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ABSTRACT

Mixture density networks (MDNs) are a natural choice to model multi-modal pre-
dictions for trajectory prediction or motion planning. However, MDNs are of-
ten difficult to train due to mode collapse and a need for careful initialization,
which becomes even more problematic when the number of mixture components
are strongly overestimated. To address this issue in motion planning problems,
we propose a pre-training scheme for MDNs called common sense initializa-
tion (CSI). Pre-training with CSI allows variety-encouraging optimization such
as Winner-Takes-All (WTA) to exploit the initialized weights during training, so
that the MDN can converge when the number of components are overestimated.
This paper presents empirical evidence for the effectiveness of CSI when applied
to motion planning of pedestrian agents in urban environments.

1 INTRODUCTION

Mixture density networks (MDNs) (Bishop, 1994)
are often difficult to train due to mode collapse
or a need for careful initialization (Makansi et al.,
2019; Zhou et al., 2020). These problems may
become even more severe when the true num-
ber of modes K∗ is unknown and the mixture
components are strongly overestimated, i.e., when
K∗ ≪ K. In the context of pedestrian mo-
tion planning, we propose a simple but effec-
tive pre-training scheme as common sense prior
for MDNs. More specifically, we propose Com-
mon Sense Initialization (CSI), which pre-trains
an MDN to output a probability distribution over
the next common sense states at a realistic dis-
tance, as depicted in Figure 1.

Figure 1: Given a current position st, we pre-
train an MDN to output a “common sense” prob-
ability distribution P (st+1|st), where common
sense states are equally likely to be explored,
while unsafe states are highly unlikely.

CSI is motivated by recent advances in pre-training methods for reinforcement learning such as
Parrot (Singh et al., 2020), which allows a policy to be adapted quickly to new tasks either from a
learned behavioral prior or from interpretable priors for trajectory prediction such as interpretable
trajectory trees (Shi et al., 2022), where a neural network refines rule-based “common sense” future
paths for multi-modal predictions. Complementing these works, we specifically address training
difficulties when using MDNs for multi-modal motion planning tasks, where the true number of
modes is unknown and interpretable common sense states exist. An advantage of our proposed pre-
training scheme is that in a behavior cloning setup fine-tuning an MDN with variety encouraging
losses such as Winner-Takes-All (WTA) (Guzman-Rivera et al., 2012; Cheng et al., 2023) or a
variety loss (Gupta et al., 2018; Zhou et al., 2022) can exploit the initialized model to converge
despite using a large number of components and reduce the risk of mode collapse.

We show the effectiveness of combining CSI with WTA for pedestrian motion planning, where a
mixture density network with a large overestimation of mixture components is trained with behavior
cloning in the grand central (GC) station dataset (Zhou et al., 2012).
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2 APPROACH

Common sense is a skill that helps humans navigate safely towards a goal in arbitrary environments.
Figure 1 shows how to model common sense navigation using an MDN. Common sense states do
not necessarily satisfy desired behavior in a navigation scenario, such as moving towards a goal, but
they encompass states that exclude dangerous situations. Given a current state st, an observation
ot, and a goal state sg (Figure 1 simplified to only include st), common sense induces a probability
distribution P (st+1|st, sg, ot) over possible next states st+1 that are safe. Let wk, µk, σk , 1 ≤
k ≤ K be K ∈ N mixture weights and components, x = (st, sg, ot) the current state, goal, and
observation. An MDN f approximates a probability distribution for the next state st+1 with:

P (st+1|x) =
∑
k

wk(x) · N (st+1|µk(x), σk(x)) (1)

For navigation scenarios, we propose common sense initialization (CSI), which pre-trains f , so that
the mixture weights and components follow common sense. More specifically, with the interpre-
tation that an agent can move in K possible directions (modes) and the mixture weight constraint∑

k wk = 1, all modes from the current state st are equally likely except for unsafe modes (for
instance, modes that would collide with the environment). For each µk, the target is one of k points
on a common sense circle around the current position st with a radius corresponding to the ground
truth distance to st+1, and each σk to a small number ϵ. Given a function safe(µk, ot) that returns 1
if the action µk is safe and 0 otherwise, we compute the mixture weight targets wk as follows:

Winit =

K∑
k

safe(µk, ot) (2) wk =

{
1

Winit
if safe(µk, ot) = 1

0 otherwise
(3)

We pre-train f with mean squared error on the common sense targets µk, σk, wk, initializing it with
common sense (CSI). Next, f is fine-tuned using WTA, which optimizes for the component nearest
to the target state that satisfies argmink||µk − st+1||2. Intuitively, this approach leverages the pre-
trained close-to-target mixture components from CSI, allowing WTA to focus on only updating the
weights wk, pushing the true target states to be more probable in f ’s induced distribution.

3 EXPERIMENTS AND CONCLUSION

We evaluate our approach on the grand cen-
tral station dataset (GC) (Zhou et al., 2012),
where we train an MDN for motion planning
with behavior cloning using WTA (details in
Appendix B) on the first 90% of all trajecto-
ries, and test on the remaining 10%. We use
the well-known average and final displace-
ment error (ADE/FDE) as evaluation met-
rics. Our baseline is an MDN with random
initialization and K∗ = 3 components.

Figure 2: Comparing CSI when using different num-
ber of components against random initialization.

Figure 2 compares CSI against random initialization (RI), while using a growing number of com-
ponents KOE ∈ [8, 18, 32]. We trained each network configuration five times to give an estimate of
the overall performance. Our results show that using CSI consistently improves performance that
gets close to the baseline K∗ = 3, despite using an unnecessarily large overestimation of the num-
ber of components. Our results indicate that WTA can exploit initialized CSI modes to consistently
improve ADE, while giving less significant improvements to FDE over all configurations.

Conclusion We show that CSI combined with variety-encouraging losses such as WTA improves
the performance of MDNs when the number of mixture components is overestimated in a behavior
cloning setup for pedestrian motion planning. We argue that our results have practical relevance
when the number of true modes K∗ of a motion planning problem cannot be determined and may
be strongly overestimated, i.e., when K∗ ≪ K.
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Figure 3: Our motion planner takes a semantic map, the current position, and the target position
as an input. The map is processed with a NiN-like architecture, where non-overlapping patches
are extracted first, which are afterward processed with a stack of 1x1 convolutions. Each patch
receives a positional embedding that corresponds to the distance and angle w.r.t. to the agent in
world coordinates. Using multi-head attention, the model can attend to the environment and the
outputs the next position in dependency to the current position, goal, and environment.

A PROBLEM STATEMENT

Given an agent at a starting position s0 = (x, y) and a goal position g = (xg, yg), we train a variant
of motion planning networks (Qureshi et al., 2019) ,f(·), to compute a sequence of positions that
lead the agent from s0 to g. At each timestep, the motion planner takes the current position st, the
goal position g, and a map observation ot as an input and predicts the next position st+1:

st+1 = f(st, g, ot) (4)

A motion plan is produced by recursively quering the motion planning network with the predicted
position:

s∗ = f∗(st, g, ot) (5)

where f∗ denotes a recursive application that stops after ⋆ steps. To not run for infinity, we specify
a maximum number of possible steps. When the agent reaches the goal before this number of steps,
i.e., if the distance of the agent to the goal is smaller than a threshold (||st+1 − g|| < ϵ), the planner
stops. If a ground truth plan for the given configuration is available, we set the maximum number of
motion planning steps to the same number of steps as the ground truth plan with a small margin of
extra steps. Otherwise, we set it to the largest number of steps recorded in the underlying dataset.

B MODEL DETAILS

Our architecture is shown in Figure 3. The agent’s current position and goal is encoded first with
an MLP to an embedding Q. To observe the environment, we implement an attention mechanism
related to the physical attention proposed by previous works (Sadeghian et al., 2019; Kosaraju et al.,
2019). We implement a multi-head attention mechanism between agent and map patches with rel-
ative positional encodings based on polar coordinates. More specifically, given a semantic image
of shape M ∈ RC×H×W , we encode n = (H//16) ∗ (W//16) non-overlapping patches with a
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Network-in-Network (NiN) like architecture (Lin et al., 2013). We obtain n patches with embed-
ding dimension e, i.e., p ∈ Rn×e. Afterward, we compute relative positional embeddings w.r.t. the
agents current position st in world coordinates as follows:

1. Transform the center of the pixel coordinates of each patch into world coordinates
pworld ∈ R2 using the homography matrix for the respective scene.

2. Transform the patch world coordinates to the agent’s frame of reference prel = pworld − st

3. Transform prel to polar coordinates to obtain distance d and angle φ from each patch to the
agent’s position, which we use as position encodings.

Afterward, the position encodings are added to the embeddings. Finally, cross attention is applied
between the embeddings and the agent embedding Q to obtain a map observation embedding Z.
Q is then concatenated with Z and passed to a final MLP. For multi-modal predictions, a mixture
density network is added after the final MLP layer which we use at the inference step to sample the
final prediction. Recursively querying this model with the current position, goal, and map results in
a motion plan.

Training Details. For multi-modal predictions, we use a mixture density network (Bishop, 1994)
as a decoder after the last MLP layer in our architecture shown in Figure B that has K mixture com-
ponents and train the whole model with behavior cloning and adopt the Winner-Takes-All (WTA)
loss (Guzman-Rivera et al., 2012; Cheng et al., 2023) with a soft-displacement error (Zhou et al.,
2022) as target probabilities. The model takes the map observation ot, the current position st, and
the goal g as an input, which resembles the architecture of motion planning networks (Qureshi et al.,
2019). However, our model differs from (Qureshi et al., 2019) as follows. First, we use a different
map observation model (see Figure 3) to attend to the environment. Second, we use an MDN as a
decoder to account for multi-modal predictions and instead of mean squared error. Third, we train
our model with WTA (Guzman-Rivera et al., 2012; Cheng et al., 2023) that encourages multi-modal
predictions:

k∗ = argmin
k∈K

||µk − st+1||2 (6)

Lreg = −log P (st+1|µk∗ , σk∗) (7)

Lcls =

K∑
k=1

−πkP (wk∗) (8)

πk =
exp(s⊤t+1µk)∑K
i exp(s⊤t+1µi)

(9)

where st+1 corresponds to the ground truth, πk to the soft-displacement error as target mixture
weights (Zhou et al., 2022; Cheng et al., 2023), and the final loss is L = Lreg + Lcls.

When using CSI, we pre-train the motion planning network for 250 epochs with a learning rate of 1e-
4 and a batch size of 2048. After CSI, we finetune the network for 200 epochs with a learning rate of
1e-5 and an aggressive exponential decay scheduler. When not using CSI, we use the same training
parameters of a 1e-5 learning rate, 200 epochs and an aggressive exponential decay scheduler to
compare the effect of using CSI against random initialization.

As parameters for our model, we use an embedding dimension of 512 for all layers, downsampling
factor of k=16 for the map, and a patch size of 16 for the observation model. The map is padded
to be divisible by 16. Furthermore, we annotated the map with three semantic classes: Free space,
obstacle, wall.

C COMMON SENSE INITIALIZATION

The target st+1 in our motion planning problem is an x, y coordinate position. Given the true target
st+1 the CSI targets for µk are calculated as follows and visualized in Figure 4. We first compute
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Figure 4: Common sense targets based on equidistant points in a specified fov towards front and
back

the distance d and angle φ from st = (xt, yt) to st+1 = (xt+1, yt+1) using a polar coordinate
transformation:

d =
√
(xt+1 − xt)2 + (yt+1 − yt)2 (10)

φ = atan2(yt+1 − yt, xt+1 − xt) (11)

We compute
k

2
equidistant common sense targets for the front and back in a field of view of

π

3
, i..e,

60◦ because we assume that a pedestrian does not move sideways.
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