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Abstract
Exploration is a major challenge in reinforcement
learning, especially for high-dimensional domains
that require function approximation. We propose
exploration objectives—policy optimization ob-
jectives that enable downstream maximization of
any reward function—as a conceptual framework
to systematize the study of exploration. We
introduce a new objective, L1-Coverage, which
generalizes previous exploration schemes and
supports three fundamental desiderata:

1. Intrinsic complexity control. L1-Coverage
is associated with a structural parameter,
L1-Coverability, which reflects the intrinsic
statistical difficulty of the underlying MDP,
subsuming Block and Low-Rank MDPs.

2. Efficient planning. For a known MDP,
optimizing L1-Coverage efficiently reduces to
standard policy optimization, allowing flexible
integration with off-the-shelf methods such as
policy gradient and Q-learning approaches.

3. Efficient exploration. L1-Coverage enables
the first computationally efficient model-based
and model-free algorithms for online (reward-
free or reward-driven) reinforcement learning
in MDPs with low coverability.

Empirically, we find that L1-Coverage effec-
tively drives off-the-shelf policy optimization
algorithms to explore the state space.

1. Introduction
Many applications of reinforcement learning and control
demand agents to maneuver through complex environments
with high-dimensional state spaces that necessitate function
approximation and sophisticated exploration. Toward ad-
dressing the high sample complexity of existing empirical
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paradigms (Mnih et al., 2015; Silver et al., 2016; Kober
et al., 2013; Lillicrap et al., 2015; Li et al., 2016), a recent
body of theoretical research provides structural conditions
that facilitate sample-efficient exploration, as well as an
understanding of fundamental limits (Russo & Van Roy,
2013; Jiang et al., 2017; Wang et al., 2020b; Du et al., 2021;
Jin et al., 2021a; Foster et al., 2021; 2023). Yet, computa-
tional efficiency remains a barrier: outside of simple settings
(Azar et al., 2017; Jin et al., 2020b), our understanding of
algorithmic primitives for efficient exploration is limited.

In this paper, we propose exploration objectives as a con-
ceptual framework to develop efficient algorithms for explo-
ration. Informally, an exploration objective is an optimiza-
tion objective that incentivizes a policy (or policy ensemble)
to explore the state space and gather data that can be used
for downstream tasks (e.g., policy optimization or evalua-
tion). To enable practical and efficient exploration, such an
objective should satisfy three desiderata:

1. Intrinsic complexity control. Any policy (ensemble) that
optimizes the objective should cover the state space to the
best extent possible, enabling sample complexity guar-
antees for downstream learning that reflect the intrinsic
statistical difficulty of the underlying MDP.

2. Efficient planning. When the MDP of interest is known, it
should be possible to optimize the objective in a compu-
tationally efficient manner, ideally in a way that flexibly
integrates with existing pipelines.

3. Efficient exploration. When the MDP is unknown,
it should be possible to optimize the objective in a
computationally and statistically efficient manner; the
first two desiderata are necessary, but not sufficient here.

Our development of exploration objectives, particularly our
emphasis on integrating with existing pipelines, is motivated
by the large body of empirical research equipping policy
gradient methods and value-based methods with exploration
bonuses (Bellemare et al., 2016; Tang et al., 2017; Pathak
et al., 2017; Martin et al., 2017; Burda et al., 2018; Ash
et al., 2022). Although a number of prior theoretical works
either implicitly or explicitly develop exploration objectives,
they are either too general to admit efficient planning and
exploration (Jiang et al., 2017; Dann et al., 2018; Jin et al.,
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2021a; Foster et al., 2021; Chen et al., 2022b; Xie et al.,
2023; Liu et al., 2023b), or too narrow to apply to practical
problems of interest without losing fidelity to the theoretical
foundations (e.g., Azar et al., 2017; Jin et al., 2018; Dani
et al., 2008; Li et al., 2010; Wagenmaker & Jamieson, 2022).
The difficulty is that designing exploration objectives is
intimately tied to understanding what makes an MDP easy
or hard to explore, a deep statistical problem. A useful
objective must succinctly distill such understanding into
a usable, operational form, but finding the right sweet spot
between generality and tractability is challenging. We
believe our approach and our results strike this balance.

Contributions. We introduce a new exploration objective,
L1-Coverage, which flexibly supports computationally and
statistically efficient exploration, satisfying desiderata (1),
(2), and (3). L1-Coverage is associated with an intrinsic
structural parameter, L1-Coverability (Xie et al., 2023;
Amortila et al., 2024), which controls the sample complexity
of reinforcement learning in nonlinear function approxima-
tion settings, subsuming Block and Low-Rank MDPs. We
prove that data gathered with a policy ensemble optimizing
L1-Coverage supports downstream policy optimization
with general function approximation (Appendix D).

For planning in a known MDP, L1-Coverage can be
optimized efficiently through reduction to (reward-driven)
policy optimization, allowing for integration with off-
the-shelf methods such as policy gradient (e.g., PPO) or
Q-learning (e.g., DQN). For online reinforcement learning,
L1-Coverage yields the first computationally and statisti-
cally efficient model-based and model-free algorithms for
(reward-free/driven) exploration in L1-coverable MDPs.
Technically, these results can be viewed as a successful algo-
rithmic application of the Decision-Estimation Coefficient
(DEC) framework of Foster et al. (2021; 2023).

We complement these theoretical results with an empirical
validation, where we find that the L1-Coverage objective
effectively integrates with off-the-shelf policy optimization
algorithms, augmenting them with the ability to explore the
state space widely.

Paper organization. In what follows, we formalize ex-
ploration objectives (Section 2), then introduce the L1-
Coverage objective (Section 3) and give algorithms for ef-
ficient planning (Section 4) and model-based exploration
(Section 5), along with experiments (Section 6).

2. Online Reinforcement Learning and
Exploration Objectives

This paper focuses on reward-free reinforcement learning
(Jin et al., 2020a; Wang et al., 2020a; Chen et al., 2022b),
in which the aim is to compute an exploratory ensemble of

policies that enables optimization of any downstream reward
function; we consider planning (computing exploratory poli-
cies in a known MDP) and online exploration (discovering
exploratory policies in an unknown MDP).

We work in an episodic finite-horizon setting. With H de-
noting the horizon, a (reward-free) Markov decision process
M =

{
X ,A, {PM

h }Hh=0

}
, consists of a state spaceX , an ac-

tion spaceA, a transition distributionPM

h : X×A → ∆(X ),
with the convention that PM

0 (· | ∅) is the initial state distri-
bution. An episode in the MDP M proceeds according to
the following protocol. At the beginning of the episode,
the learner selects a randomized, non-stationary policy
π = (π1, . . . , πH), where πh : X → ∆(A); we let Πrns

denote the set of all such policies, and Πns denote the subset
of deterministic policies. The episode evolves through the
following process, beginning from x1 ∼ PM

0 (· | ∅). For
h = 1, . . . ,H: ah ∼ πh(xh) and xh+1 ∼ PM

h (· | xh, ah).
We let PM,π denote the law under this process, and let EM,π

denote the corresponding expectation.

For planning, where the underlying MDP is known, we
denote it by M . For online exploration, where the MDP
is unknown, we denote it by M⋆; in this framework, the
learner must explore by interacting with M⋆ in a sequence
of episodes in which they execute a policy π and observe
the trajectory (x1, a1), . . . , (xH , aH) that results.

Additional notation. To simplify presentation, we assume
that X and A are countable; our results extend to handle
continuous variables with an appropriate measure-theoretic
treatment. For an MDP M and policy π, we define the
induced occupancy measure for layer h via dM,π

h (x, a) =
PM,π[xh = x, ah = a] and dM,π

h (x) = PM,π[xh = x]. We
use πunif to denote the uniform policy. We define π ◦h π′

as the policy that follows π for layers h′ < h and follows
π′ for h′ ≥ h. For a set Z , we let ∆(Z) denote the set of
all probability distributions over Z . We write f = Õ(g) to
denote that f = O(g · max{1,polylog(g)}).

2.1. Exploration Objectives

We introduce exploration objectives as a conceptual frame-
work to study exploration in reinforcement learning. Ex-
ploration objectives are policy optimization objectives; they
are defined over ensembles of policies (policy covers), rep-
resented as distributions p ∈ ∆(Π) for a class Π ⊂ Πrns of
interest. The defining property of an exploration objective
is to incentivize policy ensembles p ∈ ∆(Π) to explore the
state space and gather data that can be used for downstream
policy optimization or evaluation (i.e., offline RL).

Definition 2.1 (Exploration objective). For a reward-free
MDP M and policy class Π, a function ΦM : ∆(Π)→ R+

is an exploration objective if for any policy ensemble
p ∈ ∆(Π), one can optimize any downstream reward
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function R to precision ϵ in M (i.e., produce π̂ such that
maxπ J

M

R (π) − JM

R (π̂) ≤ ϵ)1 using poly(ΦM(p), ϵ−1)
trajectories drawn from π ∼ p (under standard function
approximation assumptions).

Note that we allow the exploration objective to depend on
the underlying MDP M ; if M is unknown, then evaluating
ΦM(p) may be impossible without first exploring. We also
consider per-layer objectives denoted as ΦM

h , optimized by
a collection {ph}Hh=1 of policy ensembles. We deliberately
leave the details for reward optimization vague in Defini-
tion 2.1, as this will depend on the policy optimization and
function approximation techniques under consideration; see
Appendix D for examples.

With Definition 2.1 in mind, the desiderata in Section 1 can
be restated formally as follows.

1. Intrinsic complexity control. The optimal objective value
OptM := infp∈∆(Π) Φ

M(p) is bounded for a large class
of MDPs M of interest, ideally in a way that depends on
intrinsic structural properties of the MDP.

2. Efficient planning. When the MDP M is known, we
can solve argminp∈∆(Π) Φ

M(p) approximately (up to
multiplicative or additive approximation factors) in a
computationally efficient fashion, ideally in a way that
reduces to standard computational primitives such as
reward-driven policy optimization.

3. Efficient exploration. When the MDP M is unknown,
we can approximately solve argminp∈∆(Π) Φ

M(p) in a
sample-efficient fashion, with sample complexity poly-
nomial in the optimal objective value OptM , and with
computational efficiency comparable to planning.

As a basic example, for tabular MDPs where |X | is small,
the work of Jin et al. (2020a) can be viewed as optimizing
the per-layer objective

ΦM

h (p) = max
x∈X

1

Eπ∼p[dπh(x)]
(1)

for each layer h ∈ [H]; the optimal value for this
objective satisfies OptMh = O(|X |/η), where η :=
minx∈X maxπ∈Πrns d

π
h(x) is a reachability parameter. This

objective supports efficient planning and exploration, sat-
isfying desiderata (2) and (3), but is restrictive in terms of
intrinsic complexity (desideratum (1)) because the optimal
value, which scales with |X |, does not sharply control the
sample complexity of reinforcement learning in the function
approximation regime. Other (implicit or explicit) objec-
tives studied in prior work similarly do not satisfy desidera-
tum (1) (Hazan et al., 2019; Jin et al., 2020b; Agarwal et al.,

1JM
R (π) denotes the expected reward of π in M under R.

2020; Modi et al., 2024; Uehara et al., 2022; Zhang et al.,
2022; Mhammedi et al., 2023b), or are too general to admit
computationally efficient planning and exploration, failing
to satisfy desiderata (2) and (3) (Jiang et al., 2017; Dann
et al., 2018; Jin et al., 2021a; Foster et al., 2021; Chen et al.,
2022b; Xie et al., 2023; Liu et al., 2023b). See Appendix A
for further discussion.

Remark 2.1. Many existing algorithms—for example,
those that use count-based bonuses (Azar et al., 2017; Jin
et al., 2018) or elliptic bonuses (Auer, 2002; Dani et al.,
2008; Li et al., 2010; Jin et al., 2020b)— implicitly allude to
specific exploration objectives, but do not appear to explic-
itly optimize them. We hope that by separating algorithms
from objectives, our definition can bring clarity and better
guide algorithm design going forward.

3. The L1-Coverage Objective
This section introduces our main exploration objective, L1-
Coverage. Throughout the section, we work with a fixed
(known) MDP M , and an arbitrary set of policies Π ⊆ Πrns.

L1-Coverage objective. For a policy ensemble p ∈
∆(Πrns) and parameter ε ∈ [0, 1] we define the L1-
Coverage objective by

ΨM

h,ε(p) = sup
π∈Π

EM,π

[
dM,π
h (xh, ah)

dM,p
h (xh, ah) + ε · dM,π

h (xh, ah)

]
,

(2)

where we slightly overload notation for occupancy measures
and write dM,p

h (x, a) := Eπ∼p
[
dM,π
h (x, a)

]
.2 This objec-

tive encourages the ensemble p ∈ ∆(Π) to cover the state
space at least as well as any individual policy π ∈ Π, but
in an average-case sense (with respect to the state distribu-
tion induced by π itself) that discounts hard-to-reach states.
Importantly, L1-Coverage only considers the relative prob-
ability of visiting states (that is, the ratio of occupancies),
which is fundamentally different from “tabular” objectives
such as Eq. (1) from prior work (Jin et al., 2020a; Hazan
et al., 2019) and is essential to drive exploration in large
state spaces. The approximation parameter ε > 0 allows
one to discard regions of the state space that have low rel-
ative probability for all policies, removing the reachability
assumption required by Eq. (1).

L1-Coverage is closely related to previous optimal design-
based objectives in online RL, and to several standard no-
tions of coverage in offline RL. Indeed, L1-Coverage can
be viewed as a generalization of previously proposed op-
timal design-based objectives (Wagenmaker et al., 2022;
Wagenmaker & Jamieson, 2022; Li et al., 2023; Mhammedi

2Likewise, EM,p and PM,p denote the expectation and law for
the process where we sample policy π ∼ p and execute it in M .
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et al., 2023a); see Appendices A and F for details. Re-
garding the latter, when ε = 0, ΨM

h,ε(p) coincides with L1-
concentrability (Farahmand et al., 2010; Xie & Jiang, 2020;
Zanette et al., 2021), and is equivalent to the χ2-divergence
between dπ and dp up to a constant shift.

Before turning to algorithmic development, we first show
that L1-Coverage is indeed a valid exploration objective in
the sense of Definition 2.1, then show that it satisfies desider-
atum (1), providing meaningful control over the intrinsic
complexity of exploration.

L1-Coverage enables downstream policy optimization.
We prove that L1-Coverage enables downstream policy opti-
mization through a change-of-measure lemma, which shows
that it is possible to transfer the expected value for any func-
tion g of interest (e.g., Bellman error) under any policy π to
the expected value under p.
Proposition 3.1 (Change of measure for L1-Coverage). For
any distribution p ∈ ∆(Πrns), we have that for all functions
g : X ×A → [0, B], all π ∈ Π, and all ε > 0,3

EM,π[g(xh, ah)] (3)

≤ 2
√
ΨM

h,ε(p) · E
M,p[g2(xh, ah)] + ΨM

h,ε(p) · (εB).

Using this result, one can prove that, using data gathered
from p, standard offline reinforcement learning algorithms
such as Fitted Q-Iteration (FQI) succeed with sample
complexity scaling with maxhΨ

M

h,ε(p). One can similarly
analyze hybrid offline/online methods (online methods that
require access to exploratory data) such as PSDP (Bagnell
et al., 2003) and NPG (Agarwal et al., 2021); see Appendix D
for details. Such methods will prove to be critical for the
reward-free reinforcement learning guarantees we present
in the sequel.

In light of Proposition 3.1, which shows that L1-Coverage
satisfies Definition 2.1, we refer to any p ∈ ∆(Πrns) that
(approximately) optimizes the L1-Coverage objective as a
policy cover going forward.4

L1-Coverability provides intrinsic complexity control.
Of course, the guarantee in Proposition 3.1 is only useful
if desideratum (1) is satisfied, i.e. there exist distributions
p ∈ ∆(Π) for which the L1-Coverage objective is bounded.
To this end, we define the optimal value for the L1-Coverage
objective, which we refer to as L1-Coverability, as

CovM

h,ε = inf
p∈∆(Π)

ΨM

h,ε(p), (4)

3This result is meaningful in the parameter regime where
ΨM

h,ε(p) < 1/ε. We refer to this regime as non-trivial, as
ΨM

h,ε(p) ≤ 1/ε holds vacuously for all p.
4This definition generalizes most notions of policy cover found

in prior work (Du et al., 2019; Misra et al., 2020; Mhammedi et al.,
2023b;a; Huang et al., 2023).

and define CovM

ε = maxh∈[H] Cov
M

h,ε.

We show that the L1-Coverability value CovM

h,ε can be inter-
preted as an intrinsic structural parameter for the MDP M ,
and is bounded for standard MDP classes of interest. To do
so, we draw a connection a structural parameter introduced
by Xie et al. (2023) as a means to bridge online and offline
RL, which we refer to as L∞-Coverability:

CM

∞;h = inf
µ∈∆(X×A)

sup
π∈Π

sup
(x,a)∈X×A

{
dM,π
h (x, a)

µ(x, a)

}
, (5)

with CM
∞ = maxh∈[H] C

M

∞;h.

L∞-Coverability measures the best possible (worst-case)
density ratio that can be achieved if one optimally designs
the data distribution µ with knowledge of the underlying
MDP. The main differences between the value CM

∞;h and
the L1-Coverability value in Eq. (4) are that (i) Eq. (5)
considers worst-case (L∞-type) rather than average-case
coverage, and (ii) Eq. (5) allows the distribution µ ∈ ∆(X×
A) to be arbitrary, while Eq. (4) requires the distribution
to be realized as a mixture of occupancies (in other words,
Eq. (5) allows for non-admissible mixtures).5 Due to the
latter difference, it is unclear at first glance whether one can
relate the two objectives, since allowing for non-admissible
mixtures could potentially make the objective (5) much
smaller. Nonetheless, the following result, which uses a
non-trivial application of the minimax theorem, shows that
L1-Coverability is indeed bounded by CM

∞.

Proposition 3.2. For all ε > 0, we have CovM

h,ε ≤ CM

∞;h.

Examples for which CM
∞—and consequently CovM

ε —is
bounded by small problem-dependent constants include
Block MDPs (Xie et al., 2023) (CM

∞ ≤ |S||A|, where S is
the number of latent states), linear/low-rank MDPs (Huang
et al., 2023) (CM

∞ ≤ d|A|, where d is the feature dimen-
sion), and analytically sparse low-rank MDPs (Golowich
et al., 2023) (CM

∞ ≤ k|A|, where k is the sparsity level).
Importantly, these examples (particularly Block MDPs and
Low-Rank MDPs) require nonlinear function approxima-
tion. See Appendix H.2 for details; see also Xie et al. (2023);
Amortila et al. (2024).

We note that L1- and L∞-Coverability are less general than
structural parameters defined in terms of Bellman errors,
such as Bellman rank (Jiang et al., 2017), Bellman-Eluder
dimension (Jin et al., 2021a), and Bilinear rank (Du et al.,
2021), which are known to not admit computationally ef-
ficient learning algorithms (Dann et al., 2018). In this
sense, L1-Coverage strikes a balance between generality
and tractability. We discuss this in more detail and discuss
connections to other structural parameters in Appendix F.

5We adopt the notation CovM
· for admissible variants of cover-

ability and CM
· for non-admissible variants of coverability.
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Algorithm 1 Approximate Policy Cover Computation via
L∞-Coverability Relaxation

1: input: Layer h ∈ [H], precision ε ∈ [0, 1], distribution

µ ∈ ∆(X ×A) w/ C∞ ≡ CM

∞;h(µ), opt. tol. εopt > 0.

2: Set T = 1
ε .

3: for t = 1, 2, · · · , T do
4: Compute πt ∈ Π such that

EM,πt

[
µ(xh, ah)∑

i<t d
M,πi

h (xh, ah) + C∞µ(xh, ah)

]
≥

sup
π∈Π

EM,π

[
µ(xh, ah)∑

i<t d
M,πi

h (xh, ah) + C∞µ(xh, ah)

]
− εopt.

5: Return p = Unif(π1, . . . , πT ).

4. Optimizing L1-Coverage: Efficient Planning
Directly optimizing the L1-Coverage objective (2) presents
challenges because the objective is quadratic in the occu-
pancy dM,π . To address this issue, this section provides two
relaxations—that is, relaxed objectives that upper bound
L1-Coverage—that are directly amenable to optimization
(via reduction to standard reward-driven policy optimiza-
tion), yet are still bounded for MDPs of interest. Sec-
tion 4.1 presents a relaxation based on a connection to L∞-
Coverability (Eq. (5)), and Section 4.2 presents a relaxation
based on a connection to Pushforward Coverability. The
first relaxation is tighter, but requires stronger knowledge
of the underlying MDP. To motivate our results, recall that
given a C-approximate minimizer p ∈ ∆(Π) for which
ΨM

h,ε(p) ≤ C · CovM

h,ε, the sample complexity in Proposi-
tion 3.1 degrades only by an O(C) factor.

4.1. The L∞-Coverability Relaxation

Our first relaxation of the L1-Coverage objective as-
sumes access to a distribution µ ∈ ∆(X × A) for
which the L∞-concentrability coefficient CM

∞;h(µ) :=

supπ∈Π sup(x,a)∈X×A

{
dM,π
h (x,a)

µ(x,a)

}
(Chen & Jiang, 2019)

is bounded. For such a distribution µ, abbreviating C∞ ≡
CM

∞;h(µ), we define

ΨM

µ;h,ε(p) := sup
π∈Π

EM,π

[
µ(xh, ah)

dM,p
h (xh, ah) + ε · C∞µ(xh, ah)

]
,

(6)

and CovM

µ;h,ε := infp∈∆(Π) Ψ
M

µ;h,ε(p). This objective upper
bounds L1-Coverage, and any p ∈ ∆(Πrns) that optimizes
it has ΨM

h,ε(p) ≤ 2CM

∞;h(µ).

Proposition 4.1. For a distribution µ with C∞ ≡ CM

∞;h(µ),

it holds that for all p ∈ ∆(Πrns),

ΨM

h,ε(p) ≤ 2C∞ ·ΨM

µ;h,ε(p). (7)

Furthermore, CovM

µ;h,ε ≤ 1 for all ε > 0.

Notably, given access to a distribution µ ∈ ∆(X ×A) that
achieves the L∞-Coverability value CM

∞;h in Eq. (5), any
distribution p ∈ ∆(Πrns) that optimizes the relaxation in
Eq. (6) achieves L1-Coverage value ΨM

h,ε(p) ≤ 2CM

∞;h.
However, the relaxation supports arbitrary distributions
µ ∈ ∆(X × A), allowing one to trade off approximation
value and computation. Indeed, in some cases, it may be
simpler to compute a distribution µ ∈ ∆(X ×A) that has
suboptimal, yet reasonable concentrability. Because µ is not
required to be admissible, such a distribution can be com-
puted easily or in closed form for many MDP families of
interest. For example, in tabular MDPs we can simply take
µ = Unif(X ×A). See Appendix H.2 for more examples.

The algorithm. Algorithm 1 provides an iterative algo-
rithm to compute a distribution p ∈ ∆(Πrns) that optimizes
the L∞-relaxation in Eq. (6). The algorithm proceeds in
T steps. At each step t ∈ [T ], given a sequence of policies
π1, . . . , πt−1 computed so far, the algorithm computes a new
policy πt by solving the policy optimization problem

πt = argmax
π∈Π

EM,π

[
µ(xh, ah)∑

i<t d
M,πi

h (xh, ah) + C∞µ(xh, ah)

]
(8)

in Line 4 (up to tolerance εopt > 0). After all T rounds
conclude, the algorithm returns the uniform mixture p =
Unif(π1, . . . , πT ) as a policy cover.

The optimization problem (8) aims to find a policy πt that
explores regions of the state space not already covered
by π1, . . . , πt−1. Critically, it is a standard reward-driven
policy optimization problem with reward function

rt

h(x, a) :=
µ(x, a)∑

i<t d
M,πi

h (x, a) + C∞µ(x, a)
.

In practice, one can solve Eq. (8) using standard policy
optimization algorithms (we take this approach in
Section 6). However, since the MDP M is known, we can
also take advantage of the vast literature on algorithms for
planning with a known model, as well as algorithms like
Policy Search by Dynamic Programming (Bagnell et al.
(2003)) or Natural Policy Gradient (Agarwal et al. (2021))
that can use µ itself as a high-quality reset distribution.

The following theorem shows that Algorithm 1 converges to
a policy cover p ∈ ∆(Πrns) that optimizes the relaxation in
Eq. (6) (up to a small log(ε−1) multiplicative approximation
factor) in a small number of iterations.

Theorem 4.1. For any ε ∈ [0, 1] and h ∈ [H], given a
distribution µ with C∞ ≡ CM

∞;h(µ), whenever εopt ≤
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ε log(2ε−1), Algorithm 1 with T = ε−1 produces a dis-
tribution p ∈ ∆(Π) with |supp(p)| ≤ ε−1 such that

ΨM

µ;h,ε(p) ≤ 3 log(2ε−1), (9)

and consequently ΨM

h,ε(p) ≤ 6C∞ log(2ε−1).

See Appendix H.2 for examples. Note that the algorithmic
template in Algorithm 1 can be applied in unknown MDPs
as long as Line 4 can be implemented sample-efficiently;
this observation is the basis for the model-free online explo-
ration algorithm given in Appendix E.

4.2. The Pushforward Coverability Relaxation

The main drawback behind the L∞-Coverability relaxation
in the prequel is the assumption of access to a covering
distribution µ ∈ ∆(X × A).6 The next relaxation, which
is inspired by the notion of pushforward concentrability in
offline reinforcement learning (Xie & Jiang, 2021; Foster
et al., 2022), removes this assumption at the cost of giving a
looser upper bound. This objective takes the form

ΨM
push;h,ε(p) = sup

π∈Π
EM,π

[
PM
h−1(xh | xh−1, ah−1)

dM,p
h (xh) + ε · PM

h−1(xh | xh−1ah−1)

]
,

(10)

with CovM

push;h,ε := infp∈∆(Π) Ψ
M

push;h,ε(p). This objective
replaces the covering distribution µ with the transition dis-
tribution PM

h−1 for M , making it more practical to com-
pute. Unlike the L∞-Coverability relaxation (6), the opti-
mal value CovM

push;h,ε may not be bounded by the parameter
CM

∞;h. However, we show that the value can be controlled
by a related pushforward coverability parameter given by

CM

push;h = infµ∈∆(X ) sup(x,a,x′)∈X×A×X

{
PM

h−1(x
′|x,a)

µ(x′)

}
,

with CM

push = maxh∈[H] C
M

push;h.7

Proposition 4.2. Fix h ∈ [H]. For any p ∈ ∆(Πrns), if we
define p′ ∈ ∆(Πrns) as the distribution induced by sampling
π ∼ p and executing π ◦h πunif , we have that for all ε > 0,

ΨM

h,ε(p
′) ≤ |A| ·ΨM

push;h,ε(p). (11)

Furthermore, CovM

push;h,ε ≤ CM

push;h for all ε > 0.

In particular, any distribution p ∈ ∆(Πrns) that optimizes
the relaxation in Eq. (10) achieves L1-Coverage value
ΨM

h,ε(p
′) ≤ |A|·CM

push;h.8 Notable special cases where push-
forward coverability is bounded include: (i) Tabular MDPs
have CM

push ≤ |X |, (ii) Block MDPs (Du et al., 2019; Misra
et al., 2020; Zhang et al., 2022; Mhammedi et al., 2023b)
with latent state space S have CM

push ≤ |S|, (iii) Low-Rank
MDPs (30) have CM

push ≤ d (Xie & Jiang, 2021).

6Note that since we consider planning, this is a computational
assumption, not a statistical assumption.

7This is inspired by pushforward concentrability (Xie & Jiang,
2021); CM

∞;h ≤ |A| · CM
push;h but the converse is not true.

8The dependence on |A| in this result is natural, as pushforward
coverability only considers state occupancies.

The algorithm. An iterative algorithm to optimize the
pushforward coverability relaxation is given in Algorithm 5
(deferred to Appendix H.1 for space). The algorithm follows
the same template as Algorithm 1, but at each step t, the
policy πt is computed by solving an objective based on Eq.
(10). The main guarantee is as follows.

Theorem 4.2. For any ε ∈ [0, 1] and h ∈ [H], whenever
εopt ≤ CM

push;h · ε log(2ε−1), Algorithm 5 produces a distri-
bution p ∈ ∆(Π) with |supp(p)| ≤ ε−1 such that

ΨM

push;h,ε(p) ≤ 5CM

push;h log(2ε
−1). (12)

Consequently, if we define p′ ∈ ∆(Πrns) as the distribution
induced by sampling π ∼ p and executing π ◦h πunif , we
have that ΨM

h,ε(p
′) ≤ 5|A|CM

push;h log(2ε
−1).

5. Efficient Online Exploration via L1-Coverage
In this section, we turn our attention to sample-efficient
online exploration for the setting in which the underlying
MDP M⋆ is unknown. Throughout the section, we work
with an arbitrary user-specified subset of policies Π ⊆ Πrns.

Model-based reinforcement learning setup. We focus
on model-based reinforcement learning, and assume access
to a model classM that contains the true MDP M⋆.

Assumption 5.1 (Realizability). The learner has access to
a classM containing the true model M⋆.

The classM is user-specified, and can be parameterized by
deep neural networks or any other flexible function class,
with the best choice depending on the problem domain.

For M ∈ M, we use M(π) as shorthand for the law of
the trajectory (x1, a1), . . . , (xH , aH) for policy π in M .
We define the squared Hellinger distance for probability
measures P and Q by D2

H(P,Q) =
∫ (√

dP−
√
dQ
)2

.

Estimation oracles. Our algorithms and regret bounds use
the primitive of an estimation oracle, denoted by AlgEst,
a user-specified algorithm for estimation that is used to
estimate the underlying model M⋆ from data (Foster &
Rakhlin, 2020; 2023) sequentially. At each episode t, given
the data Ht−1 = (π1, o1), . . . , (πt−1, ot−1) collected so far,
where ot := (xt

1, a
t
1), . . . , (x

t

H , a
t

H), the estimation oracle
constructs an estimate M̂ t = AlgEst

(
{(πi, oi)}t−1

i=1

)
for

the true MDP M⋆. We assume that AlgEst is an offline esti-
mation oracle, in the sense that each estimator M̂ t has good
out-of-sample performance on the historical dataset Ht−1.

Assumption 5.2 (Offline estimation oracle). At each time
t ∈ [T ], an offline estimation oracle AlgEst forM, given
Ht−1 = (π1, o1), . . . , (πt−1, ot−1) with oi ∼ M⋆(πi) and
πi ∼ pi, returns an estimator M̂ t ∈ M such that

6
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Algorithm 2 Coverage-Driven Exploration (CODEX)
1: input: Estimation oracle AlgEst, number of episodes
T ∈ N, approximation parameters C ≥ 1, ε ∈ [0, 1].

2: for t = 1, 2, · · · , T do
3: Estimate model: M̂ t = Algt

Est

(
{(πi, oi)}t−1

i=1

)
.

// Plug-in approximation to L1-Coverage objective.

4: For each h ∈ [H], compute (C, ε)-approx. policy
cover pt

h for M̂ t: ΨM̂t

h,ε(p
t

h) =

sup
π∈Π

EM̂
t,π

[
dM̂t,π
h (xh, ah)

d
M̂t,pt

h
h (xh, ah) + ε · dM̂

t,π
h (xh, ah)

]
≤ C.

(13)

5: Sample πt ∼ qt = Unif(pt
1, . . . , p

t

H) and observe
trajectory ot = (xt

1, a
t
1), . . . , (x

t

H , a
t

H).
6: return (p1, . . . , pH), where ph := Unif(p1

h, . . . , p
T

h).

EstoffH (t) :=∑
i<t

Eπi∼pi
[
D2

H

(
M̂ t(πi),M⋆(πi)

)]
≤ EstoffH (M, T, δ),

for all t ∈ [T ] with probability at least 1 − δ whenever
M⋆ ∈M, where EstoffH (M, T, δ) is a known upper bound.

As an example, the standard maximum likelihood estima-
tor (MLE) satisfies Assumption 5.2 with EstoffH (M, T, δ) ≤
O(log(|M|T/δ)) (e.g., Foster & Rakhlin (2023)).

Algorithm. Our main algorithm for reward-free rein-
forcement learning, Coverage-Driven Exploration (CODEX;
Algorithm 2), is based on a simple “plug-in” estimation-
optimization paradigm: Repeatedly compute an estimate
M̂ t for the true model M⋆, then compute a policy cover
p ∈ ∆(Π) that optimizes the L1-Coverage objective for
M̂ t (a plug-in approximation to the true L1-Coverage
objective) and use this to collect data; proceed until this
process arrives at a high-quality cover for M⋆.

In more detail, Algorithm 2 proceeds in T episodes. At each
episode t, the algorithm invokes the user-specified estima-
tion oracle AlgEst to produce an estimate M̂ t for the model
M⋆ based on the data collected so far. Given this estimate,
for each layer h ∈ [H], the algorithm computes a (C, ε)-
approximate policy cover pt

h ∈ ∆(Π) for M̂ t: ΨM̂t

h,ε(p
t

h) =

sup
π∈Π

EM̂
t,π

[
dM̂t,π
h (xh, ah)

d
M̂t,pt

h
h (xh, ah) + ε · dM̂

t,π
h (xh, ah)

]
≤ C. (14)

where C > 0 is made sufficiently large to ensure Eq. (14)
is feasible. This is a plug-in approximation to the true
L1-Coverage objective ΨM⋆

h,ε(p). Given the approximate
covers pt

1, . . . , p
t

H , the algorithm collects a new trajectory
ot by sampling πt ∼ qt := Unif(pt

1, . . . , p
t

H). This

trajectory is used to update the estimator M̂ t, and the
algorithm proceeds to the next episode. Once all episodes
conclude, the algorithm returns ph := Unif(p1

h, . . . , p
T

h) as
the final cover for each layer h.

The plug-inL1-Coverage objective in Eq. (14) can be solved
efficiently using the relaxation-based methods in Section 4,
since the model M̂ t ∈M is known, making this a pure (non-
statistical) planning problem. We leave the approximation
parameter C ≥ 1 as a free parameter to accommodate the
approximation factors these relaxations incur (the sample
complexity degrades linearly with C).

Main result. In its most general form, Algorithm 2 leads
to sample complexity guarantees based on L1-Coverability.
Due to space constraints, the main result we present here is
a simpler guarantee based on L∞-Coverability. To state the
guarantee in the most compact form possible, we make the
following assumption on the estimation error rate.
Assumption 5.3 (Parametric estimation rate). The of-
fline estimation oracle satisfies EstoffH (M, T, δ) ≤
O(dest log(BestT/δ)) for parameters dest, Best ∈ N.

Theorem 5.1 (Main guarantee for CODEX). Let ε > 0 be
given. Let C∞ ≡ CM⋆

∞ , and suppose that (i) we restrictM
such that all M ∈ M have CM

∞ ≤ C∞, and (ii) we solve
Eq. (13) with C = C∞ for all t.9 Then, given an offline
estimation oracle satisfying Assumptions 5.2 and 5.3, using

T = Õ
(
H8(CM⋆

∞ )3dest log(Best/δ)
ε4

)
episodes, Algorithm 2

produces policy covers p1, . . . , pH ∈ ∆(Π) such that

∀h ∈ [H] : ΨM⋆

h,ε(ph) ≤ 12H · CM⋆

∞ (15)

w.p. at least 1 − δ. For a finite classM, if we use MLE as

the estimator, we can take T = Õ
(
H8(CM⋆

∞ )3 log(|M|/δ)
ε4

)
.

Theorem 5.1 shows for the first time that it is possible to per-
form sample-efficient and computationally efficient reward-
free exploration under coverability. We refer to Appendix I.4
for the proof, which is based on a connection to the Decision-
Estimation Coefficient of Foster et al. (2021; 2023). Some
key features of the result are as follows.

Computational efficiency. As maximum likelihood
estimation (MLE) is a valid estimation oracle, Algorithm 2 is
computationally efficient whenever 1) MLE can be performed
efficiently, and 2) the plug-in L1-Coverage objective in Eq.
(13) can be approximately optimized efficiently. As the
objective involves only the estimated model M̂ t (and hence
is a computational problem), we can use the relaxations in
Section 4 to do this efficiently (via off-the-shelf methods).

Regarding the latter point, note that while Theorem 5.1 as-
sumes for simplicity that Eq. (13) is solved with C = CM⋆

∞ ,

9We can take CM
∞ ≤ C∞ w.l.o.g. when C∞ is known. In this

case, solving Eq. (13) with C = C∞ is feasible by Proposition 3.2.

7
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if we solve the objective for C > CM⋆

∞ the result continues
to hold with CM⋆

∞ replaced by C in the sample complexity
bound and approximation guarantee. Consequently, if we
solve Eq. (13) using Algorithm 1, the guarantees in Theo-
rem 5.1 continue to hold up to an Õ(1) approximation factor.

Statistical efficiency. CODEX achieves sample complexity
guarantees based on L∞-Coverability in a computationally
eficient fashion for the first time. Compared to previous
inefficient algorithms based on coverability (Xie et al., 2023;
Liu et al., 2023a; Amortila et al., 2024) our theorem has
somewhat looser sample complexity, and requires model-
based function approximation. See Appendix E for a model-
free counterpart based on weight function learning.

CODEX is not limited toL∞-Coverability. Appendix I.1 gives
more general results (Theorem I.1, Corollary I.1) which
achieve sample complexity poly(CovM⋆

ε , H, log|M|, ε−1),
showing that L1-Coverability is itself a sufficiently
powerful structural parameter to enable sample-efficient
learning with nonlinear function approximation.

Application to downstream policy optimization. By
Proposition 3.1, the policy covers p1:H returned by Algo-
rithm 2 can be used to optimize any downstream reward
function using offline RL, giving end-to-end guarantees for
reward-driven online RL. We sketch an example using MLE
for policy optimization in Appendix I.2 (cf. Appendix D).

6. Experimental Evaluation
We present proof-of-concept experiments to validate our
theoretical results.10 We focus on the planning problem
(Section 4), and consider the classical MountainCar envi-
ronment (Brockman et al., 2016). We optimize the L1-
Coverage objective via Algorithm 1 and compare this to the
MaxEnt algorithm (Hazan et al., 2019) and uniform explo-
ration. We find that L1-Coverage explores the state space
more quickly and effectively than the baselines.

Experimental setup. MountainCar is a continuous domain
with two-dimensional states and actions. We consider a
deterministic starting state near the bottom of the “valley”
in the environment, so that deliberate exploration is required.

We optimize L1-Coverage using Algorithm 1, approximat-
ing the occupancies dπ

i

via count-based estimates on a dis-
cretization of the state-action space. We set µ to the uniform
distribution and C∞ to the number of state-action pairs (in
the discretization). For MaxEnt, we use the implementation
from Hazan et al. (2019). Algorithm 1 and MaxEnt both re-
quire access to a subroutine for reward-driven planning (to
solve the problem in Eq. (8) or an analogous subproblem).
For both, we use a policy gradient method (REINFORCE; Sut-
ton et al. (1999)) as the reward-driven planner, following

10Code available at github.com/philip-amortila/l1-coverability.

Hazan et al. (2019); our policy class is parameterized as a
two layer neural network. For details on the environment,
architectures, and hyperparameters, see Appendix B.

Results. Results are visualized in Figure 1. We measure
the number of unique discretized states discovered by each
algorithm’s policy covers, and find that L1-Coverage (Algo-
rithm 1) outperforms the MaxEnt and uniform exploration
baselines by a factor of two. We also perform a qualitative
comparison by visualizing the occupancies induced by the
learned policy covers, and find that the cover obtained with
L1-Coverage explores a much larger portion of the state
space than the baselines; notably, L1-Coverage explores
both hills in the MountainCar environment, while the base-
lines fail to do so. We find these results promising, and
plan to perform a large-scale evaluation in future work; see
Appendix B for further experimental results.
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Figure 1. Unique discrete states visited (mean/standard error over
10 runs) and occupancy heatmaps for each policy cover obtained by
L1-Coverage (Algorithm 1), MaxEnt, and uniform actions. Each
epoch comprises one policy cover update. Heatmap legend: veloc-
ity (x-axis), position (y-axis), start state (•), goal state (⋆).

7. Discussion and Open Problems
Our results show that the L1-Coverage objective serves
as a scalable primitive for exploration in reinforcement
learning, providing sample efficiency, computational effi-
ciency, and flexibility. On the theoretical side, our results
raise a number of interesting questions for future work:
(i) What are the weakest representation conditions under
which coverability leads to computationally efficient online
reinforcement learning guarantees? (ii) Can we generalize
the L1-Coverage objective further while still allowing for
practical/computationally efficient optimization?

Additional results. Several additional results are deferred
to the appendix due to space constraints. Appendix E
builds on Sections 4 and 5 to provide efficient algorithms
for reward-free exploration under a weaker form of
model-free function approximation based on density ratio
realizability, and Appendix F provides connections between
L1-Coverability and other intrinsic structural properties.
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Impact Statement
This paper presents work whose goal is to advance the the-
oretical foundations of reinforcement learning. There are
many potential societal consequences of our work, none
which we feel must be specifically highlighted here.
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A. Additional Related Work
This section discusses additional related work not already covered in detail.

Theoretical objectives for exploration. On the computational side, our work can be viewed as building on a recent line
of research that tries to make exploration computationally efficient by inductively building policy covers and using them to
guide exploration. Up to this point, Block MDPs (Du et al., 2019; Misra et al., 2020; Zhang et al., 2022; Mhammedi et al.,
2023b) and Low-Rank MDPs (Agarwal et al., 2020; Modi et al., 2024; Uehara et al., 2022; Zhang et al., 2022; Mhammedi
et al., 2023b) are the most general classes that have been addressed by this line of research. Our work expands the scope of
problems for which efficient exploration is possible beyond these classes to include the more general coverability framework.
This is meaningful generalization, as it allows for nonlinear transition dynamics for the first time.

The L1-Coverage objective can be viewed as a generalization of optimal design, an exploration objective which has
previously been studied in the context of tabular and Low-Rank MDPs (Wagenmaker et al., 2022; Wagenmaker & Jamieson,
2022; Li et al., 2023; Mhammedi et al., 2023a); Appendix F.2 makes this connection explicit. In particular, Li et al. (2023)
consider an optimal design objective for tabular MDPs which is equivalent to Eq. (6) with µ = Unif(X ). Outside of this
paper, the only work we are aware of that considers optimal design-like objectives for nonlinear settings beyond Low-Rank
MDPs is Foster et al. (2021), but their algorithms are not efficient in terms of offline estimation oracles.

Lastly, a theoretical exploration objective worth mentioning is maximum entropy exploration (Hazan et al., 2019; Jin et al.,
2020a). Existing theoretical guarantees for this objective are limited to tabular MDPs, and we suspect the objective is not
sufficiently powerful to allow for downstream policy optimization in more general classes of MDPs.

Coverability. Compared to previous guarantees based on coverability (Xie et al., 2023; Liu et al., 2023a; Amortila et al.,
2024) our guarantees have somewhat looser sample complexity and require stronger function approximation. However,
these works only consider reward-driven exploration and are computationally inefficient. A second contribution of our work
is to show that L1-Coverability, which can be significantly weaker than L∞-Coverability, is sufficient for sample-efficient
online reinforcement learning on its own.11

Instance-dependent algorithms and complexity. Wagenmaker et al. (2022); Wagenmaker & Jamieson (2022) provide
instance-dependent regret bounds for tabular MDPs and linear MDPs that scale with problem-dependent quantities closely
related to L1-Coverability. These results are tailored to the linear setting, and their bounds contain lower-order terms that
scale explicitly with the dimension and/or number of states.

General-purpose complexity measures. A long line of research provides structural complexity measures that enable
sample-efficient exploration in reinforcement learning (Russo & Van Roy, 2013; Jiang et al., 2017; Sun et al., 2019; Wang
et al., 2020b; Du et al., 2021; Jin et al., 2021a; Foster et al., 2021; Xie et al., 2023; Foster et al., 2023). Coverability is
incomparable to most prior complexity measures (Xie et al., 2023), but is subsumed by the Decision-Estimation Coefficient
(Foster et al., 2021), as well as the (less general) Sequential Extrapolation Coefficient and related complexity measures (Liu
et al., 2023b). The main contrast between these works and our own is that they do not provide computationally efficient
algorithms in general.

A handful of works extend the approaches above to accommodate reward-free reinforcement learning, but are still computa-
tionally inefficient, and do not explicitly suggest exploration objectives (Chen et al., 2022b; Xie et al., 2023; Chen et al.,
2022a).

Further related work. Coverability is closely related to a notion of smoothness used in a line of recent work on smoothed
online learning and related problems (Haghtalab et al., 2020; 2022a;b; Block et al., 2022; Block & Polyanskiy, 2023;
Daskalakis et al., 2023). We are not aware of explicit technical connections between our techniques and these works, but it
would be interesting to explore this in more detail.

11Liu et al. (2023a) also provide guarantees based on L1-Coverability, but their regret bounds contain a lower-order term that can be as
large as the number of states in general.
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B. Experimental Evaluation: Details and Additional Results
B.1. Experimental Details

MaxEnt baseline. We implement our algorithm by building on top of the codebase for MaxEnt from Hazan et al. (2019).
The MaxEnt algorithm follows a similar template to ours, in that it iteratively defines a reward function based on past
occupancies and optimizes it to find a new exploratory policy. In MaxEnt, the reward function is defined as

rt =
dDKL(Unif ∥X)

dX

∣∣∣
X=d̂pt

,

where d̂p
t

is the estimated occupancy for the policy cover pt at time t and Unif denotes the uniform distribution over
X ×A. We use the same neural network architecture (described in detail below) to represent policies, the same algorithm
for approximate planning, the same discretization scheme to approximate occupancies, and the exact same hyperparameters
for discretization resolution, number of training steps, length of rollouts, learning rates, and so on. We found that our method
worked “out-of-the-box” without any modifications to their architecture or hyperparameters.

Starting from their codebase, we obtain an implementation of Algorithm 1 simply by modifying the reward function given
to the planner from the MaxEnt reward function to the L1-Coverage reward function (Line 4 in Algorithm 1).

Environment. We evaluate on the MountainCarContinuous-v0 environment (henceforth simply MountainCar) from
the OpenAI Gym (Brockman et al., 2016). The state space of the environment is two-dimensional, with a position value
(denoted by ξ) that is in the interval [−1.2, 0.6] and a velocity value (denoted by ρ) that is in the interval [−0.07, 0.07]. The
dynamics are deterministic and defined by the physics of a sinusoidal valley, we refer the reader to the documentation for the
precise equations.12 The goal state (the “flag”) is at the top of the right hill, with a position ξ = +0.45. The bottom of the
valley corresponds to the coordinate ξ = −π/6 ≈ −0.52. We modify the environment to have a deterministic starting state
with a position of ξ = −0.5 and a velocity of ρ = 0, so that more deliberate exploration is required to find a high-quality
cover. This means that occupancies and covers are evaluated when rolling out from this deterministic starting state. The
action space is continuous in the interval [−1, 1], with negative values corresponding to forces applied to the left and positive
values corresponding to forces applied to the right. To simplify, we will consider that the environment only has 3 actions,
namely we only allow actions in {−1, 0, 1}. Finally, we take a horizon of H = 200, meaning that we terminate rollouts
after 200 steps (if the goal state has not been reached yet).

Implementation of Algorithm 1. We make a few changes to Algorithm 1. Firstly, while MountainCar has a time horizon
and is thus non-stationary, we approximate the dynamics as stationary. Thus, we replace dM,π

h in Line 4 of Algorithm 1 by a
stationary analogue dM,π

stat , and only invoke Algorithm 1 once rather than at each layer h. Namely, we define

dM,π
stat :=

1

H

∑
h

dM,π
h ,

where H = 200 is the horizon which we define for MountainCar. We will henceforth simply write dπ := dM,π
stat for

compactness. Similarly, we choose a stationary distribution µ (to be described shortly) to pass as input to the algorithm.
Secondly, rather than solving the policy optimization problem for the reward function

r(x, a) =
µ(x, a)∑

i<t d
M,πi(x, a) + C∞µ(x, a)

as written Line 4, we instead apply some regularization and solve the policy optimization problem for the more general
L1-Coverage-based reward function defined in Eq. (6), namely

r(x, a) =
µ(x, a)∑

i<t d
M,πi(x, a) + εC∞µ(x, a)

, (16)

for a small parameter ε > 0. This has the effect of magnifying the reward difference between visited and unvisited states.
We also (linearly) renormalize so that this reward function lies in the interval [0, 1]. We found that regularizing with ε helps
our approximate planning subroutine (discussed shortly) solve the policy optimization and recover a better policy for the
L1-Coverage-based reward function.

12https://www.gymlibrary.dev/environments/classic_control/mountain_car_continuous/
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Approximating dπ and µ. To approximate dπ and choose µ, we define a discretized state space for MountainCar.
Namely, we discretize the position space [−1.2, 0.6] in 12 evenly-spaced intervals and the velocity space [−0.07, 0.07] in 11
evenly-spaced intervals. This gives a tabular discretization with 12× 11 = 132 states. We then approximate dπ(x, a) via a
simple count-based estimate on the discretized space. That is, letting the discretized space be denoted by B = {b1, . . . , b132}
where each bi is a bin, and given trajectories (xn

h, a
n

h)n∈[N ],h∈[H], we estimate

dπdisc(bi, a) :=
1

H

H∑
h=1

dπdisc,h(bi, a), where dπdisc,h(bi, a) =
1

N

N∑
n=1

I{xn

h ∈ bi, an

h = a}

and then for any x, a we assign
dπ(x, a) = dπdisc(bix , a),

where ix is the index of the bin bi in which state x lies. For the distribution µ and the L∞ coverability parameter C∞, we
take µ to be uniform over the discretized state-action space, that is we take

µ(x, a) =
1

|B||A|
=

1

396
,

and
C∞ = |B||A| = 396.

Approximate planner. As an approximate planner, we take a simple implementation of the REINFORCE algorithm (Sutton
et al., 1999) given in the PyTorch (Paszke et al., 2019) GitHub repository13, which only differs from the classical REINFORCE
in that it applies variance-smoothing (with some parameter σ) to the returns. When solving the policy optimization problem,
we allow REINFORCE to use the original stochastic reset distribution for MountainCar, that is the reset distribution which
samples ξ ∈ [−0.6,−0.4] uniformly and has ρ = 0.

Architecture, optimizer, hyperparameters. The policy class we use, and which REINFORCE optimizes over, is obtained
by a set of fully-connected feedforward neural nets with ReLU activation, 1 hidden layer, and 128 hidden units. The input is
2-dimensional (corresponding to the 2-dimensional state space of MountainCar) and the output is a 3-dimensional vector;
we obtain a distribution over the action set {−1, 0, 1} by taking a softmax over the output. We use Xavier initialization
(Glorot & Bengio, 2010).

For REINFORCE, we take a discount factor of 0.99, and a variance smoothing parameter of σ = 0.05. We train REINFORCE
with horizons of length 400. We take πt, the policy which approximates Line 4 of Algorithm 1, to be the policy returned after
1000 REINFORCE updates, with one update after each rollout. The update in REINFORCE use the Adam optimizer (Kingma &
Ba, 2015) with a learning rate of 10−3.

We estimate all occupancies with N = 100 rollouts of length H = 200. We calculate the mixture occupancies dp, for
p = Unif(π1, . . . , πt), by estimating the occupancy for each dπi separately and averaging via

dp(x, a) =
1

t

t∑
i=1

dπ
i

(x, a).

We train for 20 epochs, corresponding to T = 20 in the loop of Line 3 of Algorithm 1. For the regularized reward of Eq.
(16), we take ε = 10−4.

B.2. Additional Experimental Results

B.2.1. MOUNTAINCAR

In addition to the results of Section 6, in Figure 2 we report the entropy and L1-Coverability of the state distributions for the
policy covers found by the three algorithms throughout training. Namely, for each cover p, we estimate its occupancy dp via
the procedure defined above, and measure the entropy of our estimate for dp. In the second plot, we take the estimate of dp

13https://github.com/pytorch/examples/blob/main/reinforcement_learning/reinforce.py
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Figure 2. Entropy and L1-Coverability measured on each policy cover obtained from L1-Coverage (Algorithm 1), MaxEnt, and uniform
exploration on the MountainCar environment. We plot the mean and standard error across 10 runs. Each epoch corresponds to a single
policy update in Algorithm 1 and MaxEnt, obtained through 1000 steps of REINFORCE with rollouts of length 400.

and measure its objective value ΨM

µ;h,ε(p), where ΨM

µ;h,ε(p) is the L∞-Coverability relaxation of L1-Coverability which we
recall is defined via

ΨM

µ;h,ε(p) = sup
π∈Π

EM,π

[
µ(xh, ah)

dM,p
h (xh, ah) + ε · C∞µ(xh, ah)

]
. (17)

We measure this quantity with ε = 10−4, and in the same way that we approximate Line 4 in Algorithm 1, namely by calling
REINFORCE with a stochastic starting distribution as an approximate planner, with the same parameters and architecture. We
note that there are two sources of approximation error in our measurements of ΨM

µ;h,ε(p), namely the estimation error of dp

(via a count-based estimate on the discretized space) and the optimization error of REINFORCE, and thus values we report
should be taken as approximations of the true L1-Coverability values.14

Results. We find that L1-Coverage and MaxEnt recover policy covers with similar entropy values, with the entropy of
the MaxEnt cover being slightly larger (despite the MaxEnt cover visiting fewer states, as seen in our results in Section 6).
Interestingly, the MaxEnt baseline has higher entropy while visiting fewer states (as seen in our results in Section 6),
indicating that entropy may not be the best proxy for exploration. For L1-Coverage, we find that Algorithm 1 attains the
smallest L1-Coverage values, indicating a better cover.

B.2.2. PENDULUM

Environment. We evaluate on the Pendulum-v0 environment (henceforth simply Pendulum) from the OpenAI Gym
(Brockman et al., 2016). The state space of the environment is two-dimensional, with an angle value (denoted by θ) that is
in the interval [−π, π] and a velocity value (denoted by ρ) that is in the interval [−8, 8]. The dynamics are deterministic and
defined by the physics of an inverted pendulum. We modify the starting distribution to be a deterministic starting state with
a position of θ = π and a velocity of ρ = 0. This means that occupancies and covers are evaluated when rolling out from
this deterministic starting state. The action space is continuous in the interval [−2, 2], with negative values corresponding to
torque applied to the left and positive values corresponding to torque applied to the right. To simplify, we only allow actions
in {−1, 0, 1}, so that |A| = 3. Finally, we take a horizon of H = 200, meaning that we terminate rollouts after 200 steps.

Discretization and other hyperparameters. We apply all the same implementation details as in Appendix B.1. We take a
discretization resolution for Pendulum of 8 × 8. We take a REINFORCE planner with a uniform starting distribution with
θ ∈ [−π, π] and ρ ∈ [−1, 1]. The architecture, optimizer, and hyperparameters are the same as for MountainCar.

14For instance, notice the variability over epochs of the uniform random baseline, which has a constant ΨM
µ;h,ε(p) value.
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Figure 3. Number of discrete states visited (mean and standard error over 10 runs) and occupancy heatmaps for each policy cover obtained
from L1-Coverage (Algorithm 1), MaxEnt, and uniform exploration in the Pendulum environment. Each epoch comprises a single policy
update in Algorithm 1 and MaxEnt, obtained through 1000 steps of REINFORCE with rollouts of length 400. Heatmap axes: torque (x-axis)
and angle (y-axis). Start state indicated by •.
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Figure 4. Entropy and L1-Coverability measured on each policy cover obtained from L1-Coverage (Algorithm 1), MaxEnt, and uniform
exploration on the Pendulum environment. We plot the mean and standard error across 10 runs. Each epoch corresponds to a single policy
update in Algorithm 1 and MaxEnt, obtained through 1000 steps of REINFORCE with rollouts of length 400.
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Results. As with MountainCar, we measure the number of unique states visited and the occupancy heatmaps (Figure 3) as
well as the entropy and L1-Coverage values (Figure 4). Overall, we find that L1-Coverage and MaxEnt obtain similar values
and are able to explore every state in the (discretized) Pendulum environment, indicating that exploration is somewhat easier
than for the MountainCar environment.

B.3. Additional Discussion

While the MountainCar and Pendulum environments are fairly simple, we note that our algorithm exhibits robustness
in several different ways, indicating that it may scale favorably to more challenging domains. Firstly, we do not expect
that REINFORCE is finding a near-optimal policy for the planning problem in Line 4, which indicates that our method is
robust to optimization errors. We also note that the choice of µ used in our implementation of Algorithm 1, which is
defined as uniform over the discretized space, is a heuristic and is not guaranteed to have good coverage with respect to
the true continuous MDP. This indicates that our method is robust to the choice of µ and C∞. Lastly, our method worked
“out-of-the-box” with the same hyperparameters used in the MaxEnt implementation in Hazan et al. (2019), and was found to
behave similarly with different hyperparameters, which indicates that our method is robust to the choice of hyperparameters.
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C. Technical Tools
C.1. Minimax Theorem

Lemma C.1 (Sion’s Minimax Theorem (Sion, 1958)). Let X and Y be convex sets in linear topological spaces, and assume
X is compact. Let F : X × Y → R be such that (i) f(x, ·) is concave and upper semicontinuous over Y for all x ∈ X and
(ii) f(·, y) is convex and lower semicontinuous over X for all y ∈ Y . Then

inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y). (18)

C.2. Concentration

Lemma C.2. For any sequence of real-valued random variables (Xt)t≤T adapted to a filtration (Ft)t≤T , it holds that
with probability at least 1− δ, for all T ′ ≤ T ,

T ′∑
t=1

− log
(
Et−1

[
e−Xt

])
≤

T ′∑
t=1

Xt + log(δ−1). (19)

Lemma C.3 (Freedman’s inequality (e.g., Agarwal et al. (2014))). Let (Xt)t≤T be a real-valued martingale difference
sequence adapted to a filtration (Ft)t≤T . If |Xt| ≤ R almost surely, then for any η ∈ (0, 1/R), with probability at least
1− δ,

T∑
t=1

Xt ≤ η
T∑
t=1

Et−1

[
X2
t

]
+

log(δ−1)

η
.

Lemma C.4 (Corollary of Lemma C.3). Let (Xt)t≤T be a sequence of random variables adapted to a filtration (Ft)t≤T .
If 0 ≤ Xt ≤ R almost surely, then with probability at least 1− δ,

T∑
t=1

Xt ≤
3

2

T∑
t=1

Et−1[Xt] + 4R log(2δ−1),

and
T∑
t=1

Et−1[Xt] ≤ 2

T∑
t=1

Xt + 8R log(2δ−1).

C.3. Information Theory

Lemma C.5 (e.g., Foster et al. (2021)). For any pair of random variables (X,Y ),

EX∼PX

[
D2

H

(
PY |X ,QY |X

)]
≤ 4D2

H(PX,Y ,QX,Y ).

Lemma C.6 (Foster et al. (2021)). Let P and Q be probability measures on (X ,F ). For all h : X → R with 0 ≤ h(X) ≤ B
almost surely under P and Q, we have

EP[h(X)] ≤ 3EQ[h(X)] + 4B ·D2
H(P,Q). (20)

C.4. Reinforcement Learning

Proofs for the following lemmas can be found in Foster et al. (2021).
Lemma C.7 (Global simulation lemma). Let M and M ′ be MDPs with

∑H
h=1 rh ∈ [0, 1] almost surely, and let π ∈ ΠRNS.

Then we have ∣∣fM(π)− fM′
(π)
∣∣ ≤ DH(M(π),M ′(π)) ≤ 1

2η
+
η

2
D2

H(M(π),M ′(π)) ∀η > 0. (21)

Lemma C.8 (Local simulation lemma). For any pair of MDPs M = (PM , RM) and M = (PM , RM) with the same initial
state distribution and

∑H
h=1 rh ∈ [0, 1],

∣∣fM(π)− fM(π)
∣∣ ≤ H∑

h=1

EM,π
[
DH

(
PM

h (xh, ah), P
M

h (xh, ah)
)
+DH

(
RM

h (xh, ah), R
M

h (xh, ah)
)]
. (22)
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C.5. Helper Lemmas

Lemma C.9 (E.g., Xie et al. (2023)). Let d1, d2, . . . , dT be an arbitrary sequence of distributions over a set Z , and let
µ ∈ ∆(Z) be a distribution such that dt(z)/µ(z) ≤ C for all (z, t) ∈ Z × [T ]. Then for all z ∈ Z , we have

T∑
t=1

dt(z)∑
i<t d

i(z) + C · µ(z)
≤ 2 log(2T ).

Lemma C.10. For any distribution p ∈ ∆(Πrns), π ∈ Πrns, µ ∈ RX×A
+ , and ε, δ > 0, we have that

EM,π

[
dM,π
h (xh, ah)

dM,p
h (xh, ah) + ε · dM,π

h (xh, ah)

]
≤ EM,π

[
dM,π
h (xh, ah)

dM,p
h (xh, ah) + δ · µ(xh, ah)

]
+
δ

ε
· EM,π

[
µ(xh, ah)

dM,p
h (xh, ah) + δ · µ(xh, ah)

]
.

Proof of Lemma C.10. The result follows by observing that we can bound

EM,π

[
dM,π
h (xh, ah)

dM,p
h (xh, ah) + ε · dM,π

h (xh, ah)

]
− EM,π

[
dM,π
h (xh, ah)

dM,p
h (xh, ah) + δ · µ(xh, ah)

]
=

∑
x∈X ,a∈A

(dM,π
h (x, a))2

(
δ · µ(x, a)− ε · dM,π

h (x, a)
)

(dM,p
h (x, a) + ε · dM,π

h (x, a))(dM,p
h (x, a) + δ · µ(x, a))

≤
∑

x∈X ,a∈A

(dM,π
h (x, a))2(δ · µ(x, a))

(dM,p
h (x, a) + ε · dM,π

h (x, a))(dM,p
h (x, a) + δ · µ(x, a))

≤ δ

ε

∑
x∈X ,a∈A

dM,π
h (x, a)µ(x, a)

dM,p
h (x, a) + δ · µ(x, a)

.

Lemma C.11. For any π ∈ Πrns, d ∈ RX
+ , µ ∈ RX

+ , and ε, δ > 0, we have that

EM,π

[
PM

h−1(xh | xh−1, ah−1)

d(xh) + ε · PM

h−1(xh | xh−1, ah−1)

]
≤ EM,π

[
PM

h−1(xh | xh−1, ah−1)

d(xh) + δ · µ(xh)

]
+
δ

ε
· EM,π

[
µ(xh)

d(xh) + δ · µ(xh)

]
.

Proof of Lemma C.11. The result follows using similar reasoning to Lemma C.10:

EM,π

[
PM

h−1(xh | xh−1, ah−1)

d(xh) + ε · PM

h−1(xh | xh−1, ah−1)

]
− EM,π

[
PM

h−1(xh | xh−1, ah−1)

d(xh) + δ · µ(xh)

]
=

∑
x∈X ,a∈A,x′∈X

dM,π
h−1(x, a)

(PM

h−1(x
′ | x, a))2

(
δ · µ(x′)− ε · PM

h−1(x
′ | x, a)

)
(d(x′) + ε · PM,

h−1(x
′ | x, a))(d(x′) + δ · µ(x′))

≤
∑

x∈X ,a∈A,x′∈X
dM,π
h−1(x, a)

(PM

h−1(x
′ | x, a))2(δ · µ(x′))

(d(x′) + ε · PM,
h−1(x

′ | x, a))(d(x′) + δ · µ(x′))

≤ δ

ε

∑
x∈X ,a∈A,x′∈X

dM,π
h−1(x, a)

PM

h−1(x
′ | x, a)µ(x′)

d(x′) + δ · µ(x′)

=
δ

ε
· EM,π

[
µ(xh)

d(xh) + δ · µ(xh)

]
.
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Part I

Additional Results and Discussion
D. L1-Coverage: Application to Downstream Policy Optimization
In this section, we show how to use data gathered using policy covers with bounded L1-Coverage to perform offline policy
optimization. Here, there is an underlying (reward-free) MDP M⋆ =

{
X ,A, {PM⋆

h }Hh=0

}
and a given policy class Π, and

we have access to policy covers p1, . . . , pH such that the L1-Coverage objective ΨM⋆

h,ε(ph) is small for all h. For an arbitrary
user-specified reward distribution R = {Rh}Hh=1 with

∑H
h=1 rh ∈ [0, 1] almost surely, we define

JM⋆

R (π) := EM⋆,π

[
H∑
h=1

rh

]

as the value under rh ∼ R(xh, ah). Our goal is to use trajectories drawn from p1, . . . , pH to compute a policy π̂ such

max
π∈Π

JM⋆

R (π)− JM⋆

R (π̂) ≤ ϵ

using as few samples as possible.

We present guarantees for two standard offline policy optimization methods: Maximum Likelihood Estimation (MLE) and
Fitted Q-Iteration (FQI). While both of these algorithms are fully offline, combining them with the online algorithms for
reward-free exploration in Section 5 leads to end-to-end algorithms for online reward-driven exploration. We expect that
similar guarantees can be proven for other standard offline policy optimization methods (Munos, 2003; Antos et al., 2008;
Chen & Jiang, 2019; Xie & Jiang, 2020; 2021; Jin et al., 2021b; Rashidinejad et al., 2021; Foster et al., 2022; Zhan et al.,
2022), as well as offline policy evaluation methods (Liu et al., 2018; Uehara et al., 2020; Yang et al., 2020; Uehara et al.,
2021) and hybrid offline/online methods (Bagnell et al., 2003; Agarwal et al., 2021; Song et al., 2022).

Maximum likelihood. LetM be a realizable model class for which M⋆ ∈ M. We define the Maximum Likelihood
algorithm as follows:

• For each h ∈ [H], gather n trajectories {oh,t}t∈[n], where oh,t = (xh,t

1 , ah,t

1 , rh,t

1 ), . . . , (xh,t

H , ah,t

H , rh,t

H ) by executing
πh,t ∼ ph in M⋆ with R as the reward distribution.

• Set M̂ = argmaxM∈M
∑H
h=1

∑n
t=1 log(M(oh,t | πh,t)), where M(o | π) denotes the likelihood of trajectory o

under π in M .

• Let π̂ = argmaxπ∈Π J
M⋆

R (π).

Proposition D.1. Assume that M⋆ ∈ M and let R = {Rh}Hh=1 be a reward distribution with
∑H
h=1 rh ∈ [0, 1] almost

surely for all M ∈ M. For any n ∈ N, given policy covers p1, . . . , pH , the Maximum Likelihood algorithm ensures that
with probability at least 1− δ,

JM⋆

R (π⋆)− JM⋆

R (π̂) ≤ 8H

(√
max
h

ΨM⋆

h,ε(ph) ·
log(|M|/δ)

n
+max

h
ΨM⋆

h,ε(ph) · ε

)
, (23)

and uses H · n trajectories total.

Fitted Q-iteration. Let a value function class Q = Q1, . . . ,QH ⊂ (X ×A)→ [0, 1] be given. For a value function Q,
define the Bellman operator for M⋆ with reward distribution R by

[
T M⋆

R,hQ
]
(x, a) := EM⋆

[rh +maxa′∈AQ(xh+1, a
′) |

xh = x, ah = a] under rh ∼ R(xh, ah). We make the Bellman completeness assumption that for all Q ∈ Qh+1,[
T M⋆

R,hQ
]
∈ Qh. We define the L1-Coverage objective with respect to the policy class Π = {πQ}Q∈Q, where πQ,h(x) :=

argmaxa∈AQh(x, a).

The Fitted Q-Iteration algorithm is defined as follows:
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• For each h = H, . . . , 1:

– Gather n trajectories {oh,t}t∈[n], where oh,t = (xh,t

1 , ah,t

1 , rh,t

1 ), . . . , (xh,t

H , ah,t

H , rh,t

H ) by executing πh,t ∼ ph in
M⋆ with R as the reward distribution.

– Set Q̂h = argminQ∈Qh

∑n
t=1

(
Q(xh,t

h , ah,t

h )− rh,t

h −maxa′∈A Q̂h+1(x
h,t

h+1, a
′)
)2

.

• Let π̂h(x) := argmaxa∈A Q̂h(x, a).

Proposition D.2. Let R = {Rh}Hh=1 be a reward distribution with rh ∈ [0, 1] and
∑H
h=1 rh ∈ [0, 1] almost surely, and

assume that for all Q ∈ Qh+1,
[
T M⋆

R,hQ
]
∈ Qh. For any n ∈ N, given policy covers p1, . . . , pH , the Fitted Q-Iteration

algorithm ensures that with probability at least 1− δ,

JM⋆

R (π⋆)− JM⋆

R (π̂) ≤ O(H) ·

(√
max
h

ΨM⋆

h,ε(ph) ·
log(|Q|H/δ)

n
+max

h
ΨM⋆

h,ε(ph) · ε

)
, (24)

and uses H · n trajectories total.

D.1. Proofs

Proof of Proposition D.1. By the standard generalization bound for MLE (e.g., Foster & Krishnamurthy (2021); Foster &
Rakhlin (2023)), we are guaranteed that with probability at least 1− δ,

H∑
h=1

EM⋆,ph
[
D2

H

(
P M̂

h (xh, ah), P
M⋆

h (xh, ah)
)]
≤

H∑
h=1

Eπ∼ph
[
D2

H

(
M̂(π),M⋆(π)

)]
≤ 2

log(|M|/δ)
n

.

Let π⋆ := argmaxπ∈Π J
M⋆

R (π). Using Lemma C.8, we have that

JM⋆

R (π⋆)− JM⋆

R (π̂) ≤ JM⋆

R (π⋆)− JM̂

R (π⋆) + JM̂

R (π̂)− JM⋆

R (π̂) ≤ 2max
π∈Π

H∑
h=1

EM
⋆,π
[
DH

(
P M̂

h (xh, ah), P
M⋆

h (xh, ah)
)]
.

Since DH

(
P M̂

h (xh, ah), P
M⋆

h (xh, ah)
)
∈ [0,

√
2], we can use Proposition 3.1 to bound

max
π∈Π

EM⋆,π
[
DH

(
P M̂

h (xh, ah), P
M⋆

h (xh, ah)
)]
≤ 2
√

ΨM⋆

h,ε(ph) · E
M⋆,ph

[
D2

H

(
P M̂

h (xh, ah), PM⋆

h (xh, ah)
)]

+
√
2ΨM⋆

h,ε(ph)ε

≤ 2

√
2ΨM⋆

h,ε(ph) ·
log(|M|/δ)

n
+
√
2 ·ΨM⋆

h,ε(ph) · ε.

Combining this with the preceding inequalities yields the result.

Proof of Proposition D.2. By a standard generalization bound for FQI (e.g., Xie & Jiang (2020); Xie et al. (2023)), under
the Bellman completeness assumption, it holds that with probability at least 1− δ,

H∑
h=1

EM⋆,ph

[(
Q̂h(xh, ah)−

[
T M⋆

R,hQ̂h+1

]
(xh, ah)

)2]
≤ O

(
log(|Q|H/δ)

n

)
.

At the same time, using a finite-horizon adaptation of Xie & Jiang (2020, Lemma 4), we have that

JM⋆

R (π⋆)− JM⋆

R (π̂) ≤ 2max
π∈Π

H∑
h=1

EM
⋆,π
[∣∣∣Q̂h(xh, ah)− [T M⋆

R,hQ̂h+1

]
(xh, ah)

∣∣∣].
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Since
∣∣Q̂h(xh, ah)− [T M⋆

R,hQ̂h+1

]
(xh, ah)

∣∣ ∈ [0, 1], we can use Proposition 3.1 to bound

max
π∈Π

EM⋆,π
[∣∣Q̂h(xh, ah)− [T M⋆

R,hQ̂h+1

]
(xh, ah)

∣∣]
≤ 2

√
ΨM⋆

h,ε(ph) · E
M⋆,ph

[(
Q̂h(xh, ah)−

[
T M⋆

R,hQ̂h+1

]
(xh, ah)

)2]
+ΨM⋆

h,ε(ph) · ε

≤ O

(√
ΨM⋆

h,ε(ph) ·
log(|Q|H/δ)

n
+ΨM⋆

h,ε(ph) · ε

)
.
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E. Efficient Model-Free Exploration via L1-Coverage
Our algorithms in the previous section show that the L1-Coverage objective and L1-Coverability parameter enable sample-
efficient online reinforcement learning, but one potential drawback is that they require model-based realizability, a strong
form of function approximation that may not always be realistic. In this section, we give model-free algorithms to perform
reward-free exploration and optimize the L1-Coverage objective that do not require model realizability, and instead require
a weaker form of density ratio or weight function realizability, a modeling approach that has been widely used in offline
reinforcement learning (Liu et al., 2018; Uehara et al., 2020; Yang et al., 2020; Uehara et al., 2021; Jiang & Huang, 2020;
Xie & Jiang, 2020; Zhan et al., 2022; Chen & Jiang, 2022; Rashidinejad et al., 2023; Ozdaglar et al., 2023) and recently
adapted to the online setting (Amortila et al., 2024). The main algorithm we present computes a policy cover that achieves
a bound on the L1-Coverability objective that scales with the pushforward coverability parameter (Section 4.2), but the
weaker modeling assumptions make it applicable in a broader range of settings.

Throughout this section, we take Π = Πns as the set of all non-stationary policies.

E.1. Algorithm

Our model-free algorithm, CODEX.W, is presented in Algorithm 3. The algorithm builds a collection of policy covers
p1, . . . , pH ∈ ∆(Πrns) layer-by-layer in an inductive fashion. For each layer h ∈ [H], given policy covers p1, . . . , ph−1 for
the preceding layers, the algorithm computes ph by (approximately) implementing the iterative algorithm for policy cover
construction given in Algorithm 5 (Section 4.2), in a data-driven fashion.15

In more detail, recall the pushforward coverability relaxation

ΨM⋆

push;h,ε(p) = sup
π∈Π

EM⋆,π

[
PM⋆

h−1(xh | xh−1, ah−1)

dM⋆,p
h (xh) + ε · PM⋆

h−1(xh | xh−1ah−1)

]
for the L1-Coverage objective given in Section 4.2. For layer h, Algorithm 3 approximately minimizes this objective by
computing a sequence of policies πh,1, . . . , πh,T , where each policy

πh,t ≈ argmax
π∈Π

EM⋆,π

[
PM⋆

h−1(xh | xh−1, ah−1)∑
i<t d

πh,i

h (xh) + PM⋆

h−1(xh | xh−1, ah−1)

]
(25)

is computed in a data-driven, online fashion that makes use of the preceding policy covers p1, . . . , ph−1. The algorithm then
computes the cover ph via ph = Unif(πh,1 ◦h πunif , . . . , πh,T ◦h πunif).

Our planning analysis in Section 4.2 shows that as long as the approximation error in Eq. (25) is small, ph will indeed be an
approximate policy cover that minimizes ΨM⋆

push;h,ε(ph). To achieve this, Algorithm 3 makes use of two subroutines. The
first subroutine, EstimateWeightFunction (Algorithm 4), invoked in Line 6, uses function approximation to estimate a
weight function ŵt

h such that

ŵt

h(xh | xh−1, ah−1) ≈ wt

h(xh | xh−1, ah−1) :=
PM⋆

h−1(xh | xh−1, ah−1)∑
i<t d

πh,i

h (xh) + PM⋆

h−1(xh | xh−1, ah−1)
. (26)

The second subroutine, PolicyOptimization, is a hyperparameter to the algorithm, and approximately solves the policy
optimization problem

πh,t ≈ argmax
π∈Π

EM⋆,π[ŵt

h(xh | xh−1, ah−1)],

treating the estimated weight function ŵt

h as a reward. The PolicyOptimization subroutine makes use of exploratory data
collected using preceding policy covers p1, . . . , ph−1, and hence does not have to perform systematic exploration. Indeed,
we show that any hybrid offline/online method (that is, any online method that requires access to an exploratory policy) that
satisfies a certain “local” policy optimization guarantee is sufficient, with PSDP (Algorithm 6; (Bagnell et al., 2003)) and
Natural Policy Gradient (Agarwal et al., 2021) being natural choices; for our analysis, we make use of PSDP.

15Note that while the results in Section 4 are presented for the setting in which the underlying MDP M is “known” to the learner
(planning), the algorithmic template in Algorithm 1 can be applied even when M is unknown, as long as the policy optimization step in
Line 4 can be implemented in a sample-efficient fashion. This observation is the basis for the algorithms we present in this section.
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Algorithm 3 Coverage-Driven Exploration via Weight Function Estimation (CODEX.W)
1: parameters:

Weight function classW =W1:H .

Policy opt. subroutine PolicyOptimizationh(r1:h, p1:h, ϵ, δ).// Optimizes reward rh using policy covers p1:h.

Approximation parameter ε ∈ (0, 1/2), failure probability δ ∈ (0, e−1).

2: Set T = 1
ε and p1 = πunif .

3: Set ϵw = c · (CM⋆

push/|A|)1/2ε1/2, ϵopt = c′ · ε2, and δw = δopt = δ/(2HT ), for suff. small constants c, c′ > 0.

4: for h = 2, · · · , H do
5: for t = 1, . . . , T do
6: ŵt

h ← EstimateWeightFunctionh,t(ph−1, {πh,i}i<t; ϵw, δw,W). // Algorithm 4.

// Estimate for wt
h(xh | xh−1, ah−1) =

PM⋆

h−1(xh|xh−1,ah−1)∑
i<t dπ

h,i

h
(xh)+PM⋆

h−1
(xh|xh−1,ah−1)

.

7: Define reward function rh,t via rh,t

h−1(xh | xh−1, ah−1) = ŵt

h(xh | xh−1, ah−1) and rh,t

h′ = 0 ∀h′ ̸= h− 1.

// rh,t
h−1 can be interpreted as a stochastic reward for layer h− 1.

8: πh,t ← PolicyOptimizationh−1(p1:h−1, r
h,t; ϵopt, δopt).

// Approximately solve argmaxπ∈Π EM⋆,π

[
PM⋆

h−1(xh|xh−1,ah−1)∑
i<t dπ

h,i

h
(xh)+PM⋆

h−1
(xh|xh−1,ah−1)

]
.

9: Set ph = Unif(πh,1 ◦h πunif , . . . , πh,T ◦h πunif).

10: return Policy covers (p1, . . . , pH).

In what follows, we describe the EstimateWeightFunction and PolicyOptimization subroutines and the corresponding
statistical assumptions in more detail.

Weight function estimation and realizability. To perform weight function estimation, we assume access to a weight
function classW =W1:H , withWh ⊆ (X ×A×X → R+) that is capable of representing the weight function wt

h in Eq.
(26). While we can directly assume that the weight function in Eq. (26) is realized byW (cf. Assumption K.1), it turns out
(cf. Proposition K.1) that the following weaker form of weight function realizability is sufficient.

Assumption E.1 (Weight function realizability). For all h ≥ 2 and all π ∈ Πns

wπh(x
′ | x, a) :=

PM⋆

h−1(x
′ | x, a)

dM⋆,π
h (x′)

∈ Wh.

Assumption E.1 is new to the best of our knowledge, and is naturally suited to the pushforward coverability objective.
While this assumption involves the forward transition probability, it is weaker than model-based realizability because it
only requires modeling the relative transition probability, as the following example shows.

Example E.1. For a Block MDP (Du et al., 2019; Misra et al., 2020; Zhang et al., 2022; Mhammedi et al., 2023b) with latent
state space S and decoder class Φ ⊆ (X → S), we can satisfy Assumption E.1 with log|W| ≤ Õ(|S|2|A| + log|Φ|),16

yet any realizable model class must have log|M| = Ω(|X |)≫ |S| in general. ◁

See Amortila et al. (2024) for further discussion around weight function realizability in online RL.

Our weight function estimation subroutine, EstimateWeightFunction, is given in Algorithm 4. To motivate the algorithm,
consider the following abstract setting. Let Z be a set. We receive samples D1 = {z1

µ, . . . , z
n
µ} ∈ Z and D2 =

{z1
ν , . . . , z

n
ν} ∈ Z , where zt

µ ∼ µt ∈ ∆(Z) and zt
ν ∼ νt ∈ ∆(Z). The distributions µt and νt can be chosen in an adaptive

fashion based on z1
µ, z

1
ν , . . . , z

t−1
µ , zt−1

ν . We define µ = 1
n

∑n
t=1 µ

t and ν = 1
n

∑n
t=1 ν

t, and our goal is to estimate the
density ratio w⋆(z) := µ(z)

ν(z) . Given realizable weight function class W with w⋆ ∈ W , Nguyen et al. (2010) (see also

16Formally this requires a standard covering argument; we omit the details.
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Algorithm 4 Weight Function Estimation (EstimateWeightFunctionh,t(ph−1, {πi}i<t; ϵ, δ,W))
1: parameters:

Layer h ≥ 2, iteration t ∈ N.

Distribution ph−1 ∈ ∆(Πrns) , policies π1, . . . , πt−1 ∈ Πns.

Error tolerance ϵ ∈ (0, 1), failure probability δ ∈ (0, 1).

Weight function classW =W1:H withWh ⊆ (X ×A×X → [0, 1]).

2: Let n = nweight(ϵ, δ) :=
40 log(|W|δ−1)

ϵ2 .

3: Let q := 1
2ph−1 +

1
2(t−1)

∑
i<t π

i ◦h−1 πunif if t ≥ 1 and q := ph−1 otherwise.

4: Let D1 = D2 = ∅.

5: For each j ∈ [n], draw π ∼ q and sample (xj

h−1, a
j

h−1, x
j

h) ∼ π. Add (xj

h−1, a
j

h−1, x
j

h) to both D1 and D2.

6: for i < t do
7: Draw n samples

{
(xj

h−1, a
j

h−1, x
j

h)
}
j∈[n]

independently by drawing π ∼ q and (xj

h−1, a
j

h−1, x
j

h) ∼ π.

8: Draw n samples
{
(x̃j

h−1, ã
j

h−1, x̃
j

h)
}
j∈[n]

by sampling (x̃j

h−1, ã
j

h−1, x̃
j

h) ∼ πi.

9: Add
{
(xj

h−1, a
j

h−1, x
j

h)
}
j∈[n]

to D1 and add
{
(xj

h−1, a
j

h−1, x̃
j

h)
}
j∈[n]

to D2.

10: Set ŵ := argmaxw∈Wh
ÊD1

[log(w(xh | xh−1, ah−1))]− t · ÊD2
[w(xh | xh−1, ah−1)]. // See Eq. (54).

11: return ŵ.

Katdare et al. (2023)) propose the estimator

ŵ := argmax
w∈W

ÊD1
[log(w)]− ÊD2

[w], (27)

where ÊD[·] denotes the empirical expectation with respect to a dataset D. We show (Theorem K.2 in Appendix K) that this
estimator ensures that

Ez∼ν
[(√

ŵ(z)−
√
w⋆(z)

)2]
≲ O(∥w⋆∥∞) · log(|W|δ

−1)

n
(28)

with high probability. Algorithm 4 simply applies this technique to estimate the weight function in Eq. (26); to ensure
realizability of Eq. (26) under Assumption E.1, we apply the method with an expanded weight function class (defined in
Proposition K.1); see Appendix K.1 for details.

Remark E.1 (Comparison to contrastive learning (Misra et al., 2020)). We remark our weight function estimation subroutine
(Algorithm 4) can be viewed as a form of contrastive learning, with the target (population) weight function in Eq. (26) bearing
strong similarity to the target (Bayes-optimal) function from the regression problem used in the HOMER algorithm (cf. Line
11 of Algorithm 3 and Lemma 9 of Misra et al.). We also note that both CODEX.W and HOMER find policy covers inductively
via policy optimization on exploratory reward functions, and thus we can view CODEX.W as a natural generalization of the
HOMER algorithm to settings beyond the Block MDP. Additionally, our analysis improves dependencies present in HOMER’s
sample complexity (notably, the dependence on the minimal visitation probability).

Policy optimization subroutine. The policy optimization subroutine, PolicyOptimization, is a hyperparameter to the
algorithm, and can be any subroutine that approximately solves the policy optimization problem

πh,t ≈ argmax
π∈Π

EM⋆,π[ŵt

h(xh | xh−1, ah−1)],

which treats the estimated weight function ŵt

h as a reward for layer h− 1. PolicyOptimization does not need to perform
global policy optimization—instead, we only require a certain form of “local” guarantee with respect to the approximate
policy covers p1, . . . , ph−1; see Assumption K.2 for details.

For concreteness, we make use PSDP (Bagnell et al., 2003), described in Appendix K.4, as the PolicyOptimization
subroutine. PSDP optimizes a given reward function rh−1 by collecting exploratory data with p1, . . . , ph−1 and applying
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approximate dynamic programming with a user-specified value function class Q. We make the following value-based
realizability assumption, which asserts that Q is expressive enough to allow PSDP to optimize any weight function in the
classW .

Assumption E.2. We have access to a value function class Q = Q1:H with Qh ⊆ (X × A → [0, 1]) such that for all
h ∈ [H], w ∈ Wh, and π ∈ Πns, we have QM⋆,π

ℓ (·, ·;w) ∈ Qℓ for all ℓ ≤ h− 1, where

QM⋆,π
ℓ (x, a;w) = EM⋆,π[wh(xh | xh−1, ah−1) | xℓ = x, aℓ = a]

is the Q-function for π under the (stochastic) reward function defined via rh−1 = w(xh | xh−1, ah−1) and rh′ = 0 for
h′ ̸= h− 1.

E.2. Main Result

The main guarantee for Algorithm 3 applied with PSDP is as follows.

Theorem E.1 (Main result for Algorithm 3 with PSDP). Let ε ∈ (0, 1/2) and δ ∈ (0, e−1) be given, and suppose that we
have a weight function classW and value function class Q such that Assumptions E.1 and E.2 are satisfied. Then with PSDP
(Algorithm 6) as a policy optimization subroutine, and using an expanded weight function class defined in Proposition K.1,
Algorithm 3 produces policy covers p1, . . . , pH ∈ ∆(Πrns) such that with probability at least 1− δ, for all h ∈ [H],

ΨM⋆

push;h,ε(ph) ≤ 170H log(ε−1) · CM⋆

push,

and does so using at most

N ≤ Õ
(
H|A| log(|W|δ−1)

ε4
+
H4|A| log(|Q|δ−1)

ε5

)
episodes.

Theorem E.1 is a special case of a more general result (Theorem K.1) which allows for general policy optimization algorithms
that satisfy a certain “local optimality” guarantee (Assumption K.2); we obtain the result by verifying that PSDP satisfies this
condition. Let us discuss some key features.

• Sample efficiency. The sample complexity in Theorem E.1 scales as poly(H, |A|, log|W|, log|Q|, ε−1), and hence is
efficient for large state spaces; we expect that the precise polynomial factors can be tightened, as can the approximation
ratio in the objective value, though we leave this for future work. As with our results in preceding sections, the resulting
policy covers p1, . . . , pH can be directly used for downstream policy optimization.

• Computational efficiency. With PSDP as the PolicyOptimization subroutine, Algorithm 3 is computationally efficient
whenever i) the weight function estimation objective in Line 10 of Algorithm 4 can be solved efficiently overW , and
ii) square loss regression over the class Q can be solved efficiently. We consider these to be fairly mild assumptions.

• Practicality. In practice, we expect that the subroutine PolicyOptimization can be implemented using off-the-shelf
deep RL methods (e.g., PPO or SAC), which are known to perform well given access to exploratory data. In this
sense, Algorithm 3 can be viewed as a new approach to equipping existing deep RL methods with exploration, with
the weight function-based rewards in Line 7 acting as exploration bonuses.

As a concrete example, we can instantiate Theorem E.1 for Block MDPs to derive end-to-end guarantees under standard
assumptions.

Example E.2 (Sample complexity for Block MDP). For a Block MDP (Du et al., 2019; Misra et al., 2020; Zhang et al.,
2022; Mhammedi et al., 2023b) with latent state space S and decoder class Φ ⊆ (X → S), we can satisfy Assumption
E.1 with log|W| ≤ Õ(|S|2|A| + log|Φ|) and log|Q| ≤ Õ(|S||A| + log|Φ|), so Theorem E.1 gives sample complexity
N ≤ Õ

(
H4|S|2|A|2 log(|Φ|δ−1)

ε5

)
. ◁

We view the results in this section as a proof of concept, showing that the planning methods derived in Section 4 for
iteratively optimizing L1-Coverage can be implemented in a data-driven fashion. We leave sample-efficient counterparts for
other relaxations for future work.
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F. L1-Coverage: Structural Properties
In this section we draw connections between L1-Coverability, the structural parameter induced by L1-Coverage, and other
structural parameters and objectives, focusing on (i) a non-admissible variant of L1-Coverability (Appendix F.1), and (ii)
feature coverage (Appendix F.2). We also show that alternative exploration objectives do not induce meaningful structural
parameters in the same fashion as L1-Coverage (Appendix F.3).

F.1. Connection to Non-Admissible L1-Coverage

Inspired by Eq. (5), we can also define a non-admissible counterpart to L1-Coverability as follows.

CM

avg;h = inf
µ∈∆(X×A)

sup
π∈Π

EM,π

[
dM,π
h (xh, ah)

µ(xh, ah)

]
, (29)

and CM
avg = maxh∈[H] C

M

avg;h. This quantity was used to provide sample complexity bounds for online reinforcement
learning by Liu et al. (2023a) (generalizing the results of Xie et al. (2023)), and the associated concentrability coefficient

CM

avg;h(µ) = supπ∈Π EM,π
[
dM,π
h (xh,ah)

µ(xh,ah)

]
is widely used in offline reinforcement learning (Farahmand et al., 2010; Xie &

Jiang, 2020). The following result, which uses the minimax theorem in a similar fashion to Proposition 3.2, shows that it is
possible to bound L1-Coverability by this quantity in spite of non-admissibility, albeit with some loss in rate.

Proposition F.1. For all ε > 0, it holds that CovM

h,ε ≤ 1 + 2

√
CM

avg;h

ε .

Note that while the bound in Proposition F.1 grows as
√

1
ε , it still leads to non-trivial sample complexity bounds through

our main results (which give meaningful guarantees whenever CovM

h,ε grows sublinearly with ε−1), though the resulting
rates are worse than in the case where CovM

h,ε is bounded by an absolute constant.

F.2. Connection to Feature Coverage

Another well-studied notion of coverage from offline reinforcement learning is feature coverage (Jin et al., 2021b; Zanette
et al., 2021; Wagenmaker & Pacchiano, 2023). Consider the Low-Rank MDP framework (Rendle et al., 2010; Yao et al.,
2014; Agarwal et al., 2020; Modi et al., 2024; Zhang et al., 2022; Mhammedi et al., 2023a), in which the transition
distribution is assumed to factorize as

PM

h−1(xh | xh−1, ah−1) = ⟨ϕh−1(xh−1, ah−1), ψh(xh)⟩, (30)

where ϕh−1(x, a), ψh(x) ∈ Rd are (potentially unknown) feature maps. For offline reinforcement learning in Low-Rank
MDPs (Jin et al., 2021b; Zanette et al., 2021; Wagenmaker & Pacchiano, 2023), feature coverage for a distribution
µ ∈ ∆(X × A) is given by CM

ϕ;h(µ) = supπ∈Π∥E
M,π[ϕh(xh, ah)]∥

2
Σ−1

µ
. We define the associated feature coverability

coefficient by

CM

ϕ;h = inf
µ∈∆(X×A)

sup
π∈Π
∥EM,π[ϕh(xh, ah)]∥

2
Σ−1

µ
, (31)

where Σµ := E(x,a)∼µ
[
ϕh(x, a)ϕh(x, a)

⊤], and define CM

ϕ = maxh∈[H] C
M

ϕ;h. Note that one always has CM

ϕ ≤ d, as a
consequence of the existence of G-optimal designs (Kiefer & Wolfowitz, 1960; Huang et al., 2023). The following result
shows that L1-Coverability is always bounded by feature coverability.

Proposition F.2. Suppose the MDP M obeys the low-rank structure in Eq. (30). Then for all h ∈ [H], we have

CM

avg;h ≤ |A| · CM

ϕ;h−1, and consequently CovM

h,ε ≤ 1 + 2

√
|A|·CM

ϕ;h−1

ε .

We remark that if we restrict the distribution µ ∈ ∆(X × A) in Eq. (31) to be realized as a mixture of occupancies,
Proposition F.2 can be strengthened to give CovM

h,ε ≤ O
(
|A| · CM

ϕ;h−1

)
. Note that through our main results, Proposition F.2,

gives guarantees that scale with |A|. This is necessary in the setting where the feature map ϕh is unknown, which is covered
by our results, but is suboptimal in the setting where ϕ is known.
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F.3. Insufficiency of Alternative Notions of Coverage

L1-Coverage measures coverage of the mixture policy p ∈ ∆(Πrns) with respect to the L1(d
M,π
h )-norm. It is also reasonable

to consider variants of the objective based on Lq-norms for q > 1, which provide stronger coverage, but may have larger
optimal value. In particular, a natural L∞-type analogue of Eq. (2) is given by

ΨM

∞;h,ε(p) = sup
π∈Π

sup
(x,a)∈X×A

{
dM,π
h (x, a)

dM,p
h (x, a) + ε · dM,π

h (x, a)

}
. (32)

is identical to the L∞-coverability coefficient CM
∞ (5) studied in Xie et al. (2023), except that we restrict the data distribution

µ ∈ ∆(X ×A) to be admissible, i.e. realized by a mixture policy p ∈ ∆(Πrns) (we also incorporate the term ε · dM,π
h (x, a)

in the denominator to ensure the ratio is well-defined). The following lemma shows, perhaps surprisingly, that in stark
contrast to L1-Coverage, it is not possible to bound the optimal value of the admissible L∞-Coverage objective in Eq. (32)
in terms of the non-admissible coverability coefficient CM

∞.

Proposition F.3. There exists an MDP M and policy class Π ⊂ Πrns with horizon H = 1 such that CM

∞;h ≤ 2 (and hence
CovM

h,ε ≤ 2 as well), yet for all ε > 0,

inf
p∈∆(Π)

ΨM

∞;h,ε(p) ≥
1

ε
, (33)

and in particular infp∈∆(Π) Ψ
M

∞;h,0(p) =∞.

Note that one trivially has infp∈∆(Π) Ψ
M

∞;h,ε(p) ≤ 1
ε , and hence Eq. (33) shows that the optimal value is vacuously large for

the MDP in this example. In contrast, we have CovM

h,ε ≤ 2 even when ε = 0. More generally, one can show that similar
failure modes hold for admissible Lq-Coverage for any q > 1.
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Part II

Proofs
G. Proofs from Section 3
Proposition 3.1 (Change of measure for L1-Coverage). For any distribution p ∈ ∆(Πrns), we have that for all functions
g : X ×A → [0, B], all π ∈ Π, and all ε > 0,17

EM,π[g(xh, ah)] (3)

≤ 2
√

ΨM

h,ε(p) · E
M,p[g2(xh, ah)] + ΨM

h,ε(p) · (εB).

Proof of Proposition 3.1. Let p ∈ ∆(Πrns) and g : X × A → R be given. We first prove the following, more general
inequality:

EM,π[g(xh, ah)] ≤
√
ΨM

h,ε(p) · (E
M,p[g2(xh, ah)] + ε · EM,π[g2(xh, ah)]). (34)

Using Cauchy-Schwarz, we have

EM,π[g(xh, ah)] =
∑

x∈X ,a∈A
dM,π
h (x, a)g(x, a)

=
∑

x∈X ,a∈A
dM,π
h (x, a) ·

(dpM,ph (x, a) + ε · dM,π
h (x, a))1/2

(dM,p
h (x, a) + ε · dM,π

h (x, a))1/2
· g(x, a)

≤

 ∑
x∈X ,a∈A

(dM,π
h (x, a))2

dM,p
h (x, a) + ε · dM,π

h (x, a)

1/2 ∑
x∈X ,a∈A

(dM,p
h (x, a) + ε · dM,π

h (x, a))g2(x, a)

1/2

=
√
ΨM

h,ε(p) · (E
M,p[g2(xh, ah)] + ε · EM,π[g2(xh, ah)]).

This establishes Eq. (34). To prove Eq. (3), we first bound√
ΨM

h,ε(p) · (E
M,p[g2(xh, ah)] + ε · EM,π[g2(xh, ah)]) ≤

√
ΨM

h,ε(p) · E
M,p[g2(xh, ah)]

+
√
ΨM

h,ε(p) · ε · E
M,π[g2(xh, ah)].

Next, we note that if g ∈ [0, B], we can use AM-GM to bound√
ΨM

h,ε(p) · ε · E
M,π[g2(xh, ah)] ≤

√
ΨM

h,ε(p) · (εB) · EM,π[g(xh, ah)] ≤
ΨM

h,ε(p) · (εB)

2
+

1

2
EM,π[g(xh, ah)].

The result now follows by rearranging.

Proposition 3.2. For all ε > 0, we have CovM

h,ε ≤ CM

∞;h.

Proof of Proposition 3.2. Let δ > 0 be given. Using Lemma C.10 and the definition of CM

∞;h, there exists µ ∈ ∆(X ×A)
such that

CovM

h,ε ≤
(
1 +

δ

ε

)
CM

∞;h · inf
p∈∆(Π)

sup
π∈Π

EM,π

[
µ(xh, ah)

dM,p
h (xh, ah) + δ · CM

∞;hµ(xh, ah)

]

=

(
1 +

δ

ε

)
CM

∞;h · inf
p∈∆(Π)

sup
q∈∆(Π)

Eπ∼q EM,π

[
µ(xh, ah)

dM,p
h (xh, ah) + δ · CM

∞;hµ(xh, ah)

]
.

17This result is meaningful in the parameter regime where ΨM
h,ε(p) < 1/ε. We refer to this regime as non-trivial, as ΨM

h,ε(p) ≤ 1/ε
holds vacuously for all p.
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Observe that the function

(p, q) 7→ Eπ∼q EM,π

[
µ(xh, ah)

dM,p
h (xh, ah) + δ · CM

∞;hµ(xh, ah)

]
is convex-concave. In addition, it is straightforward to see that the function is jointly Lipschitz with respect to total variation
distance whenever ε, δ > 0. Hence, using the minimax theorem (Lemma C.1), we have that

inf
p∈∆(Π)

sup
q∈∆(Π)

Eπ∼q EM,π

[
µ(xh, ah)

dM,p
h (xh, ah) + δ · CM

∞;hµ(xh, ah)

]

= sup
q∈∆(Π)

inf
p∈∆(Π)

Eπ∼q EM,π

[
µ(xh, ah)

dM,p
h (xh, ah) + δ · CM

∞;hµ(xh, ah)

]

≤ sup
q∈∆(Π)

Eπ∼q EM,π

[
µ(xh, ah)

dM,q
h (xh, ah) + δ · CM

∞;hµ(xh, ah)

]

=
∑

x∈X ,a∈A

dM,q
h (x, a)µ(x, a)

dM,q
h (x, a) + δ · CM

∞;hµ(x, a)
≤ 1.

To conclude, we take δ → 0.

H. Proofs and Additional Details from Section 4
H.1. Omitted Algorithms

Algorithm 5 Approximate Policy Cover Computation via Pushforward Coverability Relaxation
1: input: Layer h ∈ [H], precision parameter , ε ∈ [0, 1], optimization tolerance εopt > 0.

2: Set T = 1
ε .

3: for t = 1, 2, · · · , T do
4: Compute πt ∈ Π such that

EM,πt

[
PM
h−1(xh | xh−1, ah−1)∑

i<t d
M,πi

h (xh) + PM
h−1(xh | xh−1, ah−1)

]
≥ sup

π∈Π
EM,π

[
PM
h−1(xh | xh−1, ah−1)∑

i<t d
M,πi

h (xh) + PM
h−1(xh | xh−1, ah−1)

]
− εopt.

5: Return p = Unif(π1, . . . , πT ).

H.2. Examples for Algorithm 1

As discussed in Section 4.1, the L∞-coverability relaxation (6) used by Algorithm 1 can be optimized efficiently whenever a
(non-admissible) state-action distribution µ ∈ ∆(X ×A) with low L∞-concentrability CM

∞;h can be computed efficiently
for the MDP M . Examples of MDP classes the admit efficiently computable distributions with low concentrability include:

• When M is a tabular MDP, the distribution µ(x, a) = 1
|X ||A| (which clearly admits a closed form representation) achieves

CM

∞;h(µ) ≤ |X ||A|.

• For a Block MDPs (Du et al., 2019; Misra et al., 2020; Zhang et al., 2022; Mhammedi et al., 2023b) with latent state
space S , emission distribution q : S → ∆(X ), and decoder ϕ⋆ : X → S , the distribution µ(x, a) := q(x | ϕ⋆(x)) · 1

|S||A|
achieves CM

∞;h(µ) ≤ |S||A| (Xie et al., 2023). Again, this distribution admits a closed form representation when M is
explicitly specified.

• For low-rank MDPs with the structure in Eq. (30), the distribution given by µ(x, a) =
∥ψh(x)∥2∫

∥ψh(x′)∥2dx
′ ·

1
|A| achieves

CM

∞;h(µ) ≤ B|A| under the standard normalization assumption that
∫
∥ψh(x′)∥2dx′ ≤ B and ∥ϕ(x, a)∥2 ≤ 1 for some
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(typically dimension-dependent) constant B > 0 (Mhammedi et al., 2023a; Golowich et al., 2023). Alternatively we
can compute a set of policies π1, . . . , πd that form a barycentric spanner for the set {EM,π[ϕ(xh, ah)]}π∈Π and choose

µ(x, a) = 1
d|A|

∑d
i=1 d

M,πi

h (x), which achieves CM

∞;h(µ) ≤ d|A| (Huang et al., 2023).

These examples highlight that for many settings of interest, computing a covering distribution µ ∈ ∆(X ×A) when the
model is known is significantly simpler than computing an explicit policy cover p ∈ ∆(Πrns), showcasing the utility of
Algorithm 1.

H.3. Proofs from Section 4.1

Proposition 4.1. For a distribution µ with C∞ ≡ CM

∞;h(µ), it holds that for all p ∈ ∆(Πrns),

ΨM

h,ε(p) ≤ 2C∞ ·ΨM

µ;h,ε(p). (7)

Furthermore, CovM

µ;h,ε ≤ 1 for all ε > 0.

Proof of Proposition 4.1. Fix µ and abbreviate C∞ ≡ CM

∞;h(µ). Observe that for any π ∈ Π and p ∈ ∆(Πrns),
Lemma C.10 implies that we can bound

EM,π

[
dM,π
h (xh, ah)

dM,p
h (xh, ah) + ε · dM,π

h (xh, ah)

]
≤ EM,π

[
dM,π
h (xh, ah)

dM,p
h (xh, ah) + ε · C∞µ(xh, ah)

]
+ C∞ EM,π

[
µ(xh, ah)

dM,p
h (xh, ah) + ε · C∞µ(xh, ah)

]
≤ 2C∞ EM,π

[
µ(xh, ah)

dM,p
h (xh, ah) + ε · C∞µ(xh, ah)

]
.

For the claim that CovM

µ;h,ε ≤ 1, see the proof of Proposition 3.2.

Theorem 4.1. For any ε ∈ [0, 1] and h ∈ [H], given a distribution µ with C∞ ≡ CM

∞;h(µ), whenever εopt ≤ ε log(2ε−1),
Algorithm 1 with T = ε−1 produces a distribution p ∈ ∆(Π) with |supp(p)| ≤ ε−1 such that

ΨM

µ;h,ε(p) ≤ 3 log(2ε−1), (9)

and consequently ΨM

h,ε(p) ≤ 6C∞ log(2ε−1).

Proof of Theorem 4.1. Let us abbreviate d̃t =
∑
i<t d

M,πi

. Observe that for T = 1
ε , we have

ΨM

µ;h,ε(p) = sup
π∈Π

EM,π

[
µ(xh, ah)

Eπ′∼p
[
dM,π′

h (xh, ah)
]
+ C∞

T µ(xh, ah)

]
= T · sup

π∈Π
EM,π

[
µ(xh, ah)

d̃T+1

h (xh, ah) + C∞µ(xh, ah)

]
,

and hence it suffices to bound the quantity on the right-hand side. Observe that for all t ∈ [T ], we have that

sup
π∈Π

EM,π

[
µ(xh, ah)

d̃t

h(xh, ah) + C∞µ(xh, ah)

]
≤ sup
π∈Π

EM,π

[
µ(xh, ah)

d̃t−1

h (xh, ah) + C∞µ(xh, ah)

]
,

and consequently

T · sup
π∈Π

EM,π

[
µ(xh, ah)

d̃T+1

h (xh, ah) + C∞µ(xh, ah)

]
≤

T∑
t=1

sup
π∈Π

EM,π

[
µ(xh, ah)

d̃t

h(xh, ah) + C∞µ(xh, ah)

]

≤
T∑
t=1

EM,πt

[
µ(xh, ah)

d̃t

h(xh, ah) + C∞µ(xh, ah)

]
+ εoptT.
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Finally, we note that

T∑
t=1

EM,πt

[
µ(xh, ah)

d̃t

h(xh, ah) + C∞µ(xh, ah)

]
=

∑
x∈X ,a∈A

T∑
t=1

µ(x, a)
dM,πt

(x, a)

d̃t

h(x, a) + C∞µ(x, a)
.

Since supπ∈Π d
M,π
h (x, a) ≤ C∞µ(x, a) for all (x, a) ∈ X ×A, Lemma C.9 implies that

∑
x∈X ,a∈A

T∑
t=1

µ(x, a)
dM,πt

(x, a)

d̃t

h(x, a) + C∞µ(x, a)
≤ 2 log(2T ),

allowing us to conclude that

ΨM

µ;h,ε(p) ≤ 2 log(2T ) + εoptT.

H.4. Proofs from Section 4.2

Proposition 4.2. Fix h ∈ [H]. For any p ∈ ∆(Πrns), if we define p′ ∈ ∆(Πrns) as the distribution induced by sampling
π ∼ p and executing π ◦h πunif , we have that for all ε > 0,

ΨM

h,ε(p
′) ≤ |A| ·ΨM

push;h,ε(p). (11)

Furthermore, CovM

push;h,ε ≤ CM

push;h for all ε > 0.

Proof of Proposition 4.2. We first note that

ΨM

h,ε(p
′) ≤ |A| · sup

π∈Π
EM,π

[
dM,π
h (xh)

dM,p
h (xh) + ε · dM,π

h (xh)

]
.

Next, we write

EM,π

[
dM,π
h (xh)

dM,p
h (xh) + ε · dM,π

h (xh)

]
=
∑
x∈X

(dM,π
h (x))2

dM,p
h (x) + ε · dM,π

h (x)
.

We now state and prove a basic technical lemma.

Lemma H.1. For all ε, δ > 0, the function f(x) = x2

δ+εx is convex over R+.

Proof of Lemma H.1. This follows by verifying through direct calculation that

f ′(x) = ε · x2

(δ + εx)2
, and f ′′(x) = 4εδ · x

(δ + εx)3
≥ 0.

By Lemma H.1, the function

d 7→ (d)2

dM,p
h (x) + ε · d

is convex for all x. Hence, writing dM,π
h (x) = EM,π

[
PM

h−1(x | xh−1, ah−1)
]
, Jensen’s inequality implies that for all x,

(dM,π
h (x))2

dM,p
h (x) + ε · dM,π

h (x)
≤ EM,π

[
(PM

h−1(x | xh−1, ah−1))
2

dM,p
h (x) + ε · PM

h−1(x | xh−1, ah−1)

]
.
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We conclude that

EM,π

[
dM,π
h (xh)

dM,p
h (xh) + ε · dM,π

h (xh)

]
≤ EM,π

[∑
x∈X

(PM

h−1(x | xh−1, ah−1))
2

dM,p
h (x) + ε · PM

h−1(x | xh−1, ah−1)

]

= EM,π

[
PM

h−1(xh | xh−1, ah−1)

dM,p
h (x) + ε · PM

h−1(xh | xh−1, ah−1)

]
≤ ΨM

push;h,ε(p).

We now prove the bound on CovM

push;h,ε. Let δ > 0 be given. Using the definition of CM

push;h and the same argument as
Lemma C.10, there exists µ ∈ ∆(X ) such that

CovM

push;h,ε ≤
(
1 +

δ

ε

)
CM

push;h · inf
p∈∆(Π)

sup
π∈Π

EM,π

[
µ(xh)

dM,p
h (xh) + δ · CM

push;hµ(xh)

]

=

(
1 +

δ

ε

)
CM

push;h · inf
p∈∆(Π)

sup
q∈∆(Π)

Eπ∼q EM,π

[
µ(xh)

dM,p
h (xh) + δ · CM

push;hµ(xh)

]
.

Observe that the function

(p, q) 7→ Eπ∼q EM,π

[
µ(xh)

dM,p
h (xh) + δ · CM

push;hµ(xh)

]
is convex-concave. In addition, it is straightforward to see that the function is jointly Lipschitz with respect to total variation
distance whenever ε, δ > 0. Hence, using the minimax theorem (Lemma C.1), we have that

inf
p∈∆(Π)

sup
q∈∆(Π)

Eπ∼q EM,π

[
µ(xh)

dM,p
h (xh) + δ · CM

push;hµ(xh)

]

= sup
q∈∆(Π)

inf
p∈∆(Π)

Eπ∼q EM,π

[
µ(xh)

dM,p
h (xh) + δ · CM

push;hµ(xh)

]

≤ sup
q∈∆(Π)

Eπ∼q EM,π

[
µ(xh)

dM,q
h (xh) + δ · CM

push;hµ(xh)

]

=
∑
x∈X

dM,q
h (x)µ(x)

dM,q
h (x) + δ · CM

push;hµ(x)
≤ 1.

To conclude, we take δ → 0.

Theorem 4.2. For any ε ∈ [0, 1] and h ∈ [H], whenever εopt ≤ CM

push;h · ε log(2ε−1), Algorithm 5 produces a distribution
p ∈ ∆(Π) with |supp(p)| ≤ ε−1 such that

ΨM

push;h,ε(p) ≤ 5CM

push;h log(2ε
−1). (12)

Consequently, if we define p′ ∈ ∆(Πrns) as the distribution induced by sampling π ∼ p and executing π ◦h πunif , we have
that ΨM

h,ε(p
′) ≤ 5|A|CM

push;h log(2ε
−1).

Proof of Theorem 4.2. Let us abbreviate d̃t

h =
∑
i<t d

M,πi

h . Observe that for T = 1
ε , we have

ΨM

push;h,ε(p) = sup
π∈Π

EM,π

[
PM

h−1(xh | xh−1, ah−1)

Eπ′∼p
[
dM,π′

h (xh)
]
+ 1

T P
M

h−1(xh | xh−1, ah−1)

]

= T · sup
π∈Π

EM,π

[
PM

h−1(xh | xh−1, ah−1)

d̃T+1

h (xh) + PM

h−1(xh | xh−1, ah−1)

]
,

35



Scalable Online Exploration via Coverability

and hence it suffices to bound the quantity on the right-hand side. Observe that for all t ∈ [T ], we have that

sup
π∈Π

EM,π

[
PM

h−1(xh | xh−1, ah−1)

d̃t

h(xh) + PM

h−1(xh | xh−1, ah−1)

]
≤ sup
π∈Π

EM,π

[
PM

h−1(xh | xh−1, ah−1)

d̃t−1

h (xh) + PM

h−1(xh | xh−1, ah−1)

]
,

and consequently

T · sup
π∈Π

EM,π

[
PM

h−1(xh | xh−1, ah−1)

d̃T+1

h (xh) + PM

h−1(xh | xh−1, ah−1)

]
≤

T∑
t=1

sup
π∈Π

EM,π

[
PM

h−1(xh | xh−1, ah−1)

d̃t

h(xh) + PM

h−1(xh | xh−1, ah−1)

]

≤
T∑
t=1

EM,πt

[
PM

h−1(xh | xh−1, ah−1)

d̃t

h(xh) + PM

h−1(xh | xh−1, ah−1)

]
+ εoptT.

Now, let µ ∈ ∆(X ) attain the value of CM

push;h. Using Lemma C.11 with ε = 1 and δ = CM

push;h, we have that for all π ∈ Π,

EM,π

[
PM

h−1(xh | xh−1, ah−1)

d̃t

h(xh) + PM

h−1(xh | xh−1, ah−1)

]
≤ EM,π

[
PM

h−1(xh | xh−1, ah−1)

d̃t

h(xh) + CM

push;hµ(xh)

]
+ CM

push;h · E
M,π

[
µ(xh)

d̃t

h(xh) + CM

push;hµ(xh)

]

≤ 2CM

push;h · E
M,π

[
µ(xh)

d̃t

h(xh) + CM

push;hµ(xh)

]
.

Hence, we can bound

T∑
t=1

EM,πt

[
PM

h−1(xh | xh−1, ah−1)

d̃t

h(xh) + PM

h−1(xh | xh−1, ah−1)

]
≤ 2CM

push;h

T∑
t=1

EM,πt

[
µ(xh)

d̃t

h(xh) + CM

push;hµ(xh)

]

= 2CM

push;h

∑
x∈X

T∑
t=1

µ(x)
dM,πt

(x)

d̃t

h(x) + CM

push;hµ(x)
.

Since supπ∈Π d
M,π
h (x) ≤ supx′∈X ,a∈A P

M

h−1(x | x′, a) ≤ CM

push;hµ(x) for all x ∈ X , Lemma C.9 implies that

∑
x∈X ,

T∑
t=1

µ(x)
dM,πt

(x)

d̃t

h(x) + C∞µ(x)
≤ 2 log(2T ).

We conclude that

T∑
t=1

EM,πt

[
PM

h−1(xh | xh−1, ah−1)

d̃t

h(xh) + PM

h−1(xh | xh−1, ah−1)

]
≤ 4CM

push;h log(2T ) (35)

and ΨM

push;h,ε(p) ≤ 4CM

push;h log(2T ) + εoptT .

I. Proofs and Additional Details from Section 5
This section is organized as follows:

• Appendix I.1 presents our most general guarantee for Algorithm 2, Theorem I.1, and derives sample complexity bounds
based on L1-Coverability as a consequence.

• Appendix I.2 presents applications of these results to downstream policy optimization.

• Appendix I.3 presents preliminary technical lemmas.

• Appendix I.4 proves Theorem I.1, proving Theorem 5.1 as a corollary.
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I.1. General Guarantees for Algorithm 2

In this section, we present general guarantees for CODEX (Algorithm 2) that (i) make us of online (as opposed to offline)
estimation oracles, allowing for faster rates, and (ii) enjoy sample complexity scaling with L1-Coverability, improving upon
the L∞-Coverability-based guarantees in Section 5.

I.1.1. ONLINE ESTIMATION ORACLES

For online estimation, we measure the oracle’s estimation performance in terms of cumulative Hellinger error, which we
assume is bounded as follows.
Assumption I.1 (Online estimation oracle for M). At each time t ∈ [T ], an online estimation oracle AlgEst for M
returns, given Ht−1 = (π1, o1), . . . , (πt−1, ot−1) with oi ∼M⋆(πi) and πi ∼ pi, an estimator M̂ t ∈M such that whenever
M⋆ ∈M,

EstonH (T ) :=

T∑
t=1

Eπt∼pt
[
D2

H

(
M̂ t(πt),M⋆(πt)

)]
≤ EstonH (M, T, δ),

with probability at least 1− δ, where EstonH (M, T, δ) is a known upper bound.

See Section 4 of Foster et al. (2021) or Foster & Rakhlin (2023) for further background on online estimation. Algorithm 2
supports offline and online estimators, but is most straightforward to analyze for online estimators, and gives tighter sample
complexity bounds in this case. The requirement in Assumption I.1 that the online estimator is proper (i.e., has M̂ t ∈M)
is quite stringent, as generic online estimation algorithms (e.g., Vovk’s aggregating algorithm) are improper, and proper
algorithms are only known for specialized MDP classes such as tabular MDPs (see discussion in Foster et al. (2021)).18 This
contrasts with offline estimation, where most standard algorithms such as MLE are proper. As such, we present bounds based
on online estimators as secondary results, with our bounds based on offline estimation serving as the main results.

Offline-to-online conversion. On the technical side, our interest in proper online estimation arises from the following
structural result, which shows that whenever the L1-Coverability parameter is bounded, any algorithm with low offline
estimation error also enjoys low online estimation error (with polynomial loss in rate).

Lemma I.1 (Offline-to-online). Any offline estimator M̂ t that satisfies Assumption 5.2 with estimation error bound
EstoffH (M, T, δ) satisfies Assumption I.1 with EstonH (M, T, δ) ≤ Õ

(
H
(
CM⋆

avg (1 +EstoffH (M, T, δ))
)1/3

T 2/3
)
.

Note that CM⋆

avg ≤ CovM⋆

0 ; we leave an extension to CovM⋆

ε for ε > 0 to future work.
We also make use of a tighter offline-to-online lemma based on the (larger) L∞-Coverability parameter CM⋆

∞ .

Lemma I.2 (Xie et al. (2023)). Any offline estimator M̂ t that satisfies Assumption 5.2 with estimation error bound
EstoffH (M, T, δ) satisfies Assumption I.1 with EstonH (M, T, δ) ≤ Õ

(
H
(
CM⋆

∞ T ·EstoffH (M, T, δ)
)1/2

+HCM⋆

∞
)
.

Both lemmas lead to a degradation in rate with respect to T , but lead to sublinear online estimation error whenever the
offline estimation error bound is sublinear.

I.1.2. GENERAL GUARANTEES FOR ALGORITHM 2

Our most general guarantee for Algorithm 2, which assumes access to an online estimation oracle, is as follows.
Theorem I.1 (General guarantee for Algorithm 2). With parameters T ∈ N, C ≥ 1, and ε > 0 and an online estimation
oracle satisfying Assumption I.1, whenever the optimization problem in Eq. (13) is feasible at every round, Algorithm 2
produces a policy covers p1, . . . , pH ∈ ∆(Π) such that with probability at least 1− δ, ∀h ∈ [H]: ΨM⋆

h,ε(ph) ≤

11HC +
12

ε

√
H3C ·EstonH (M, T, δ)

T
+

8H

ε2
EstonH (M, T, δ)

T
. (36)

Theorem 5.1 is derived by combining this result with Lemma I.2. The next result instantiates Theorem I.1 with Lemma I.1,
allowing us to give sample complexity guarantees based on L1-Coverability that support offline estimation oracles.

18On the statistical side, it is straightforward to extend the results in this section to accommodate improper online estimators; we impose
this restriction for computational reasons, as this enables the application of the efficient planning results in Section 4.
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Corollary I.1 (Main guarantee for Algorithm 2 under L1-Coverability). Let ε > 0 be given. Suppose that (i) we
restrict M such that all M ∈ M have CovM

ε ≤ CovM⋆

ε , and (ii) we solve Eq. (13) with C = CovM⋆

ε for all t (which
is always feasible). Then, given access to an offline estimation oracle satisfying Assumptions 5.2 and 5.3, using T =

Õ
(
H12(CovM

⋆

0 )4dest log(Best/δ)
ε6

)
episodes, Algorithm 2 produces policy covers p1, . . . , pH ∈ ∆(Π) such that

∀h ∈ [H] : ΨM⋆

h,ε(ph) ≤ 12H · CovM⋆

ε (37)

with probability at least 1 − δ. In particular, for a finite class M, if we use MLE as the estimator, we can take T =

Õ
(
H12(CovM

⋆

0 )4 log(|M|/δ)
ε6

)
.

This result shows that L1-Coverability is itself a sufficiently powerful structural parameter to enable sample-efficient learning
with nonlinear function approximation. Note that while Corollary I.1 assumes for simplicity that Eq. (13) is solved with
C = CovM⋆

ε , it should be clear that if we solve the objective for C > CovM⋆

ε the result continues to hold with CovM⋆

ε

replaced by C in the sample complexity bound and approximation guarantee.

I.2. Applying Algorithm 2 to Downstream Policy Optimization

By Proposition 3.1 (see also Appendix D), the policy covers p1, . . . , pH returned by Algorithm 2 can be used to optimize any
downstream reward function using standard offline RL algorithms. This leads to end-to-end guarantees for reward-driven
PAC RL. For concreteness, we sketch an example which uses maximum likelihood (MLE) for offline policy optimization; see
Appendix D for further examples and details.

Corollary I.2 (Application to reward-free reinforcement learning). Given access to H · n trajectories from the policy
covers p1, . . . , pH produced by Algorithm 2 (configured as in Theorem 5.1) and a realizable model class with M⋆ ∈M,
for any reward distribution R = {Rh}Hh=1 with

∑H
h=1 rh ∈ [0, 1], the Maximum Likelihood Estimation algorithm

(described in Appendix D) produces a policy π̂ such that with probability at least 1 − δ, JM⋆

R (π⋆) − JM⋆

R (π̂) ≤ O(H) ·(√
HCM⋆

∞ · log(|M|/δ)
n +HCM⋆

∞ · ε
)

, where JM⋆

R (π) := EM⋆,π
[∑H

h=1 rh

]
denotes the expected reward in M⋆ when R

is the reward distribution.

We now sketch some basic examples in which Corollary I.2 can be applied.

Example I.1 (Tabular MDPs). For tabular MDPs with |X | ≤ S and |A| ≤ A, we can construct online estimators for which
EstonH (M, T, δ) = Õ(HS2A), so that Theorem 5.1 gives sample complexity T = poly(H,S,A)

ε2 to compute policy covers
such that ΨM⋆

h,ε(ph) ≤ 12H · CM⋆

∞ . ◁

Example I.2 (Low-Rank MDPs). Consider the Low-Rank MDP model in Eq. (30) with dimension d and suppose, following
Agarwal et al. (2020); Uehara et al. (2022), that we have access to classes Φ and Ψ such that ϕh ∈ Φ and ψh ∈ Ψ. Then
MLE achieves EstoffH (M, T, δ) = Õ(log(|Φ||Ψ|)), and we can take CM⋆

∞ ≤ d|A|, so Theorem 5.1 gives sample complexity
T = poly(H,d,|A|,log(|Φ||Ψ|))

ε4 to compute policy covers such that ΨM⋆

h,ε(ph) ≤ 12H · CM⋆

∞ . ◁

I.3. Technical Lemmas

Lemma I.1 (Offline-to-online). Any offline estimator M̂ t that satisfies Assumption 5.2 with estimation error bound
EstoffH (M, T, δ) satisfies Assumption I.1 with EstonH (M, T, δ) ≤ Õ

(
H
(
CM⋆

avg (1 +EstoffH (M, T, δ))
)1/3

T 2/3
)
.

Proof of Lemma I.1. Let us abbreviate dt

h = dM⋆,πt

h . By Lemma A.11 of Foster et al. (2021), we have that

EstonH (T ) =

T∑
t=1

Eπt∼pt
[
D2

H

(
M⋆(πt), M̂ t(πt)

)]
≤ O(log(H)) ·

H∑
h=1

T∑
t=1

Eπt∼pt EM⋆,πt
[
D2

H

(
PM⋆

h (xh, ah), P
M̂t

h (xh, ah)
)
+D2

H

(
RM⋆

h (xh, ah), R
M̂t

h (xh, ah)
)]
.
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At the same time, for all t, we have by Lemma C.5 that∑
i<t

Eπi∼pi EM⋆,πi
[
D2

H

(
PM⋆

h (xh, ah), P
M̂t

h (xh, ah)
)
+D2

H

(
RM⋆

h (xh, ah), R
M̂t

h (xh, ah)
)]

≤ 4
∑
i<t

Eπi∼pi
[
D2

H

(
M⋆(πi), M̂ t(πi)

)]
≤ 4EstoffH (t).

The result now follows by applying Lemma I.3—stated and proven below—to the function g(x, a) =
D2

H

(
PM⋆

h (x, a), P M̂t

h (x, a)
)
+D2

H

(
RM⋆

h (x, a), RM̂t

h (x, a)
)

for each layer h ∈ [H], which has B ≤ 4.

Lemma I.2 (Xie et al. (2023)). Any offline estimator M̂ t that satisfies Assumption 5.2 with estimation error bound
EstoffH (M, T, δ) satisfies Assumption I.1 with EstonH (M, T, δ) ≤ Õ

(
H
(
CM⋆

∞ T ·EstoffH (M, T, δ)
)1/2

+HCM⋆

∞
)
.

Proof of Lemma I.2. Let us abbreviate dt

h = dM⋆,πt

h . By Lemma A.11 of Foster et al. (2021), we have that

EstonH (T ) =

T∑
t=1

Eπt∼pt
[
D2

H

(
M⋆(πt), M̂ t(πt)

)]
≤ O(log(H)) ·

H∑
h=1

T∑
t=1

Eπt∼pt EM⋆,πt
[
D2

H

(
PM⋆

h (xh, ah), P
M̂t

h (xh, ah)
)
+D2

H

(
RM⋆

h (xh, ah), R
M̂t

h (xh, ah)
)]
.

At the same time, for all t, we have by Lemma C.5 that∑
i<t

Eπi∼pi EM⋆,πi
[
D2

H

(
PM⋆

h (xh, ah), P
M̂t

h (xh, ah)
)
+D2

H

(
RM⋆

h (xh, ah), R
M̂t

h (xh, ah)
)]

≤ 4
∑
i<t

Eπi∼pi
[
D2

H

(
M⋆(πi), M̂ t(πi)

)]
≤ 4EstoffH (t).

The result now follows by applying Lemma I.4—stated and proven below—to the function g(x, a) =
D2

H

(
PM⋆

h (x, a), P M̂t

h (x, a)
)
+D2

H

(
RM⋆

h (x, a), RM̂t

h (x, a)
)

for each layer h ∈ [H], which has B ≤ 4.

Lemma I.3. Fix an MDP M and layer h ∈ [H]. Suppose we have a sequence of functions g1, . . . , gT ∈ [0, B] and policies
π1, . . . , πT such that

∀t ∈ [T ],
∑
i<t

EM,πi[
(gt(xh, ah))

2
]
≤ β2. (38)

Then it holds that

T∑
t=1

EM,πt

[gt(xh, ah)] = 2(CM

avg;h)
1/3(β2B +B3)1/3T 2/3. (39)

Proof of Lemma I.3. Let µ ∈ ∆(X × A) denote a distribution that achieves the value CM

avg;h. Let us abbreviate

dt

h(x, a) = dM,πt

h (x, a) and

d̃t

h(x, a) =
∑
i<t

dM,πi

h (x, a). (40)

Observe that by Eq. (38) and the assumption that gt ∈ [0, B], we have that∑
x∈X ,a∈A

d̃t+1
h (x, a)(gt(x, a))2 ≤ β2 +B2 =: α2. (41)
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To begin, fix a parameter λ > 0 and define

τ(x, a) := min
{
t | d̃t+1

h (x, a) ≥ λµ(x, a)
}
. (42)

We can bound
T∑
t=1

EM,πt

[gt(xh, ah)] ≤
T∑
t=1

EM,πt

[gt(xh, ah)I{t ≥ τ(xh, ah)}] +B

T∑
t=1

EM,πt

[I{t < τ(xh, ah)}]. (43)

For the second term above, we can write
T∑
t=1

EM,πt

[I{t < τ(xh, ah)}] =
∑
x,a

T∑
t=1

dt

h(x, a)I{t < τ(x, a)}

=
∑
x,a

d̃τ(x,a)

h (x, a) < λ
∑
x,a

µ(x, a) = λ,

where the final inequality uses the definition of τ(x, a).

For the first, term, using Cauchy-Schwarz, we can bound

T∑
t=1

EM,πt

[gt(xh, ah)I{t ≥ τ(xh, ah)}]

=

T∑
t=1

∑
x∈X ,a∈A

dt

h(x, a)g
t(x, a)I{t ≥ τ(x, a)}

=

T∑
t=1

∑
x∈X ,a∈A

dt

h(x, a)

(d̃t+1

h (x, a))1/2
I{t ≥ τ(x, a)} · (d̃t+1

h (x, a))1/2gt(x, a)

≤ A1/2B1/2,

where

A :=

T∑
t=1

∑
x∈X ,a∈A

(dt

h(x, a))
2

d̃t+1

h (x, a)
I{t ≥ τ(x, a)}, and B :=

T∑
t=1

∑
x∈X ,a∈A

d̃t+1

h (x, a)(gt(x, a))2. (44)

Eq. (41) implies that

B =

T∑
t=1

∑
x∈X ,a∈A

d̃t+1

h (x, a)(gt(x, a))2 ≤ α2T.

It remains to bound term A. From the definition of τ(x, a), we can bound

A =

T∑
t=1

∑
x∈X ,a∈A

(dt

h(x, a))
2

d̃t+1

h (x, a)
I{t ≥ τ(x, a)} ≤ 1

λ

T∑
t=1

∑
x∈X ,a∈A

(dt

h(x, a))
2

µ(x, a)
≤
CM

avg;hT

λ
,

where the last inequality uses that µ achieves the value of CM

avg;h.

Combining the results so far, we have that

T∑
t=1

EM,πt

[gt(xh, ah)] ≤ (λ−1CM

avg;hT )
1/2(α2T )1/2 + λB = (CM

avg;hα
2)1/2T/λ1/2 + λB.

We choose λ = (CM

avg;hα
2)1/3T 2/3/B2/3 to balance the terms, which gives a bound of the form

2(CM

avg;hα
2B)1/3T 2/3 = 2(CM

avg;h)
1/3(β2B +B3)1/3T 2/3.
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Lemma I.4. Fix an MDP M and layer h ∈ [H]. Suppose we have a sequence of functions g1, . . . , gT ∈ [0, B] and policies
π1, . . . , πT such that

∀t ∈ [T ],
∑
i<t

EM,πi[
(gt(xh, ah))

2
]
≤ β2. (45)

Then it holds that
T∑
t=1

EM,πt

[gt(xh, ah)] = O
(√

CM

∞;hT log(T ) · β2 + CM

∞;hB
)
. (46)

Proof of Lemma I.4. See proof of Theorem 1 in Xie et al. (2023).

I.4. Proofs from Section 5 and Appendix I.1

Theorem I.1 (General guarantee for Algorithm 2). With parameters T ∈ N, C ≥ 1, and ε > 0 and an online estimation
oracle satisfying Assumption I.1, whenever the optimization problem in Eq. (13) is feasible at every round, Algorithm 2
produces a policy covers p1, . . . , pH ∈ ∆(Π) such that with probability at least 1− δ, ∀h ∈ [H]: ΨM⋆

h,ε(ph) ≤

11HC +
12

ε

√
H3C ·EstonH (M, T, δ)

T
+

8H

ε2
EstonH (M, T, δ)

T
. (36)

Overview of proof. Before diving into the proof of Theorem I.1, we sketch the high-level idea. The crux of the analysis is
to show that for each round t, we have that

CovM⋆

h,ε(p
t

h) ≲ max
h

CovM̂t

h,ε(p
t

h) +
1

ε

√
H3C · Eπ∼qt

[
D2

H

(
M̂ t(π),M⋆(π)

)]
+
H

ε2
· Eπ∼qt

[
D2

H

(
M̂ t(π),M⋆(π)

)]
. (47)

Averaging across all rounds t, this allows us to conclude that

1

T

T∑
t=1

CovM⋆

h,ε(p
t

h) ≲ HC +
1

ε

√√√√H3C · 1
T

T∑
t=1

Eπ∼qt
[
D2

H

(
M̂ t(π),M⋆(π)

)]
+
H

ε2
· 1
T

T∑
t=1

Eπ∼qt
[
D2

H

(
M̂ t(π),M⋆(π)

)]
.

Since CovM⋆

h,ε(ph) ≤ 1
T

∑T
t=1 Cov

M⋆

h,ε(p
t

h) and
∑T
t=1 Eπ∼qt

[
D2

H

(
M̂ t(π),M⋆(π)

)]
≤ EstonH (M, T, δ) with probability at

least 1− δ, this proves the result.

Eq. (47) can be thought as a reward-free analogue of a bound on the Decision-Estimation Coefficient (DEC) of Foster et al.
(2021; 2023) and makes precise the reasoning that by optimizing the plug-in approximation to the L1-Coverage objective,
we either 1) cover the true MDP M⋆ well, or 2) achieve large information gain (as quantified by the instantaneous estimation
error Eπ∼qt

[
D2

H

(
M̂ t(π),M⋆(π)

)]
).

Proof of Theorem I.1. Observe that by Jensen’s inequality, we have that for all h ∈ [H],

T ·ΨM⋆

h,ε(ph) ≤
T∑
t=1

ΨM⋆

h,ε(p
t

h).

We will show how to bound the right-hand side above. To begin, we state two technical lemmas, both proven in the sequel.

Lemma I.5. Fix h ∈ [H]. For all mixture policies p ∈ ∆(Π) and MDPs M̂ =
{
X ,A, {P M̂

h }Hh=0

}
, it holds that

ΨM⋆

h,ε(p) ≤ max
π

EM⋆,π

[
dM⋆,π
h (xh, ah) + dM̂,π

h (xh, ah)

dM⋆,p
h (xh, ah) + ε · (dM⋆,π

h (xh, ah) + dM̂,π
h (xh, ah))

]
.

For the next result, for a given reward-free MDP M =
{
X ,A, {PM

h }Hh=0

}
and reward distribution R = {Rh}Hh=1, we

define

JM

R (π) := EM,π

[
H∑
h=1

rh

]
as the value under rh ∼ R(xh, ah).
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Lemma I.6. Consider the reward-free setting. Let an MDP M̂ =
{
X ,A, {P M̂

h }Hh=0

}
be given, and let p1, . . . , pH ∈ ∆(Π)

be (C, ε)-policy covers for M̂ , i.e.

ΨM̂

h,ε(ph) ≤ C ∀h ∈ [H]. (48)

Then the distribution q := Unif(p1, . . . , pH) ensures that for all MDPs M =
{
X ,A, {PM

h }Hh=0

}
, all reward distributions

R = {Rh}Hh=1 with
∑H
h=1 rh ∈ [0, B] almost surely, and all policies π ∈ Π,

JM

R (π)− JM̂

R (π) ≤ 4B

√
H3C · Eπ∼q

[
D2

H

(
M̂(π),M(π)

)]
+
√
2BHC · ε.

For the remainder of the proof, we abbreviate dM,π
h ≡ dM,π

h (xh, ah) whenever the argument is clear from context. Let
h ∈ [H] be fixed. We observe that by Lemma I.5,

T∑
t=1

ΨM⋆

h,ε(p
t

h) ≤
T∑
t=1

max
π∈Π

EM⋆,π

[
dM⋆,π
h

d
M⋆,pth
h + ε · (dM⋆,π

h + dM̂
t,π

h )

]
+max

π∈Π
EM⋆,π

[
dM̂

t,π
h

d
M⋆,pth
h + ε · (dM⋆,π

h + dM̂
t,π

h )

]
.

For any π ∈ Π, by applying Lemma I.6 for each step t with the deterministic rewards

rt

h(x, a) =
dM⋆,π
h (x, a)

dM⋆,pt

h (x, a) + ε · (dM⋆,π
h (x, a) + dM̂

t,π
h (x, a))

I{h′ = h},

which satisfy
∑H
h=1 r

t

h ∈
[
0, ε−1

]
almost surely, we can bound

EM⋆,π

[
dM⋆,π
h

d
M⋆,pth
h + ε · (dM⋆,π

h + dM̂
t,π

h )

]

≤ EM̂
t,π

[
dM⋆,π
h

d
M⋆,pth
h + ε · (dM⋆,π

h + dM̂
t,π

h )

]
+

4

ε

√
H3C · Eπ∼qt

[
D2

H

(
M̂ t(π),M⋆(π)

)]
+
√
2HC,

= EM⋆,π

[
dM̂

t,π
h

d
M⋆,pth
h + ε · (dM⋆,π

h + dM̂
t,π

h )

]
+

4

ε

√
H3C · Eπ∼qt

[
D2

H

(
M̂ t(π),M⋆(π)

)]
+
√
2HC,

where we have simplified the second term by noting that
√
2BHC · ε =

√
2ε−1HC · ε =

√
2HC. It follows that

T∑
t=1

ΨM⋆

h,ε(p
t

h) ≤ 2

T∑
t=1

max
π∈Π

EM⋆,π

[
dM̂

t,π
h

d
M⋆,pth
h + ε · (dM⋆,π

h + dM̂
t,π

h )

]
+

4

ε

T∑
t=1

√
H3C · Eπ∼qt

[
D2

H

(
M̂ t(π),M⋆(π)

)]
+
√
2HCT.

We now appeal to Lemma I.6 once more. For any π, by applying Lemma I.6 again at each step t with the rewards

rt

h(x, a) =
dM̂

t,π
h (x, a)

dM⋆,pt

h (x, a) + ε · (dM⋆,π
h (x, a) + dM̂

t,π
h (x, a))

I{h′ = h},

which satisfy
∑H
h=1 rh ∈ [0, ε−1] almost surely, allows us to bound

EM⋆,π

[
dM̂

t,π
h

d
M⋆,pth
h + ε · (dM⋆,π

h + dM̂
t,π

h )

]

≤ EM̂
t,π

[
dM̂

t,π
h

d
M⋆,pth
h + ε · (dM⋆,π

h + dM̂
t,π

h )

]
+

4

ε

√
H3C · Eπ∼qt

[
D2

H

(
M̂ t(π),M⋆(π)

)]
+
√
2HC,

≤ EM̂
t,π

[
dM̂

t,π
h

d
M⋆,pth
h + ε · dM̂

t,π
h

]
+

4

ε

√
H3C · Eπ∼qt

[
D2

H

(
M̂ t(π),M⋆(π)

)]
+
√
2HC.
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We conclude that
T∑
t=1

ΨM⋆

h,ε(p
t

h) ≤ 2

T∑
t=1

max
π∈Π

EM̂
t,π

[
dM̂

t,π
h

d
M⋆,pth
h + ε · dM̂

t,π
h

]
+

12

ε

T∑
t=1

√
H3C · Eπ∼qt

[
D2

H

(
M̂ t(π),M⋆(π)

)]
+ 3
√
2HCT.

≤ 2

T∑
t=1

max
π∈Π

EM̂
t,π

[
dM̂

t,π
h

d
M⋆,pth
h + ε · dM̂

t,π
h

]
+

12

ε

√
H3CT ·EstonH (M, T, δ) + 3

√
2HCT. (49)

We now appeal to the following lemma.

Lemma I.7. Consider the reward-free setting. For any pair of MDP M̂ =
{
X ,A, {P M̂

h }Hh=0

}
andM =

{
X ,A, {PM

h }Hh=0

}
,

any policy π ∈ Πrns, and any distribution p ∈ ∆(Πrns), it holds that

EM̂,π

[
dM̂,π
h

dM⋆,p
h + ε · dM̂,π

h

]
≤ 3EM̂,π

[
dM̂,π
h

dM̂,p
h + ε · dM̂,π

h

]
+

4

ε2
Eπ∼p

[
D2

H

(
M̂(π),M⋆(π)

)]
.

Combining Eq. (49) with Lemma I.7, we have that

T∑
t=1

ΨM⋆

h,ε(p
t

h) ≤ 6

T∑
t=1

ΨM̂t

h,ε(p
t

h) +
12

ε

√
H3CT ·EstonH (M, T, δ) + 3

√
2HCT +

8

ε2

T∑
t=1

Eπ∼pth
[
D2

H

(
M̂ t(π),M⋆(π)

)]
≤ 6

T∑
t=1

ΨM̂t

h,ε(p
t

h) +
12

ε

√
H3CT ·EstonH (M, T, δ) + 3

√
2HCT +

8H

ε2

T∑
t=1

Eπ∼qt
[
D2

H

(
M̂ t(π),M⋆(π)

)]
≤ 6

T∑
t=1

ΨM̂t

h,ε(p
t

h) +
12

ε

√
H3CT ·EstonH (M, T, δ) + 3

√
2HCT +

8H

ε2
EstonH (M, T, δ). (50)

To conclude the proof of Eq. (36), we note that it follows from the definition of pt

h that for all h ∈ [H] and t ∈ [T ],

ΨM̂t

h,ε(p
t

h) ≤ C.

Hence, we have that

T∑
t=1

ΨM⋆

h,ε(p
t

h) ≤ 6CT +
12

ε

√
H3CT ·EstonH (M, T, δ) + 3

√
2HCT +

8H

ε2
EstonH (M, T, δ)

≤ 11HCT +
12

ε

√
H3CT ·EstonH (M, T, δ) +

8H

ε2
EstonH (M, T, δ).

This implies that

ΨM⋆

h,ε(ph) ≤ 11HC +
12

ε

√
H3C ·EstonH (M, T, δ)

T
+

8H

ε2
EstonH (M, T, δ)

T
.

as desired.

Corollary I.1 (Main guarantee for Algorithm 2 under L1-Coverability). Let ε > 0 be given. Suppose that (i) we
restrict M such that all M ∈ M have CovM

ε ≤ CovM⋆

ε , and (ii) we solve Eq. (13) with C = CovM⋆

ε for all t (which
is always feasible). Then, given access to an offline estimation oracle satisfying Assumptions 5.2 and 5.3, using T =

Õ
(
H12(CovM

⋆

0 )4dest log(Best/δ)
ε6

)
episodes, Algorithm 2 produces policy covers p1, . . . , pH ∈ ∆(Π) such that

∀h ∈ [H] : ΨM⋆

h,ε(ph) ≤ 12H · CovM⋆

ε (37)

with probability at least 1 − δ. In particular, for a finite class M, if we use MLE as the estimator, we can take T =

Õ
(
H12(CovM

⋆

0 )4 log(|M|/δ)
ε6

)
.
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Proof of Corollary I.1. We prove Eq. (37) as a consequence of Theorem I.1. We can take C ≤ CovM⋆

ε , and using
Lemma I.1, we have

EstonH (M, T, δ) ≤ Õ
(
H
(
CM⋆

avg (1 ∨EstoffH (M, T, δ))
)1/3

T 2/3
)
≤ Õ

(
H
(
CovM⋆

0 (1 ∨EstoffH (M, T, δ))
)1/3

T 2/3
)
,

so that Eq. (36) gives

∀h ∈ [H] : ΨM⋆

h,ε(ph) ≤ 11HC + Õ

1

ε

(
H12(CovM⋆

0 )4(1 ∨EstoffH (M, T, δ))

T

)1/6
 ≤ 12HC,

where the final inequality uses the choice for T in the corollary statement.

Theorem 5.1 (Main guarantee for CODEX). Let ε > 0 be given. Let C∞ ≡ CM⋆

∞ , and suppose that (i) we restrictM such
that all M ∈ M have CM

∞ ≤ C∞, and (ii) we solve Eq. (13) with C = C∞ for all t.19 Then, given an offline estimation

oracle satisfying Assumptions 5.2 and 5.3, using T = Õ
(
H8(CM⋆

∞ )3dest log(Best/δ)
ε4

)
episodes, Algorithm 2 produces policy

covers p1, . . . , pH ∈ ∆(Π) such that

∀h ∈ [H] : ΨM⋆

h,ε(ph) ≤ 12H · CM⋆

∞ (15)

w.p. at least 1− δ. For a finite classM, if we use MLE as the estimator, we can take T = Õ
(
H8(CM⋆

∞ )3 log(|M|/δ)
ε4

)
.

Proof of Theorem 5.1. We prove Eq. (15) as a consequence of Theorem I.1. We can take C ≤ CM⋆

∞ , and using Lemma I.2,
we have

EstonH (M, T, δ) ≤ Õ
(
H

√
CM⋆

∞ T ·EstoffH (M, T, δ) +H · CM⋆

∞

)
≤ Õ

(
H

√
CM⋆

∞ T · (1 ∨EstoffH (M, T, δ))

)
,

so that Eq. (36) gives

∀h ∈ [H] : ΨM⋆

h,ε(ph) ≤ 11HC + Õ

1

ε

(
H8(CM⋆

∞ )3(1 ∨EstoffH (M, T, δ))

T

)1/4
 ≤ 12HC,

where the final inequality uses the choice for T in the theorem statement.

I.4.1. SUPPORTING LEMMAS

Lemma I.5. Fix h ∈ [H]. For all mixture policies p ∈ ∆(Π) and MDPs M̂ =
{
X ,A, {P M̂

h }Hh=0

}
, it holds that

ΨM⋆

h,ε(p) ≤ max
π

EM⋆,π

[
dM⋆,π
h (xh, ah) + dM̂,π

h (xh, ah)

dM⋆,p
h (xh, ah) + ε · (dM⋆,π

h (xh, ah) + dM̂,π
h (xh, ah))

]
.

Proof of Lemma I.5. To keep notation compact, let us suppress the dependence on xh and ah. For all π ∈ Πrns and
p ∈ ∆(Πrns), we have that

EM⋆,π

[
dM⋆,π
h

dM⋆,p
h + ε · dM⋆,π

h

]
− EM⋆,π

[
dM⋆,π
h

dM⋆,p
h + ε · (dM⋆,π

h + dM̂,π
h )

]

= EM⋆,π

[
dM⋆,π
h · ε · dM̂,π

h

(dM⋆,p
h + ε · dM⋆,π

h )(dM⋆,p
h + ε · (dM⋆,π

h + dM̂,π
h ))

]

≤ EM⋆,π

[
dM̂,π
h

dM⋆,p
h + ε · (dM⋆,π

h + dM̂,π
h )

]
.

19We can take CM
∞ ≤ C∞ w.l.o.g. when C∞ is known. In this case, solving Eq. (13) with C = C∞ is feasible by Proposition 3.2.
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This proves the result.

Lemma I.6. Consider the reward-free setting. Let an MDP M̂ =
{
X ,A, {P M̂

h }Hh=0

}
be given, and let p1, . . . , pH ∈ ∆(Π)

be (C, ε)-policy covers for M̂ , i.e.

ΨM̂

h,ε(ph) ≤ C ∀h ∈ [H]. (48)

Then the distribution q := Unif(p1, . . . , pH) ensures that for all MDPs M =
{
X ,A, {PM

h }Hh=0

}
, all reward distributions

R = {Rh}Hh=1 with
∑H
h=1 rh ∈ [0, B] almost surely, and all policies π ∈ Π,

JM

R (π)− JM̂

R (π) ≤ 4B

√
H3C · Eπ∼q

[
D2

H

(
M̂(π),M(π)

)]
+
√
2BHC · ε.

Proof of Lemma I.6. Let an arbitrary MDP M =
{
X ,A, {PM

h }Hh=0

}
, reward distribution R = {Rh}Hh=1, and policy

π ∈ Π be fixed. To begin, using the simulation lemma (Lemma C.8), we have

JM

R (π)− JM̂

R (π) ≤ B ·
H∑
h=1

EM̂,π
[
DH

(
P M̂

h (xh, ah), P
M

h (xh, ah)
)]
,

where we have used that both MDPs have the same reward distribution. Let h ∈ [H] be fixed. Since
DH

(
P M̂

h (xh, ah), P
M

h (xh, ah)
)
∈ [0,

√
2], we can use Proposition 3.1 to bound

EM̂,π
[
DH

(
P M̂

h (xh, ah), P
M

h (xh, ah)
)]
≤ 2
√
ΨM̂

h,ε(ph) · E
M̂,ph

[
D2

H

(
P M̂

h (xh, ah), PM

h (xh, ah)
)]

+
√
2 ·ΨM̂

h,ε(ph) · ε

≤ 2
√
HΨM̂

h,ε(ph) · E
M̂,q
[
D2

H

(
P M̂

h (xh, ah), PM

h (xh, ah)
)]

+
√
2 ·ΨM̂

h,ε(ph) · ε

≤ 2

√
HC · EM̂,q

[
D2

H

(
P M̂

h (xh, ah), PM

h (xh, ah)
)]

+
√
2C · ε

≤ 4

√
HC · Eπ∼q

[
D2

H

(
M̂(π),M(π)

)]
+
√
2C · ε,

where the last inequality follows form Lemma C.5. Summing across all layers, we conclude that

JM

R (π)− JM̂

R (π) ≤ 4B

√
H3C · Eπ∼q

[
D2

H

(
M̂(π),M(π)

)]
+
√
2BHC · ε.

Lemma I.7. Consider the reward-free setting. For any pair of MDP M̂ =
{
X ,A, {P M̂

h }Hh=0

}
andM =

{
X ,A, {PM

h }Hh=0

}
,

any policy π ∈ Πrns, and any distribution p ∈ ∆(Πrns), it holds that

EM̂,π

[
dM̂,π
h

dM⋆,p
h + ε · dM̂,π

h

]
≤ 3EM̂,π

[
dM̂,π
h

dM̂,p
h + ε · dM̂,π

h

]
+

4

ε2
Eπ∼p

[
D2

H

(
M̂(π),M⋆(π)

)]
.
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Proof of Lemma I.7. Consider any c ≥ 1. For any π ∈ Πrns and p ∈ ∆(Πrns), we can write

EM̂,π

[
dM̂,π
h

dM⋆,p
h + ε · dM̂,π

h

]
− c · EM̂,π

[
dM̂,π
h

dM̂,p
h + ε · dM̂,π

h

]

= EM̂,π

dM̂,π
h

(
dM̂,p
h + ε · dM̂,π

h − c ·
(
dM⋆,p
h + ε · dM̂,π

h

))
(
dM⋆,p
h + ε · dM̂,π

h

)(
dM̂,p
h + ε · dM̂,π

h

)


≤ EM̂,π

 dM̂,π
h

(
dM̂,p
h − c · dM⋆,p

h

)
(
dM⋆,p
h + ε · dM̂,π

h

)(
dM̂,p
h + ε · dM̂,π

h

)


= EM̂,p

 (dM̂,π
h )2(

dM⋆,p
h + ε · dM̂,π

h

)(
dM̂,p
h + ε · dM̂,π

h

)
− c · EM⋆,p

 (dM̂,π
h )2(

dM⋆,p
h + ε · dM̂,π

h

)(
dM̂,p
h + ε · dM̂,π

h

)
.

Observe that

(dM̂,π
h )2(

dM⋆,p
h + ε · dM̂,π

h

)(
dM̂,p
h + ε · dM̂,π

h

) ≤ 1

ε2

almost surely. Consequently, Lemma C.6 implies that for c = 3,

EM̂,p

 (dM̂,π
h )2(

dM⋆,p
h + ε · dM̂,π

h

)(
dM̂,p
h + ε · dM̂,π

h

)
− 3 · EM⋆,p

 (dM̂,π
h )2(

dM⋆,p
h + ε · dM̂,π

h

)(
dM̂,p
h + ε · dM̂,π

h

)
.

≤ 4

ε2
D2

H

(
dM̂,p
h , dM⋆,p

h

)
.

Finally, note that by joint convexity of Hellinger distance and the data processing inequality, we have that

D2
H

(
dM̂,p
h , dM⋆,p

h

)
≤ Eπ∼p

[
D2

H

(
dM̂,π
h , dM⋆,π

h

)]
≤ Eπ∼p

[
D2

H

(
M̂(π),M⋆(π)

)]
.
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J. Proofs from Appendix F

Proposition F.1. For all ε > 0, it holds that CovM

h,ε ≤ 1 + 2

√
CM

avg;h

ε .

Proof of Proposition F.1. Let µ ∈ ∆(X ×A) be the distribution that attains the value of CM

avg;h. Using Lemma C.10, we
have that for all π ∈ Π and p ∈ ∆(Π),

EM,π

[
dM,π
h (xh, ah)

dM,p
h (xh, ah) + ε · dM,π

h (xh, ah)

]
≤ 2EM,π

[
dM,π
h (xh, ah)

dM,p
h (xh, ah) + ε · (dM,π

h (xh, ah) + µ(xh, ah))

]
+ EM,π

[
µ(xh, ah)

dM,p
h (xh, ah) + ε · (dM,π

h (xh, ah) + µ(xh, ah))

]
≤ 2EM,π

[
dM,π
h (xh, ah)

dM,p
h (xh, ah) + ε · (dM,π

h (xh, ah) + µ(xh, ah))

]
+ EM,π

[
µ(xh, ah)

dM,p
h (xh, ah) + ε · µ(xh, ah))

]
.

Observe that we can bound

EM,π

[
dM,π
h (xh, ah)

dM,p
h (xh, ah) + ε · (dM,π

h (xh, ah) + µ(xh, ah))

]
=

∑
x∈X ,a∈A

(dM,π
h (x, a))2

dM,p
h (x, a) + ε · (dM,π

h (x, a) + µ(x, a))

=
∑

x∈X ,a∈A

dM,π
h (x, a)µ1/2(x, a)

dM,p
h (x, a) + ε · (dM,π

h (x, a) + µ(x, a))
·
dM,π
h (x, a)

µ1/2(x, a)

≤

 ∑
x∈X ,a∈A

µ(x, a)
(dM,π
h (x, a))2

(dM,p
h (x, a) + ε · (dM,π

h (x, a) + µ(x, a)))2

1/2

·

 ∑
x∈X ,a∈A

(dM,π
h (x, a))2

µ(x, a)

1/2

≤

1

ε

∑
x∈X ,a∈A

µ(x, a)
dM,π
h (x, a)

dM,p
h (x, a) + ε · (dM,π

h (x, a) + µ(x, a))

1/2

·
(
CM

avg;h

)1/2
≤
(
1

ε
EM,π

[
µ(xh, ah)

dM,p
h (xh, ah) + ε · µ(xh, ah)

])1/2

·
(
CM

avg;h

)1/2
.

Hence, if we define

V := inf
p∈∆(Π)

sup
π∈Π

EM,π

[
µ(xh, ah)

dM,p
h (xh, ah) + ε · µ(xh, ah)

]
,

this argument establishes that

CovM

h,ε ≤ V + 2

√
CM

avg;h

ε
· V .

We now claim that V ≤ 1. To see this, observe that the function

(p, q) 7→ Eπ∼q EM,π

[
µ(xh, ah)

dM,p
h (xh, ah) + ε · µ(xh, ah)

]

is convex-concave. In addition, it is straightforward to see that the function is jointly Lipschitz with respect to total variation
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distance whenever ε > 0. Hence, using the minimax theorem (Lemma C.1), we have that

V = inf
p∈∆(Π)

sup
q∈∆(Π)

Eπ∼q EM,π

[
µ(xh, ah)

dM,p
h (xh, ah) + ε · µ(xh, ah)

]
= sup
q∈∆(Π)

inf
p∈∆(Π)

Eπ∼q EM,π

[
µ(xh, ah)

dM,p
h (xh, ah) + ε · µ(xh, ah)

]
≤ sup
q∈∆(Π)

Eπ∼q EM,π

[
µ(xh, ah)

dM,q
h (xh, ah) + ε · µ(xh, ah)

]
=

∑
x∈X ,a∈A

dM,q
h (x, a)µ(x, a)

dM,q
h (x, a) + ε · µ(x, a)

≤ 1.

Proposition F.2. Suppose the MDP M obeys the low-rank structure in Eq. (30). Then for all h ∈ [H], we have

CM

avg;h ≤ |A| · CM

ϕ;h−1, and consequently CovM

h,ε ≤ 1 + 2

√
|A|·CM

ϕ;h−1

ε .

Proof of Proposition F.2. We first note that

CM

avg;h ≤ |A| · inf
µ∈∆(A)

sup
π∈Π

EM,π

[
dM,π
h (xh)

µ(xh)

]
.

Let ν ∈ ∆(X ×A) be arbitrary, and let µ := ν ◦h−1 P
M

h−1 be the distribution induced by sampling (xh−1, ah−1) ∼ ν and
xh ∼ PM

h−1(· | xh−1, ah−1). Let π ∈ Π be arbitrary. We can write

EM,π

[
dM,π
h (xh)

µ(xh)

]
=

〈
EM,π[ϕh−1(xh−1, ah−1)],

∑
x∈X

ψh(x)
dM,π
h (x)

µ(x)︸ ︷︷ ︸
=:w

〉
.

Using Cauchy-Schwarz and defining Σν := E(xh−1,ah−1)∼ν
[
ϕh−1(xh−1, ah−1)ϕh−1(xh−1, ah−1)

⊤], we can bound

⟨EM,π[ϕh−1(xh−1, ah−1)], w⟩ =
〈
Σ−1/2
ν EM,π[ϕh−1(xh−1, ah−1)],Σ

1/2
ν w

〉
≤ 1

2
∥EM,π[ϕh−1(xh−1, ah−1)]∥

2
Σ−1

ν
+

1

2
∥w∥2Σν

.

We can write

∥w∥2Σν
= E(xh−1,ah−1)∼ν

[
⟨ϕh−1(xh−1, ah−1), w⟩2

]
= E(xh−1,ah−1)∼ν

〈ϕh−1(xh−1, ah−1),
∑
x∈X

ψh(x)
dM,π
h (x)

µ(x)

〉2


= E(xh−1,ah−1)∼ν

[(
EM

[
dM,π
h (xh)

µ(xh)
| xh−1, ah−1

])2
]

≤ Exh∼ν◦P

[(
dM,π
h (xh)

µ(xh)

)2
]
= Exh∼µ

[(
dM,π
h (xh)

µ(xh)

)2
]
= EM,π

[
dM,π
h (xh)

µ(xh)

]
.

Hence, we have shown that

EM,π

[
dM,π
h (xh)

µ(xh)

]
≤ 1

2
∥EM,π[ϕh−1(xh−1, ah−1)]∥

2
Σ−1

ν
+

1

2
EM,π

[
dM,π
h (xh)

µ(xh)

]
.

To conclude, we rearrange and recall that 1) π is arbitrary, and 2) we are free to choose ν to minimize the right-hand side.
From here, the claim follows from Proposition F.1.
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Proposition F.3. There exists an MDP M and policy class Π ⊂ Πrns with horizon H = 1 such that CM

∞;h ≤ 2 (and hence
CovM

h,ε ≤ 2 as well), yet for all ε > 0,

inf
p∈∆(Π)

ΨM

∞;h,ε(p) ≥
1

ε
, (33)

and in particular infp∈∆(Π) Ψ
M

∞;h,0(p) =∞.

Proof of Proposition F.3. Consider an MDP M with horizon H = 1, a singleton state space S = {s}, and action space
A = N ∪ {⊥}. For each i ∈ N, we define a randomized policy πi via

πi(a | s) =

 1− 1
2i2 , a =⊥,

1
2i2 , a = i,
0, o.w.

,

so that

dM,πi

1 (s, a) =

 1− 1
2i2 , z =⊥,

1
2i2 , z = i,
0, o.w.

We set Π = {πi}i∈N, and abbreviate di(s, a) = dM,πi

1 (s, a) going forward.

We first bound CM
∞. We choose µ by setting µ(s,⊥) = 1

2 and µ(s, i) = 3
π2 · 1

i2 , which has
∑
a∈A µ(s, a) = 1. It is fairly

immediate to see that for all i, we have di(s,⊥)
µ(s,⊥) ≤ 2 and

di(s, i)

µ(s, i)
=
π2

6
≤ 2.

This shows that CM
∞ ≤ 2. On the other hand, for any p ∈ ∆(N), we have

ΨM

∞;h,ε(p) ≥ sup
i∈N

sup
j∈N

{
di(s, j)

Ek∼p[dk(s, j)] + ε · di(s, j)

}
≥ sup

i∈N

di(s, i)

Ek∼p[dk(s, i) + ε · di(s, i)]

= sup
i∈N

1/2i2

(p(i) + ε) · (1/2i2)

= sup
i∈N

1

p(i) + ε
=

1

ε
,

where the conclusion holds because
∑
i∈N p(i) ≤ 1, which means for all δ > 0, there exists i such that p(i) ≤ δ.

K. Proofs from Appendix E
K.1. General Guarantees for Algorithm 3

We first present general assumptions on the weight function estimation and policy optimization subroutines under which
Algorithm 3 can be analyzed, then present our most general result, Theorem K.1.

K.1.1. WEIGHT FUNCTION REALIZABILITY

Theorem E.1 is analyzed under the weight function realizability assumption in Assumption E.1. However, Algorithm 3 is
most directly analyzed in terms of the following, slightly stronger weight function assumption, which we show is implied by
Assumption E.1. To motivate the assumption, recall that we seek to estimate a weight function ŵt

h approximating Eq. (26).
Assumption K.1 (Weight function realizability—strong version). For a parameter T ∈ N, we assume that for all h ≥ 2, all
t ∈ [T ], and all policies π1, . . . , πt−1 ∈ Πns, we have that

wπ
1,...,πt

h (x′ | x, a) :=
PM⋆

h−1(x
′ | x, a)∑

i<t d
M⋆,πi

h (x′) + PM⋆

h−1(x
′ | x, a)

∈ Wh.
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We assume without loss of generality that ∥w∥∞ ≤ 1 for all w ∈ Wh.

To compute a policy cover that approximately solves ph = argminp∈∆(Πrns) Ψ
M⋆

push;h,ε(ph) for parameter ε > 0, we require
that Assumption K.1 holds for T = 1

ε .

Algorithm 3 enjoys tighter guarantees when Assumption K.1 is satisfied, but the following result shows that Assumption E.1
implies Assumption K.1 at the cost of a small degradation in rate.
Proposition K.1. For any T ∈ N, given a weight function classW satisfying Assumption E.1, the induced classW ′ given
by

W ′
h :=

{
(x, a, x′) 7→ 1

1 +
∑
i<t

1
wi

h(x
′|x,a)

| w1

h, . . . , w
t−1

h ∈ Wh, t ∈ [T ]

}
satisfies Assumption K.1, and has log|W ′

h| ≤ O(T · log|Wh|).

For T = 1
ε this increases the weight function class size from log|W| to O

(
1
ε · log|W|

)
, leading to an extra 1

ε factor in the
final sample complexity bound for our main result (Theorem E.1).
Remark K.1 (Sufficiency of Assumption K.1). When invoked with layer h ≥ 2 and iteration t ≥ 2 within Algorithm 3,
EstimateWeightFunction (Algorithm 4) collects datasets D1 ∼ µ and D2 ∼ ν such that

µ(x′ | x, a) = PM⋆

h−1(x
′ | x, a), ν(x′ | x, a) = 1

t

(∑
i<t

dM⋆,πh,i

h (x′) + PM⋆

h−1(x
′ | x, a)

)
,

and

µ(x, a) = ν(x, a) =
1

2

(
d

M⋆,ph−1

h−1 (x, a) +
1

t− 1

∑
i<t

d
M⋆,πh,i◦h−1πunif

h−1 (x, a)

)
. (51)

Then, in Line 10, the algorithm computes the estimator Eq. (27) with respect to the class t · W , which is guaranteed to have
µ(x,a,x′)
ν(x,a,x′) = t · wt

h(x
′ | x, a) ∈ t · W under Assumption K.1.

K.1.2. POLICY OPTIMIZATION SUBROUTINE

This section presents general conditions for the subroutine PolicyOptimization under which CODEX.W obtains the same
guarantees as in Theorem E.1, and establishes that PSDP satisfies this assumption.

To formalize the requirement of PolicyOptimization, recall that for each layer h ≥ 2, iteration t ∈ [T ], and each ℓ ≤ h−1,
we define

QM⋆,π
ℓ (x, a; ŵt

h) = EM⋆,π[ŵt

h(xh | xh−1, ah−1) | xℓ = x, aℓ = a]

as the Q-function for a policy π ∈ Πns under the (stochastic) reward rt

h−1 = ŵt

h(xh | xh−1, ah−1) in Algorithm 3. We
assume that the policy πt,h = PolicyOptimizationh−1(r

h,t, p1:h−1, ϵ, δ) approximately maximizes this Q-function under
p1, . . . , ph−1.
Assumption K.2 (Local optimality for policy optimization). For any fixed iteration h ≥ 2 and t ∈ [T ], the subroutine
PolicyOptimizationh−1(r

h,t, p1:h−1, ϵ, δ) produces a policy πh,t such that with probability at least 1− δ,

h−1∑
ℓ=1

EM⋆,pℓ

[
max
a∈A

QM⋆,πh,t

ℓ (xℓ, a; ŵ
t

h)−Q
M⋆,πh,t

ℓ (xℓ, π
h,t(xℓ); ŵ

t

h)

]
≤ ϵ, (52)

and does so using Nopt(ϵ, δ) episodes.

This assumption asserts that πt,h cannot be substantially improved, but only with respect to the state distribution induced by
p1, . . . , ph−1.20 This is a weak guarantee that can be achieved using only data collected from p1, . . . , ph−1 (e.g., via offline
RL methods or hybrid offline/online methods), and does not require systematic exploration.

20Note that if p1, . . . , ph−1 uniformly cover all policies, then Assumption K.2 implies that πh,t is globally optimal by the performance
difference lemma. However, Eq. (52) can still lead to useful guarantees in the presence of partial coverage, which our analysis critically
exploits.
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The next result shows that PSDP satisfies Assumption K.2 under the value function realizability assumption in Assumption
E.2.

Lemma K.1 (Local optimality for PSDP). Suppose Assumption E.2 holds. Then for any ϵ, δ ∈ (0, 1), the subroutine πh,t =

PSDPh−1(r
h,t, p1:h−1, ϵ, δ) satisfies Assumption K.2, and does so using at most Npsdp(ϵ, δ) = O

(
H3|A| log(|Q|Hδ−1)

ϵ2

)
episodes.

See Appendix K.4 for details. We expect that similar guarantees can be proven for Natural Policy Gradient, Conservative
Policy Iteration, and other standard local search methods. Different subroutines may allow one to make use of weaker
function approximation requirements.

K.1.3. GENERAL GUARANTEE FOR CODEX.W (ALGORITHM 3)

Our most general guarantee for CODEX.W is given below.

Theorem K.1 (General guarantee for Algorithm 3). Let ε ∈ (0, 1/2) and δ ∈ (0, e−1) be given, and suppose that
Assumption K.1 and Assumption K.2 are satisfied. Then Algorithm 3 produces policy covers p1, . . . , pH ∈ ∆(Πrns) such
that with probability at least 1− δ, for all h ∈ [H],

ΨM⋆

push;h,ε(ph) ≤ 170H log(ε−1) · CM⋆

push,

and does so using at most

N ≤ Õ
(
H|A| log(|W|δ−1)

ε3
+
H

ε
Nopt(cε

2, δ/2HT )

)
episodes, where c > 0 is a sufficiently small absolute constant.

In particular, this result shows that we can optimize the pushforward coverability objective (and consequently the L1-
Coverage objective, via Proposition 4.2), up to small O(H log(ε−1)) approximation factor. The sample complexity is
polynomial in all relevant problem parameters whenever the subroutine PolicyOptimization has polynomial sample
complexity. Note that the sample complexity for the first term is of order 1/ε3 (as opposed to the slower 1/ε4 in Theorem E.1)
since we are stating this result under the stronger weight function realizability assumption (Assumption K.1).

Combining Theorem K.1 with Proposition K.1 and the guarantee for PSDP (Lemma K.1), we obtain Theorem E.1.

K.2. Technical Preliminaries

Lemma K.2. For any distribution ω ∈ ∆(Z) and any pair of functions w,w′ : Z → R+,

Eω[w] ≤ 3Eω[w′] + 2Eω
[
(
√
w −
√
w′)2

]
.

Proof of Lemma K.2. By AM-GM, we have

|Eω[w]− Eω[w′]| ≤ Eω
[
|
√
w −
√
w′|(
√
w +
√
w′)
]

≤
√
Eω
[
(
√
w +
√
w′)2

]
· Eω

[
(
√
w −
√
w′)2

]
≤ 1

2
(Eω[w] + Eω[w′]) +

1

2
Eω
[
(
√
w −
√
w′)2

]
.

Rearranging, we conclude that

Eω[w] ≤ 3Eω[w′] + 2Eω
[
(
√
w −
√
w′)2

]
.
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Lemma K.3 (e.g., Xie et al. (2023); Mhammedi et al. (2023a)). Consider a set Z and a sequence of distributions
d1, . . . , dT ∈ ∆(Z) for which there exists a distribution µ ∈ ∆(Z) such that supz∈Z

{
dt(z)
µ(z)

}
≤ C for all t ∈ [T ]. For any

sequence of functions g1, . . . , gT ⊂ (Z → [−B,B]), it holds that

T∑
t=1

Ez∼dt [g(z)] ≤

√√√√2C log(2T )

T∑
t=1

∑
i<t

Ez∼di [(gt(z))2] + 2CB. (53)

K.3. Weight Function Estimation

In this section, we give self-contained guarantees for the statistical problem of estimating the density ratio (or, “weight
function”) for a pair of distributions.

Consider the following setting. Let Z be a set. We receive samples z1
µ, . . . , z

n
µ ∈ Z and z1

ν , . . . , z
n
ν ∈ Z , where

zt
µ ∼ µt ∈ ∆(Z) and zt

ν ∼ νt ∈ ∆(Z). The distributions µt and νt can be chosen in an adaptive fashion based on
z1
µ, z

1
ν , . . . , z

t−1
µ , zt−1

ν . We define µ = 1
n

∑n
t=1 µ

t and ν = 1
n

∑n
t=1 ν

t, and our goal is to estimate the density ratio

w⋆(z) :=
µ(z)

ν(z)
.

We assume that ∥w⋆∥∞ ≤ B, and assume access to a realizable weight function classW with w⋆ ∈ W . Following Nguyen
et al. (2010) (see also Katdare et al. (2023)), we consider the estimator

ŵ := argmax
w∈W

Êµ[log(w)]− Êν [w], (54)

where Êµ[·] denotes the empirical expectation with respect to z1
µ, . . . , z

n
µ and Êν [·] denotes the empirical expectation with

respect to z1
ν , . . . , z

n
ν . The following theorem gives a finite-sample bound for this estimator, which may be of independent

interest.

Theorem K.2. Suppose that w⋆ ∈ W and supw∈W∥w∥∞ ≤ B. The estimator in Eq. (54) ensures that with probability at
least 1− δ,

D2
H,ν(ŵ, w

⋆) ≤ 20B log(|W|δ−1)

n
,

where D2
H,ν(w,w

′) := Eν
[(√

w −
√
w′
)2]

.

Remark K.2 (Extension to contextual weight function estimation). An immediate corollary for Theorem K.2 concerns
the following “contextual” setting. Suppose that Z = X × Y , and that for all t, zt

µ = (xt, yt
µ) and zν = (xt, yt

ν) have the
same marginal distribution for xt, i.e. µt(x, y) = µt(y | x)ω(x) and νt(x, y) = νt(y | x)ω(x) for some ω ∈ ∆(X ). Define
µ(y | x) = 1

n

∑n
t=1 µ

t(y | x) and ν(y | x) = 1
n

∑n
t=1 ν

t(y | x), and let w⋆(y | x) = µ(y|x)
ν(y|x) . Then, given a class of weight

functionsW with w⋆ ∈ W , where each w ∈ W has the form w(y | x) and ∥w∥∞ ≤ B, the estimator in Eq. (54) ensures
that

Ex∼ω,y∼ν(·|x)[|ŵ(y | x)− w⋆(y | x)|] ≤ 10B

√
log(|W|δ−1)

n
.

Proof of Theorem K.2. Define V (w) = Eµ[log(w)] − Eν [w] and V̂ (w) = Êµ[log(w)] − Êν [w], and note that
w⋆ = µ

ν = argmaxw V (w). We begin by performing concentration on the log-loss terms. Define Xt(w) =
1
2

(
log(w⋆(zt

µ))− log(w(zt
µ))
)
. By Lemma C.2 and a union bound, we have that with probability at least 1 − δ, for

all w ∈ W ,

1

n

n∑
t=1

− log

(
Eµt

[
exp

(
1

2
log(w/w⋆)

)])
≤ 1

2

(
Êµ[log(w⋆)]− Êµ[log(w)]

)
+

log(|W|δ−1)

n
.

Note that Eµt

[
exp
(
1
2 log(w/w

⋆)
)]

= Eµt

[√
w/w⋆

]
. We now state and prove a basic technical lemma.
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Lemma K.4. For all x > 0, − log(x) ≥ 1− x.

Proof of Lemma K.4. Let f(x) = − log(x). Since f is convex, we have that for all x > 0,

f(x) ≥ f(1) + f ′(1)(x− 1).

Noting that f(1) = 0 and f ′(1) = −1, the result is established.

Using Lemma K.4, we have

1

n

n∑
t=1

− log

(
Eµt

[
exp

(
1

2
log(w/w⋆)

)])
≥ 1− 1

n

n∑
t=1

Eµt

[√
w/w⋆

]
= 1− Eµ

[√
w/w⋆

]
= 1− Eν

[√
w · w⋆

]
,

where the last line uses that Eµ
[√

w/w⋆
]
= Eν

[
w⋆
√
w/w⋆

]
= Eν

[√
w · w⋆

]
. By direct calculation, we have that

D2
H,ν(w,w

⋆) = Eν
[(√

w −
√
w⋆
)2]

= Eν [w⋆] + Eν [w]− 2Eν
[√

w · w⋆
]
= 1 + Eν [w]− 2Eν

[√
w · w⋆

]
,

so that

1− Eν
[√

w · w⋆
]
=

1

2
D2

H,ν(w,w
⋆) +

1

2
(1− Eν [w]).

Specializing to ŵ, we have

1

2
D2

H,ν(ŵ, w
⋆) +

1

2
(1− Eν [ŵ]) ≤

1

2

(
Êµ[log(w⋆)]− Êµ[log(ŵ)]

)
+ log(|W|δ−1)

=
1

2

(
V̂ (w⋆)− V̂ (ŵ)

)
+

1

2

(
Êν [w⋆]− Êν [ŵ]

)
+

log(|W|δ−1)

n
.

Since V̂ (w⋆)− V̂ (ŵ) ≤ 0, rearranging gives

D2
H,ν(ŵ, w

⋆) ≤
(
Êν [w⋆]− Êν [ŵ]

)
−
(
1− Êν [ŵ]

)
+

2 log(|W|δ−1)

n
(55)

=
(
Êν [w⋆]− Êν [ŵ]

)
− (Eν [w⋆]− Eν [ŵ]) +

2 log(|W|δ−1)

n
. (56)

Using Lemma C.3, we have that for all η ≤ 1/2B, with probability at least 1− δ, for all w ∈ W(
Êν [w⋆]− Êν [w]

)
− (Eν [w⋆]− Eν [w]) ≤

η

n

n∑
t=1

Eνt
[
(w − w⋆)2

]
+

log(|W|δ−1)

ηn

= η Eν
[
(w − w⋆)2

]
+

log(|W|δ−1)

ηn
.

We further observe that

Eν
[
(w − w⋆)2

]
= Eν

[
(
√
w −
√
w⋆)2(

√
w +
√
w⋆)2

]
≤ 4B Eν

[
(
√
w −
√
w⋆)2

]
= 4B ·D2

H,ν(w,w
⋆),

so choosing η = 1
8B gives(

Êν [w⋆]− Êν [w]
)
− (Eν [w⋆]− Eν [w]) ≤

1

2
D2

H,ν(w,w
⋆) +

8B log(|W|δ−1)

n
. (57)

Combining this with Eq. (55), we conclude that

D2
H,ν(ŵ, w

⋆) ≤ 1

2
D2

H,ν(ŵ, w
⋆) +

8B log(|W|δ−1)

n
+ 2

log(|W|δ−1)

n
,
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which implies that

D2
H,ν(ŵ, w

⋆) ≤ 20B log(|W|δ−1)

n
,

after simplifying.

K.4. Policy Optimization Subroutines

K.4.1. POLICY SEARCH BY DYNAMIC PROGRAMMING (PSDP)

Algorithm 6 PSDPh(p1:h, r1:h; ϵ, δ,Q1:h): Policy Search by Dynamic Programming (cf. Bagnell et al. (2003))

1: input:

• Target layer h ∈ [H], policy covers p1:h, reward functions r1:h.

• Accuracy parameters ϵ, δ ∈ [0, 1].

• Function classes Q1:h.

2: Let n = npsdp(ϵ, δ) := c · H
2|A| log(|Q|Hδ−1)

ϵ2 for a sufficiently large numerical constant c > 0.
3: for ℓ = h, . . . , 1 do
4: Dℓ ← ∅.
5: for npsdp times do
6: Sample π ∼ pℓ.
7: Sample (xℓ, aℓ,

∑h
ℓ′=ℓ rℓ′(xℓ′ , aℓ′)) ∼ π ◦ℓ πunif ◦ℓ+1 π̂.

8: Update dataset: Dℓ ← Dℓ ∪
{(
xℓ, aℓ,

∑h
ℓ′=ℓ rℓ′(xℓ′ , aℓ′)

)}
.

9: Solve regression:
Q̂ℓ ← argmin

Q∈Qℓ

∑
(x,a,R)∈Dℓ

(Q(x, a)−R)2.

10: Define π̂ℓ(x) = argmaxa∈A Q̂ℓ(x, a).

11: return: Policy π̂.

This section presents self-contained guarantees for Policy Search by Dynamic Programming (PSDP, Algorithm 6) (Bagnell
et al., 2003), which performs local policy optimization given access to exploratory distributions p1:h ∈ ∆(Πrns). PSDP takes
as input an arbitrary reward functions r1:h : X ×A → [0, 1] and a function class Q = Q1:h, where Qℓ ⊆ {Q : X ×A →
[0, 1]}, that can represent certain Q-functions for these rewards.

We prove that with high probability, the output π̂ = PSDPh(p1:h, r1:h; ϵ, δ,Q) is an approximate maximizer of the objective

max
π∈Πns

EM⋆,π

[
h∑
ℓ=1

rℓ(xℓ, aℓ)

]
, (58)

in a “local” sense with respect to p1:h (cf. Eq. (64)).

To prove guarantees for PSDP, we make use of the following realizability assumption for the class Q = Q1:h.

Definition K.1. We say that function classes Q1:h, where Qℓ ⊆ {Q : X × A → R+} for ℓ ∈ [h], realize the reward
functions r1:h : X ×A → R+ if for all t ∈ [h] and all π ∈ Πns,

QM⋆,π
ℓ (·, ·; r) ∈ Qℓ, where QM⋆,π

ℓ (x, a; r) := EM⋆,π

[
h∑

ℓ′=ℓ

rℓ′(xℓ′ , aℓ′)

∣∣∣∣∣ xℓ = x, aℓ = a

]
. (59)
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Lemma K.5 (Main guarantee for PSDP). For any ϵ, δ ∈ (0, 1) and reward function {rℓ}ℓ∈[h] with
∑h
ℓ=1 rℓ ∈ [0, 1]

that is realizable in the sense of Definition K.1, PSDP ensures that with probability at least 1 − δ, the output π̂ =
PSDPh(p1:h, r1:h; ϵ, δ,Q1:h) satisfies

h∑
ℓ=1

EM⋆,pℓ

[
max
a∈A

QM⋆,π̂
ℓ (xℓ, a; r)−QM⋆,π̂

ℓ (xℓ, π̂(xℓ); r)

]
≤ ϵ, (60)

and does so using at most Npsdp(ϵ, δ) = O
(
H3|A| log(|Q|Hδ−1)

ϵ2

)
episodes.

Proof of Lemma K.5. See the proof of Theorem D.1 in Mhammedi et al. (2023b).

K.5. Proof of Theorem K.1

Theorem K.1 (General guarantee for Algorithm 3). Let ε ∈ (0, 1/2) and δ ∈ (0, e−1) be given, and suppose that
Assumption K.1 and Assumption K.2 are satisfied. Then Algorithm 3 produces policy covers p1, . . . , pH ∈ ∆(Πrns) such
that with probability at least 1− δ, for all h ∈ [H],

ΨM⋆

push;h,ε(ph) ≤ 170H log(ε−1) · CM⋆

push,

and does so using at most

N ≤ Õ
(
H|A| log(|W|δ−1)

ε3
+
H

ε
Nopt(cε

2, δ/2HT )

)
episodes, where c > 0 is a sufficiently small absolute constant.

Proof of Theorem K.1. To keep notation compact, throughout this section we abbreviate dπh ≡ d
M⋆,π
h , Ph(· | ·) ≡ PM⋆

h (· |
·), Eπ[·] ≡ EM,π[·], and so on when the MDP is clear from context.

Define

wt

h(xh | xh−1, ah−1) =
Ph−1(xh | xh−1, ah−1)∑

i<t d
πh,i

h (xh) + Ph−1(xh | xh−1, ah−1)
(61)

We define two notions of estimation error for the weight function estimates produced by the subroutine
EstimateWeightFunction (Algorithm 4):

(εtw,off;h)
2 = Eph−1

[(√
ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)

)2
]
, and (62)

(εtw,on;h)
2 =

1

t− 1

∑
i<t

Eπ
h,i◦h−1πunif

[(√
ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)

)2
]
. (63)

We define a notion of “local” suboptimality for the policies πh,t produced by the subroutine PolicyOptimization as
follows:

εtopt;h =

h−1∑
ℓ=1

Epℓ
[
max
a∈A

Qπ
h,t

ℓ (xℓ, a; ŵ
t

h)−Qπ
h,t

ℓ (xℓ, π
h,t(xℓ); ŵ

t

h)

]
. (64)

Lemma K.6. Let ε ∈ (0, 1/2) and set T = 1
ε . Suppose that for all h ≥ 2 and t ∈ [T ], it holds that εtw,off;h ≤

c1(C
M⋆

push/|A|t)1/2ε1/2, εtw,on;h ≤ c2(C
M⋆

push/|A|t)1/2ε1/2, and εtopt;h ≤ c3ε
2 for absolute constants c1, c2, c3 > 0. Then

for all h ≥ 2, we have that

ΨM⋆

push;h,ε(ph) ≤ 170H log(ε−1) · CM⋆

push.
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Let Nweight(t, ϵ, δ) denote the number of episodes used by EstimateWeightFunction to ensure that
(εtw,off;h)

2, (εtw,on;h)
2 ≤ ϵ2/t with probability at least 1 − δ when invoked at iteration t ∈ [T ] for layer h ≥ 2,

and let Nopt(ϵ, δ) be the number of trajectories used by PolicyOptimization to ensures that εtopt;h ≤ ϵ with probability at
least 1− δ when invoked at iteration t ∈ [T ] for layer h ≥ 2. It follows from Lemma K.6 that with the parameter settings in
Algorithm 3, we are guaranteed that with probability at least 1− δ, for all h ∈ [H]

ΨM⋆

push;h,ε(ph) ≤ 170H log(ε−1) · CM⋆

push.

and the total number of episodes used is at most

N ≤ HT (Nweight(T, ϵw, δw) +Nopt(ϵopt, δopt))

≤ HT
(
Nweight(T, c(C

M⋆

push/|A|)1/2ε1/2, δ/2HT ) +Nopt(c
′ε2, δ/2HT )

)
.

for absolute constants c, c′ > 0. It remains to bound Nweight(ϵ, δ), for which we appeal to the following lemma, a corollary
of Theorem K.2.
Lemma K.7. Let h ≥ 2 and t ∈ [T ] be given. For any ϵ, δ ∈ (0, 1), distribution ph−1 ∈ ∆(Πrns) and
πh,1, . . . , πh,t−1 ∈ Πns, EstimateWeightFunction ensures that with probability at least 1 − δ, the output ŵt

h ←
EstimateWeightFunctionh,t(ph−1, {πh,i}i<t; ϵ, δ,W) satisfies

(εtw,off;h)
2 = EM⋆,ph−1

[(√
ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)

)2
]
≤ ϵ2/t, and (65)

(εtw,on;h)
2 =

1

t− 1

∑
i<t

EM⋆,πh,i◦h−1πunif

[(√
ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)

)2
]
≤ ϵ2/t, (66)

and does so using at most Nweight(t, ϵ, δ) = 80t log(|W|δ−1)
ϵ2 episodes.

Appealing to this result, we conclude that the total number of episodes is at most

N ≤ Õ
(
H|A| log(|W|δ−1)

ε3
+
H

ε
Nopt(cε

2, δ/2HT )

)
.

K.5.1. PROOF OF LEMMA K.6 (OUTER-LEVEL ANALYSIS)

Extended MDP. Let α ≥ 1 be a parameter to the proof, whose value will be chosen at the end as a function of ε. Following
Mhammedi et al. (2023b;a), we define an extended MDP M by augmenting A = A ∪ {t} and X = X ∪ {t}. M has
identical dynamics to M⋆, except that taking action t causes the state to transition to t deterministically; t is a self-looping
terminal state.

We define ΠRNS as the set of all randomized non-stationary policies from X toA. For π ∈ ΠRNS, we abbreviate d̄πh ≡ d
M,π
h ,

Ph(· | ·) ≡ PM

h (· | ·), Pπ[·] ≡ PM,π[·], Eπ[·] ≡ EM,π[·], and so on. We adopt the convention that all policies in ΠRNS select
action t in the terminal state.

Truncated benchmark policy class. Given the policy class Π = Πns, we inductively define a sequence of policy classes
Πα,1, . . . ,Πα,H based on the extended MDP and the output p1, . . . , pH of the algorithm as follows.

• First, Πα,0 = Π.

• Next, for h = 1, . . . ,H , we construct Πα,h from Πα,h−1. For each π ∈ Πα,h−1, add a policy π′ to Πα,h defined as
follows: For all h′ ̸= h, π′

h′ = πh′ , and for layer h,

π′
h(x) =

 πh(x),
d̄πh(x)

d̄
ph
h (x)

≤ α,

t,
d̄πh(x)

d̄
ph
h (x)

> α.
(67)

Finally, we adopt the shorthand Πα := Πα,H .
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Main analysis. Let h ≥ 2 be fixed. For the remainder of the proof, we abbreviate πt ≡ πt,h to keep notation compact.
Define

Ψpush;h,ε(p) = sup
π∈Πα

E
[

Ph−1(xh | xh−1, ah−1)

d̄ph(xh) + ε · Ph−1(xh | xh−1, ah−1)
Ixh ̸=t

]
(68)

as a counterpart to the pushforward coverage relaxation for the extended MDP M . We define three quantities,

∆w,off;h =

T∑
t=1

sup
π∈Πα

Eπ
[(√

ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)

)2

Ixh ̸=t

]
,

∆w,on;h =

T∑
t=1

Eπ
t

[(√
ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)

)2

Ixh ̸=t

]
, and

∆opt;h =

T∑
t=1

sup
π∈Πα

Eπ[ŵt

h(xh | xh−1, ah−1)Ixh ̸=t]− Eπ
t

[ŵt

h(xh | xh−1, ah−1)Ixh ̸=t].

which measure the quality of the weight function estimates produced by EstimateWeightFunction and the optimization
quality of the policies produced by PolicyOptimization in the extended MDP.

We now state three technical lemmas, all proven in the sequel. The first lemma shows that we can bound the value of
Ψpush;h,ε(ph) in terms of the pushforward coverability parameter CM⋆

push;h, up to additive error terms depending on the
quantities defined above.
Lemma K.8. Let h ≥ 2 be fixed and ε ∈ (0, 1/2). Then, with T = 1

ε , it holds that

Ψpush;h,ε(ph) ≤ 72CM⋆

push;h log(T ) + 2∆w,off;h + 6∆w,on;h + 3∆opt;h. (69)

The next two lemmas relate the weight estimation and policy optimization errors in M to their counterparts in the true MDP
M⋆, leveraging key properties of the truncated policy class Πα.
Lemma K.9. The following bounds hold for all h ≥ 2, as long as ∥w∥∞ ≤ 1 for all w ∈ Wh:

∆w,off;h ≤ α|A|
T∑
t=1

(εtw,off;h)
2, and (70)

∆w,on;h ≤

√√√√8|A|CM⋆

push log(T )

T∑
t=1

(t− 1)(εtw,on;h)
2 + 4CM⋆

push. (71)

Lemma K.10. The following bound holds for all h ≥ 2:

∆opt;h ≤ α
T∑
t=1

εtopt;h. (72)

Appealing to Lemmas K.8 to K.10, we conclude that as long as εtw,off;h ≤ c1(α|A|t/CM⋆

push)
−1/2, εtw,on;h ≤

c2(|A|Tt/CM⋆

push)
−1/2, and εtopt;h ≤ c3(αT )

−1 for all h ≥ 2, t ∈ [T ], where c1, c2, c3 > 0 are absolute constants,
we are guaranteed that for all h,

Ψpush;h,ε(ph) ≤ 85CM⋆

push log(T ). (73)

It remains to translate this back to a bound on the L1-Coverage objective for the true MDP M⋆. To do so, we start with the
following technical lemma, also proven in the sequel.
Lemma K.11. Consider any reward function {rh}h∈[H] with rh : X ×A → [0, 1] such that

∑H
h=1 rh(xh, ah) ∈ [0, 1] for

all sequences (x1, a1), . . . , (xH , aH), and such that rh(t, a) = 0 and rh(x, t) = 0. It holds that

sup
π∈Π

Eπ
[
H∑
h=1

rh

]
− sup
π∈Πα

Eπ
[
H∑
h=1

rh

]
≤

H∑
h=1

sup
π∈Πα

Pπ
[
d̄πh(xh)

d̄phh (xh)
> α, xh ̸= t

]
.
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Let h ≥ 2 be fixed and define a reward function {rℓ}ℓ≤h−1 with rℓ : X ×A → [0, ε−1] via

rh−1(x, a) = E
[

Ph−1(xh | xh−1, ah−1)

dphh (xh) + ε · Ph−1(xh | xh−1, ah−1)
| xh−1 = x, ah−1 = a

]
Ix,a̸=t

and rℓ = 0 for ℓ < h− 1. Using Lemma K.11, we have that

ΨM⋆

push;h,ε(ph) = sup
π∈Π

[
h−1∑
ℓ=1

rℓ

]
≤ sup

π∈Πα

Eπ
[
h−1∑
ℓ=1

rℓ

]
+

1

ε

h−1∑
ℓ=1

sup
π∈Πα

Pπ
[
d̄πℓ (xℓ)

d̄pℓℓ (xℓ)
> α, xℓ ̸= t

]
. (74)

To bound the right-hand side, we first note that

sup
π∈Πα

Eπ
[
h−1∑
ℓ=1

rℓ

]
= sup
π∈Πα

Eπ
[
E
[

Ph−1(xh | xh−1, ah−1)

dphh (xh) + ε · Ph−1(xh | xh−1, ah−1)
| xh−1, ah−1

]
Ixh−1,ah−1 ̸=t

]

= sup
π∈Πα

Eπ
[
E
[

Ph−1(xh | xh−1, ah−1)

d̄phh (xh) + ε · Ph−1(xh | xh−1, ah−1)
| xh−1, ah−1

]
Ixh−1,ah−1 ̸=t

]
= sup
π∈Πα

Eπ
[

Ph−1(xh | xh−1, ah−1)

d̄phh (xh) + ε · Ph−1(xh | xh−1, ah−1)
Ixh−1,ah−1 ̸=t

]
= sup
π∈Πα

Eπ
[

Ph−1(xh | xh−1, ah−1)

d̄phh (xh) + ε · Ph−1(xh | xh−1, ah−1)
Ixh ̸=t

]
= Ψpush;h,ε(ph). (75)

Here, the second equality uses that i) M⋆ and M have identical transition dynamics whenever xh−1, ah−1t and ii) policies
in the support of ph never take the terminal action. Meanwhile, the second-to-last inequality uses that xh ̸= t if and
only if xh−1 ̸= t and ah−1 ̸= t in M . To bound the second term on the right-hand side of Eq. (74), we use a variant of
Proposition 4.2.
Lemma K.12. For all α > 0 and ℓ ≥ 1, it holds that

sup
π∈Πα

Pπ
[
d̄πℓ (xℓ)

d̄pℓℓ (xℓ)
> α, xℓ ̸= t

]
≤ 2

α
sup
π∈Πα

Eπ
[

P ℓ−1(xℓ | xℓ−1, aℓ−1)

d̄pℓℓ (xℓ) + α−1 · P ℓ−1(xℓ | xℓ−1, aℓ−1)
Ixℓ ̸=t

]
. (76)

We set α = ε−1, so that combining Eq. (74) with Eq. (75) and Lemma K.12 yields

ΨM⋆

push;h,ε(ph) ≤ Ψpush;h,ε(ph) + 2

h−1∑
ℓ=1

Ψpush;ℓ,ε(pℓ). (77)

Consequently, for the choice T = ε−1 and α = ε−1, Eq. (73) and Eq. (77) imply that for all h ≥ 2,

ΨM⋆

push;h,ε(ph) ≤ 170H log(ε−1) · CM⋆

push.

The final approximation requirements for these choices are εtw,off;h ≤ c1(C
M⋆

push/|A|t)1/2ε1/2, εtw,on;h ≤
c2(C

M⋆

push/|A|t)1/2ε1/2, and εtopt;h ≤ c3ε2 for absolute constants c1, c2, c3 > 0.

K.5.2. PROOFS FOR SUPPORTING LEMMAS FOR LEMMA K.6

Lemma K.8. Let h ≥ 2 be fixed and ε ∈ (0, 1/2). Then, with T = 1
ε , it holds that

Ψpush;h,ε(ph) ≤ 72CM⋆

push;h log(T ) + 2∆w,off;h + 6∆w,on;h + 3∆opt;h. (69)

Proof of Lemma K.8. This is a slightly modified variant of the proof of Theorem 4.2. Let d̃th =
∑
i<t d

πi

h and
ďt

h =
∑
i<t d̄

πi

h . Observe that for T = 1
ε , we have

Ψpush;h,ε(ph) = sup
π∈Πα

E
[

Ph−1(xh | xh−1, ah−1)

d̄phh (xh) + ε · Ph−1(xh | xh−1, ah−1)
Ixh ̸=t

]

= T · sup
π∈Πα

Eπ
[

Ph−1(xh | xh−1, ah−1)

ďT+1

h (xh) + Ph−1(xh | xh−1, ah−1)
Ixh ̸=t

]
,
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and hence it suffices to bound the quantity on the right-hand side. Next, note that for all t ∈ [T ], we have that

sup
π∈Πα

Eπ
[

Ph−1(xh | xh−1, ah−1)

ďt+1

h (xh) + Ph−1(xh | xh−1, ah−1)
Ixh ̸=t

]
≤ sup
π∈Πα

Eπ
[

Ph−1(xh | xh−1, ah−1)

ďt+1

h (xh) + Ph−1(xh | xh−1, ah−1)
Ixh ̸=t

]
and consequently

T · sup
π∈Πα

Eπ
[

Ph−1(xh | xh−1, ah−1)

ďT+1

h (xh) + Ph−1(xh | xh−1, ah−1)
Ixh ̸=t

]
≤

T∑
t=1

sup
π∈Πα

Eπ
[

Ph−1(xh | xh−1, ah−1)

ďt

h(xh) + Ph−1(xh | xh−1, ah−1)
Ixh ̸=t

]
.

Now, note that if xh ̸= t, the dynamics of M imply that we must have xh−1, ah−1 ̸= t as well. In this case, we have

Ph−1(xh | xh−1, ah−1)

ďt

h(xh) + Ph−1(xh | xh−1, ah−1)
= wt

h(xh | xh−1, ah−1), (78)

since Ph−1(· | xh−1, ah−1) = Ph−1(· | xh−1, ah−1) with xh−1, ah−1 ̸= t, and since dπ
i

h (xh) = d̄π
i

h (xh) when xh ̸= t (as
the policies π1, . . . , πT never take the terminal action). As a result, using Lemma K.2, we have that

T∑
t=1

sup
π∈Πα

Eπ
[

Ph−1(xh | xh−1, ah−1)

ďt

h(xh) + Ph−1(xh | xh−1, ah−1)
Ixh ̸=t

]

=

T∑
t=1

sup
π∈Πα

Eπ[wt

h(xh | xh−1, ah−1)Ixh ̸=t]

≤ 3

T∑
t=1

sup
π∈Πα

Eπ[ŵt

h(xh | xh−1, ah−1)Ixh ̸=t]

+ 2

T∑
t=1

sup
π∈Πα

Eπ
[(√

ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)

)2

Ixh ̸=t

]
︸ ︷︷ ︸

=∆w,off;h

.

Next, we can bound

T∑
t=1

sup
π∈Πα

Eπ[ŵt

h(xh | xh−1, ah−1)Ixh ̸=t] ≤
T∑
t=1

Eπ
t

[ŵt

h(xh | xh−1, ah−1)Ixh ̸=t] + ∆opt;h

by definition. Applying Lemma K.2 once more, we have that

T∑
t=1

Eπ
t

[ŵt

h(xh | xh−1, ah−1)Ixh ̸=t]

≤ 3

T∑
t=1

Eπ
t

[wt

h(xh | xh−1, ah−1)Ixh ̸=t] + 2

T∑
t=1

Eπ
t

[(√
ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)

)2

Ixh ̸=t

]
︸ ︷︷ ︸

=∆w,on;h

.

Finally, note that since πt ∈ Π never select the terminal action (and in particular never reach the terminal state), we have

T∑
t=1

Eπ
t

[wt

h(xh | xh−1, ah−1)Ixh ̸=t] =

T∑
t=1

Eπ
t

[
Ph−1(xh | xh−1, ah−1)

d̃t

h(xh) + Ph−1(xh | xh−1, ah−1)
Ixh ̸=t

]

=

T∑
t=1

Eπ
t

[
Ph−1(xh | xh−1, ah−1)

d̃t

h(xh) + Ph−1(xh | xh−1, ah−1)

]
≤ 4CM⋆

push;h log(2T ),
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where the final bound follows from is Eq. (35). To simplify the constants, we note that log(2T ) ≤ 2 log(T ) whenever
ε ≤ 1/2.

Lemma K.9. The following bounds hold for all h ≥ 2, as long as ∥w∥∞ ≤ 1 for all w ∈ Wh:

∆w,off;h ≤ α|A|
T∑
t=1

(εtw,off;h)
2, and (70)

∆w,on;h ≤

√√√√8|A|CM⋆

push log(T )

T∑
t=1

(t− 1)(εtw,on;h)
2 + 4CM⋆

push. (71)

Proof of Lemma K.9. We first bound the quantity

∆w,off;h =

T∑
t=1

sup
π∈Πα

Eπ
[(√

ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)

)2

Ixh ̸=t

]
.

Observe that if xh ̸= t, then the dynamics of the MDP M imply that xh−1 ̸= t, ah−1 ̸= t. Consider an arbitrary policy
π ∈ Πα. Since π(xh−1) ̸= t, the dynamics in Eq. (67) imply that d̄πh−1(xh−1)/d̄

ph−1

h−1 (xh−1) ≤ α. Consequently, for any
t ∈ [T ], we can bound

Eπ
[(√

ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)

)2

Ixh ̸=t

]

=
∑

x∈X :π(x) ̸=t,a∈A

d̄πh−1(x, a)E

[(√
ŵt

h(xh | x, a)−
√
wt

h(xh | x, a)
)2

| xh−1 = x, ah−1 = a

]

≤
∑
a∈A

∑
x∈X :π(x)̸=t

d̄πh−1(x)E

[(√
ŵt

h(xh | x, a)−
√
wt

h(xh | x, a)
)2

| xh−1 = x, ah−1 = a

]

≤ α
∑
a∈A

∑
x∈X

d̄
ph−1

h−1 (x)E

[(√
ŵt

h(xh | x, a)−
√
wt

h(xh | x, a)
)2

| xh−1 = x, ah−1 = a

]

= α|A| · Eph−1◦h−1πunif

[(√
ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)

)2
]

= α|A| · Eph−1

[(√
ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)

)2
]

= α|A| · Eph−1

[(√
ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)

)2
]
= α|A| · (εtw,off;h)

2,

where the second-to-last equality uses that ph−1 ◦h−1 πunif = ph−1 by construction, and the final equality uses that policies
in the support of ph−1 never take the optimal action. Summing over t completes the proof.

We now bound the quantity ∆w,on;h. Note that since the policy πt never chooses the terminal action t, we can write

∆w,on;h =

T∑
t=1

Eπ
t

[(√
ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)

)2
]
.

Observe that as a consequence of pushforward coverability, there exists a distribution µ ∈ ∆(X ) such that
dπh−1(x) ≤ CM⋆

pushµ(x) for all x ∈ X , π ∈ Πrns. Hence, by applying Lemma K.3 with gt(x) =
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E
[(√

ŵt

h(xh | x, πt(x))−
√
wt

h(xh | x, πt(x))
)2 | xh−1 = x, ah−1 = πt(x)

]
, which has gt ∈ [0, 2] whenever

∥ŵt∥∞, ∥wt∥∞ ≤ 1, we have

∆w,on;h

≤

√√√√√2CM⋆

push log(T )
∑
t∈[T ]
i<t

Eπi

[(
E
[(√

ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)
)2
| xh−1, ah−1 = πt(xh−1)

])2]

+ 4CM⋆

push

≤

√√√√2CM⋆

push log(T )

T∑
t=1

∑
i<t

Eπi◦h−1πt

[(√
ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)
)4]

+ 4CM⋆

push

≤

√√√√2CM⋆

push|A| log(T )
T∑
t=1

∑
i<t

Eπi◦h−1πunif

[(√
ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)
)4]

+ 4CM⋆

push

≤

√√√√8CM⋆

push|A| log(T )
T∑
t=1

∑
i<t

Eπi◦h−1πunif

[(√
ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)
)2]

+ 4CM⋆

push.

This proves the result.

Lemma K.10. The following bound holds for all h ≥ 2:

∆opt;h ≤ α
T∑
t=1

εtopt;h. (72)

Proof of Lemma K.10. Let t ∈ [T ] be fixed, and recall that we can write

sup
π∈Πα

Eπ[ŵt

h(xh | xh−1, ah−1)Ixh ̸=t]− Eπ
t

[ŵt

h(xh | xh−1, ah−1)Ixh ̸=t]

= sup
π∈Πα

Eπ
[
ŵt

h(xh | xh−1, ah−1)Ixh−1,ah−1 ̸=t

]
− Eπ

t[
ŵt

h(xh | xh−1, ah−1)Ixh−1,ah−1 ̸=t

]
,

since xh ̸= t if and only if xh−1, ah−1 ̸= t. If we define Qπ as the state-action value function for policy π in M under the
reward function given by rh−1(x, a) = E[ŵt

h(xh | x, a) | xh−1 = x, ah−1 = a]Ix,a̸=t and rh′(x, a) = 0 for h′ < h − 1,
the performance difference lemma (Kakade, 2003) implies that

sup
π∈Πα

Eπ
[
ŵt

h(xh | xh−1, ah−1)Ixh−1,ah−1 ̸=t

]
− Eπ

t[
ŵt

h(xh | xh−1, ah−1)Ixh−1,ah−1 ̸=t

]
= sup
π∈Πα

h−1∑
ℓ=1

Eπ
[
Qπ

t

ℓ (xℓ, π(xℓ))−Qπ
t

ℓ (xℓ, π
t(xℓ))

]
.

Consider an arbitrary policy π ∈ Πα, and fix ℓ ∈ [h− 1], and write

Eπ
[
Qπ

t

ℓ (xℓ, π(xℓ))−Qπ
t

ℓ (xℓ, π
t(xℓ))

]
=
∑
x∈X

d̄πℓ (x)
(
Qπ

t

ℓ (x, π(x))−Qπ
t

ℓ (x, πt(x))
)

For any x ∈ X , since π ∈ Πα, if d̄πℓ (x)/d̄
pℓ
ℓ (x) > α, then π(x) = t, which implies that

Qπ
t

ℓ (x, π(x))−Qπ
t

ℓ (x, πt(x)) ≤ −Qπ
t

ℓ (x, πt(x)) ≤ 0
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since the reward is non-negative, and since we can receive non-zero reward only if π(xℓ) ̸= t for all ℓ ≤ h− 1. Hence, we
can bound∑
x∈X

d̄πℓ (x)
(
Qπ

t

ℓ (x, π(x))−Qπ
t

ℓ (x, πt(x))
)
≤
∑
x∈X

d̄πℓ (x)
(
Qπ

t

ℓ (x, π(x))−Qπ
t

ℓ (x, πt(x))
)
I
{
d̄πℓ (x)/d̄

pℓ
ℓ (x) ≤ α

}
≤
∑
x∈X

d̄πℓ (x)

(
max
a∈A

Qπ
t

ℓ (x, a)−Qπ
t

ℓ (x, πt(x))

)
I
{
d̄πℓ (x)/d̄

pℓ
ℓ (x) ≤ α

}
≤ α

∑
x∈X

d̄pℓℓ (x)

(
max
a∈A

Qπ
t

ℓ (x, a)−Qπ
t

ℓ (x, πt(x))

)
I
{
d̄πℓ (x)/d̄

pℓ
ℓ (x) ≤ α

}
≤ α

∑
x∈X

d̄pℓℓ (x)

(
max
a∈A

Qπ
t

ℓ (x, a)−Qπ
t

ℓ (x, πt(x))

)
= αEpℓ

[
max
a∈A

Qπ
t

ℓ (x, a)−Qπ
t

ℓ (x, πt(x))

]
.

Above, the second inequality uses that i) Qπ
t

ℓ (x, a) = 0 for all a ∈ A if x = t and ii) π(x) ∈ A if x ̸= t but
d̄πℓ (x)/d̄

pℓ
ℓ (x) ≤ α. Finally, we note that

Epℓ
[
max
a∈A

Qπ
t

ℓ (xℓ, a)−Qπ
t

ℓ (xℓ, π
t(xℓ))

]
= Epℓ

[
max
a∈A

Qπ
t

ℓ (xℓ, a; ŵ
t

h)−Qπ
t

ℓ (xℓ, π
t(xℓ); ŵ

t

h)

]
,

since i) policies in the support of pℓ never take the terminal action, and ii) Qπ
t

ℓ (x, a) = Qπ
t

ℓ (x, a; ŵt

h) whenever x, a ̸= t,
since πt never takes the terminal action.

Lemma K.11. Consider any reward function {rh}h∈[H] with rh : X ×A → [0, 1] such that
∑H
h=1 rh(xh, ah) ∈ [0, 1] for

all sequences (x1, a1), . . . , (xH , aH), and such that rh(t, a) = 0 and rh(x, t) = 0. It holds that

sup
π∈Π

Eπ
[
H∑
h=1

rh

]
− sup
π∈Πα

Eπ
[
H∑
h=1

rh

]
≤

H∑
h=1

sup
π∈Πα

Pπ
[
d̄πh(xh)

d̄phh (xh)
> α, xh ̸= t

]
.

Proof of Lemma K.11. Since policies π ∈ Π never take the terminal action, we can write

sup
π∈Π

Eπ
[
H∑
h=1

rh

]
− sup
π∈Πα

Eπ
[
H∑
h=1

rh

]

= sup
π∈Πα,0

Eπ
[
H∑
h=1

rh

]
− sup
π∈Πα,H

Eπ
[
H∑
h=1

rh

]

=

H∑
ℓ=1

(
sup

π∈Πα,ℓ−1

Eπ
[
H∑
h=1

rh

]
− sup
π∈Πα,ℓ

Eπ
[
H∑
h=1

rh

])

by telescoping. Fix ℓ ∈ [H]. Let π ∈ Πα,ℓ−1 be arbitrary, and let π′ ∈ Πα,ℓ denote the policy with π′
h = πh for h ̸= ℓ, and

with

π′
ℓ(x) =

 πℓ(x),
d̄πℓ (x)

d̄
pℓ
ℓ (x)

≤ α,

t,
d̄πℓ (x)

d̄
pℓ
ℓ (x)

> α.
(79)

Let Q
π

h(x, a) := Eπ
[∑H

h′=h rh′ | xh = x, ah = a
]

denote the Q-function for {rh} in M . Then by the performance
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difference lemma (Kakade, 2003), we have

Eπ
[
H∑
h=1

rh

]
− Eπ

′
[
H∑
h=1

rh

]

= Eπ
[
H∑
h=1

Q
π′

h (xh, π(xh))−Q
π′

h (xh, π
′(xh))

]
= Eπ

[
Q
π′

ℓ (xℓ, π(xℓ))−Q
π′

ℓ (xℓ, π
′(xℓ))

]
,

since the policies agree unless h = ℓ. Since Q
π′

ℓ ∈ [0, 1] by the normalization assumption on the rewards and Q
π′

ℓ (t, a) = 0
for all a ∈ A, we have

Eπ
[
Q
π′

ℓ (xℓ, π(xℓ))−Q
π′

ℓ (xℓ, π
′(xℓ))

]
≤ Pπ[π′(xℓ) ̸= π(xℓ), xℓ ̸= t]

= Pπ
[
d̄πℓ (xℓ)

d̄pℓℓ (xℓ)
> α, xℓ ̸= t

]
,

where the final equality follows from Eq. (79). Since this result holds uniformly for all π ∈ Πα,ℓ−1, we conclude that

sup
π∈Πα,ℓ−1

Eπ
[
H∑
h=1

rh

]
− sup
π∈Πα,ℓ

Eπ
[
H∑
h=1

rh

]

≤ sup
π∈Πα,ℓ−1

Pπ
[
d̄πℓ (xℓ)

d̄pℓℓ (xℓ)
> α, xℓ ̸= t

]
= sup
π∈Πα

Pπ
[
d̄πℓ (xℓ)

d̄pℓℓ (xℓ)
> α, xℓ ̸= t

]
,

where the final equality uses that every policy in Πα,ℓ−1 has a counterpart in Πα = Πα,H that takes identical actions for
layers 1, . . . , ℓ− 1.

Lemma K.12. For all α > 0 and ℓ ≥ 1, it holds that

sup
π∈Πα

Pπ
[
d̄πℓ (xℓ)

d̄pℓℓ (xℓ)
> α, xℓ ̸= t

]
≤ 2

α
sup
π∈Πα

Eπ
[

P ℓ−1(xℓ | xℓ−1, aℓ−1)

d̄pℓℓ (xℓ) + α−1 · P ℓ−1(xℓ | xℓ−1, aℓ−1)
Ixℓ ̸=t

]
. (76)

Proof of Lemma K.12. We follow a proof similar to Proposition 4.2. For any ℓ, we can write

sup
π∈Πα

Pπ
[
d̄πℓ (xℓ)

d̄pℓℓ (xℓ)
> α, xℓ ̸= t

]
= sup
π∈Πα

Pπ
[

2d̄πℓ (xℓ)

d̄pℓℓ (xℓ) + α−1d̄πℓ (xℓ)
> α, xℓ ̸= t

]
≤ 2

α
sup
π∈Πα

Eπ
[

d̄πℓ (xℓ)

d̄pℓℓ (xℓ) + α−1d̄πℓ (xℓ)
Ixℓ ̸=t

]
=

2

α
sup
π∈Πα

∑
x∈X

(d̄πℓ (x))
2

d̄pℓℓ (x) + α−1d̄πℓ (x)
Ix ̸=t.

By Lemma H.1, the function

d 7→ (d)2

d̄pℓℓ (x) + α−1 · d

is convex for all x. Hence, writing d̄πℓ (x)Ix ̸=t = Eπ
[
P ℓ−1(x | xℓ−1, aℓ−1)Ix̸=t

]
, Jensen’s inequality implies that for all x,

(d̄πℓ (x))
2

d̄pℓℓ (x) + α−1 · d̄πℓ (x)
Ix ̸=t ≤ Eπ

[
(P ℓ−1(x | xℓ−1, aℓ−1))

2

d̄pℓℓ (x) + α−1 · P ℓ−1(x | xℓ−1, aℓ−1)
Ix ̸=t

]
.
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We conclude that

sup
π∈Πα

Pπ
[
d̄πℓ (xℓ)

d̄pℓℓ (xℓ)
> α, xℓ ̸= t

]
≤ 2

α
sup
π∈Πα

Eπ
[

P ℓ−1(xℓ | xℓ−1, aℓ−1)

d̄pℓℓ (xℓ) + α−1 · P ℓ−1(xℓ | xℓ−1, aℓ−1)
Ixℓ ̸=t

]
.

K.5.3. PROOF OF LEMMA K.7 (GUARANTEE FOR EstimateWeightFunction)

Let wt

h := t ·wt

h and let w̌t

h := t · ŵt

h. Observe that solving the optimization problem in Line 10 of Algorithm 4 is equivalent
to solving the optimization problem in Eq. (54) over the class t · Wh, which has ∥w′∥∞ ≤ t for all w′ ∈ Wh. As such, we
can appeal to Theorem K.2 (in particular, Remark K.2) with

µ(x′ | x, a) = PM⋆

h−1(x
′ | x, a), ν(x′ | x, a) = 1

t

(∑
i<t

dM⋆,πh,i

h (x′) + PM⋆

h−1(x
′ | x, a)

)
,

and

ω(x, a) =
1

2

(
d

M⋆,ph−1

h−1 (x, a) +
1

t− 1

∑
i<t

d
M⋆,πh,i◦h−1πunif

h−1 (x, a)

)
.

Under Assumption K.1, we have

µ(x′ | x, a)
ν(x′ | x, a)

= wt

h(x
′ | x, a) ∈ t · Wh,

so Theorem K.2 and Remark K.2 imply that

E(xh−1,ah−1)∼ω

[(√
w̌t

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)

)2
]
≤ 20t log(|W|δ−1)

tn
=

20 log(|W|δ−1)

n
,

or equivalently,

E(xh−1,ah−1)∼ω

[(√
ŵt

h(xh | xh−1, ah−1)−
√
wt

h(xh | xh−1, ah−1)

)2
]
≤ 20 log(|W|δ−1)

tn
.

From the definition of ω, it follows that setting n = nweight(ϵ, δ) =
40 log(|W|δ−1)

ϵ2 is sufficient to achieve the desired bound.
The total number of episodes is at most 2t · nweight(ϵ, δ).
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