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ABSTRACT

Consistency models aim to deliver a U-Net generator to map noise to images di-
rectly and enable swift inference with minimal steps, even trained in isolation with
consistency training mode. However, the U-Net generator requires heavy feature
extraction layers for multi-level resolutions and learning convolution kernels with
specific receptive fields, resulting in the challenge that consistency models suffer
from heavy training resources and fail to generate images with any user-specific
resolutions. In this paper, we first validate that training the original consistency
model with a small batch size via consistency training mode is pretty unstable,
which motivates us to investigate efficient and flexible consistency models. To
this end, we propose to use a novel Transformer-based generator to generate con-
tinuous image functions, which can then be differentially rendered as images with
arbitrary resolutions. We adopt implicit neural representations (INRs) to form
such continuous functions, which help to decouple the resolution of generated
images and the total amount of the parameters generated from the neural net-
work. Extensive experiments on one-step image generation demonstrate that our
method greatly improves the performance of consistency models with low training
resources and also provides an efficient any-resolution image sampling process.

1 INTRODUCTION

Diffusion models Sohl-Dickstein et al. (2015); Song & Ermon (2019; 2020) have achieved remark-
able efficacy in synthesizing various signals, including audio Kong et al. (2020); Chen et al. (2020),
image Dhariwal & Nichol (2021); Ramesh et al. (2022) and video Harvey et al. (2022); Ho et al.
(2022). However, diffusion models rely on an iterative sampling process, leading to slow gener-
ation. Consistency model Song et al. (2023) is an emerging family of diffusion models Ho et al.
(2020); Song et al. (2020a) that directly map noise to data by maintaining point consistency on ODE
trajectory. This unique characteristic enables consistency models to support rapid one-step gener-
ation for high-quality samples by design. Consistency models Song et al. (2023) can be trained
through two modes: consistency distillation from a pre-trained diffusion model or consistency train-
ing in isolation. Different from consistency distillation, consistency training does not rely on the
pre-trained diffusion model but utilizes an unbiased estimator to approximate the ground-truth score
function Song et al. (2023). Consequently, consistency training emerges as a more flexible and
convenient method for training consistency models and shows greater potential in generation tasks.

However, consistency models face challenges due to their substantial training resource requirement
and inflexible image generation with fixed resolution. Consistency models rely on a U-Net genera-
tor Ronneberger et al. (2015) to map noise to images, while the U-Net involves extensive convolution
to extract features and is proved to be less scalable than the Transformer-based generator in diffusion
models Peebles & Xie (2023). Our investigation reveals that training consistency models based on
a U-Net generator under the consistency training model requires a large batch size. Directly reduc-
ing the training batch size to accommodate limited training resources significantly diminishes the
generation performance, leading to the generation of non-realistic images, as illustrated in Figure 1
(a). Besides, as depicted in Figure 1 (b), to generate a specific-resolution image, the U-Net needs
to denoise a noisy image with the same resolution, causing consistency models can only generate
images with fixed resolution once trained on a dataset with specific-resolution images. Therefore, a
more efficient and flexible generator is desired for consistency models.
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Figure 1: (a) When we train the consistency models on the CelebA dataset with consistency training
and a batch size of 4, the generation performance gradually diminishes. (b) The U-Net generates
images with the same resolution as the noisy images. Therefore we need to train infinite separate
generators at all resolutions if we want to sample images with arbitrary resolutions. (c) Our image
function generator treats the images as continuous functions parameterized as the MLPs. With a
single generator, it generates a fixed amount of MLP parameters as an image function, which can
then be rendered as images with arbitrary resolutions.

In this paper, we propose a novel and efficient generator for consistency models that stabilizes the
consistency training process under low training resources and can generate images with any user-
specific resolution in the inference phase. Specifically, instead of generating discrete grid represen-
tations of images, we treat images as continuous functions and introduce a novel Transformer-based
generator Dosovitskiy et al. (2020) that predicts the continuous functions of images as intermedi-
ates. These intermediates can then be differentially rendered into images with arbitrary resolution,
as depicted in Figure 1 (c). To represent the continuous functions of images, we leverage implicit
neural representations Xie et al. (2022) (INRs) that employ Multi-layer Perceptrons (MLPs) to map
the coordinates x 2 R2 to corresponding RGB values y 2 R3. Compared to the U-Net generator,
our Transformer-based generator exhibits a more stable consistency training process of consistency
models with limited training resources. Moreover, the use of differential rendering enables the de-
coupling of the resolution of the generated images and the total amount of parameters generated
from the neural network, leading to efficient sampling of images at arbitrary resolutions.

Additionally, we empirically confirm that consistency training from scratch to generate functions
of high-resolution images is challenging and converges slowly. To enhance training efficiency, we
carefully design a novel architecture for the function generator, which consists of a feature extraction
module to denoise the noisy images, a function prediction module that predicts functions for clean
images, and a non-learnable render module to obtain clean images. We then introduce an image
reconstruction pre-training task to pre-train the function prediction module, which compels the gen-
erator to convert a given clean image to its corresponding INR function, mitigating the optimization
challenges in consistency training when predicting the function of the clean image based solely on
a given noisy image.

We summarize the contributions of this work as follows:

• Toward efficient and flexible one-step generation for any-resolution images with consis-
tency models, we propose a novel Transformer-based function generator, which first gen-
erates image functions with a single inference step, and then renders the image functions
to produce images with arbitrary resolutions.

• We carefully design a novel end-to-end architecture for the function generator that simpli-
fies the generation of functions for clean images from given noisy images. This architecture
involves a feature extraction module, a function prediction module, and a render module.

• To enhance the consistency training efficiency, we introduce an image reconstruction pre-
training task to fortify the function prediction module, enabling the function prediction
module to predict functions of images giving clean images. This approach allows con-
sistency training process to concentrate on the image-denoising task, resulting in more
realistic image generation and faster convergence of the training process.

• Extensive experiments on one-step image generation under low training resources demon-
strate that our methods can generate significantly more realistic images with much less
training and inference resources than the original consistency models.
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Figure 2: The comparison of the consistency training efficiency with the U-Net generator and our
function generator based on image functions, including the parameter amount (left, lower is better),
the training GPU costs (middle, lower is better), and inference frame per second (FPS, right, higher
is better). We can observe that the increment of the parameter amount of our generator is nearly neg-
ligible, while the training GPU cost and inference FPS of our function generator are more efficient
and have better scalability than the U-Net generator.

2 RELATED WORK

Diffusion Models. Diffusion models Sohl-Dickstein et al. (2015); Song et al. (2020a) are emerging
topics in the computer vision community. They train a generator to denoise the noise-corrupted data
to estimate the score of data distribution and iteratively denoise the data point sampled from the
noise distribution to generate new samples. Lots of work are done to accelerate the inference speed
of diffusion models, such as faster ODE solver Song et al. (2020a); Lu et al. (2022a;b), predictor-
corrector methods Song et al. (2020b) distillation methods Salimans & Ho (2022); Meng et al.
(2023) Yin et al. (2024) and rectification Liu et al. (2022; 2023c).

Consistency Models. Consistency models Song et al. (2023) is a new type of diffusion model for
few-step sampling while maintaining good generation quality. They deliver consistency mapping
to map any point in ODE trajectory to its origin, enabling one-step generation. Unlike GAN-based
generation models Goodfellow et al. (2014), consistency models do not rely on adversarial opti-
mization and thus avoid the associated training difficulty. Consistency models can be trained either
by consistency distillation mode from a pre-trained diffusion model or by consistency training mode
with an unbiased estimator to approximate the ground-truth score function. Luo et al. Luo et al.
(2023) apply consistency distillation to train consistency models in latent space. In this work, we
focus on consistency training because it does not rely on an additional pre-trained diffusion model
and is more flexible and convenient for training.

Efficient Diffusion. Apart from classical U-Net Ronneberger et al. (2015), several works Bao
et al. (2023a;b); Peebles & Xie (2023) successfully adopt Vision Transformer Dosovitskiy et al.
(2020) as the generator in diffusion models. They Bao et al. (2023a); Peebles & Xie (2023) show
that the Transformer generator enjoys better scalability and higher performance in generating high-
resolution images in latent diffusion models Rombach et al. (2022) than the U-Net generator. How-
ever, these works only explore the simple case of replacing the U-Net generator in the diffusion
models with a ViT generator. On the contrary, our work is the first work to deliver a ViT generator
to generate INR functions in the novel consistency models that support one-step generation.

Flexible Image Generation. Some works have targeted the problem of flexible image generation
with any resolution, either based on modifying the diffusion trajectory and model or based on a
patch-by-patch assembly manner. Haji-Ali et al. (2023); Zhang et al. (2023) focus on the flexible
sampling of U-Net-based diffusion models and enable iteratively generating images with specific
resolutions by decoupling the generation trajectory or dynamically adjusting the feature map size.
However, these methods rely on operating on the iterative sampling process, which makes them un-
suitable for the single-step sampling process with consistency models. The patch-by-patch assem-
bly manner works Chai et al. (2022); Lin et al. (2022) deliver a patch-by-patch strategy to generate
patches and assemble the patches into a larger image with particular resolution. However, the output
of their generator is still of a fixed resolution, therefore they require multiple inference processes for
a larger image and cannot generate images with lower resolution.
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Implicit Neural Representations. By mapping a coordinate to its corresponding quantity with a
neural network (e.g. MLP), INRs have shown great potential in representing complex continuous
functions for a lot of natural signals, such as time-serial signals Fons et al. (2022); Szatkowski et al.,
images Sitzmann et al. (2020b); Skorokhodov et al. (2021); Liu et al. (2023a) and 3D scenes Park
et al. (2019); Sitzmann et al. (2020a); Liu et al. (2023b). A lot of works on how to generate INRs
fast for unseen signals have been employed, including meta-learning Sitzmann et al. (2020a); Tancik
et al. (2021); Liu et al. (2023a); Finn et al. (2017) and hyper-network Chen & Wang (2022); Kim
et al. (2023); Zhang et al. (2024).

Diffusion Models Based on Implicit Neural Representations. Different from diffusion based on
explicit field Zhuang et al. (2023), when adopting diffusion models to high-resolution images or
complex 3D signals, existing novel research Dupont et al. (2022); Karnewar et al. (2023); Erkoç
et al. (2023); Chen et al. (2024) firstly convert the signals to their corresponding INR functions and
then train a diffusion model on these INR functions, enabling generating complex signals efficiently.
However, the two-stage training process is inflexible and the error in the first representation stage
would greatly affect the performance of the second diffusion stage. On the contrary, our work
proposes an end-to-end training framework to generate INRs of signals and requires rendering for
only one time when generating one-step inference results.

3 INR-BASED CONSISTENCY TRAINING

3.1 PRELIMINARIES
R

en
de

r

Data Noise

Probability Flow ODE

Functions of Data

Figure 3: Given a probability-flow ODE that smoothly
converts data to noise, we learn a denoising neural net-
work G to map any point (e.g., x� , x�0 , and x�max ) on
the ODE trajectory to the continuous function of the
origin (e.g., �x0 ) for generative modeling, which can
then be differentially rendered as the original data with
arbitrary resolutions.

Consistency models Song et al. (2023) is a
new family of generative models that en-
ables a few-step generation. The core idea
of CM is the PF-ODE Song et al. (2020b).
Denote the data distribution by pdata (x),
and the perturbed distribution is presented
as p�(x) =

R
pdata (y)N

�
x | y,�2I

�
dy

if we add Gaussian noise N (0,�2) with
noise level � to the data. Then, the PF-
ODE presented in Karras et al. Karras
et al. (2022) is formulated as:
dx

d�
= ��r log p� (x) ⇡ ��s� (x,�) ,

(1)
where s� (x,�) ⇡ r log p� (x) is the
score function Song et al. (2020b) of
p�(x). Here, as in Song et al. (2023);
Karras et al. (2022), � is defined as � 2
[�min,�max], where �min is a small posi-
tive number to ensure p�min(x) ⇡ pdata (x)
and �max is a large positive number such
that p�max(x) ⇡ N

�
0,�2

maxI
�
.

Solving the PF-ODE from noise level � to �min in Eq. 1 indeed establishes a bijective mapping
from a noisy data sample x� ⇠ p�(x) to the real data sample x�min ⇠ p�min(x) ⇡ pdata(x). This
mapping f⇤ : (x�,�) 7! x�min is defined as a consistency function in Song et al. Song et al. (2023).
By the definition, the consistency function satisfies the boundary condition f⇤ (x,�min) = x. To
approximate the consistency function with boundary condition, a consistency model f✓(x,�) is
parameterized as:

f✓(x,�) = cskip (�)x+ cout (�)F✓(x,�), (2)
where F✓(x,�) is a free-form denoising neural network with parameter ✓, while cskip (�) and cout (�)
are differential functions so that cskip (�min) = 1 and cout (�min) = 0.

The consistency function has the property of self-consistency: the outputs are consistent for arbitrary
pairs of (x�,�) that belong to the same PF-ODE trajectory, which can be formulated as:

f (x�,�) = f (x�0 ,�
0) , 8�,�0 2 [�min,�max]. (3)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Function

Figure 4: The architecture for our image-function generator. It contains three modules: the feature
extraction module that contains several encoder blocks to extract features on the input noisy images
and gives data tokens as a condition to guide the generation of the image function; the function
prediction module that contains several decoder blocks to predict the INR parameters for image
functions with given data token from the previous module; the non-learnable render module that
multiples the INR parameters with coordinates and finally render as images.

Therefore, consistency models can be trained by enforcing the self-consistency property with a
consistency loss between the results denoised from the i

th noise level and the (i+ 1)th noise level:

L = E
⇥
d
�
f✓

�
x�i+1 ,�i+1

�
,f✓�

�
x̂�

�i
,�i

��⇤
, (4)

where d(·, ·) is a metric function such as `2 metric or learned perceptual image patch similarity
(LPIPS) metric Zhang et al. (2018) while ✓�  µ✓� + (1 � µ)✓ is the target model parameter
updated with the exponential moving average (EMA) of the parameter ✓ and EMA decay rate µ.
x̂�

�i
is derived from x�i+1 by solving the PF-ODE in the reverse direction for a single step:

x̂�i = x�i+1 � (�i � �i+1)�i+1rx log p�i+1(x)
��
x=x�i+1

.

To estimate the unknown score function rx log p�i+1(x), Song et al. Song et al. (2023) propose
consistency training that employs an approximation x̂�i = x+ �iz with the same x ⇠ pdata (x) and
z ⇠ N (0, I) to calculate x�i+1 = x + �i+1z. Therefore, the consistency training objective LCT

can be defined as:

LCT = E [d (f✓ (x+ �i+1z,�i+1) ,f✓� (x+ �iz,�i))] . (5)

3.2 GENERATE IMAGE FUNCTIONS AND SAMPLE ANY-RESOLUTION IMAGES

Our modification focuses on the free-form denoising neural network F✓ : (x,�) ! xd, which is
typically a U-Net model Song & Ermon (2019); Ronneberger et al. (2015) that gets noisy image
x 2 RC⇥H⇥W and noise level � 2 R as input. As shown in Figure 1 (b), the U-Net model applies
heavy feature extraction at the different resolution of the image and finally outputs a denoised image
xd 2 RC⇥H⇥W . We find that the U-Net can only generate the output image with exactly the same
resolution as the input image, which is not flexible enough to scale to high-resolution images with
limited training resources.

Therefore, we seek a more efficient and more noise-robust method to generate high-resolution im-
ages Dupont et al. (2022); Rahaman et al. (2019); Skorokhodov et al. (2021). We show our pipeline
in Figure 3. As in INR methods Sitzmann et al. (2020b); Liu et al. (2023a); Chen & Wang (2022),
rather than discrete grid representation, we consider images as continuous functions, which can be
parameterized as neural networks, e.g. MLPs Dupont et al. (2022). Specifically, we consider an
image as a collection of paired coordinates and RGB values {(c,y)}H⇥W and fit an MLP M� with
learnable parameter � to map the coordinates c 2 R2 to its corresponding RGB values y 2 R3:

M�(c) = y. (6)

To obtain smooth super-resolution performance and eliminate artifacts, we follow Zhang et al.
(2024) to apply variational coordinates to sample the coordinates c.

5
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+
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(c) Pre-Training Data Flow

Figure 5: (a) & (b) The detailed implementation of encoder and decoder block (Norm is not shown).
(c) Pre-training data flow. We set the noise level to 0, skip the feature extraction module, and
optimize the Function Prediction Module to predict the image function for clean images with recon-
struction loss. The black path is the data flow when consistency training the whole model while the
red path is the pre-training of the function prediction module with the image reconstruction task.

Note that each image can be considered as an image function M� and holds its own parameter
� = {Wt

,Bt}t=T�1
t=0 for an MLP with totally T layers. Generating a denoised image is equivalent

to generating the INR parameter � of the image function corresponding to the denoised image:

G✓(x,�) = �, (7)

where G✓ is our proposed function generator and its architecture is introduced in Section 3.3.

Once the parameter � is obtained, the denoised image xd can be reconstructed at arbitrary resolution
by querying the RGB values with any specific coordinates {c}H⇥W . As a result, we parameterize
the free-form neural network F✓ with a generator that generates image function as intermediate:

F✓(x,�, {c}) = MG✓(x,�)({c}) = xd. (8)

Note that each layer of MLP can be formulated as:

ct+1 = act(Wtct +Bt), (9)

where act is the activation function. The whole forward process of M�(c) is entirely differential
if the activation function act is differential, which enables the end-to-end backward process after
calculating consistency training loss, as shown in Eq. 5.

Compared with the U-Net generator that generates images with the same resolution as the input
images, our function generator only generates the INR parameters � of the image function that
has a fixed size and does not scale with the input image resolution. When scaling to the larger
resolution image, our pipeline only needs to query the image function with finer-grained coordinates
{c}, which greatly decreases the parameters amount, training time, and memory cost of the whole
pipeline and provides a flexible any-resolution image sampling process.

3.3 INR GENERATOR DESIGN

In this part, we introduce the detailed architecture of our function generator. As presented in Fig-
ure 4, it contains three major modules: a feature extraction module, a function prediction module,
and a render module.

Feature Extraction Module. The feature extraction module is utilized to extract features from noisy
images and output the data tokens to guide the generation of the image function for the denoised
images. We mainly follow DiT Peebles & Xie (2023) and deliver adaLN-Zero Transformer blocks
to form a feature extraction encoder. As presented in Figure 5 (a), we adopt a linear layer to regress
the dimension-wise scale and shift parameters ↵, �, and ⌧ from noise level embedding.

Function Prediction Module. The function prediction module is designed for generating the INR
parameters � for the image function based on the image feature extracted from the feature extraction

6
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Table 1: Table for the one-step image generation performance. The number in the name means the
training resolution.

Dataset Models FID (#) SFID (#) IS (") P (") R (")
Cifar10-32 CM-UNet 32.87 20.94 6.16 0.595 0.23

CM-Func 28.87 19.81 6.92 0.52 0.30

CelebA-64 CM-UNet 54.41 72.86 1.77 0.43 0.021
CM-Func 29.49 45.10 2.08 0.78 0.094

CelebA-128 CM-UNet 89.46 158.64 1.40 0.46 0
CM-Func 69.3 124.22 1.66 0.46 0.002

LSUN Church-128 CM-UNet 58.33 88.33 1.82 0.31 0.007
CM-Func 34.94 86.28 2.42 0.33 0.053

LSUN Classroom-128 CM-UNet 65.18 84.69 2.54 0.41 0.026
CM-Func 57.96 76.31 2.83 0.50 0.033

module. Before training, we randomly initialize the learnable INR tokens according to the shape of
the parameters �. As shown in Figure 5 (b), we design a decoder block that adopts multi-head cross
attention to fuse the data feature with INR tokens and predict the INR parameters for the image
function of specific denoised images. Note that we follow Chen et al. Chen & Wang (2022) to use
a grouping strategy to improve the efficiency and scalability of our function prediction module.

Render Module. After obtaining INR parameters � for the image functions, we need to differen-
tially render images to ensure the whole pipeline is differential. As discussed before, we form a
continuous image function as an MLP with parameter � corresponding to a specific image. With
given resolution H ⇥W , we sample a coordinate list {( i

H
,

j

W
)}i,j where i 2 [0, H) and j 2 [0,W )

and query the RGB value at each coordinate, which finally can be reshaped to form a complete im-
age. There is no learnable parameter in the render module since the INR parameter � is generated
by the function prediction module.

3.4 BENEFIT FROM IMAGE RECONSTRUCTION PRE-TRAINING

We notice that predicting the image function for a clean image from a noisy image is pretty difficult
if not impossible, due to the large search space of the INR parameter �. Therefore, we propose an
image reconstruction task to pre-train the function prediction module. We hope the feature extraction
module focuses on transforming the noise image feature into the clean image feature while the
function prediction module focuses on transforming the clean image feature into its image function.

Therefore, we design an image reconstruction pre-training task for the function prediction module.
as shown in Figure 5 (c). Specifically, during the image reconstruction pre-training task, we skip the
feature extraction module and set the noise level � as 0 so that the input image are neither perturbed
with noise nor denoised by the feature extraction module. The pipeline is downgraded to a model
(only the function prediction module contains learnable parameters) that transforms an input clean
image to its corresponding image function with specific INR parameters �. We then optimize such
a model with image reconstruction loss:

Lrec = MSE(MG✓(x,�=0) ({ci}) ,x), (10)

where MSE denotes the mean square error loss.

After pre-training the function prediction module, we train the whole model (including the feature
extraction module and function prediction module) with the consistency training objective shown in
Eq. 5, which enables our model to generate new images with given random noise. We will show that
the image reconstruction pre-training task helps to make the consistency training process converge
faster.

4 EXPERIMENTS

In the experiment section, we first provide a detailed comparison between the original U-Net gener-
ator and our function generator in the one-step image generation task based on consistency models
under the low-training resource, denoted as CM-UNet and CM-Func respectively. Then we provide

7
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Figure 6: Results from (a) the CelebA dataset with resolution 64 (a) and from (b) the LSUN Church
Outdoor with resolution 128. All corresponding images are generated from the same initial noise.

more discussion and ablation studies to illustrate the advantages of function generator when sam-
pling images with different resolutions compared to other popular generators, such as UViT Bao
et al. (2023a) and DiT Peebles & Xie (2023).

4.1 SETTING

Datasets. We show the performance for the unconditional image generation on two popular image
datasets: CelebA Liu et al. (2015) with resolution 64 and 128 and LSUN dataset Yu et al. (2015)
with resolution 128. We also show that our pipeline can be applied to the class-conditional image
generation with the Cifar10 dataset Krizhevsky et al. (2009). We mainly evaluate the models by
sampling images with corresponding resolutions.

Hyper-parameters. Following the setting of training the consistency models as in Song et al. Song
et al. (2023), we use the following default hyper-parameters for all datasets unless otherwise stated:
�min = 0.002, �max = 80. We use a low batch-size training strategy to evaluate the performance of
consistency models under the low-training resource setting. We set the number of encoder blocks N
= 8 and the number of decoder blocks M = 6. We adopt MLP with a depth of 5 and width of 256, with
ReLU activation, and positional embedding as our image function. For detailed hyper-parameters
for consistency models and optimization processes, we present more details in Appendix A.

For the pre-training task, we use the same dataset as the consistency training task and follow Chen et
al. Chen & Wang (2022) to optimize the models with Adam optimizer Kingma & Ba (2014) and
learning rate 1e � 4 for 30 epochs. All results are reported for models with the pre-training task
unless otherwise discussed.

Metric. We first compare the efficiency of consistency models with the U-Net generator and func-
tion generator. Then we report the quantitative generation results according to Frechet Inception
Distance (FID) Heusel et al. (2017), Sliding Fréchet Inception Distance (sFID) Szegedy et al. (2016),
Inception Score (IS) Salimans et al. (2016), Precision (P) Kynkäänniemi et al. (2019), and Recall
(R) Kynkäänniemi et al. (2019). We follow Song et al. (2023) and Dhariwal & Nichol (2021) to
generate 50000 images for credible scores.

We also define a new metric, the total denoising distance, to reflect the denoising quality of our
generators during training. The total denoising distance is simply calculated as the L2 difference
between the denoised result from the noisy image and the original clean image:

d
i

denoising = |f✓ (x�i ,�i)� x0|.

Though this metric does not reflect the generation performance in the test phase, it means the de-
noising ability of the generator during training. More details for this metric are in Appendix B.

4.2 RESULTS

Model efficiency. We quantitatively compare the efficiency of our function generator and the base-
line U-Net generator on the unconditional image generation task to show that our model is more
efficient. We report the total parameters, the GPU cost, and the inference FPS in Figure 2. We verify
that our model has fewer total parameters, less training GPU cost, and higher inference FPS.

Apart from the absolute quantitative value, we also observe that when increasing the resolution of
images (from Cifar10-32 to CelebA-64 and then to CelebA-128), the increment of the total param-
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The Convergence Curve of Consistency Training
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1e5

(a) (b)

CM-UNet
CM-Func

Figure 7: (a) Visual results are generated from the two initial noises by models with different opti-
mization iterations. (b) The convergence curve for the consistency training. The results indicate that
the U-Net is unstable while our model is much more stable when keeping training.
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Models FID (#) sFID (#) IS (") P (")
w. pretraining 42.78 56.66 1.83 0.70

w.o pretraining 66.61 107.72 1.81 0.37

The Denoising Ability During Consistency Training
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Training Iteration 1e5

CM-UNet
CM-Func w. pretrained
CM-Func w.o. pretrained

Figure 8: Top Left: Visual results of optimizing models with or without pre-training task for 50,000
iterations. Bottle Left: Alabtion of Pre-training task on CelebA-64 with 400,000 training iterations.
Right: Denoising ability during training. Pre-training task greatly improves the denoising ability.

eter and GPU cost of our model is much less than the U-Net or even negligible, which verifies that
our model has better scalability than U-Net when scaling to image with higher resolution.

Generation performance. We demonstrate the quantitative generation performance in Table 1. We
can observe that the generation performance on the Cifar10, CelebA, and LSUN datasets beats the
baseline U-Net in terms of all evaluation metrics, while our model has much fewer model parameters
and enjoys faster training, faster inference, and flexible employment.

We also present some visual generation results based on the CelebA dataset with resolution 64 and
the LSUN dataset with resolution 128 in Figure 6. We can clearly observe that given exactly the
same initial noise, our model can generate much more realistic than the baseline consistency model
with the U-Net generator. More visual and quantitative results are presented in Appendix D.

4.3 DISCUSSIONS

Training oscillates for Consistency models with U-Net generator. We go deeper into the failing
case when training consistency models with U-Net and low batch size 32 and show the results in
Figure 7. We find that during the training of the consistency model with U-Net with a low batch
size (32 for one single A6000 GPU), the generation results tend to be corrupted and fail to be
denoised. On the contrary, the results from the consistency model with our function generator are
much more consistent during training and we can find that these results are clean. We also present the
consistency training objective convergence curve for the training consistency model in Figure 7 (b).
The result shows that the consistency training process with the U-Net generator is pretty unstable and
oscillating. In contrast, the process with our function generator is much more stable and consistent.

Pre-training improves the convergence of the consistency training with the function generator.

We compare the total denoising distance metric of training consistency models with our function
generator with or without pre-training task and show the result in Figure 8. We also show the
generation performance at 400,000 iterations on the CelebA-64 dataset by ablating the pre-training
task in the Bottle Left Table in Figure 8. The results show that our pre-training reconstruction task
greatly improves the denoising ability of our function generator during the early stage of consistency
training and leads to better generation performance. We also verify that our pre-training task is very
efficient and costs much less time compared with the consistency training process. More quantitative
results for the efficiency of the pre-training task are shown in Appendix C.
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Table 2: Table for efficiency and accuracy of different generators on CelebA-64 dataset.

Efficience Accuracy

Models Any-Resolution Multi-Resolution FID (#) sFID (#) IS (") P (")Sampling Sampling FPS (")
CM-UNet 7 83.64 54.41 72.86 1.77 0.43
CM-UViT 7 83.58 40.14 41.47 1.90 0.68
CM-DiT 7 96.61 25.52 37.27 2.00 0.81

CM-Func 3 447.02 29.49 45.10 2.08 0.78

32x32 64x64 128x128 256x256 512x51232x32 64x64 128x128 256x256 512x512

Figure 9: After training on the CelebA-64 dataset, our
pipeline supports sampling at any resolution while the
results at all resolutions remain clean and realistic.

Flexible sampling image resolution

leads to a more efficient sampling

process. A comprehensive experi-
ment on the CelebA dataset shown in
Table 2 is conducted to evaluate the
efficiency and generation quality. We
evaluate the efficiency by measuring the
FPS to sample 10000 image signals,
each of which requires 3 resolutions
(32 ⇥ 32, 64 ⇥ 64, 128 ⇥ 128, totally
30000 images). Only our function gen-
erator supports sampling any-resolution
images with one model, while other gen-
erators require training multiple separate
models at each resolution. Therefore, the
multi-resolution sample FPS for those
generators that generates fixed-resolution
images is calculated as 30000P10000

i=1 T
i
32+

P10000
i=1 T

i
64+

P10000
i=1 T

i
128

, where T
i

k
is the average time that

generates i
th image with resolution k. Since the function generator only needs to generate one

image function for each image, the multi-resolution sample FPS for our function generator is
calculated as 30000P10000

i=1 (T i+TR32+TR64+TR128)
, where T

i is the average time that generates i
th image

functions, and TR32, TR64, TR128 are the time to render the image function to image with 32/64/128
resolutions (which is nearly negligible compared to T

i). The results indicate that our function
generator achieves a much higher multi-resolution sampling FPS. In contrast, other generator
needs to deliver different models to separately denoise input noisy images, which leads to a slower
sampling process.

For generation quality, we find that our function generator greatly beats U-Net and is comparable
with Transformer-based generators. We show the generation results with different sampling resolu-
tions in Figure 9. The results indicate that the sampling results at all resolutions remain clean and
realistic. We also find that even trained with lower-resolution images, our function generator is still
better than the U-Net generator. In addition, we find that our image functions have a better interpo-
lation performance than the linear interpolation. See more quantitative and visualization results in
Appendix D.2 and Appendix D.3.

5 CONCLUSION

In this paper, we explore efficient consistency training generation for consistency models. We ob-
serve that the U-Net generator is resource-intensive and inflexible. Reducing batch size for single
GPU use harms performance. To address this, we introduce a Transformer generator that generates
image functions parameterized as INR and then renders them into images of any resolution. We de-
sign a new end-to-end function predictor that simplifies generating clean image functions from noisy
images. Additionally, we enhance training efficiency with an image reconstruction pre-training task.
Extensive experiments show our method produces more realistic images with fewer resources than
the original consistency models and also provides an efficient any-resolution image sampling pro-
cess. A limitation of this paper lies in that INRs for image functions are global representations of
signals, and have poor representation ability of the local semantic information, which makes our
pipeline hard for generation with finer details.
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