point.

• Random: (xi, yi),∈ Dtrain are randomly ordered.

• Distance: For the prediction at target point x∗, the training points (xi, yi),∈ Dtrain are ordered from largest to smallest
distance to the query point x∗ i.e. |x∗

n − xi|2 such that the training points closer to x∗ appear later in the prompt.

Figure H.6 shows NLL and MAE for various prompt orderings and each LLM. Table H.3 shows the tabular version of the
results.

Distance ordering consistently yields the best results overall. We posit that distance ordering is effective as it provides a hint
to the LLM to weigh the contribution of closer points to the current target point to a greater degree. Unless otherwise noted,
we use distance ordering for our experiments.
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Figure H.6. NLL and MAE for various prompt orderings and each LLM. The height of each bar is the mean of 10 random seeds that
determine the locations of the observed points. The small black lines at the top of each bar indicates the standard error.

Table H.3. Mean Average Error (MAE) and NLL for various prompt orderings and each LLM. Each entry is the mean and standard error
of 10 random seeds that determine the locations of the observed points. The number below each function indicates the number of observed
points.

Distance Random Sequential

Function LLM MAE ↓ NLL ↓ MAE ↓ NLL ↓ MAE ↓ NLL ↓

Sigmoid Llama-2-7B 0.060±0.004 -1.194±0.055 0.093±0.017 -0.977±0.063 0.150±0.016 -0.597±0.059
10 Llama-2-70B 0.049±0.004 -1.329±0.056 0.051±0.004 -1.307±0.066 0.086±0.016 -0.782±0.085

Mixtral-8x7B 0.050±0.005 -1.276±0.066 0.060±0.006 -1.240±0.077 0.073±0.016 -0.707±0.116

Quadratic Llama-2-7B 0.063±0.004 -1.266±0.032 0.146±0.007 -0.731±0.034 0.224±0.012 -0.147±0.019
20 Llama-2-70B 0.046±0.003 -1.490±0.037 0.099±0.009 -1.013±0.055 0.182±0.014 -0.368±0.035

Mixtral-8x7B 0.049±0.003 -1.401±0.038 0.095±0.011 -1.066±0.074 0.246±0.016 -0.117±0.053

Linear + Llama-2-7B 0.092±0.003 -0.632±0.034 0.205±0.003 -0.086±0.015 0.213±0.004 0.445±0.022
Cosine Llama-2-70B 0.074±0.003 -0.673±0.024 0.189±0.008 -0.058±0.025 0.178±0.004 0.361±0.018
75 Mixtral-8x7B 0.080±0.004 -0.778±0.036 0.204±0.004 -0.114±0.027 0.154±0.006 0.410±0.034
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H.4. Additional Prompt y-Scaling Results

In this experiment, we examine the effect of the magnitude and sign of the y-values of the task given to the LLM when
no other contextual information is provided. We take the same three synthetic examples but scale the y-values to be in the
ranges [0, 1], [−1, 1], [0, 10] and [−1000, 1000].

Figure H.7 shows NLL and MAE for various prompt y-scaling and each LLM. Table H.4 shows the tabular results. The raw
values given to the LLM are scaled meaning the observation noise is scaled accordingly. We have scaled the likelihoods and
MAE values to compensate for the difference in range. According to the evaluation metrics we observe that performance
degrades with increased range and incorporating negative values also hurts MAE. This is due to the fact that when the range
is wider, the LLM must accurately generate more numerical digits and potentially a negative sign when predicting f(x∗).
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Figure H.7. NLL and MAE for various prompt y-scalings and each LLM. The height of each bar is the mean of 10 random seeds that
determine the locations of the observed points. The small black lines at the top of each bar indicates the standard error.

Table H.4. MAE and NLL for various y-scaling ranges and three LLMs. Each entry is the mean and standard error of 10 random seeds
that determine the locations of the observed points. The number below each function indicates the number of observed points.

[0,1] [-1,1] [0,10] [-1000, 1000]

Function LLM MAE ↓ NLL ↓ MAE ↓ NLL ↓ MAE ↓ NLL ↓ MAE ↓ NLL ↓

Sigmoid Llama-2-7B 0.067 +/- 0.004 0.212 +/- 0.053 0.061 +/- 0.004 1.327 +/- 0.057 0.068 +/- 0.006 2.701 +/- 0.075 0.070 +/- 0.006 8.087 +/- 0.173
10 Llama-2-70B 0.049 +/- 0.004 0.086 +/- 0.049 0.054 +/- 0.005 1.246 +/- 0.066 0.050 +/- 0.005 2.565 +/- 0.062 0.070 +/- 0.008 8.036 +/- 0.210

Mixtral-8x7B 0.050 +/- 0.004 0.120 +/- 0.065 0.061 +/- 0.007 1.343 +/- 0.065 0.051 +/- 0.005 2.502 +/- 0.085 0.064 +/- 0.006 7.668 +/- 0.212

Quadratic Llama-2-7B 0.061 +/- 0.004 0.624 +/- 0.066 0.066 +/- 0.004 1.372 +/- 0.048 0.063 +/- 0.005 0.788 +/- 0.061 0.067 +/- 0.005 2.524 +/- 0.041
20 Llama-2-70B 0.047 +/- 0.003 0.324 +/- 0.049 0.054 +/- 0.003 1.176 +/- 0.047 0.052 +/- 0.003 0.669 +/- 0.063 0.054 +/- 0.003 1.874 +/- 0.052

Mixtral-8x7B 0.049 +/- 0.003 0.417 +/- 0.040 0.056 +/- 0.003 1.175 +/- 0.059 0.061 +/- 0.004 0.702 +/- 0.072 0.056 +/- 0.003 1.883 +/- 0.082

Linear + Llama-2-7B 0.065 +/- 0.002 0.339 +/- 0.032 0.071 +/- 0.003 1.374 +/- 0.036 0.075 +/- 0.003 2.513 +/- 0.034 0.084 +/- 0.005 6.130 +/- 0.156
Cosine Llama-2-70B 0.053 +/- 0.003 0.276 +/- 0.039 0.056 +/- 0.003 1.453 +/- 0.033 0.057 +/- 0.002 2.245 +/- 0.041 0.061 +/- 0.003 5.709 +/- 0.163
75 Mixtral-8x7B 0.056 +/- 0.003 0.193 +/- 0.036 0.055 +/- 0.003 1.199 +/- 0.035 0.060 +/- 0.003 1.999 +/- 0.066 0.060 +/- 0.002 5.036 +/- 0.196

However, observing the plots in Figure H.8 of the predictive distribution on each scale, the model gives reasonable predictions
regardless of scale. If no scenario context is provided via text to the LLM, rescaling task values to be approximately between
0 and 1 improves performance in our experiments. However, in general we use unscaled data so that we can examine the
prior beliefs learned by the LLM about tasks communicated through the raw values.
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Figure H.8. Predictive distributions given by the Mixtral-8×7B LLM on scaled Linear + Cos with 75 observations. This example exhibited
one of the largest variation in metrics as a result of scaling. Despite this, all predictive distributions look reasonable.
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H.5. top-p and temperature results

Figure H.9 shows how MAE varies with LLM top-p and temperature. Table H.5 shows the tabular version of the results.

Surprisingly, all LLM’s are insensitive to temperature and top-p with respect to MAE.

Though not evident from these MAE results, we sometimes observed that using a top-p of 1.0 can result in some extreme
values in samples. However, we consider temperature = 1.0, and top-p = 1.0 closest to the default distribution given by the
LLM. Since it had competitive performance with the other options, we use these settings to compute log-likelihoods in our
experiments which allows us to examine the default characteristics of the LLM’s predictive distribution.
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Figure H.9. MAE (lower is better) for various temperature and top-p settings and each LLM. All LLM’s are relatively insensitive to
temperature and top p with respect to MAE.

Table H.5. MAE (lower is better) for various top-p and temperature settings and all LLMs.

Temperature = 0.5 Temperature = 0.7 Temperature = 0.9 Temperature = 1.0

Function LLM p=0.5 p=0.7 p=0.9 p=1.0 p=0.5 p=0.7 p=0.9 p=1.0 p=0.5 p=0.7 p=0.9 p=1.0 p=0.5 p=0.7 p=0.9 p=1.0

Sigmoid L-7B 0.0329 0.033 0.0328 0.0329 0.0328 0.0331 0.0337 0.0351 0.0331 0.0322 0.0334 0.035 0.035 0.0345 0.0331 0.0339
Mix 0.0439 0.0436 0.0434 0.042 0.0441 0.0419 0.0427 0.0406 0.0404 0.0426 0.0412 0.0394 0.0414 0.0425 0.0426 0.0421

L-70B 0.045 0.0446 0.0439 0.0429 0.0459 0.0429 0.0417 0.0407 0.0459 0.0396 0.0409 0.0422 0.0452 0.0429 0.041 0.041

Square L-7B 0.089 0.0886 0.0918 0.0906 0.091 0.0931 0.0926 0.089 0.0955 0.0911 0.0899 0.0846 0.0951 0.09 0.0941 0.0888
Mix 0.094 0.0952 0.0961 0.0986 0.0914 0.0919 0.0945 0.094 0.0938 0.0951 0.0954 0.0982 0.092 0.0958 0.0941 0.0942

L-70B 0.1031 0.0991 0.1031 0.1077 0.1011 0.1015 0.1067 0.1052 0.1025 0.1066 0.1082 0.1066 0.1059 0.1071 0.1104 0.1152

Linear + L-7B 0.0524 0.0554 0.056 0.0544 0.052 0.0546 0.0561 0.0551 0.0525 0.0561 0.0541 0.0583 0.0553 0.058 0.055 0.0544
Cosine Mix 0.0691 0.0686 0.0696 0.0674 0.0662 0.0674 0.0674 0.0689 0.0664 0.0671 0.07 0.0709 0.0671 0.0699 0.0648 0.0685

L-70B 0.0661 0.0645 0.0713 0.0701 0.0669 0.0681 0.0728 0.075 0.0662 0.0729 0.0781 0.0785 0.0709 0.0703 0.0826 0.0805
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H.6. Additional Autoregressive Sampling Results

Figure H.10 shows NLL and MAE of random and distance training point orderings for A-LLMP and I-LLMP and each
LLM. Table H.6 shows the tabular results.
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Figure H.10. NLL and MAE for various prompt y-scalings and each LLM. The height of each bar is the mean of 3 random seeds that
determine the locations of the observed points. The small black lines at the top of each bar indicates the standard error.

Table H.6. Mean Average Error (MAE) and Negative Log Likelihood (NLL) for autoregressive and marginal sampling with two different
prompt orderings and three LLMs.

Random IND-LLMP Distance IND-LLMP Random AUTO-LLMP Distance AUTO-LLMP

Function LLM MAE ↓ NLL ↓ MAE ↓ NLL ↓ MAE ↓ NLL ↓ MAE ↓ NLL ↓

Sigmoid Llama-2-7B 0.125±0.035 -0.829±0.061 0.070±0.005 -1.035±0.070 0.076±0.009 -1.843±0.052 0.067±0.016 -1.940±0.031
10 Llama-2-70B 0.061±0.008 -1.303±0.098 0.064±0.007 -1.257±0.016 0.060±0.006 -2.252±0.034 0.070±0.010 -2.162±0.019

Mixtral-8x7B 0.073±0.008 -1.082±0.040 0.070±0.005 -1.153±0.012 0.089±0.017 -2.196±0.023 0.065±0.009 -2.217±0.012

Quadratic Llama-2-7B 0.156±0.010 -0.769±0.044 0.062±0.006 -1.347±0.042 0.196±0.012 -1.184±0.030 0.064±0.007 -1.795±0.049
20 Llama-2-70B 0.081±0.004 -1.190±0.069 0.046±0.001 -1.634±0.018 0.068±0.004 -1.897±0.034 0.051±0.003 -1.924±0.018

Mixtral-8x7B 0.070±0.008 -1.261±0.103 0.053±0.005 -1.514±0.008 0.074±0.013 -1.900±0.054 0.049±0.005 -1.970±0.013

Linear + Llama-2-7B 0.203±0.001 -0.076±0.030 0.093±0.001 -0.618±0.031 0.209±0.005 -0.116±0.031 0.102±0.003 -0.799±0.042
Cosine Llama-2-70B 0.172±0.015 -0.104±0.043 0.070±0.004 -0.685±0.031 0.173±0.011 -0.405±0.046 0.072±0.004 -0.968±0.058
75 Mixtral-8x7B 0.215±0.003 -0.030±0.020 0.081±0.007 -0.766±0.056 0.220±0.005 -0.111±0.059 0.080±0.006 -0.931±0.063
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H.7. Additional Autoregressive Process Results

Figure H.11 shows the MAE results for the autoregressive process experiments. Figures H.12 and H.13 show the Avg log
p(y) and MAE for 10 different orderings of the query points.
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Figure H.11. Autoregressive process MAE results.
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Figure H.12. Avg log p(y) for the 10 seeds for each LLM for the autoregressive process experiment.
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Figure H.13. MAE for the 10 seeds for each LLM for the autoregressive process experiment.
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I. Additional LLMP Performance Details and Results
I.1. Additional Comparison to Gaussian Processes (GP) Results

Figures I.14 to I.25 shows regression results from the Mixtral-8×7B LLM and an RBF kernel GP for the 12 different
synthetic functions.
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Figure I.14. MAE (lower is better) and NLL (lower is better) for the Mixtral-8×7B LLM versus a GP as a function of the number of
observed points for the Beat function. The GP uses an RBF kernel with optimized length scale and noise.
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Figure I.15. MAE (lower is better) and NLL (lower is better) for the Mixtral-8×7B LLM versus a GP as a function of the number of
observed points for the Exponential function. The GP uses an RBF kernel with optimized length scale and noise.
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Figure I.16. MAE (lower is better) and NLL (lower is better) for the Mixtral-8×7B LLM versus a GP as a function of the number of
observed points for the Gaussian Wave function. The GP uses an RBF kernel with optimized length scale and noise.
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Figure I.17. MAE (lower is better) and NLL (lower is better) for the Mixtral-8×7B LLM versus a GP as a function of the number of
observed points for the Linear function. The GP uses an RBF kernel with optimized length scale and noise.
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Figure I.18. MAE (lower is better) and NLL (lower is better) for the Mixtral-8×7B LLM versus a GP as a function of the number of
observed points for the Linear + Cosine function. The GP uses an RBF kernel with optimized length scale and noise.
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Figure I.19. MAE (lower is better) and NLL (lower is better) for the Mixtral-8×7B LLM versus a GP as a function of the number of
observed points for the Log function. The GP uses an RBF kernel with optimized length scale and noise.
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Figure I.20. MAE (lower is better) and NLL (lower is better) for the Mixtral-8×7B LLM versus a GP as a function of the number of
observed points for the Quadratic function. The GP uses an RBF kernel with optimized length scale and noise.
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Figure I.21. MAE (lower is better) and NLL (lower is better) for the Mixtral-8×7B LLM versus a GP as a function of the number of
observed points for the Sigmoid function. The GP uses an RBF kernel with optimized length scale and noise.
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Figure I.22. MAE (lower is better) and NLL (lower is better) for the Mixtral-8×7B LLM versus a GP as a function of the number of
observed points for the Sinc function. The GP uses an RBF kernel with optimized length scale and noise.
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Figure I.23. MAE (lower is better) and NLL (lower is better) for the Mixtral-8×7B LLM versus a GP as a function of the number of
observed points for the Sine function. The GP uses an RBF kernel with optimized length scale and noise.
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Figure I.24. MAE (lower is better) and NLL (lower is better) for the Mixtral-8×7B LLM versus a GP as a function of the number of
observed points for the X × Sine function. The GP uses an RBF kernel with optimized length scale and noise.
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Figure I.25. MAE (lower is better) and NLL (lower is better) for the Mixtral-8×7B LLM versus a GP as a function of the number of
observed points for the Linear × Sine function. The GP uses an RBF kernel with optimized length scale and noise.
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Figure I.26 shows plot of NLL and MAE for the Mixtral-8×7B LLM and the RBF kernel GP for 12 for the 12 different
synthetic functions.
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Figure I.26. MAE (lower is better) and NLL (lower is better) for the Mixtral-8×7B LLM versus a GP as a function of the number of
observed points for 12 different synthetic functions. Results are averaged over three sets of random samples for the observed points. The
GP uses an RBF kernel with optimized length scale and noise.
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I.2. Multimodal Predictive Experiment Details

To verify that LLMPs are able to produce non-Gaussian, multimodal predictive distributions we sampled training data from
the following synthetic, bimodal generative distribution:

y =
.05

1 + exp−x
+ 0.02x+ ϵ1(0.02x+ 0.08) + 0.03ϵ2 (I.1)

Where ϵ1 ∼ Bernoulli(p = 0.5) and ϵ2 ∼ N(0, 1). The Llama-3-70B A-LLMP predictive distribution using 100 training
points is visualized in Figure 4 (right) and using 40 training points is visualized in Figure I.27.
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Figure I.27. Heatmap visualization of the Llama-3-70B A-LLMP predictive distribution conditioned on data from a bimodal generative
process. Black dots are the 40 training points.
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I.3. Comparison to LLMTime

Figure I.28 compares A-LLMP in a temperature forecasting scenario to LLMTime. The dataset consists of 86 daily high
temperature readings, obtained after the training cut-off for the Llama-2 LLM to avoid data-leakage. We use the first 50
readings for training data and ask the two methods to predict/forecast the final 36 values. The authors of LLMTime suggest
the method can handle missing values by inputting NaN values in their place. Since LLMPs can work with irregularly spaced
and missing data, we also compare the methods with a reduced number of irregularly spaced training points. A-LLMP wins
out over LLMTime, as the log probabilities for A-LLMP are significantly better.
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Figure I.28. MAE ↓ and NLL ↓ for A-LLMP versus a LLMTime on a dataset of daily temperatures in London, UK recorded after the
release date of the LLM with a varying number of training points. The LLM is Llama-2-7B in both cases.
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I.4. Additional Image Reconstruction Results and Details

Figure I.29 depicts six image reconstruction results, all drawn from the Fashion-MNIST dataset (Xiao et al., 2017). The
28 × 28 pixel images were first scaled to 20 × 20, due to the context size limitations of the open-source LLMs we used
in our experiments. The pixel data was then converted into prompt data points by forming a series of (row, column, pixel
value) integer tuples. We then sampled 80 pixel locations (20%) and 200 pixel locations (50%) as observed points for the
reconstruction. Each pixel location (400 in all) was used as a target point location for independent marginal sampling with
the Mixtral-8×7B LLM.

True 20% Observed 20% Reconstruct 50% Observed 50% Reconstruct

Figure I.29. Image reconstruction results for six images drawn from the Fashion-MNIST dataset (Xiao et al., 2017). 1st column: True
images.The 2nd and 4th columns are the observed pixels for the regression task and are sampled at 20% and 50% from the true image
pixels. The blue pixels indicate unobserved. The 3rd and 5th columns show the reconstructions using the Mixtral-8×7B LLM.
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I.5. Black-box Optimization Results and Implementation Details

Black box optimization involves minimizing or maximizing a function where there is only access to the output of a function
for a specified input. It is often used to optimize functions that are expensive to evaluate and the goal is to find the minimum
or maximum value with the fewest number of calls to the function (often referred to as trials). To acquire the location of the
next point to observe, we sample the LLM using Thompson sampling (Thompson, 1933; 1935). Details are in Algorithm 3.
We benchmark the ability of an LLM to perform black box maximization on six commonly used functions implemented in
(Hoffman & Shahriari, 2015), including Gramacy (Gramacy & Lee, 2012), Branin, Bohachevsky, Goldstein, and Hartmann3.
We compare our results using Llama-2-7B to Optuna (Akiba et al., 2019), a commercial hyperparameter optimization
framework. We run both methods for 100 trials and record the trial at which the the best approximation to the maximum
occurs. The results are shown in Table I.7. In all cases, we obtain as good or better approximation to the true maximum
value in a fewer number of trials. Note that Optuna will perform 100 trials in a few seconds while the LLM approach can
take up to 2 Nvidia A100 GPU hours. However, the results show that the log likelihood of LLMPs is capable of accurately
portraying regression uncertainty.

Table I.7. Black box optimization results. The number in the Function column indicates the number of x dimensions. The Trial column
indicates the trial at which the Best estimate of the maximum for each method occurred.

Optuna Llama-7B

Function TRUE Trial Best Trial Best

Sinusoidal (1) 1.879 70 1.879 23 1.879
Gramacy (1) 0.869 48 0.869 29 0.869
Branin (2) -0.040 85 -0.041 70 -0.040
Bohachevsky (2) 0.000 82 -5.539 49 -1.305
Goldstein (2) -3.000 35 -4.876 31 -3.101
Hartmann (3) 3.863 86 3.745 53 3.863
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Algorithm 3 Pseudocode for LLM black-box function optimization

Require: f(x): Function to be maximized
Require: xmin: Minimum bound on x
Require: xmax: Maximum bound on x
Require: T : Number of trials (default 100)
Require: M : Number of target points (default 500)
Require: C: Number of cold start points (default 7)

observedx← [ ] ▷ List of observed x values
observedy ← [ ] ▷ List of observed y points
for trial← 1 to C do

x←∼ U(xmin,xmax)
observedx.append(x)
observedy .append(f(x))

end for
for trial← C + 1 to T do

targets← [ ] ▷ List of target x points
samples← [ ] ▷ List of samples at target points
for i← 1 to M do

targetx ←∼ U(xmin,xmax)
targets.append(targetx)
prompt← construct prompt(observedx, observedy , targetx) ▷ construct a text prompt
samples← Algorithm 1(N = 1) ▷ Use Algorithm 1 to obtain a single sample at the target point

end for
new observedx← targets[argmax(samples)] ▷ Thompson sampling
observedx.append(new observedx)
observedy .append(f (new observedx))

end for
maxy ← max(observedy) ▷ Best estimate of maximum value of f
maxx ← observedx[argmax(observedy)] ▷ value of x where best estimate of maximum of f occurs
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I.6. In-context Experiment Details and Additional Plots

For the in-context learning experiment in Section 4 we investigate LLMPs’ ability to learn from similar examples in-context
to predict average monthly precipitation across 13 Canadian locations (Environment and Climate Change Canada, 2024),
one from each province and territory: Alert, NU, Charlottetown, PE, Comox, BC, Goose, NL, Greenwood, NS, Keylake, SK,
Montreal, QC, Ottawa, ON. Ranfurly, AB, Saint John, NB, Thompson, MB, Whitehorse, YK, and Yellowknife, NT. For each
location, we use the Mixtral-8×7B A-LLMP to forecast 32 months of average precipitation values given the previous four
month observations taken from a random historical three-year period between 1913-2017 (conditional on data availability).
It is then provided with 1-12 examples of random three year periods of historical values from the same location in-context.
An example prompts for 0, 1 (1976-1978) and 2 (1976-1978, 1949-1951) examples are:

1. “Monthly total of daily adjusted rainfall, mm. \n1976-1978:\n”,

2. “Monthly total of daily adjusted rainfall, mm. \n1967-1969:\n0,0.3\n1,0.6\n2,1.3 \n
3,0.6\n4,31.7\n5,59.9\n6,135.4\n7,107.7\n8,78.3\n9,40.7 \n10,37.3\n11,5.4\n12,1.0 \n
13,41.4\n14,0.3\n15,29.2\n16,41.3\n17,67.8\n18,137.8\n19,139.9\n20,91.4\n21,143.1\n22,18.8
\n23,0.9\n24,0.6\n25,14.0\n26,4.0\n27,6.2\n28,45.1\n29,98.3\n30,97.0\n31,160.4\n32,116.3\n
33,22.4\n34,51.8\n35,38.1\n1976-1978:\n”,

3. “Monthly total of daily adjusted rainfall, mm. \n1967-1969:\n0,0.3\n1,0.6\n2,1.3\n
3,0.6\n4,31.7\n5,59.9\n6,135.4\n7,107.7\n8,78.3\n9,40.7\n10,37.3\n11,5.4\n12,1.0\n
13,41.4\n14,0.3\n15,29.2\n16,41.3\n17,67.8\n18,137.8\n19,139.9\n20,91.4\n21,143.1\n22,18.8\n
23,0.9\n24,0.6\n25,14.0\n26,4.0\n27,6.2\n28,45.1\n29,98.3\n30,97.0\n31,160.4\n32,116.3\n
33,22.4\n34,51.8\n35,38.1\n
1949-1951:\n0,1.6\n1,0.0\n2,2.5\n3,2.1\n4,22.0\n5,51.7\n6,83.4\n7,113.3\n8,75.5\n9,34.7\n10,4.7\n
11,1.4\n12,1.1\n13,0.0\n14,0.8\n15,9.5\n16,33.3\n17,92.6\n18,118.5\n19,70.3\n20,34.6\n21,58.2\n
22,62.4\n23,8.5\n24,0.3\n25,7.4\n26,8.0\n27,30.6\n28,49.3\n29,40.0\n30,82.5\n31,97.1\n32,71.5\n
33,17.1\n34,32.1\n35,10.1\n1976-1978:\n”.

Results are presented in Figure 8, Figure I.30 and Figure I.31.
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Figure I.30. Visualizations of the predictions given by the Mixtral-8×7B LLMP for seven locations locations accross Canada. Blue and
black circles are training and test points, respectively. Red circles are median predictions and shaded areas indicate tenth-percentiles over
30 samples.
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Figure I.31. Visualizations of the predictions given by the Mixtral-8×7B LLMP for six locations locations accross Canada. Blue and
black circles are training and test points, respectively. Red circles are median predictions and shaded areas indicate tenth-percentiles over
30 samples.
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J. Conditioning on Text Details and Additional Experiments
J.1. Scenario-conditional Predictions Details and Additional Experiments

For the scenario-conditional predictions experiment in Section 5, we examine the influence of text providing information
about various synthetic problem settings on the predictive distribution of an Llama-3-70B LLMP. In all of the following
examples, we provide the same two synthetic training points, (1, 2.53) and (2, 2.21) to the LLM Process but change the
prompting text that comes before the training data. We then use A-LLMP to forecast trajectories integer 50 steps ahead.
Prompts were prepended to the standard data formatting scheme used for LLMPs (see Appendix C).

The prompts provided to the LLMP visualized in Figure 10 are:

1. “” (i.e. no text);

2. ‘The following are daily temperature measurements from Montreal in January in degrees Celsius”

3. “The following are daily temperature measurements from Montreal in May in degrees Celsius”

4. “In the following series, the first number is the number of Months from January and the second is the Monthly precipitation
measurements in inches from San Diego, CA”

5. “In the following series, the first number is the number of Months from February and the second is the Monthly
precipitation measurements in inches from Singapore”

The prompts visualized in Figure 1 are:

1. “The following are daily stock prices from a financial time series”

2. “The following are daily stock prices from a financial time series for a company that eventually goes out of business”

3. “The following are daily average stock prices from a financial time series for a company whose stock price goes to zero
on day 30”

Lynx Hare Population Forecasting: Similar to the previous experiment, this experiment examines to what extent the
predictive posterior of an LLM Process is influenced by textual information about the problem provided in the prompt. We
preface the prompt with three different strings:

1. “” (i.e. no text);

2. “The following are samples from lynx-hare populations”

3. ‘’The following are samples from the famous Canadian Hudson Bay Lynx-Hare population dataset. When hare increases,
lynx increases. The first number of two is the year. The second number is the lynx population. It follows the pattern
when lynx population increases, hare decreases”

Figure J.32 shows the predictive distribution of the LLM with 10 and 50 observed points. As the specificity of the text
increases from L to R, the posterior entropy decreases, and structure of the samples changes dramatically.

J.2. Labelling Features Using Text Details and Additional Plots

In the experiments in section Section 5 we examine the performance of a Mixtral-8x7B Instruct I-LLMP on predicting
American housing prices. The dataset (Larcher, 2023) contains 39980 housing prices and various variables around housing
and demographics for the top 50 American cities by population. This dataset was generated on 12/09/2023, however it
contains data from the 2020 US Census and the 2022 American Community Survey (ACS). It is possible that data within
this dataset was used to train Mixtral-8x7B but it is very unlikely that it was trained on the exact strings presented in this
experiment.

For each prediction task, we show the I-LLMP 10 randomly selected training examples from the dataset and predict on 20
randomly selected test examples. In the prompt, before the numerical value (price) we provide a string which encodes the
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Figure J.32. Results of condition on both text and numerical data simultaneously, on the Mixtral model. Observed points are in purple.
Colored lines show sampled trajectories. The blue shading is a visualization of percentiles based on 50 samples. Top: Conditioning on 10
observed points. Bottom: Conditioning on 50 observed points. The predictive distribution changes as more information about the problem
is added to the prompt.

datapoint index/features that the model can use. For our first experiment we examine the behaviour of the LLMP when more
features are added to the prompt. We experiment with five ways of indexing the training and test points illustrated by the
following training examples;

1. “32.74831, -97.21828, Price: 224900.00”

2. “Location: Fort Worth, Texas, Latitude: 32.74831, Longitude: -97.21828, Price: 224900.00”

3. “Location: Fort Worth, Texas, Latitude: 32.74831, Longitude: -97.21828, Zip Code: 76112, Median Household Income:
71452.0, Price: 224900.00”

4. “Location: Fort Worth, Texas, Latitude: 32.74831, Longitude: -97.21828, Zip Code: 76112, Median Household Income:
71452.0, Zip Code Population: 42404 people, Zip Code Density: 1445.0 people per square mile, Price: 224900.00”

5. “Location: Fort Worth, Texas, Latitude: 32.74831, Longitude: -97.21828, Zip Code: 76112, Median Household Income:
71452.0, Zip Code Population: 42404 people, Zip Code Density: 1445.0 people per square mile, Living Space: 1620
square feet, Number of Bedrooms: 3, Number of Bathrooms: 2, Price: 224900.00”

This procedure is repeated 10 times to compute statistics. Results from this experiment are presented in Figure 9 (left, centre)
and in J.34. We also ran this experiment using Mixtral-8x7B and found that the performance, shown in Figure J.33, was not
as good as with the instruction tuned version of Mixtral-8×7B.

An additional experiment is presented in Section 5 to see examine the effect of adding text labels to the features. This
experiment was run on 10 new random datasets providing the LLMP with either labeled or unlabelled numerical features.
Due to the results of the previous experiment, a Mixtral-8x7B Instruct LLMP was used for this experiment. The following
are example training strings for the four cases examined:

a. “30.45738, -97.75516, Price: 385000.00”

b. “Location: Austin, Texas, Latitude: 30.45738, Longitude: -97.75516, Price: 385000.00”

c. “30.45738, -97.75516, 78729, 107830.0, 30907, 1216.1, 1349, 3, Price: 385000.00”

d. “Location: Austin, Texas, Latitude: 30.45738, Longitude: -97.75516, Zip Code: 78729, Median Household Income:
107830.0, Zip Code Population: 30907 people, Zip Code Density: 1216.1 people per square mile, Living Space: 1349
square feet, Number of Bedrooms: 3, Number of Bathrooms: 2, Price: 385000.00”.

Results of this experiment are presented in Figure 9 (right).
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Run 10

Figure J.34. Results of 10 runs using Mixtral-8x7B Instruct I-LLMP predicting US housing prices for 20 random houses from (Larcher,
2023). Predictions are visualized using index style 1) and 5). Xs are mean predictions using 30 samples from the LLMP and error bars
indicate 2 standard deviations.
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K. Additional Comments on Limitations and Societal Impact
Limitations As mentioned in the main text along with the flexibility of LLMs, LLMPs inherit their drawbacks. An additional
drawback of using LLMs for probabilistic regression is that results from LLMPs are inherently less interpretable than from
methods like Gaussian processes where we explicitly encode priors. As with other black-box methods, we must, at the
moment, rely on demonstrating empirically that it makes well-calibrated predictions.

Societal Impact Our work has demonstrated a new and useful zero-shot approach for generating probabilistic predictions
using plain language to augment numerical data. It has the potential to allow practitioners from fields such as medical
research and climate modelling to more easily access probabilistic modelling and machine learning. We hope that such an
impact would help researchers improve the lives of all humans by tackling the problems that humanity faces today.

Like all machine learning technology, there is potential for abuse, and possible consequences from incorrect predictions
made with LLMPs. Due to the black-box nature of the method, we do not know the biases in the underlying LLMs used and
what effect they may have on LLMPs output. However, LLM researchers are striving to make LLMs more fair and equitable.
An open area of research is whether LLM biases propagate to LLMP predictions and whether de-biasing LLMs helps to fix
such an issue.
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