
MUSTAFAR: Promoting Unstructured Sparsity for
KV Cache Pruning in LLM Inference

Donghyeon Joo1, Helya Hosseini1, Ramyad Hadidi2, Bahar Asgari1
1Department of Computer Science, University of Maryland, 2d-Matrix

{dhjoo98,helia,bahar}@umd.edu, rhadidi@d-matrix.ai

Abstract

We demonstrate that unstructured sparsity significantly improves KV cache com-
pression for LLMs, enabling sparsity levels up to 70% without compromising
accuracy or requiring fine-tuning. We conduct a systematic exploration of pruning
strategies and find per-token magnitude-based pruning as highly effective for both
Key and Value caches under unstructured sparsity, surpassing prior structured
pruning schemes. The Key cache benefits from prominent outlier elements, while
the Value cache surprisingly benefits from a simple magnitude-based pruning de-
spite its uniform distribution. KV cache size is the major bottleneck in decode
performance due to high memory overhead for large context lengths. To address
this, we use a bitmap-based sparse format and a custom attention kernel capable of
compressing and directly computing over compressed caches pruned to arbitrary
sparsity patterns, significantly accelerating memory-bound operations in decode
computations and thereby compensating for the overhead of runtime pruning and
compression. Our custom attention kernel coupled with the bitmap-based format
delivers substantial compression of KV cache up to 45% of dense inference and
thereby enables longer context lengths and increased tokens/sec throughput of up to
2.23× compared to dense inference. Our pruning mechanism and sparse attention
kernel is available at https://github.com/dhjoo98/mustafar.

1 Introduction

In the age of Large Language Models (LLMs), advances in the machine learning domain [41, 2, 6] and
the fast and efficient computing systems [21, 35] have led to the emergence of highly capable LLMs
that can summarize a book [22], write a compelling story [18], code a library [53], and generally
reason over longer contexts than ever before [7]. As LLMs are increasingly tasked with processing
longer sequences, the memory overhead associated with key-value (KV) caching has emerged as a
critical bottleneck to scaling context length.

Prior work has approached the challenge of KV cache memory overhead through techniques such as
quantization [30, 15, 48, 52], low-rank approximation [47, 4, 37, 50, 26], token-wise eviction [51,
29, 25, 8, 1, 11], and structured pruning (e.g., channel-wise removal [44, 31]). The need to improve
individual compression techniques has become increasingly important, especially as joint applications
of multiple methods, such as pruning combined with token eviction [44], quantization with token-wise
eviction [52], and low-rank approximation with quantization [4], gain popularity. However, previous
work on KV cache pruning have been limited to structured pruning, primarily due to the difficulty of
efficiently leveraging finer-grained (i.e., unstructured) sparsity during execution. Effective pruning of
the KV cache entails two core challenges: (1) achieving substantial reduction in KV cache size while
preserving model accuracy, and (2) ensuring that the runtime pruning and compression processes are
sufficiently efficient (i.e., the associated overhead must not outweigh the latency gains introduced by
the resulting sparsity).

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/dhjoo98/mustafar

LLM Inference (Prefill and Decode)

A
cc

el
er

at
ed

 B
at

ch
 S

pM
V

Bitmap-based
Compression

Key cache has outlier channels.

Section 3. Sparse Attention KernelSection 2. Pruning Algorithms

x x

x x

x x

x x

Per-token
pruning

Channel

Token

x x

x x

x x

x x

0 1 1 0 1 0 1 0 1 0 …

Channel

Token

Observation

Per-token
pruning

Value cache per-token pruning is output-aware.

Attention is batch SpMV,
memory-bound on GPUs.

0 1 0 0 1 1 0 1 0 0 …

Figure 1: High-level overview of Mustafar. Green
region describes the pruning algorithm of Sec-
tion 2, pink region describes the custom sparse
attention kernel of Section 3.

In this paper, we find that removing any con-
straint on the sparsity pattern, effectively un-
structured sparsity can ensure that compressed
KV cache perform with minimal model accu-
racy degradation while being pruned to a higher
sparsity. In Section 2 (green region of Figure 1),
we first present our journey to find the optimal
pruning algorithm for the key and value cache,
based on the element magnitude distributions
of the KV cache. We explore the feasibility of
various pruning algorithms on both KV cache
to conclude that applying a simple per-token
magnitude-based pruning on both Key and Value
caches is capable of preserving the model accu-
racy at a high sparsity, while also demonstrating
strong compatibility with orthogonal compres-
sion techniques.

Section 3 (pink region of Figure 1) discusses
the next step: having induced sparsity in the KV
cache, the challenge becomes leveraging the unstructured sparsity to reduce memory footprint and
accelerate computation. To this end, we adopt a bitmap-based sparse format that serves two purposes.
First, the bitmap enables maximal compression of matrices with arbitrary sparsity patterns. Second,
this maximal compression of matrix operands translates into computational speedup of the attention
operation, which is severely memory-bound on GPUs. Alongside the sparse format, we introduce the
custom attention kernel tailored to operate on the bitmap-based sparse format. We see that the speedup
of our attention kernel overshadows the latency introduced by runtime pruning and compression,
meanwhile effectively compressing the KV cache to high sparsity with minimal accuracy degradation.

In summary, we demonstrate that adopting unstructured sparsity in the KV cache without imposing
constraints on the pruning pattern enables higher degrees of sparsity while preserving model accuracy.
Furthermore, we introduce the necessary computational tools to support unstructured sparsity effi-
ciently, ensuring that the derived high sparsity leads to gains in memory compression and end-to-end
inference throughput.

2 Pruning Algorithm for Unstructured Sparsity

Question: Does removing structural constraints in KV cache pruning allow for higher sparsity
while preserving model accuracy more effectively than structured pruning methods?

We explore the potential unstructured sparsity on KV cache pruning by considering the two factors
for Key and Value cache pruning: pruning direction and output-awareness. Pruning Direction refers
to the axis along which sparsity is induced when selecting elements for removal. Since both the Key
and Value caches are represented as matrices with dimensions [tokens× channels], we consider
two primary pruning directions: per-channel pruning, which determines target sparsity across each
channel (i.e., across tokens for each channel), and per-token pruning, which determines target sparsity
across each token’s cache (i.e., across model dimensions for each token). Output-Awareness refers
to the use of a scoring metric that serves as a proxy for estimating each element’s contribution to
the operation’s output. Commonly employed in LLM weight pruning [38] and structured KV cache
pruning [44], this technique involves computing a score for each pruning unit such as a channel
or an element by taking the product of the corresponding element with its associated input. This
approach effectively captures the element’s influence on the final output, guiding more informed
pruning decisions. For a fair and effective comparison between pruning strategies, we uniformly
employ a local dense window, where the recent 32 tokens remain untouched during the decode phase.
Previous works [51, 44] have shown that this is effective in preserving model accuracy, meanwhile
being small enough in size to not severely impact the compression.

2

2.1 Pruning Key Cache

In deciding the pruning direction, we build on top of the observation of KIVI [30], that Key cache
exhibits distinct channel-wise outliers, where "channel" refers to the head dimension (Figure 2a).
This leads us to focus on per-token pruning for key cache, as it can effectively capture the elements in
the outlier channel.

(a) Magnitude distribution of Key cache (b) Magnitude distribution of Value cache

Figure 2: Visualization of the KV cache in LLaMA-2 7B. Color intensity indicates element magnitude.
The figure was generated using the visualization code from KIVI [30].

Based on the same observation to perform structured pruning of individual channels, ThinK [44]
incorporates output-awareness by using a per-channel score of the accumulation of last 32 query,
multiplied by each channel. To this end we compare the accuracy of ThinK [44], per-token magnitude-
based unstructured pruning, and output-aware unstructured pruning of our design.

-0.1 -3 2.4 2

-3 0.9 8.1 0.2

5.1 1.4 0.7 0.6

10 3.6 0.3 -1.4

-0.4 5.2 0.5 7.3

1

3

2

5

To
ke

n

1 * 0.1 3 * 3 2 * 2.4 5 * 2

1 * 3 3 * 0.9 2 * 8.1 5 * 0.2

1 * 5.1 3 * 1.4 2 * 0.7 5 * 0.6

1 * 10 3 * 3.6 2 * 0.3 5 * 1.4

1 * 0.4 3 * 5.2 2 * 0.5 5 * 7.3

Channel

X

0 -3 0 2

-3 0 8.1 0

5.1 1.4 0 0

10 3.6 0 0

0 5.2 0 7.3

Pruning
per-token

Element-wise
Contribution to OutputQuery

Figure 3: Per-token, output-aware pruning of Key
cache

Figure 3 elaborates the per-token output-aware
unstructured pruning score of Key cache. The
element-wise L1 accumulation of the current
and next 31 Query vector (blue) is multiplied
element-wise across each token’s key vector
(pink) to derive the pruning score (green). The
absolute value of the score element in the corre-
sponding position of each Key cache element is
used to decide the elements to be pruned within
a token’s Key vector. In other words, we for-
mulate the per-token output-aware unstructured
pruning score S of a Key cache K to be:

S = |K| ⊙ broadcast

(
T+31∑
t=T

|Qt|

)
, where Qt is the query at time t

For Group Query Attention (GQA) [2], where multiple queries correspond to a KV cache pair, we
sum the pruning score of all queries mapped to each KV cache.

Table 1: Comparison of ThinK [44] structured pruning, per-token magnitude-based unstructured
pruning, and per-token output-aware unstructured pruning on LongBench [3] with Llama-3-8B-
Instruct Key cache. Ks denotes Key cache sparsity.

Task Dense
Ks = 0.5 Ks = 0.7

ThinK
(Structured)

Unstructured
Output-aware

Unstructured
Magnitude

ThinK
(Structured)

Unstructured
Output-aware

Unstructured
Magnitude

Average 43.19 38.53 43.23 42.84 26.55 42.13 41.55
SingleDoc QA 36.66 35.61 36.57 36.90 25.26 35.78 35.53
MultiDoc QA 36.09 34.99 35.92 35.77 29.75 35.55 35.40

Summarization 26.75 24.96 26.87 26.45 17.70 25.16 25.18
Few-shot 68.96 66.54 68.82 68.75 44.88 67.22 67.84
Synthetic 37.25 35.50 37.00 36.75 16.86 35.25 35.00

Code 55.58 29.56 56.61 54.14 19.15 56.19 51.47

3

In Table 1, we compare Llama-3-8B-Instruct accuracy of different pruning methods on LongBench [3].
For structured pruning, we see that even at a moderate sparsity, model accuracy retention is dismal
compared to pruning to an unstructured sparsity pattern. Notably, unstructured pruning is capable of
outperforming structured pruning even without the memory footprint of pruning scores involved with
output-awareness. Applying output-awareness to unstructured pruning results in a slight improvement
in the LongBench total average score, while individual task performance is mixed with each method
outperforming the other on different tasks.

Key Cache Verdict: While the existence of outlier channels with exceptionally high magni-
tudes show promise for per-channel structured pruning, unstructured sparsity achieves higher
accuracy at greater sparsity levels, even without output-awareness.

2.2 Pruning Value Cache

As shown in Figure 2b, Value cache exhibits more uniform distribution of activations, making it
challenging to apply the same channel-wise pruning without incurring substantial degradation in
model accuracy. This difficulty has led recent Value cache pruning approaches to be more susceptible
to accuracy degradation.

C
ha

nn
el

Token

1

3

2

6

1 * 0.1 3 * 3 2 * 5.1 6 * 10

1 * 3 3 * 0.9 2 * 1.4 6 * 3.6

1 * 2.4 3 * 8.1 2 * 0.7 6 * 0.3

1 * 2 3 * 0.2 2 * 0.6 6 * 0.1

-0.1 -3 5.1 10

-3 0.9 1.4 3.6

2.4 8.1 0.7 0.3

2 0.2 0.6 -0.1

X

0 -3 5.1 10

-3 0 1.4 3.6

2.4 8.1 0 0

0 0 0 0

Output-aware
per-token

Magnitude-based
pruning per-token

0 -3 5.1 10

-3 0 1.4 3.6

2.4 8.1 0 0

0 0 0 0

0 0 5.1 10

-3 0 0 3.6

2.4 8.1 0 0

2 0 0.6 0

Output-aware
per-channel

Attention Score Element-wise
Contribution to Output

Figure 4: Output-aware per-channel (red) and
magnitude-based per-token (pink) pruning of Value
cache. Magnitude-based per-token pruning is
equal to output-aware per-token pruning (yellow).

With no discernible outliers in certain direction,
we explore all possible combinations of (pruning
direction, magnitude/output-aware) pairs. How-
ever, we are able to rule out per-token output-
aware pruning, as the attention formulation
AttentionScore× V alue involves a multiply-
and-accumulate operation along the token di-
mension. As seen in Figure 4, every element
of a token’s Value cache is multiplied by the
same element of the attention score, with each
element’s impact on the output proportionate
to the magnitude of each value. That is, for
Value cache pruning, per-token magnitude-
based pruning is already output-aware. For
per-channel pruning, we prune each channel to
the target sparsity in groups of 32 tokens, for
compatibility with the local window size. For
per-channel output-aware pruning, we accumulate the current and subsequent 31 attention score α of
each token, which is then element-wise multiplied to the corresponding Value Cache (V) element.
The following formula describes the pruning score S of per-channel output-aware pruning:

S = |V | ⊙ broadcast

(
T+31∑
t=T

|αt|

)
, where αt is the attention score at time t

Table 2: Comparison of ThinK [44] structured pruning, per-channel magnitude-based unstructured
pruning, per-channel output-aware unstructured pruning, and per-token magnitude-based pruning on
LongBench [3] with Llama-3-8B-Instruct Value Cache. Vs denotes Value cache sparsity.

Task Dense
Vs = 0.5 Vs = 0.7

ThinK
(Structured)

Magnitude
(Per-channel)

Output-aware
(Per-channel)

Magnitude
(Per-token)

ThinK
(Structured)

Magnitude
(Per-channel)

Output-aware
(Per-channel)

Magnitude
(Per-token)

Average 43.19 38.45 42.50 42.84 43.04 30.60 41.69 42.67 42.78
SingleDoc QA 36.66 34.92 36.56 36.24 36.75 25.05 36.11 36.05 36.96
MultiDoc QA 36.09 34.74 35.45 36.07 36.22 23.90 35.11 36.20 35.82

Summarization 26.75 23.31 24.74 25.79 26.34 20.41 22.72 24.75 25.19
Few-shot 68.96 67.18 67.66 68.65 68.91 60.16 67.39 68.23 68.08
Synthetic 37.25 35.43 38.31 37.00 36.25 29.63 38.75 37.25 35.50

Code 55.58 31.97 55.07 55.57 55.77 20.85 52.65 56.17 57.62

As shown in the Table 2, we first see that applying structured pattern to Value cache pruning incurs
significant accuracy degradation even in 50% sparsity. This is concurrent with ThinK [44] findings,
which points to 30% sparsity as the upper-bound on acceptable accuracy. In contrast, per-token

4

magnitude pruning is capable of preserving model accuracy even at 70% sparsity. For per-channel
pruning, we see that incorporating output-awareness boasts model accuracy retention almost to the
level of per-token pruning. However, we prefer per-token magnitude-based pruning for the following
two reasons. First, output-aware per-channel value cache pruning requires access to the attention
score which requires additional recomputation when used alongside FlashAttention [6], where the full
attention score matrix does not materialize in the global memory. Second, per-token magnitude-based
pruning allows smooth compatibility with orthogonal compression method token-wise eviction [24,
51], where the retained token’s KV cache can be pruned individually. We examine the accuracy of
joint application in Section 4.2.

Value Cache Verdict: All unstructured pruning methods explored outperform structured
pruning. Among unstructured pruning methods, token-wise pruning, which is inherently
output-aware by matrix multiplication formulation, best preserves model accuracy even
at high sparsity levels. While channel-wise pruning with output-awareness can achieve
comparable accuracy, token-wise pruning offers advantages in both efficiency and modularity.

With the two verdicts in Key and Value caches, on Table 3 we finally validate the model accuracy
retention of per-token magnitude-based pruning with both Key and Value caches pruned. Not only
can Value cache be pruned to high sparsity with unstructured sparsity, but both KV cache can be
pruned to 70% sparsity while showing similar or better accuracy than Key-only 50% structured
pruning of ThinK [44]. In Appendix A.1, methodology of this section is applied on Llama-2 7B to
reinforce the effectiveness of per-token magnitude-based KV cache pruning.

Table 3: Longbench Score of Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2 with KV Cache
Per-Token Magnitude-based Pruning.

Task
Llama-3-8B-Instruct Mistral-7B-Instruct-v0.2

Dense Ks = 0.5
Vs = 0.5

Ks = 0.7
Vs = 0.7 Dense Ks = 0.5

Vs = 0.5
Ks = 0.7
Vs = 0.7

Average 43.19 42.65 40.96 42.65 42.30 40.95
SingleDoc QA 36.66 36.67 35.28 36.21 36.22 36.08
MultiDoc QA 36.09 36.23 35.11 29.93 30.42 29.40

Summarization 26.75 26.05 23.57 28.10 27.77 26.72
Few-shot 68.96 68.18 66.10 66.68 66.70 66.24
Synthetic 37.25 36.00 34.13 44.85 41.92 36.13

Code 55.58 54.50 53.49 54.98 54.83 53.84

3 Sparse Attention Kernel

Our findings establish that unstructured sparsity offers superior sparsity ratios over structured sparsity
while preserving accuracy. In turn, a crucial contribution of Mustafar is to leverage this advantage to
enable high compression efficiency while minimizing the latency overhead of runtime pruning and
compression. Prior compression methods such as quantization, structured pruning, and token eviction
reduce matrix dimensions or element bitwidths. In terms of efficiency, speedup from the reduced
size of dense matrix operands compensates for the additional latency introduced by compression (i.e.
pruning score computation, quantization). In contrast, unstructured sparsity with no regular reduction
in dimensions or element bitwidth demands a different approach.

Mustafar is motivated by the observation that attention operations in the autoregressive decode
stage, the Query × KeyT and Attention Score × Value computations are batch (different heads) of
matrix-vector products (MVs) that are significantly memory-bound on GPUs compared to the prefill
stage. To exploit this property, we extend the bitmap-based sparse format of Coruscant [20] as
shown in Figure 5a to maximally compress the pruned KV cache. It consists of compressed tiles
corresponding to a 1× 64 column of the pruned cache. Per-tile bitmap of 64 bits is used to represent
the position of non-zeros, and tile offset is used to address the correct position of each tile’s starting
non-zero. Pruning and compression are performed on-the-fly, with compression accelerated on GPU
with a Triton kernel, and attention is computed directly on the compressed representation with a
custom CUDA kernel that performs batch SpMV on the bitmap-based sparse format. Memory-bound
decode-phase attention is accelerated by reducing the data movement from global memory to GPU
Streaming Multiprocessors.

5

T1
30

NNZ

T2
5

NNZ

T3
4

NNZ

T4
8

NNZ
… …

… … … … … …

0.2

0.5

0

0

-0.1

0

0.3

…

Compress

0 30 35 39 47 …

NonZeros

Tile Offset

Tile-wise Bitmap (64 bits per tile)

0.2 0.5 -0.1 0.3 …

1 1 0 0 1 …

Column Tile (1x64)

KV cache

(a) Coruscant [20] bitmap-based sparse format

K

V

Per-Token Pruning PnC(K)
PnC(V)

K V

KV Cache

Prefill Phase Decode Phase

PnC(K)

Q

K

X
SpMV

X
MV

Concat

PnC(V)

V

X
SpMV

X
MV

+

OUT

Dense
Attention

Local
Window

PnC refers to Pruned and Compressed

𝑸𝑲𝑻

𝑺𝑽

OUT

(b) Mustafar attention kernel formulation

Figure 5: Overview of Mustafar sparse attention kernel. In (b), multi-head, softmax, and normalization
are omitted for simplicity.

Figure 5b and Algorithm 1 presents the Mustafar sparse attention kernel. KV cache generated in
prefill stage is pruned and compressed before the start of decode stage, therefore compatible with
prefill FlashAttention [6]. KV cache generated in decode stage is kept as-is (dense) while it is within
the local window, then pruned and compressed afterwards. This entails the attention computations in
the decode stage to be reformulated into two parts: SpMV for compressed KV cache (line 2 and 5 of
Algorithm 1) and dense MV for the KV cache within the local window (line 1 and 5 of Algorithm 1).

Algorithm 1 Decode Phase Attention with Dense Local and Compressed KV Caches

Input: Query Qt ∈ Rd; Local KV cache KL,VL ∈ Rd×Nd , where Nd is size of local window
in tokens; Compressed KV cache KC ,VC ∈ Rd×Ns , where Ns is number of compressed tokens.

Attention Score Computation
1: SL ∈ R1×Nd ← QtKL Dense local window attention score
2: SC ∈ R1×Ns ← QtKC Sparse attention score over compressed KV cache
3: St ∈ R1×(Ns+Nd) ← softmax

(
concat(SC ,SL)

)
Full attention score

Output Computation
4: [SC ,SL]← split(St;Ns, Nd) Partition attention score
5: Ot ∈ Rd ← VCS

⊤
C +VLS

⊤
L Final output vector

Return Ot

Mustafar SpMV kernel follows the load-as-compressed, compute-as-dense paradigm adopted by
FlashLLM [43], SpInfer [9], and Coruscant [20], which target sparse matrix–dense matrix multiplica-
tion in LLM weight projection layers. The compressed KV cache is loaded from GPU global memory
into registers in its compressed form, decompressed into shared memory, and then used for tile-wise
dense computation. We evaluate the performance of the Mustafar attention kernel and quantify the
runtime overhead of pruning and compression in Section 4.3. We further detail the formulation of the
SpMV kernel, as well as the management of the compressed KV cache in Appendix C.

4 Evaluation

Methodology: We evaluate Mustafar on two aspects: Accuracy and Efficiency. For accuracy evalua-
tion, we use tasks from LongBench [3] to test the accuracy retention of per-token magnitude-based
pruning of KV cache. We evaluate on three models: Llama-2-7B [40], Llama-3-8B-Instruct [12],
and Mistral-7B-Instruct-v0.2 [19]. We also explore the impact of Mustafar when jointly used with
orthogonal compression techniques, KV cache quantization KIVI [30] and token-wise eviction
H2O [51]. For efficiency evaluation, we evaluate the impact on KV cache compression and com-
putational latency with Llama-2-7B and Llama-3-8B-Instruct. Efficiency evaluation is tested on
NVIDIA RTX 6000ADA GPU and measured with NVIDIA Nsight Profiling Tool. Additionally, we
provide accuracy evaluation on RULER [17] benchmark in Appendix A.3, accuracy comparison of
Mustafar’s unstructured sparsity with 2:4 semi-structured sparsity in Appendix B, and additional
kernel throughput evaluation in Appendix C.3.

6

4.1 LongBench Results

Table 4 shows the extended LongBench evaluation of Mustafar per-token magnitude-based pruning
with comparison to dense model and ThinK [44]. Under the same Key cache sparsity, unstructured
nature of Mustafar constantly achieves higher accuracy than structured sparsity on ThinK [44] across
all tasks. A key advantage of unstructured pruning is its ability to effectively prune the Value cache
with minimal accuracy degradation, which structured pruning has struggled to achieve. Even under
high sparsity 70% for both the Key and Value caches, unstructured pruning (yellow) consistently
outperforms ThinK’s Key-only 50% structured pruning (pink) on LLaMA-3 8B and Mistral 7B, and
achieves comparable accuracy on LLaMA-2-7B.

Table 4: Mustafar accuracy with Llama and Mistral on LongBench
Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

KV
Sparsity

Nt
rv

Q
A

Q
as

pe
r

M
F-

en

H
ot

po
tQ

A

2W
ik

iM
Q

A

M
us

iq
ue

G
ov

Re
po

rt

Q
M

Su
m

M
ul

tiN
ew

s

TR
EC

Tr
iv

ia
lQ

A

SA
M

Su
m

PC
ou

nt

PR
e

Le
c

RB
P Avg.

Llama-3 8B Instruct
Dense 23.39 43.38 43.22 46.39 38.66 23.22 29.91 22.56 27.77 74.50 90.28 42.11 4.50 70.00 57.11 54.05 43.19

ThinK0.5 22.38 40.96 43.48 44.01 38.37 22.59 26.61 22.20 26.08 74.00 88.83 36.79 6.00 65.00 27.95 31.17 38.53
K0.5 V0.0 23.40 43.68 43.63 46.00 38.60 22.72 29.39 22.33 27.64 74.50 90.66 41.09 5.00 68.50 55.89 52.39 42.84
ThinK0.7 17.58 27.40 30.80 40.59 29.50 19.16 18.13 17.28 17.70 34.00 83.09 17.56 4.71 29.00 17.88 20.42 26.55
K0.7 V0.0 22.91 42.36 41.33 45.53 38.50 22.16 26.63 21.90 27.00 73.00 90.83 39.68 4.50 65.50 51.94 50.99 41.55
K0.0 V0.5 23.80 43.14 43.32 46.28 39.42 22.97 29.18 22.70 27.13 74.50 90.50 41.74 5.00 67.50 57.23 54.30 43.04
K0.0 V0.7 24.19 42.78 43.92 45.82 39.11 22.53 26.92 22.52 26.12 74.00 90.36 39.88 5.50 65.50 59.18 56.05 42.77
K0.5 V0.5 23.40 46.63 42.98 46.28 39.27 23.13 28.29 22.78 27.07 74.00 90.58 39.97 5.00 67.00 55.54 53.46 42.65
K0.7 V0.7 24.10 40.85 40.88 44.93 38.03 22.36 24.02 21.90 24.78 70.50 90.04 37.77 5.25 63.00 54.12 52.86 40.96

Mistral-7B-Instruct-v0.2
Dense 26.76 32.51 49.36 43.49 27.48 18.81 32.95 24.36 27.00 71.00 86.23 42.80 2.89 86.81 55.89 54.07 42.65

ThinK0.5 24.03 26.79 46.42 38.70 24.93 15.73 32.72 24.65 27.14 71.00 85.80 41.68 2.20 73.67 48.83 47.09 39.46
K0.5 V0.0 26.38 33.08 49.20 43.90 28.57 18.65 32.47 24.21 27.05 71.00 86.28 42.66 3.00 84.23 55.72 54.16 42.56
ThinK0.7 19.25 21.33 36.48 27.96 20.34 14.08 29.32 22.23 25.64 70.50 78.99 29.66 2.92 54.42 34.28 31.68 32.44
K0.7 V0.0 27.02 34.37 49.26 43.77 26.37 17.45 32.05 24.09 27.43 71.00 87.19 42.30 4.65 77.24 54.26 53.06 41.97
K0.0 V0.5 26.29 32.54 49.01 43.99 28.02 19.28 32.07 23.74 26.98 71.00 86.56 42.79 2.71 81.77 55.14 54.16 42.25
K0.0 V0.7 26.83 31.66 49.24 44.15 27.40 18.36 30.58 23.80 26.63 71.00 86.82 42.02 3.77 76.32 55.58 54.16 41.77
K0.5 V0.5 26.90 32.99 48.76 43.90 28.90 18.45 32.24 24.09 26.99 71.00 86.68 42.41 3.20 80.64 55.51 54.15 42.30
K0.7 V0.7 27.11 32.23 48.90 43.63 27.12 17.43 29.38 23.99 26.79 71.00 86.59 41.14 4.69 67.57 54.86 52.82 40.95

Llama-2 7B
Dense 15.04 9.66 21.88 7.69 9.95 3.66 17.26 21.29 3.5 66.00 87.72 41.66 1.70 6.64 66.66 59.82 27.51

ThinK0.5 15.57 9.96 23.31 6.50 9.62 2.77 1.84 20.16 0.38 66.00 85.53 41.48 2.04 2.79 64.77 58.36 25.69
K0.5 V0.0 14.79 9.65 21.67 7.48 10.10 4.11 17.24 20.84 3.64 66.00 87.72 41.26 1.38 6.42 67.15 59.89 27.46
ThinK0.7 13.76 8.16 20.59 4.53 6.24 2.23 12.96 14.88 0.01 66.00 80.48 26.95 1.77 6.93 40.73 38.97 21.57
K0.7 V0.0 14.57 8.18 20.55 6.64 9.95 3.28 13.80 20.25 0.88 66.00 86.64 38.32 2.12 4.04 64.86 58.59 26.17
K0.0 V0.5 15.71 10.02 21.12 7.38 9.64 3.75 16.86 21.37 2.38 66.00 87.72 41.04 1.65 6.75 66.79 60.09 27.40
K0.0 V0.7 15.57 8.98 20.97 7.33 10.14 3.82 15.40 20.77 1.83 66.00 87.72 40.69 1.40 6.50 66.12 59.57 27.05
K0.5 V0.5 15.49 9.17 20.97 7.51 10.04 3.78 16.46 21.02 3.36 66.00 87.72 40.81 1.22 5.88 66.78 59.53 27.23
K0.7 V0.7 13.76 7.83 19.27 6.57 10.26 3.51 8.70 20.04 0.47 64.50 86.89 36.37 1.64 3.62 63.95 56.75 25.26

4.2 Joint Application with Orthogonal KV Cache Compression Techniques

Mustafar’s per-token pruning enables seamless integration with orthogonal KV cache compression
techniques. We evaluate its effectiveness when combined with token eviction from H2O [51] and
KV cache quantization from KIVI [30], using a representative subset of LongBench tasks from each
category. H2O application is conducted with Llama-2 7B and KIVI application is conducted with
LLaMA-3-8B-Instruct.

4.2.1 Joint Application with Token Eviction

H2O [51] retains a fixed budget of recent tokens and critical heavy-hitter tokens. Applying Mustafar
to H2O, we retain the same scheme of pruning the KV cache of tokens that exit the local dense
window. We configure 10% of KV cache budget each to recent tokens and heavy-hitter tokens.
Jointly applied, all heavy-hitter tokens and a part of recent tokens is kept as pruned and compressed.
In Table 5, we validate the efficacy of Mustafar’s accuracy retention when jointly applied with
token eviction, as we see that 50% sparsity in both KV cache retains the dense accuracy with some
degradation when pruned to 70% sparsity.

7

Table 5: LongBench evaluation of Mustafar-H2O joint application on Llama-2-7B

Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Synthetic Code
NtrvQA HotpotQA GovReport TREC Pcount Lcc

Full KV cache 15.04 7.69 17.26 66.00 1.7 66.66

H2O 20% KV Budget
Dense 12.26 8.35 7.76 64.00 1.43 64.20

K0.5 V0.0 11.83 8.47 7.65 64.00 2.08 64.72
K0.7 V0.0 11.39 8.46 6.34 64.00 1.69 63.92
K0.0 V0.5 12.17 8.39 6.84 64.00 1.38 64.83
K0.0 V0.7 12.39 7.79 5.81 64.00 0.76 64.88
K0.5 V0.5 12.07 8.16 7.61 64.00 2.05 65.15
K0.7 V0.7 12.20 8.18 5.22 64.00 1.65 63.73

4.2.2 Joint Application with Quantization

KIVI [30] applies a per-channel quantization of Key cache and per-token quantization of Value cache.
Following findings of Harma et al. [14], we first prune each token’s KV cache before quantization
is performed. However, we note that current Mustafar sparse attention kernel implementation does
not support low-bit precision. Therefore, the accuracy measurement was performed on a sparse
quantized KV cache. Table 6 shows the performance of Mustafar and KIVI applied together. Similar
to joint application with H2O, we see that model accuracy is retained across the tasks for 50% on
Key cache, Value cache, as well as both Key and Value caches. We observe a decrease in accuracy
at 70% pruning, with Summarization task seeing the most significant drop. However, other tasks,
such as Single-Document QA maintain the same performance as naive 16-bit model, suggesting the
potential for applying varying degrees of compression tailored to specific tasks.

Table 6: LongBench evaluation of Mustafar-KIVI joint application on Llama-3-8B-Instruct

Single-Doc QA Multi-Doc QA Summarization Few-shot Learning Synthetic Code
NtrvQA HotpotQA GovReport TREC Pcount Lcc

Naive 16-bit 23.39 46.39 29.91 74.50 4.50 57.11

KIVI 4-bit
Dense 23.60 46.39 29.84 74.50 5.00 57.35

K0.5 V0.0 23.46 46.21 28.90 74.50 5.50 56.05
K0.7 V0.0 23.35 45.40 26.46 73.50 4.83 52.41
K0.0 V0.5 23.68 46.39 29.10 74.50 5.50 58.30
K0.0 V0.7 24.10 45.66 27.21 74.00 5.50 59.30
K0.5 V0.5 23.22 46.06 28.18 74.00 6.00 56.04
K0.7 V0.7 23.74 45.50 23.57 70.50 6.25 54.12

KIVI 2-bit
Dense 23.33 45.47 29.69 74.50 6.50 50.38

K0.5 V0.0 22.86 45.29 29.39 74.00 5.50 49.92
K0.7 V0.0 22.88 44.60 26.91 73.00 4.50 43.84
K0.0 V0.5 23.65 45.67 29.05 74.00 5.50 51.94
K0.0 V0.7 23.68 45.47 27.57 74.00 5.50 52.90
K0.5 V0.5 22.46 45.47 28.61 74.00 4.50 48.76
K0.7 V0.7 22.72 45.18 23.84 71.00 5.12 45.68

4.3 Efficiency Evaluation

A crucial aspect of Mustafar is to ensure that the exploitation of sparsity for compressing the KV
cache does not deter the inference latency. Mustafar compensates the overhead of runtime pruning and
compression by achieving speedup in the memory-bound SpMV. Figure 6a compares the normalized
latency of dense batched MV of cuBLAS with the components of Mustafar sparse attention kernel
(Figure 5b): batched SpMV, dense batched MV of local window, runtime pruning, and compression,
for input sequence length 2048 for Llama-2 and 4096 for Llama-3 and generation length 1024. In the
multi-head attention of Llama-2-7B, pruning introduces 1.84%, compression introduces 6.25%, and
MV of local window introduces 0.62% of the cuBLAS execution time in dense inference. In both
50% and 70%, the speedup gained from SpMV kernel more than compensates for the introduced
overheads. In 50% sparsity, SpMV takes 81.07% of cuBLAS execution time and for 70% sparsity,
SpMV takes 61.87% of cuBLAS execution time. In Grouped-Query Attention of Llama-3-8B, where
there is reduced set of KV cache, compression and pruning overhead reduce down to 1.47% and
0.47% of cuBLAS execution time respectively.

8

0

20

40

60

80

100

Dense
Inference

K0.5 V0.5 K0.7 V0.7 K0.5 V0.5 K0.7 V0.7

Llama-2-7B Llama-3-8B

N
or

m
al

iz
ed

 L
at

en
cy

 (%
)

CuBLAS SpMV Local MV Prune Compress

(a) Normalized kernel latency breakdown.

15

20

25

30

35

40

45

40% 50% 60% 70% 80% 90%

A
ve

ra
ge

 L
on

gB
en

ch
Sc

or
e

Compression Ratio

ThinK-Llama-3-8B-Instruct ThinK-Llama-2-7B

Mustafar-Llama-3-8B-Instruct Mustafar-Llama-2-7B

(b) Compression ratio-accuracy comparison of
Mustafar and ThinK.

Figure 6: Efficiency evaluation of Mustafar. In (b), compression ratio refers to percentage of
compressed size compared to dense KV cache.

Figure 6b compares the KV cache compression ratio (% of size in memory compared to dense KV
cache) of Mustafar and ThinK along with the LongBench average score achieved with Llama-2-7B
and Llama-3-8B-Instruct. In this plot, the red arrow points to the optimal direction, where a model
achieves higher LongBench score while achieving high compression of the KV cache. For ThinK [44]
which prune only Key cache, 50% sparsity leads to 75% compression ratio to dense KV cache, and
70% Key cache sparsity leads to 65% compression ratio. In the case of Mustafar where both Key
and Value Cache can be pruned, KV cache 50% sparsity leads to 65% compression ratio. The reason
behind 15% additional memory footprint is due to the tile offset overhead as shown in Figure 5a and
the multiples-of-8 padding enforced to coalesce memory access in GPU. KV cache 70% sparsity
leads to 45% compression ratio, 50% sparsity to either Key or Value cache leads to 83% compression
ratio, and single-cache 70% sparsity leads to 72.5% compression ratio. Overall, we see that Mustafar
is able to achieve better accuracy given the compression ratio, with the compression ratio-accuracy
curve closer to the optimal direction than ThinK.

Figure 7 shows the throughput comparison to inference with dense models. For Llama-2 7B, we used
input sequence length of 2048 and generated 2048 tokens. For Llama-3 8B, we use input sequence
length of 4096 and generated 4096 tokens. For dense baseline, FlashAttention [6] was used on prefill
and decode phase. Overall, we see that Mustafar is able to achieve higher throughput as well as
support larger batch size owing to the reduced memory footprint of KV cache. In Llama-3, we see
that enabling batch size of 8 leads to 2.23× tokens/sec throughput compared the dense inference of

0

50

100

150

200

250

300

350

1 2 4 6 8

Th
ro

ug
hp

ut
 (T

ok
en

s/
Se

co
nd

s)

Batch Size

Dense Mustafar-KV-50% Mustafar-KV-70%

(a) Llama-2 7B Throughput.

0

50

100

150

200

250

300

350

1 2 4 6 8

Th
ro

ug
hp

ut
 (T

ok
en

s/
Se

co
nd

s)

Batch Size

Dense Mustafar-KV-50% Mustafar-KV-70%

(b) Llama-3 8B Instruct Throughput.

Figure 7: Throughput comparison of Mustafar to dense inference.

9

batch size 6. Even within the same batch size, we see an increased throughput upto 1.89×. This is
due to the pruning and compression overhead amortized by the speedup of Mustafar sparse attention
kernel, leading to faster inference latency. However in batch size 1, we see that throughput is lower
than dense inference. This is due to the underutilization of GPU in Mustafar sparse attention kernel
with small batch size, where the number of threadblocks is smaller than the number of SMs. We
provide additional throughput comparison with different input:output token ratios on Appendix C.3.

5 Related Work

KV cache compression Alongside aforementioned work in KV cache pruning [44, 31], quantiza-
tion [30, 15, 48, 52], token-wise eviction [51, 29, 25, 8, 1, 11], and low-rank approximation [47, 4,
37, 50, 26], KV cache offloading [24, 28, 13, 5] evicts KV cache to CPU memory and speculatively
prefetchs critical tokens’ KV cache. Layer-centric compression [49, 27] applies different level of
compression to different layers, adhering to layer-wise importance. Head-level compression [10, 39]
applies different level of compression to each heads, from the observation that not all heads contribute
equally. Phase-specific compression [42] applies different strategy for prefill and decode phase, with
information retention prioritized in prefill and heavy hitter selection applied on decode phase.

System/Kernel for Attention While Mustafar attention kernel focuses on operating directly on
the bitmap-compressed sparse KV cache, there exists various contributions from the system and
kernel-levels to optimize for attention. PagedAttention [23] introduces an paging-inspired attention
algorithm that partitions KV cache into memory blocks to reduce memory fragmentation and efficient
sharing across sequences. FlashDecoding[16] introduces double-buffering to accelerate memory-
bound GeMM of decode phase. FlashInfer [45] unifies KV cache format using a block-sparse
representation for an efficient management of KV cache that leads to increased throughput. Loki [36]
uses a sparse attention method that leverages the low-dimensionality of key vectors to perform an
approximate attention in a reduced PCA space.

6 Conclusion and Limitations

In this work, we demonstrate that unstructured sparsity presents a powerful and novel solution for KV
cache pruning. By removing constraints on the pruning pattern, we show that per-token magnitude-
based pruning achieves high sparsity while maintaining model accuracy. To unlock the practical
benefits of unstructured sparsity, we introduce a bitmap-based sparse format and a custom attention
kernel that directly operates on compressed KV cache. Together, our pruning strategy, sparse format,
and custom kernel form an end-to-end system that substantially reduces KV cache memory usage
and improves throughput, making it possible to support longer contexts and more efficient inference.
Mustafar establishes a foundation for future efforts to integrate unstructured sparsity into practical
LLM deployment pipelines and opens new directions for memory-efficient LLM inference at scale. In
future work, we plan to explore the joint effect of leveraging KV sparsity of Mustafar with sparsity in
weights derived by works such as output-aware weight pruning [38], pruning with low-rank adapters
for accuracy retention [34, 33], and activation-aware calibration and efficiency enhancement [32, 46].
Additionally, this paper focuses on showing that unstructure sparsity can prune both Key and Value
caches to a higher sparsity with better accuracy than structured sparsity, leaving our method’s ability
to map arbitrary sparsity degree untouched. While we explore higher sparsity uniformly applied to
the entire KV cache in Appendix A.4, a future work involves deriving the optimal target sparsity to a
smaller granularity (e.g. per-head or per-layer) to maximize sparsity and accuracy retention.

Acknowledgments and Disclosure of Funding

We gratefully acknowledge the support of National Science Foundation (NSF) under program PPoSS,
Award Number 2316177.

10

References
[1] Muhammad Adnan et al. “Keyformer: KV Cache reduction through key tokens selection for Ef-

ficient Generative Inference”. In: Proceedings of Machine Learning and Systems. Ed. by P. Gib-
bons, G. Pekhimenko, and C. De Sa. Vol. 6. 2024, pp. 114–127. URL: https://proceedings.
mlsys.org/paper_files/paper/2024/file/48fecef47b19fe501d27d338b6d52582-
Paper-Conference.pdf.

[2] Joshua Ainslie et al. “GQA: Training Generalized Multi-Query Transformer Models from
Multi-Head Checkpoints”. In: The 2023 Conference on Empirical Methods in Natural Lan-
guage Processing. 2023. URL: https://openreview.net/forum?id=hmOwOZWzYE.

[3] Yushi Bai et al. “LongBench: A Bilingual, Multitask Benchmark for Long Context Under-
standing”. In: Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Ed. by Lun-Wei Ku, Andre Martins, and Vivek Srikumar.
Bangkok, Thailand: Association for Computational Linguistics, Aug. 2024, pp. 3119–3137.
DOI: 10.18653/v1/2024.acl-long.172. URL: https://aclanthology.org/2024.
acl-long.172/.

[4] Chi-Chih Chang et al. “Palu: KV-Cache Compression with Low-Rank Projection”. In: The
Thirteenth International Conference on Learning Representations. 2025. URL: https://
openreview.net/forum?id=LWMS4pk2vK.

[5] Zhuoming Chen et al. “MagicPIG: LSH Sampling for Efficient LLM Generation”. In: Proceed-
ings of the 13th International Conference on Learning Representations (ICLR). 2025. URL:
https://arxiv.org/abs/2410.16179.

[6] Tri Dao. “FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning”.
In: Proceedings of the 12th International Conference on Learning Representations. 2024.

[7] DeepSeek-AI et al. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforce-
ment Learning. 2025. URL: https://doi.org/10.48550/arXiv.2501.12948.

[8] Harry Dong et al. “Get more with LESS: synthesizing recurrence with KV cache compression
for efficient LLM inference”. In: Proceedings of the 41st International Conference on Machine
Learning. ICML’24. Vienna, Austria: JMLR.org, 2024.

[9] Ruibo Fan et al. “SpInfer: Leveraging Low-Level Sparsity for Efficient Large Language Model
Inference on GPUs”. In: Proceedings of the Twentieth European Conference on Computer
Systems (EuroSys ’25). New York, NY, USA: Association for Computing Machinery, 2025,
pp. 243–260. DOI: 10.1145/3689031.3717481. URL: https://doi.org/10.1145/
3689031.3717481.

[10] Yu Fu et al. “Not All Heads Matter: A Head-Level KV Cache Compression Method with
Integrated Retrieval and Reasoning”. In: The Thirteenth International Conference on Learning
Representations. 2025. URL: https://openreview.net/forum?id=FJFVmeXusW.

[11] Suyu Ge et al. “Model Tells You What to Discard: Adaptive KV Cache Compression for
LLMs”. In: Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 2024.

[12] Aaron Grattafiori et al. The Llama 3 Herd of Models. 2024. URL: https://arxiv.org/abs/
2407.21783.

[13] Jitai Hao et al. “OmniKV: Dynamic Context Selection for Efficient Long-Context LLMs”. In:
Proceedings of the 13th International Conference on Learning Representations (ICLR). 2025.

[14] Simla Burcu Harma et al. “Effective Interplay between Sparsity and Quantization: From
Theory to Practice”. In: The Thirteenth International Conference on Learning Representations.
2025. URL: https://openreview.net/forum?id=wJv4AIt4sK.

[15] Yefei He et al. “ZipCache: Accurate and Efficient KV Cache Quantization with Salient Token
Identification”. In: The Thirty-eighth Annual Conference on Neural Information Processing
Systems. 2024. URL: https://openreview.net/forum?id=5t4ZAkPiJs.

[16] Ke Hong et al. “FlashDecoding++: Faster Large Language Model Inference with Asynchro-
nization, Flat GEMM Optimization, and Heuristics”. In: Proceedings of Machine Learning
and Systems. Ed. by P. Gibbons, G. Pekhimenko, and C. De Sa. Vol. 6. 2024, pp. 148–
161. URL: https://proceedings.mlsys.org/paper_files/paper/2024/file/
5321b1dabcd2be188d796c21b733e8c7-Paper-Conference.pdf.

[17] Cheng-Ping Hsieh et al. “RULER: What’s the Real Context Size of Your Long-Context
Language Models?” In: Proceedings of COLM 2024. 2024.

11

https://proceedings.mlsys.org/paper_files/paper/2024/file/48fecef47b19fe501d27d338b6d52582-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/48fecef47b19fe501d27d338b6d52582-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/48fecef47b19fe501d27d338b6d52582-Paper-Conference.pdf
https://openreview.net/forum?id=hmOwOZWzYE
https://doi.org/10.18653/v1/2024.acl-long.172
https://aclanthology.org/2024.acl-long.172/
https://aclanthology.org/2024.acl-long.172/
https://openreview.net/forum?id=LWMS4pk2vK
https://openreview.net/forum?id=LWMS4pk2vK
https://arxiv.org/abs/2410.16179
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.1145/3689031.3717481
https://doi.org/10.1145/3689031.3717481
https://doi.org/10.1145/3689031.3717481
https://openreview.net/forum?id=FJFVmeXusW
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=wJv4AIt4sK
https://openreview.net/forum?id=5t4ZAkPiJs
https://proceedings.mlsys.org/paper_files/paper/2024/file/5321b1dabcd2be188d796c21b733e8c7-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/5321b1dabcd2be188d796c21b733e8c7-Paper-Conference.pdf

[18] Fantine Huot et al. “Agents’ Room: Narrative Generation through Multi-step Collaboration”.
In: The Thirteenth International Conference on Learning Representations. 2025. URL: https:
//openreview.net/forum?id=HfWcFs7XLR.

[19] Albert Q. Jiang et al. “Mistral 7B”. In: arXiv preprint arXiv:2310.06825. 2023. URL: https:
//arxiv.org/abs/2310.06825.

[20] Donghyeon Joo et al. “Coruscant: Co-Designing GPU Kernel and Sparse Tensor Core to
Advocate Unstructured Sparsity in Efficient LLM Inference”. In: Proceedings of the 58th
IEEE/ACM International Symposium on Microarchitecture. 2025. ISBN: 9798400715730. DOI:
10.1145/3725843.3756065. URL: https://doi.org/10.1145/3725843.3756065.

[21] Norman P. Jouppi et al. “TPU v4: An Optically Reconfigurable Supercomputer for Machine
Learning with Hardware Support for Embeddings”. In: Proceedings of the 50th Annual
International Symposium on Computer Architecture (ISCA). 2023. URL: https://arxiv.
org/abs/2304.01433.

[22] Yekyung Kim et al. “FABLES: Evaluating faithfulness and content selection in book-
length summarization”. In: First Conference on Language Modeling. 2024. URL: https:
//openreview.net/forum?id=YfHxQSoaWU.

[23] Woosuk Kwon et al. “Efficient Memory Management for Large Language Model Serving with
PagedAttention”. In: Proceedings of the 29th Symposium on Operating Systems Principles.
SOSP ’23. Koblenz, Germany: Association for Computing Machinery, 2023, 611–626. ISBN:
9798400702297. DOI: 10.1145/3600006.3613165. URL: https://doi.org/10.1145/
3600006.3613165.

[24] Wonbeom Lee et al. “InfiniGen: Efficient Generative Inference of Large Language Models
with Dynamic KV Cache Management”. In: 18th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 24). Santa Clara, CA: USENIX Association, July 2024,
pp. 155–172. ISBN: 978-1-939133-40-3. URL: https://www.usenix.org/conference/
osdi24/presentation/lee.

[25] Yuhong Li et al. “SnapKV: LLM Knows What You are Looking for Before Generation”. In:
The Thirty-eighth Annual Conference on Neural Information Processing Systems. 2024. URL:
https://openreview.net/forum?id=poE54GOq2l.

[26] Bokai Lin et al. “MatryoshkaKV: Adaptive KV Compression via Trainable Orthogonal Projec-
tion”. In: The Thirteenth International Conference on Learning Representations. 2025. URL:
https://openreview.net/forum?id=BQwsRy1h3U.

[27] Akide Liu et al. “MiniCache: KV Cache Compression in Depth Dimension for Large Language
Models”. In: The Thirty-eighth Annual Conference on Neural Information Processing Systems.
2024. URL: https://openreview.net/forum?id=sgVOjDqUMT.

[28] Di Liu et al. RetrievalAttention: Accelerating Long-Context LLM Inference via Vector Retrieval.
2024. URL: https://arxiv.org/abs/2409.10516.

[29] Zichang Liu et al. “Scissorhands: Exploiting the Persistence of Importance Hypothesis for LLM
KV Cache Compression at Test Time”. In: Thirty-seventh Conference on Neural Information
Processing Systems. 2023. URL: https://openreview.net/forum?id=JZfg6wGi6g.

[30] Zirui Liu et al. “KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache”. In: Forty-
first International Conference on Machine Learning. 2024. URL: https://openreview.
net/forum?id=L057s2Rq8O.

[31] Bo Lv et al. “KVPruner: Structural Pruning for Faster and Memory-Efficient Large Language
Models”. In: ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2025, pp. 1–5. DOI: 10.1109/ICASSP49660.2025.10889000.

[32] Iman Mirzadeh et al. “ReLU Strikes Back: Exploiting Activation Sparsity in Large Language
Models”. In: Proceedings of the Twelfth International Conference on Learning Representations.
2024. URL: https://arxiv.org/pdf/2310.04564.

[33] Mohammad Mozaffari, Amir Yazdanbakhsh, and Maryam Mehri Dehnavi. “SLiM: One-shot
Quantization and Sparsity with Low-rank Approximation for LLM Weight Compression”. In:
Proceedings of the 42nd International Conference on Machine Learning (ICML 2025). 2025.
URL: https://arxiv.org/abs/2410.09615.

[34] Mohammad Mozaffari et al. “SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter
Pretraining of LLMs”. In: Proceedings of the International Conference on Learning Represen-
tations (ICLR 2025). 2025. URL: https://arxiv.org/abs/2405.16325.

12

https://openreview.net/forum?id=HfWcFs7XLR
https://openreview.net/forum?id=HfWcFs7XLR
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://doi.org/10.1145/3725843.3756065
https://doi.org/10.1145/3725843.3756065
https://arxiv.org/abs/2304.01433
https://arxiv.org/abs/2304.01433
https://openreview.net/forum?id=YfHxQSoaWU
https://openreview.net/forum?id=YfHxQSoaWU
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://www.usenix.org/conference/osdi24/presentation/lee
https://www.usenix.org/conference/osdi24/presentation/lee
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=BQwsRy1h3U
https://openreview.net/forum?id=sgVOjDqUMT
https://arxiv.org/abs/2409.10516
https://openreview.net/forum?id=JZfg6wGi6g
https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=L057s2Rq8O
https://doi.org/10.1109/ICASSP49660.2025.10889000
https://arxiv.org/pdf/2310.04564
https://arxiv.org/abs/2410.09615
https://arxiv.org/abs/2405.16325

[35] Md Aamir Raihan, Negar Goli, and Tor Aamodt. Modeling Deep Learning Accelerator Enabled
GPUs. 2019.

[36] Prajwal Singhania et al. “Loki: Low-rank Keys for Efficient Sparse Attention”. In: The Thirty-
eighth Annual Conference on Neural Information Processing Systems. 2024. URL: https:
//openreview.net/forum?id=raABeiV71j.

[37] Hanshi Sun et al. “ShadowKV: KV Cache in Shadows for High-Throughput Long-Context
LLM Inference”. In: Proceedings of the Forty-Second International Conference on Machine
Learning. 2025. URL: https://arxiv.org/abs/2410.21465.

[38] Mingjie Sun et al. “A Simple and Effective Pruning Approach for Large Language Models”.
In: Proceedings of the 12th International Conference on Learning Representations. 2024.

[39] Hanlin Tang et al. “RazorAttention: Efficient KV Cache Compression Through Retrieval
Heads”. In: arXiv preprint arXiv:2407.15891. 2024. URL: https://arxiv.org/abs/2407.
15891.

[40] Hugo Touvron et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. 2023. URL:
https://arxiv.org/abs/2307.09288.

[41] Ashish Vaswani et al. “Attention Is All You Need”. In: Proceedings of the 31st International
Conference on Neural Information Processing Systems (NeurIPS). 2017. URL: https://doi.
org/10.48550/arXiv.1706.03762.

[42] Jialong Wu et al. “SCOPE: Optimizing Key-Value Cache Compression in Long-context
Generation”. In: Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics. 2025. URL: https://aclanthology.org/2025.acl-long.529.pdf.

[43] Haojun Xia et al. “Flash-LLM: Enabling Cost-Effective and Highly-Efficient Large Generative
Model Inference with Unstructured Sparsity”. In: vol. 17. 2. VLDB Endowment. DOI: 10.
14778/3626292.3626303. URL: https://doi.org/10.14778/3626292.3626303.

[44] Yuhui Xu et al. “ThinK: Thinner Key Cache by Query-Driven Pruning”. In: The Thirteenth
International Conference on Learning Representations. 2025. URL: https://openreview.
net/forum?id=n0OtGl6VGb.

[45] Zihao Ye et al. FlashInfer: Efficient and Customizable Attention Engine for LLM Inference
Serving. 2025.

[46] Ruokai Yin et al. DuoGPT: Training-free Dual Sparsity through Activation-aware Pruning in
LLMs. 2025. arXiv: 2506.20194 [cs.LG]. URL: https://arxiv.org/abs/2506.20194.

[47] Zhihang Yuan et al. ASVD: Activation-Aware Singular Value Decomposition for Compressing
Large Language Models. arXiv preprint arXiv:2312.05821. DOI: 10.48550/arXiv.2312.
05821. URL: https://doi.org/10.48550/arXiv.2312.05821.

[48] Tianyi Zhang et al. “KV Cache is 1 Bit Per Channel: Efficient Large Language Model Inference
with Coupled Quantization”. In: The Thirty-eighth Annual Conference on Neural Information
Processing Systems. 2024. URL: https://openreview.net/forum?id=pNnvzQsS4P.

[49] Yanqi Zhang et al. Unifying KV Cache Compression for Large Language Models with LeanKV.
2024. URL: https://doi.org/10.48550/arXiv.2412.03131.

[50] Yifan Zhang et al. Tensor Product Attention Is All You Need. 2025. URL: https://arxiv.
org/abs/2501.06425.

[51] Zhenyu Zhang et al. “H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large
Language Models”. In: Thirty-seventh Conference on Neural Information Processing Systems.
2023. URL: https://openreview.net/forum?id=RkRrPp7GKO.

[52] Zhenyu Zhang et al. “Q-Hitter: A Better Token Oracle for Efficient LLM Inference via
Sparse-Quantized KV Cache”. In: MLSys. 2024. URL: https://proceedings.mlsys.org/
paper_files/paper/2024/hash/bbb7506579431a85861a05fff048d3e1-Abstract-
Conference.html.

[53] Wenting Zhao et al. “Commit0: Library Generation from Scratch”. In: The Thirteenth Inter-
national Conference on Learning Representations. 2025. URL: https://openreview.net/
forum?id=MMwaQEVsAg.

13

https://openreview.net/forum?id=raABeiV71j
https://openreview.net/forum?id=raABeiV71j
https://arxiv.org/abs/2410.21465
https://arxiv.org/abs/2407.15891
https://arxiv.org/abs/2407.15891
https://arxiv.org/abs/2307.09288
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://aclanthology.org/2025.acl-long.529.pdf
https://doi.org/10.14778/3626292.3626303
https://doi.org/10.14778/3626292.3626303
https://doi.org/10.14778/3626292.3626303
https://openreview.net/forum?id=n0OtGl6VGb
https://openreview.net/forum?id=n0OtGl6VGb
https://arxiv.org/abs/2506.20194
https://arxiv.org/abs/2506.20194
https://doi.org/10.48550/arXiv.2312.05821
https://doi.org/10.48550/arXiv.2312.05821
https://doi.org/10.48550/arXiv.2312.05821
https://openreview.net/forum?id=pNnvzQsS4P
https://doi.org/10.48550/arXiv.2412.03131
https://arxiv.org/abs/2501.06425
https://arxiv.org/abs/2501.06425
https://openreview.net/forum?id=RkRrPp7GKO
https://proceedings.mlsys.org/paper_files/paper/2024/hash/bbb7506579431a85861a05fff048d3e1-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/bbb7506579431a85861a05fff048d3e1-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/bbb7506579431a85861a05fff048d3e1-Abstract-Conference.html
https://openreview.net/forum?id=MMwaQEVsAg
https://openreview.net/forum?id=MMwaQEVsAg

A Extended Evaluation

A.1 Section 2 Methodology Applied to LLaMA-2 7B

We follow the same methodology of exploring pruning direction and output-awareness on Llama-2-7B
to further solidify our findings on a model architecture with Multi-Head Attention. In Table 7, we
observe a similar trend to that of Llama-3-8B-Instruct in Section 2. Unstructured pruning outperforms
structured pruning of ThinK [44], with ouput-awareness bringing a small accuracy increase to pure
magnitude-based pruning.

Table 7: Comparison of ThinK [44] structured pruning, per-token magnitude-based unstructured
pruning, and per-token output-aware unstructured pruning on LongBench [3] with Llama-2-7B Key
cache.

Task Dense
Ks = 0.5 Ks = 0.7

ThinK
(Structured)

Unstructured
Output-aware

Unstructured
Magnitude

ThinK
(Structured)

Unstructured
Output-aware

Unstructured
Magnitude

Average 27.51 25.70 27.55 27.46 21.57 26.78 26.17
SingleDoc QA 15.53 16.28 15.52 15.37 14.17 15.82 14.43
MultiDoc QA 7.10 6.30 6.90 7.23 4.33 6.44 6.62

Summarization 14.02 7.46 14.51 13.91 9.28 12.99 11.64
Few-shot 65.13 64.34 65.20 65.00 57.81 63.77 63.65
Synthetic 4.17 2.42 3.98 3.90 4.35 3.00 3.08

Code 63.24 61.57 63.22 63.52 39.85 62.67 61.73

In Table 8, a unique phenomenon is the stark contrast of model accuracy in per-channel unstructured
pruning methods. Whereas per-channel magnitude-based pruning of Table 2 show good model
accuracy retention for Llama-3-8B-Instruct, for Llama-2-7B we see that accuracy degradation is very
severe. Nevertheless, concurrent to our previous finding, we once again see that per-channel pruning
achieves the same level of accuracy retention to per-token pruning as output-awareness is applied.
This highlights the importance of output-awareness in Value cache pruning. In Table 9 we see that the
model accuracy of 70% unstructured sparsity on both Key and Value cache achieves similar accuracy
to 50% ThinK pruning.

Table 8: Comparison of ThinK [44] structured pruning, per-channel magnitude-based unstructured
pruning, per-channel output-aware unstructured pruning, and per-token magnitude-based pruning on
LongBench [3] with Llama-2-7B Value cache.

Task Dense
Vs = 0.5 Vs = 0.7

ThinK
(Structured)

Magnitude
(Per-channel)

Output-aware
(Per-channel)

Magnitude
(Per-token)

ThinK
(Structured)

Magnitude
(Per-channel)

Output-aware
(Per-channel)

Magnitude
(Per-token)

Average 27.51 24.59 6.16 27.33 27.39 21.10 5.81 26.30 27.05
SingleDoc QA 15.53 12.64 1.68 15.96 15.62 10.05 1.60 15.48 15.17
MultiDoc QA 7.10 7.37 2.17 6.97 6.92 7.15 1.82 6.97 7.10

Summarization 14.02 9.18 4.51 13.98 13.54 9.10 3.15 13.06 12.67
Few-shot 65.13 61.82 9.93 64.07 64.92 57.12 8.83 60.09 64.80
Synthetic 4.17 3.86 1.82 4.45 4.20 1.65 2.45 4.69 3.95

Code 63.24 56.31 20.03 62.72 63.44 41.96 20.90 62.34 62.85

Table 9: Longbench evaluation of Llama-2 7B with KV cache per-token magnitude-based pruning

Task
Llama-2-7B

Dense Ks = 0.5
Vs = 0.5

Ks = 0.7
Vs = 0.7

Average 27.51 27.23 24.71
SingleDoc QA 15.53 15.21 13.62
MultiDoc QA 7.10 7.11 6.78

Summarization 14.02 13.61 6.84
Few-shot 65.13 64.84 62.59
Synthetic 4.17 3.55 2.63

Code 63.24 63.16 60.35

14

A.2 Scaling to Larger Model

In Table 10, we include the accuracy evaluation of Mustafar per-token magnitude-based pruning on
Llama-2-13B-chat [40], validating the effectiveness of Mustafar on model with larger size. While
unstructured pruning constantly outperforms structured sparsity, we see that the Key cache of Llama-
2-13B-chat is more susceptible to accuracy degradation at 70% sparsity (yellow). In this case, we
leverage the modularity of Mustafar, being able to apply different target sparsity to Key and Value
cache to find the best combination, to use 50% sparsity for Key Cache and 70% sparsity for Value
cache (pink), thereby reaching the higher overall sparsity while maintaining the model accuracy.

Table 10: Mustafar accuracy with Llama-2-13B-chat on LongBench
Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

KV
Sparsity

Nt
rv

Q
A

Q
as

pe
r

M
F-

en

H
ot

po
tQ

A

2W
ik

iM
Q

A

M
us

iq
ue

G
ov

Re
po

rt

Q
M

Su
m

M
ul

tiN
ew

s

TR
EC

Tr
iv

ia
lQ

A

SA
M

Su
m

PC
ou

nt

PR
e

Le
c

RB
P Avg.

Llama-2-13B-Chat
Dense 18.54 24.09 37.01 36.43 31.40 15.81 24.48 20.25 25.74 67.50 86.90 42.07 3.00 12.00 50.12 50.53 34.12

ThinK0.5 16.95 22.39 37.54 34.00 29.93 14.33 24.49 20.21 24.78 67.50 87.16 40.53 2.55 13.07 45.79 46.23 32.80
K0.5 V0.0 18.46 23.12 37.26 37.16 31.18 15.56 23.90 20.55 25.57 67.50 87.23 41.99 3.00 11.50 50.33 48.88 33.95
ThinK0.7 17.86 19.93 32.37 33.03 27.22 13.99 21.19 19.47 12.04 59.0 86.67 31.26 1.54 1.87 27.79 29.35 27.16
K0.7 V0.0 14.63 20.97 34.05 34.70 30.69 13.72 10.60 20.01 7.63 61.00 81.91 37.76 1.00 1.00 45.29 33.54 28.03
K0.0 V0.5 18.75 23.68 37.34 36.83 31.36 15.50 23.97 20.83 25.46 67.50 87.20 41.45 2.50 10.00 49.32 49.37 33.82
K0.0 V0.7 19.29 22.90 37.65 36.57 31.24 15.35 22.44 20.52 24.75 68.00 87.49 40.55 2.50 8.10 49.33 49.14 33.49
K0.5 V0.5 19.08 22.66 36.97 37.25 31.38 15.46 23.70 20.66 25.39 67.50 87.23 40.59 3.00 10.10 49.39 48.06 33.64
K0.5 V0.7 18.60 22.57 37.18 35.40 31.55 15.25 22.30 20.43 24.81 68.00 87.23 39.91 2.50 7.70 49.02 47.38 33.24
K0.7 V0.7 17.86 19.93 32.37 33.03 27.22 13.99 21.19 19.47 12.04 59.00 86.67 31.26 1.54 1.87 27.79 29.35 27.16

A.3 Evaluation on RULER

For a more diverse evaluation, we evaluate Llama-3.1-8B-Instruct on RULER [17] benchmark for
context length of 65,536 tokens.

Table 11: Accuracy comparison on RULER benchmark

Sparsity Method

Ne
ed

le-
Si

ng
le1

Ne
ed

le-
Si

ng
le2

Ne
ed

le-
M

ul
tiK

ey
1

Ne
ed

le-
M

ul
tiK

ey
2

Ne
ed

le-
M

ul
tiQ

ue
ry

Ne
ed

le-
M

ul
tiV

al
ue

Q
A-

1

Q
A-

2

Va
ria

bl
e T

ra
ck

in
g

Fr
eq

. W
or

ds
Ex

tr
ac

t.

Llama-3.1-8B-Instruct
Dense — 1.000 1.000 0.990 0.979 0.990 0.979 0.844 0.594 0.973 0.851

Key 50% ThinK 1.000 1.000 0.990 0.979 0.995 0.969 0.833 0.594 0.919 0.854
Mustafar 1.000 1.000 0.990 0.979 0.995 0.996 0.833 0.573 0.971 0.813

Key 70% ThinK 0.448 0.490 0.229 0.188 0.646 0.487 0.615 0.510 0.208 0.427
Mustafar 1.000 1.000 0.990 0.969 0.992 0.903 0.833 0.594 0.966 0.823

Value 50% ThinK 1.000 1.000 0.990 0.969 0.914 0.958 0.823 0.573 0.910 0.792
Mustafar 1.000 1.000 0.979 0.995 0.995 0.971 0.833 0.604 0.983 0.830

Value 70% ThinK 0.948 0.927 0.948 0.510 0.698 0.688 0.646 0.500 0.558 0.677
Mustafar 1.000 1.000 1.000 0.979 0.992 0.969 0.833 0.594 0.985 0.826

Key&Value 50% ThinK 0.958 1.000 0.948 0.854 0.828 0.956 0.740 0.531 0.742 0.823
Mustafar 1.000 1.000 0.990 0.979 0.997 0.997 0.833 0.573 0.862 0.809

Key&Value 70% ThinK 0.000 0.073 0.000 0.000 0.000 0.000 0.219 0.250 0.000 0.035
Mustafar 1.000 1.000 0.990 0.969 0.995 0.914 0.833 0.583 0.869 0.799

As shown in Table 11, even in the challenging Needle-in-a-Haystack scenarios with multiple keys
and queries, Mustafar maintains accuracy comparable to the dense model. It also outperforms the
structured pruning baseline ThinK, with particularly notable gains at 70% joint Key-Value sparsity.
While structured pruning does perform well in isolated cases, such as the Needle-Single tasks for
70% Value sparsity, it exhibits significant accuracy drops in other tasks. In contrast, Mustafar’s
unstructured sparsity consistently preserves accuracy across all tasks. This contrast highlights the
versatility of unstructured sparsity in adapting to diverse task requirements.

15

A.4 Higher Sparsity

While the main paper primarily focused on 50% and 70% sparsity of both Key and Value Cache,
we present the performance of Mustafar per-token magnitude-based pruning of KV cache 80% and
90% sparsity in Table 12. While we see that Key cache suffers from accuracy degradation in higher
sparsity, Value cache, despite the even distribution of element magnitude as in Figure 2b, retains
some level of the model accuracy even at 90% sparsity on selective tasks. Model accuracy is retained
for tasks such as 2WikiMultihopQA (pink), while degraded significantly in tasks such as GovReport
(yellow).

Table 12: Mustafar accuracy with Llama-3-8B-Instruct on LongBench
Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

KV
Sparsity

Nt
rv

Q
A

Q
as

pe
r

M
F-

en

H
ot

po
tQ

A

2W
ik

iM
Q

A

M
us

iq
ue

G
ov

Re
po

rt

Q
M

Su
m

M
ul

tiN
ew

s

TR
EC

Tr
iv

ia
lQ

A

SA
M

Su
m

PC
ou

nt

PR
e

Le
c

RB
P Avg.

Llama-3-8B-Instruct
Dense 23.39 43.38 43.22 46.39 38.66 23.22 29.91 22.56 27.77 74.5 90.28 42.11 4.50 70.00 57.11 54.05 43.19

K0.8 V0.0 22.67 39.08 39.44 44.98 38.51 21.94 21.75 21.00 23.88 69.00 90.24 36.92 7.50 64.50 49.15 45.79 39.77
K0.9 V0.0 19.90 28.92 35.21 41.56 30.77 18.89 11.78 18.40 14.95 39.50 81.79 29.18 2.75 61.50 40.30 33.46 31.80
K0.0 V0.8 24.48 42.54 43.96 45.48 38.71 22.46 24.47 21.64 25.09 73.00 90.11 39.03 5.62 64.00 56.39 56.54 42.22
K0.0 V0.9 24.12 37.90 42.53 44.68 38.29 21.99 20.22 21.29 21.61 69.00 90.15 36.04 3.29 62.50 55.87 53.59 40.19
K0.8, V0.8 21.82 36.53 38.61 44.38 36.31 21.33 19.18 20.74 20.80 59.50 88.27 32.68 5.25 64.00 51.03 48.29 38.05
K0.9, V0.9 17.47 24.13 30.64 38.63 29.24 17.24 13.50 19.67 15.03 35.50 75.29 27.39 5.50 63.00 41.77 34.39 30.52

B Comparison with Semi-structured Sparsity

Between the structured pruning of rows and columns, and unstructured pruning of element, lies the
2:4 semi-structured sparsity where 2 out of 4 consecutive elements are non-zero, enforcing a global
50% sparsity. Supported by NVIDIA Sparse Tensor Cores, 2:4 semi-structured sparsity also pursue
the same objectives of Mustafar bitmap-based sparse format (Figure 5a), maximal compression and
fast computation. In Table 13, we apply 2:4 semi-structured pruning to the per-token magnitude-
based scheme. Comparing semi-structured sparsity to Key, Value, and both Key and Value cache to
unstructured sparsity of Mustafar, we see that unstructured sparsity constantly outperforms semi-
structured pattern of the same sparsity. This emphasizes the impact of fine-grained unstructured
sparsity of element-wise pruning in model accuracy retention.

Table 13: Comparison of 2:4 semi-structured and unstructured sparsity with Llama-3-8B-Instruct on
LongBench

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

KV
Sparsity

Nt
rv

Q
A

Q
as

pe
r

M
F-

en

H
ot

po
tQ

A

2W
ik

iM
Q

A

M
us

iq
ue

G
ov

Re
po

rt

Q
M

Su
m

M
ul

tiN
ew

s

TR
EC

Tr
iv

ia
lQ

A

SA
M

Su
m

PC
ou

nt

PR
e

Le
c

RB
P Avg.

Llama-3-8B-Instruct
Dense 23.39 43.38 43.22 46.39 38.66 23.22 29.91 22.56 27.77 74.5 90.28 42.11 4.50 70.00 57.11 54.05 43.19

K0.5 (2:4) 21.79 39.77 42.34 45.15 38.81 21.72 24.34 22.21 25.44 69.50 90.87 39.10 7.00 62.50 54.33 50.29 40.95
K0.5 (Unstructured) 23.40 43.68 43.63 46.00 38.60 22.72 29.39 22.33 27.64 74.50 90.66 41.09 5.00 68.50 55.89 52.39 42.84

V0.5 (2:4) 23.69 42.72 43.94 45.48 39.42 22.78 28.51 22.53 26.66 73.50 90.31 40.92 4.50 68.00 58.35 55.68 42.94
V0.5 (Unstructured) 23.80 43.14 43.32 46.28 39.42 22.97 29.18 22.70 27.13 74.50 90.50 41.74 5.00 67.50 57.23 54.30 43.04
K0.5(2:4) V0.5(2:4) 22.32 39.42 42.64 45.45 38.25 21.52 23.41 21.82 24.38 69 91.04 39.59 7.5 62.5 55.02 50.41 40.89

K0.5 V0.5 (Unstructured) 23.40 46.63 42.98 46.28 39.27 23.13 28.29 22.78 27.07 74.00 90.58 39.97 5.00 67.00 55.54 53.46 42.65

16

C Sparse Attention Kernel Details

As a supplement to Section 3, we offer more detail onto the Mustafar sparse attention kernel, which
accelerates memory-bound batch SpMV.

C.1 Load-as-Compressed, Compute-as-Dense Pipeline

Id_dense

gmem2reggmem2reg

rst_smem

rst_smem

Id_dense

smem2tc

smem2tc

smem2tc

Iteration-1

Id_dense

gmem2reg

rst_smem

Iteration-2

smem2tc

gmem2reg

rst_smem

Iteration-3

Id_dense

smem2tc

smem2tc

Iteration-4
Time

Extract

Extract

Ex
tr
ac

t

Ex
tr
ac

t

Shared
Memory

W
rit

e

Re
ad

 &
 C

om
pu

te

Shared
Memory

Registers

Figure 8: Load-as-compressed, compute-as-
compute pipeline of FlashLLM [43]

Crucial insight of accelerating SpMV involves
reducing the data movement between the GPU
global memory and the local memory of each
GPU Streaming Multiprocessor. First pro-
posed by FlashLLM [43], load-as-compressed,
compute-as-dense pipeline as shown in Figure 8
involves sending each matrix tile in the cor-
responding compressed form to the SM regis-
ters (’gmem2reg’ in the figure), decompressing
the compressed tile into the dense from to the
shared memory (’extract’), then initializing com-
putation on the next pipeline stage (’smem2tc’).
Computation is mapped to tensor core to utilize
the high fp16 compute throughput. To map MV, unused N dimensions are padded to zero for compu-
tation. Non-zero thread-tile of 1× 64 in Figure 5a represents the granularity of non-zeros that a warp
thread decompresses at a pipeline stage. Each warp thread decompresses 2 thread-tile per stage using
the corresponding bitmap to determine the correct position of each non-zero. Effectively, each warp
operates on a 64× 64 sized matrix tile at a time.

C.2 KV Cache Management

Tile size of 64× 64 of each warp-tile (pink tiles in Figure 9), requires the KV cache to be compressed
and appended to the existing KV cache in token groups of 64. Due to the dynamic nature of KV
cache where new entries are added during generation, a kernel-compatible management of KV cache
update is necessary. That is, (1) column tiling direction of KV cache must be orthogonal to the
dimension that is being multiplied with: Key cache is multiplied on the channel-dimension, thus
column tiling is across token dimension (yellow arrow in Figure 9a), value cache is multiplied on the
token-dimension, thus column-tiling is across the channel dimension (yellow arrow in Figure 9b).

64

64

Intra-tile
direction

…

Inter-tile
direction

To
ke

n

Channel

tile

Key

Incoming 64 tokens

(a) Tile Ordering of Key Cache

64

64

…

TokenValues

In
co

m
in

g
64

 to
ke

ns

C
ha

nn
el

Intra-tile
direction

Inter-tile
direction

tile

(b) Tile Ordering of Value Cache

Figure 9: Tile ordering scheme of Key and Value cache

(2), the layout of warp-tile must ensure that newly compressed tokens’ KV cache can be appended
to the existing compressed KV cache. As newly compressed KV cache are added onto the token

17

dimension, traversal across multiple warp-tiles is done along channel-major dimension for both Key
and and Value caches so that the compressed KV cache of the new tokens can be appended at the end.

C.3 Decode Speed Evaluation

Extrapolating on Figure 7, we evaluate Mustafar decoding on various input:output token ratios with
batch size 4. For Llama-2-7B, we use input sequence length of 2048. For Llama-3-8B-Instruct, we
use input sequence length of 4096. We use output sequence lengths of 512, 1024, and 2048.

Table 14: Decode speed comparison with dense inference

Model KV Format TTFT Decode Speed
(decode 512)

Decode Speed
(decode 1024)

Decode Speed
(decode 2048)

Llama2 Dense 1.396 sec 88.685 tokens / sec 88.512 tokens / sec 79.185 tokens / sec
Mustafar K0.5 V0.5 2.532 sec 89.452 tokens / sec 89.514 tokens / sec 85.687 tokens / sec
Mustafar K0.7 V0.7 2.249 sec 96.386 tokens / sec 97.436 tokens / sec 95.120 tokens / sec

Llama3 Dense 2.769 sec 61.993 tokens / sec 61.220 tokens / sec 59.242 tokens / sec
Mustafar K0.5 V0.5 3.269 sec 78.434 tokens / sec 83.768 tokens / sec 83.303 tokens / sec
Mustafar K0.7 V0.7 3.151 sec 84.065 tokens / sec 88.293 tokens / sec 89.699 tokens / sec

While Figure 7 measured the token throughput by considering both input and output tokens processed,
in Table 14 we derived the average decoding speed by measuring the end-to-end duration, and
dividing it to the number of tokens generated to penalize Mustafar with the overhead of KV cache
pruning and compression in both prefill and decode stages.

While time-to-first-token is delayed due to the overhead of pruning and compressing the KV cache
during the prefill stage, the delay is offset by the accelerated attention computation during decoding,
resulting in higher overall token generation throughput. Notably, Llama-3 exhibits a larger perfor-
mance gain compared to Llama-2, as its GQA architecture reduces the overhead of KV cache pruning
and compression.

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We give thorough evaluation throughout the paper to support our claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We give the accuracy scores of each method, as well as the extent of the
kernel’s support and delay in first-time-to-token.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

19

Justification: We justify all theoretical claims with real measurements.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer:[Yes]
Justification: Yes, and the source code is available on Github.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

20

Answer: [Yes]
Justification: Source code is available on Github to reproduce results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify the benchmarks, models, and platform used.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We average our measurements across multiple iterations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information of our compute platform.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We promote the democratization LLMs with KV cache compression.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

22

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work promotes efficient usage of existing models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All code, data, and model has been properly credited and referenced.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

23

paperswithcode.com/datasets

Answer: [Yes]
Justification: Source code of our sparse attention kernel is provided in the supplementary
material as well as our project Github.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]

24

Justification: LLMs were not used in core methods of this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Pruning Algorithm for Unstructured Sparsity
	Pruning Key Cache
	Pruning Value Cache

	Sparse Attention Kernel
	Evaluation
	LongBench Results
	Joint Application with Orthogonal KV Cache Compression Techniques
	Joint Application with Token Eviction
	Joint Application with Quantization

	Efficiency Evaluation

	Related Work
	Conclusion and Limitations
	Extended Evaluation
	Section 2 Methodology Applied to LLaMA-2 7B
	Scaling to Larger Model
	Evaluation on RULER
	Higher Sparsity

	Comparison with Semi-structured Sparsity
	Sparse Attention Kernel Details
	Load-as-Compressed, Compute-as-Dense Pipeline
	KV Cache Management
	Decode Speed Evaluation

