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Abstract

Estimating the geographical range of a species
from sparse observations is a challenging and im-
portant geospatial prediction problem. Given a set
of locations where a species has been observed,
the goal is to build a model to predict whether
the species is present or absent at any location.
This problem has a long history in ecology, but
traditional methods struggle to take advantage
of emerging large-scale crowdsourced datasets
which can include tens of millions of records
for hundreds of thousands of species. In this
work, we use Spatial Implicit Neural Representa-
tions (SINRs) to jointly estimate the geographical
range of 47k species simultaneously. We find that
our approach scales gracefully, making increas-
ingly better predictions as we increase the number
of species and the amount of data per species
when training. To make this problem accessi-
ble to machine learning researchers, we provide
four new benchmarks that measure different as-
pects of species range estimation and spatial rep-
resentation learning. Using these benchmarks, we
demonstrate that noisy and biased crowdsourced
data can be combined with implicit neural repre-
sentations to approximate expert-developed range
maps for many species.

1. Introduction
We are currently observing a dramatic decline in global bio-
diversity, which has severe ramifications for natural resource
management, food security, and ecosystem services that are
crucial to human health (Watson et al., 2019; Rosenberg
et al., 2019). In order to take effective conservation action
we must understand species’ ranges, i.e. where they live.
However, we only have estimated ranges for a relatively
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small number of species in limited areas, many of which are
already out of date by the time they are released.

The range of a species is typically estimated through Species
Distribution Modeling (SDM) (Elith & Leathwick, 2009),
the process of using species observation records to develop a
statistical model for predicting whether a species is present
or absent at any location. With enough presence-absence
data (i.e. records of where a species has been confirmed to
be present and absent) this problem can be approached using
standard statistical learning methods (Beery et al., 2021).1

However, presence-absence data is scarce due to the diffi-
culty of verifying that a species is truly absent from an area.
Presence-only data (i.e. verified observation locations, with
no confirmed absences) is much more abundant as it is eas-
ier to collect. For instance, the community science platform
iNaturalist (iNa) has collected over 141M presence-only
observations to date across 429k species. Though presence-
only data is not without drawbacks (Hastie & Fithian, 2013),
it is important to develop methods that can take advantage
of this vast supply of data.

Deep learning is one of our best tools for making use of
large-scale datasets. Deep neural networks also have a key
advantage over many existing SDM methods because they
can jointly learn the distribution of many species in the same
model (Chen et al., 2017; Tang et al., 2018; Mac Aodha
et al., 2019). By learning representations that share in-
formation across species, the models can make improved
predictions (Chen et al., 2017). However, the majority of
current deep learning approaches need presence-absence
data for training, which prevents them from scaling beyond
the small number of species and regions for which sufficient
presence-absence data is available.

Our work makes the following contributions:
(i) We show that implicit neural representations trained with
noisy crowdsourced presence-only data can be used to esti-
mate dense species’ ranges. We call these models Spatial
Implicit Neural Representations (SINRs).2

1The term “presence-absence” should not be taken to convey
absolute certainty about whether a species is present or absent.
False absences (i.e. non-detections) and, to a lesser extent, false
presences are a serious concern in SDM (MacKenzie et al., 2002).

2We slightly abuse the terminology by using “SINR” to refer
to both the model and the representation it parameterizes.
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Figure 1. We show that sparse species observation data can be used to train Spatial Implicit Neural Representations (SINRs) which
are transferable to other geospatial tasks. (Left) Here we show sparse, presence-only, spatial observations for three toy species (red,
green, and blue). (Middle) The species observations are used to train a neural network that consists of a spatial feature encoder and
per-species presence predictors. (Right) We evaluate on three diverse tasks: (i) estimating species ranges, (ii) assisting image classifiers
using geographical range priors, and (iii) regressing geospatial features via our learned SINR.

(ii) We conduct a detailed investigation of loss functions for
learning from presence-only data, their scaling properties,
and the resulting geospatial representations.
(iii) We provide a suite of four geospatial benchmark tasks –
ranging from species mapping to fine-grained image classi-
fication – which will facilitate future research on spatially
sparse high-dimensional implicit neural representations,
large-scale SDM, and geospatial representation learning.

Training and evaluation code is available at:
https://github.com/elijahcole/sinr

2. Related Work
Species distribution modeling (SDM) refers to a set of
methods that aim to predict where (and sometimes when,
and in what quantities) species of interest are likely to be
found (Elith & Leathwick, 2009). The literature on SDM
is vast. Readers interested in an overview should consult
the review by Elith & Leathwick (2009) or the recent re-
view of SDM for computer scientists by Beery et al. (2021).
Note that we focus narrowly on the problem of predicting
the occurrence of a species at a location, i.e. we do not
consider more complex problems like trend or abundance
estimation (Potts & Elith, 2006).

Traditional approaches to SDM train conventional super-
vised learning models (e.g. logistic regressors (Pearce &
Ferrier, 2000), random forests (Cutler et al., 2007), etc.)
to learn a mapping between hand-selected sets of environ-
mental features (e.g. altitude, average rainfall, etc.) and
species presence or absence (Phillips et al., 2004; Elith et al.,
2006). Readers interested in these approaches should con-
sult Norberg et al. (2019); Valavi et al. (2021; 2022), and the
references therein. More recently, deep learning methods
have been introduced that instead jointly represent multi-
ple different species within the same model (Chen et al.,
2017; Botella et al., 2018b; Tang et al., 2018; Mac Aodha
et al., 2019; Teng et al., 2023). These models are typically
trained on crowdsourced data, which can introduce addi-
tional challenges and biases that need to be accounted for
during training (Fink et al., 2010; Chen & Gomes, 2019;

Johnston et al., 2020; Botella et al., 2021). We build on the
work of Mac Aodha et al. (2019), who proposed a neural
network approach that forgoes the need for environmen-
tal features (as used by e.g. Botella et al. (2018b); Tang
et al. (2018)) by learning to predict species presence from
geographical location alone.

The problem of joint SDM with presence-only data can
be viewed as an instance of multi-label classification with
incomplete supervision. In particular, it is an example of
Single Positive Multi-Label (SPML) learning (Cole et al.,
2021; Verelst et al., 2023; Zhou et al., 2022). The goal
is to train a model that is capable of making multi-label
predictions at test time, despite having only ever observed
one positive label per training instance (i.e. no confirmed
negative training labels). Our work connects the SPML
literature and SDM literature, and sets up large-scale joint
species distribution modeling as a challenging real-world
SPML task. This setting presents significant new difficulties
for SPML, which has largely been limited to artificial label
bias patterns (Arroyo et al., 2023) and relatively small label
spaces (< 100 categories). Some SPML methods such as
ROLE (Cole et al., 2021) are not computationally viable
when the label space is large. One of our baselines is based
on the SPML method of Zhou et al. (2022), which is scal-
able and obtains nearly state-of-the-art performance on the
standard SPML benchmarks (Cole et al., 2021), but it is not
a top performer on our new benchmark tasks.

Our work is related to the growing number of papers that
use coordinate neural networks for implicitly representing
images (Tancik et al., 2020) and 3D scenes (Sitzmann et al.,
2019; Mildenhall et al., 2020). There are many design
choices in these methods that are being actively studied,
including the impact of the activation functions in the net-
work (Sitzmann et al., 2019; Ramasinghe & Lucey, 2022)
and the effect of different input encodings (Tancik et al.,
2020; Zheng et al., 2022). In most research on implicit
neural representations, there is an obvious choice of training
objective, e.g. mean squared error between the predictions
and the data. In the context of presence-only species estima-
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tion, this choice is less clear. We systematically investigate
this question in our experiments. Our benchmark also facili-
tates investigations of implicit neural representations with
high-dimensional output spaces and sparse supervision.

Quantifying the performance of SDM at scale is notoriously
difficult due to the fact that we lack confirmed presence-
absence data for most species and locations (Beery et al.,
2021). One approach is to evaluate performance on a small
set of species from limited geographical regions where
it is feasible to collect presence-absence data, as done in
e.g. Potts & Elith (2006); Norberg et al. (2019); Valavi et al.
(2022). Two of our evaluation tasks are larger-scale versions
of this idea, in which we compare the performance of our
models against expert range maps. An alternative evaluation
approach is to measure the performance on a related “proxy”
task. For example, there have been a number of works that
use models trained for species range estimation to assist
deep image classifiers (Berg et al., 2014; Tang et al., 2015;
Mac Aodha et al., 2019; Chu et al., 2019; Mai et al., 2020;
Terry et al., 2020; Skreta et al., 2020; Yang et al., 2022). By
using images from platforms like iNaturalist, we can evalu-
ate different range estimation methods on the task of aiding
fine-grained image classification across tens of thousands
of species. Finally, we also evaluate the spatial represen-
tations learned by our models via transfer learning, using
them as inputs for a set of geospatial regression tasks. These
complementary benchmark tasks capture different aspects
of performance, and provide a starting point for large-scale
SDM evaluation. See Figure 1 for an overview of our tasks.

3. Methods
3.1. Preliminaries

Problem statement. Let x = [lon, lat] denote a geograph-
ical location (i.e. longitude and latitude). Let y ∈ {0, 1}S
denote the true presence (1) or absence (0) of S different
species at location x. Following Cole et al. (2021), we in-
troduce z ∈ {0, 1,∅}S to represent our observed data at x,
where zj = 1 if species j is present, zj = 0 if species j is
absent, and zj = ∅ if we do not know whether species j is
present or absent. Our goal is to develop a model that pro-
duces an estimate of y at any location x over some spatial
domain X , given observed data {(xi, zi)}Ni=1. We parame-
terize this model as ŷ = hϕ(fθ(x)), where fθ : X → Rk is
a location encoder with parameters θ and hϕ : Rk → [0, 1]S

is a multi-label classifier with parameters ϕ. The prediction
ŷ ∈ [0, 1]S is our estimate of how likely each species is to
be present at x.

Intuitively, the location encoder fθ provides a representa-
tion of geographical space that is used by the multi-label
classifier hϕ to predict species presence at each location. If
θ is fixed or if f is a differentiable function of θ, then we

can use standard methods like stochastic gradient descent to
approximately solve

θ∗, ϕ∗ = argminθ,ϕ
1

N

N∑
i=1

L(ŷi, zi) (1)

where ŷi = hϕ(fθ(xi)) and L is a suitably chosen loss
function. Once trained, we say that hϕ ◦ fθ has learned
a Spatial Implicit Neural Representation (SINR) for the
distribution of each species in the training set. Along the
way we can learn fθ, which produces a representation for
any location on earth. See Figure 3 for visualizations of
some of these geospatial representations.

Input encoding. Each species observation is associated
with spatial coordinates x = [lon, lat]. In practice, we
rescale these values so that lon, lat ∈ [−1, 1] and, following
Mac Aodha et al. (2019), we guard against boundary effects
using a sinusoidal encoding. The results is an input vector

x = [sin(π lon), cos(π lon), sin(π lat), cos(π lat)] . (2)

Alternative input encodings for related coordinate networks
have been explored in the existing literature (Mai et al.,
2020; Tancik et al., 2020; Mai et al., 2022; Zheng et al.,
2022). This choice is orthogonal to the losses we explore,
so we leave the evaluation of input encodings to future work.

Implicit neural representations. Traditionally, represen-
tation learning aims to transform complex objects (e.g. im-
ages, text) into simpler objects (e.g. low-dimensional vec-
tors) that facilitate downstream tasks like classification or
regression (Goodfellow et al., 2016). Implicit neural repre-
sentations offer a different perspective, in which a signal is
represented by a neural network that maps the signal domain
(e.g. R for audio, R2 for images) to the signal values (Sitz-
mann et al., 2019; Tancik et al., 2020). In this work we learn
implicit neural representations from a large collection of
crowdsourced data containing observations of many species.
This yields an implicit neural representation for the geospa-
tial distribution of each species, as well as a representation
for any location on earth.

Presence-absence vs. presence-only data. Species obser-
vation datasets come in two varieties: (i) Presence-absence
data consists of locations where a species has been observed
to be present and locations where it has been confirmed to be
absent. That is, we say we have presence-absence data for
species j if |{zi : zij = 0}| > 0 and |{zi : zij = 1}| > 0.
Unfortunately, presence-absence data is costly to obtain at
scale because confirming absence requires skilled observers
to exhaustively search an area. (ii) Presence-only data is
easier to acquire and thus more abundant because absences
are not collected, i.e. zij ∈ {1,∅}, for i ∈ [N ] and j ∈ [S].
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Figure 2. Illustration of the data used by three loss functions from
Section 3.2. For each loss, we visualize the targets that the network
is trained to predict. Each loss can be broken into two parts:
one part that updates the network’s predictions at the location
of a training example (data location) and one part that updates
the network’s predictions at another location chosen randomly
(random location). Each loss has access to one confirmed positive
label (bold boxes). The rest of the labels are unobserved (non-
bold boxes), and the losses make different, imperfect, assumptions
about those unobserved labels.

3.2. Learning from Large-Scale Presence-Only Data

In the context of training SPML image classifiers, a simple
but effective approach is to assume that unobserved labels
are negative (Cole et al., 2021). This approach is based on a
probabilistic argument: since natural images tend to contain
a small number of categories compared to the size of the
label set, the vast majority of the labels will be negative.
This is also true for species distribution modeling. Given
an arbitrary location and a large set of candidate species,
nearly all of them will be absent. In this section we describe
several simple and scalable loss functions based on this idea.
We illustrate three of our losses in Figure 2.

“Assume negative” loss (same species, different location).
As confirmed absences are not available in the presence-only
setting, a common approach is to use randomly generated
“pseudo-negatives” (Phillips et al., 2009). This first loss pairs
each observation of a species with a pseudo-negative for
that species at another location chosen uniformly at random:

LAN−SSDL(ŷ, z) =− 1

npos

S∑
j=1

1[zj=1][log(ŷj) (3)

+ log(1− ŷ′j)]

where ŷ′ = hϕ(fθ(r)) with r ∼ Uniform(X ) and npos =∑S
j=1 1[zj=1]. This approach generates pseudo-negatives

(i.e. random absences) across the globe, but many of them
are likely to be “easy” because they are far from the true
species range.

“Assume negative” loss (same location, different species).
This loss pairs each observation of a species with a pseudo-

negative at the same location for a different species:

LAN−SLDS(ŷ, z) = − 1

npos

S∑
j=1

1[zj=1][log(ŷj) (4)

+ log(1− ŷj′)]

where j′ ∼ Uniform({j : zj ̸= 1}). Intuitively, this ap-
proach generates pseudo-negatives that are aligned with the
spatial distribution of the observed data.

Full “assume negative” loss. The previous two losses are
inefficient in the sense that they do not use all of the entries
in ŷ. We can combine the pseudo-negative sampling strate-
gies of LAN−SSDL and LAN−SLDS and use all available
predictions as follows:

LAN−full(ŷ, z) = − 1

S

S∑
j=1

[1[zj=1]λ log(ŷj) (5)

+ 1[zj ̸=1] log(1− ŷj) + log(1− ŷ′j)
]

where ŷ′ = hϕ(fθ(r)) with r ∼ Unif(X ). The hyperpa-
rameter λ > 0 can be used to prevent the negative labels
from dominating the loss. This is equivalent to the loss from
Mac Aodha et al. (2019), but without their user modeling
terms. Their version (including user modeling terms) is
LGP in Table 1 (“GP” = “Geo Prior”).

Maximum entropy loss. Zhou et al. (2022) recently pro-
posed a simple but effective and scalable technique for
SPML image classification. Their approach encourages
predictions for unobserved labels to maximize entropy in-
stead of forcing them to zero like the “assume negative”
approaches we have been discussing. We can apply this idea
to LAN−SSDL, LAN−SLDS, and LAN−full by replacing all
terms of the form “− log(1 − p)” with terms of the form
“H(p)”, where H(p) = −(p log(p)+ (1−p) log(1−p)) is
the Bernoulli entropy. We write these “maximum entropy”
(ME) variants as LME−SSDL, LME−SLDS, and LME−full.
(Zhou et al. (2022) also includes a pseudo-labeling compo-
nent, but we omit this because Zhou et al. (2022) shows that
it provides only a small improvement.)

4. Experiments
In this section we investigate the performance of SINR
models on four species and environmental prediction tasks.

4.1. Models

As described in Section 3.1, our SINR models consist of a
location encoder fθ and a multi-label classifier hϕ which
produce a vector of predictions ŷ = hϕ(fθ(x)) for a loca-
tion x. The location encoder fθ is implemented as the fully
connected neural network shown in Figure A3. We imple-
ment the multi-label classifier hϕ as a single fully connected
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Figure 3. Visualization of the 256-dimensional features from learned location encoders fθ projected to three dimensions using Independent
Component Analysis (ICA). All models use the LAN−full loss and take coordinates as input. (Left) This corresponds to a SINR model
trained with a maximum of 10 examples per class. The features are smooth and do not appear to encode much high frequency spatial
information. (Right) In contrast, the SINR model trained with a maximum of 1000 examples per class contains more high frequency
information. The increase in training data appears to enable this model to better encode spatially varying environmental properties. Note,
ICA is performed independently per-model, so similar colors do not indicate correspondence between the two images.

layer with sigmoid activations. For fair companions, we
follow a similar architecture to Mac Aodha et al. (2019).
Full implementation details can be found in Appendix C.

Besides SINR, we study two other model types. The first
is logistic regression (Pearce & Ferrier, 2000), in which the
location encoder fθ is replaced with the identity function
and hϕ is unchanged. Logistic regression is commonly used
for SDM in the ecology literature. It also has the virtue of
being highly scalable since it can be trained using GPU-
accelerated batch-based optimization. The second type of
non-SINR model is the discretized grid model. These mod-
els do not use a location encoder at all, but instead make
predictions based on binning the training data (Berg et al.,
2014). Full details for these models can be found in Ap-
pendix C. These baselines allow us to quantify the impor-
tance of the deep location encoder in our SINR models.

4.2. Training Data

We train our models on presence-only species observation
data obtained from the community science platform iNat-
uralist (iNa). The training set consists of 35.5 million ob-
servations covering 47,375 species observed prior to 2022.
Each species observation includes the geographical coor-
dinate where the species was observed. We only included
species in the training set if they had at least 50 observations.
Some species are far more common than others, and thus
the dataset is heavily imbalanced (see Figure A5). Later
we use this data in its entirety during training (“All”), with
different maximum observations per class (“X / Class”), or
with different subsets of classes. See Appendix D for more
details on the training dataset.

4.3. Evaluation Tasks and Metrics

We propose four tasks for evaluating large-scale species
range estimation models. We give brief descriptions here,
and provide further details in Appendix E.

S&T: eBird Status and Trends. This task quantifies
the agreement between our presence-only predictions and
expert-derived range maps from the eBird Status & Trends
dataset (Fink et al., 2020), covering 535 bird species with a
focus on North America. The spatial extent of this task is vi-
sualized in Figure A6. Performance is measured using mean
average precision (MAP), i.e. computing the per-species
average precision (AP) and averaging across species.

IUCN: Expert Range Maps. This task compares our pre-
dictions against expert range maps from the International
Union for Conservation of Nature (IUCN) Red List (IUC).
Unlike the bird-centric S&T, this task covers 2,418 species
from different taxonomic groups, including birds, from all
over the world. The spatial extent of this task is visualized
in Figure A6. Performance is measured using MAP.

Geo Prior: Geographical Priors for Image Classification.
This task measures the utility of our range maps as pri-
ors for fine-grained image classification (Berg et al., 2014;
Mac Aodha et al., 2019). As illustrated in Figure 1, we com-
bine the output of an image classifier with a range estimation
model and measure the improvement in classification ac-
curacy. The intuition is that an accurate range model can
downweight the probability of a species if it is not typically
found at the location where the image was taken. For this
task we collect 282,974 images from iNaturalist, covering
39,444 species from our training set. Each image is accom-
panied by the latitude and longitude at which the image was
taken. The performance metric for this task (“∆ Top-1”) is
the change in image classifier top-1 accuracy when using
our range predictions as a geographical prior. Note that the
geographical prior is applied to the classifier at test time –
the image classifier is not trained with any geographical in-
formation. A positive value indicates that the prior improves
classifier performance. Unlike S&T and IUCN, this is an
indirect evaluation of range map quality since we assess
how useful the range predictions are for a downstream task.
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Table 1. Results for four geospatial tasks: S&T (eBird Status & Trends species mapping), IUCN (IUCN species mapping), Geo Prior
(fine-grained image classification with a geographical prior), and Geo Feature (geographical feature regression). Tasks and metrics are
defined in Section 4.3.We assess performance as a function of the loss function and the amount of training data (“# / Class”). Model
inputs may be coordinates (“Coords.”), environmental features (“Env.”) or both (“Env. + Coords.”). The logistic regression (“LR”) and
“Best Discretized Grid” baselines do not have an entry for the Geo Feature task as they do not learn a location encoder. We also do not
evaluate models tagged with “Env.” on the Geo Feature task because they are trained on closely related environmental features. Higher
values are better for all tasks.

S&T IUCN Geo Prior Geo Feature
Loss Model Type # / Class (MAP) (MAP) (∆ Top-1) (Mean R2)
Baselines:
N/A Best Discretized Grid (Berg et al., 2014) All 61.56 37.13 +4.1 -
LAN−full LR (Pearce & Ferrier, 2000) - Coords. 1000 26.41 0.93 -0.6 -
LAN−full LR (Pearce & Ferrier, 2000) - Env. 1000 32.91 1.23 -5.6 -
LAN−full LR (Pearce & Ferrier, 2000) - Env. + Coords. 1000 35.42 1.11 -3.9 -
LME−SSDL (Zhou et al., 2022) SINR - Coords. 1000 62.74 42.55 +1.6 0.726
LME−SLDS (Zhou et al., 2022) SINR - Coords. 1000 74.37 32.22 +2.1 0.734
LME−full (Zhou et al., 2022) SINR - Coords. 1000 73.61 58.60 +1.5 0.749
LGP (Mac Aodha et al., 2019) SINR - Coords. 1000 73.14 59.51 +5.2 0.724

LAN−SSDL SINR - Coords. 10 51.12 27.63 +3.4 0.631
LAN−SSDL SINR - Coords. 100 63.98 47.42 +4.7 0.721
LAN−SSDL SINR - Coords. 1000 66.99 53.47 +4.9 0.744
LAN−SSDL SINR - Coords. All 68.36 55.75 +4.8 0.739
LAN−SLDS SINR - Coords. 10 63.73 27.14 +4.6 0.693
LAN−SLDS SINR - Coords. 100 72.18 38.40 +6.1 0.731
LAN−SLDS SINR - Coords. 1000 76.19 42.26 +6.2 0.739
LAN−SLDS SINR - Coords. All 75.78 41.11 +6.1 0.748
LAN−full SINR - Coords. 10 65.36 49.02 +4.3 0.712
LAN−full SINR - Coords. 100 72.82 62.00 +6.6 0.736
LAN−full SINR - Coords. 1000 77.15 65.84 +6.1 0.755
LAN−full SINR - Coords. All 77.94 65.59 +5.0 0.759
LAN−full SINR - Env. 10 60.10 41.68 +3.8 -
LAN−full SINR - Env. 100 74.54 66.64 +6.7 -
LAN−full SINR - Env. 1000 79.65 70.54 +6.4 -
LAN−full SINR - Env. All 80.54 69.25 +5.3 -
LAN−full SINR - Env. + Coords. 10 67.12 62.99 +4.7 -
LAN−full SINR - Env. + Coords. 100 76.88 74.49 +6.8 -
LAN−full SINR - Env. + Coords. 1000 80.48 76.07 +6.5 -
LAN−full SINR - Env. + Coords. All 81.39 74.67 +5.5 -

Geo Feature: Environmental Representation Learning.
Instead of evaluating the species predictions, this transfer
learning task evaluates the quality of the underlying geospa-
tial representation learned by a SINR. The task is to predict
nine different geospatial characteristics of the environment,
e.g. above-ground carbon, elevation, etc. First, we use the
location encoder fθ to extract features for a grid of evenly
spaced locations across the contiguous United States. After
splitting the locations into train and test data, we use ridge
regression to predict the geospatial characteristics from the
extracted features. Performance is evaluated using the coef-
ficient of determination R2 on the test set, averaged across
the nine geospatial characteristics.

4.4. Results

Which loss is best? No loss is best in every setting we con-
sider. However, some losses do tend to perform better than
others. In Table 1 we observe that, when we control for input

type and the amount of training data, LAN−full outperforms
LAN−SSDL and LAN−SLDS most of the time. LAN−full has
a decisive advantage on the S&T and IUCN tasks and a con-
sistent but small advantage on the Geo Feature task. Both
LAN−full and LAN−SLDS perform well on the Geo Prior
task, significantly outperforming LAN−SSDL. We note that
LAN−full is a simplified version of LGP from Mac Aodha
et al. (2019), but LAN−full outperforms LGP on every task.

Pseudo-negatives that follow the data distribution are
usually better. LAN−SSDL and LAN−SLDS differ only in
the fact that LAN−SSDL samples pseudo-negatives from ran-
dom locations while LAN−SLDS samples pseudo-negatives
from data locations (see Figure 2). In Table 1 we see
that LAN−SLDS outperforms LAN−SSDL for all tasks except
IUCN. This could be due to the fact that some IUCN species
have ranges far from areas that are well-sampled by iNatu-
ralist. As we can see in Figure A2 (Black Oystercatcher),
LAN−SSDL can behave poorly in areas with little training
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Figure 4. Results for the S&T and IUCN tasks. All models are
trained with 1000 examples per class using the LAN−full loss. We
compare logistic regression (“LR”) models against SINR models,
using either coordinates (C), environmental covariates (E), or both
(C+E) as inputs. These values can also be found in Table 1.

data. This highlights the importance of using diverse tasks
to study range estimation methods.

Implicit neural representations significantly improve per-
formance. We can assess the impact of the deep location
encoder by comparing SINR and LR in models Table 1. For
instance, if we use the LAN−full loss with 1000 examples
per class and coordinates as input, SINR outperforms LR by
over 50 MAP on the S&T task. Both methods use the same
inputs and training loss – the only difference is that SINR
uses a deep location encoder while LR does not. Figure 4
shows that same pattern holds whether we use coordinates,
environmental features, or both as inputs. For each input
type, a deep location encoder provides significant benefits.

Environmental features are not necessary for good per-
formance. In Figure 4 we show the S&T and IUCN per-
formance of different models trained with coordinates only,
environmental features only, or both. We see that SINR mod-
els trained with coordinates perform nearly as well as SINR
models trained with environmental features. For the SINR
models in Figure 4, coordinates are 97% as good as environ-
mental features for the S&T task, 93% as good for the IUCN
task, and 95% as good for the Geo Prior task. This suggests
that SINRs can successfully use sparse presence-only data
to learn about the environment, so that using environmental
features as input provides only a marginal benefit.

Coordinates and environmental features are complemen-
tary. Figure 4 shows that it is better to use the concatenation
of coordinates and environmental features than it is to use
either coordinates or environmental features alone. This is
true for LR and SINR. This indicates that the coordinates
and environmental features are carrying some complemen-
tary information. However, as we discuss in Appendix B.2,
environmental features introduce an additional layer of com-
plexity compared to models that use only coordinates.

Joint learning across categories is beneficial, but more
data is better. In Figure 5 we study the effect of the amount
of training data on performance for the S&T task. We first
note that, unsurprisingly, increasing the number of training
examples per species reliably and significantly improves

S&T S&T
+4k

S&T
+8k

S&T
+16k

S&T
+24k

All

Training Species

65

70

75

M
AP 10 / Class

100 / Class
1000 / Class

Figure 5. S&T task performance with LAN−full as a function of
the number of training examples per class (i.e. species) and number
of classes. The horizontal axis gives the set of species used for
training. “S&T” indicates that we only train on the 535 species
in the S&T task. For “S&T + X” we add in X species chosen
uniformly at random. For “All” we train on all 47k species. Note
that the “10 / Class” point for “S&T” is trained with a higher
learning rate than usual (5e− 3 instead of 5e− 4) due to the small
number of training examples per epoch. The values for “All” are
also present in Table 1. All models use coordinates as input.

performance. One possible mechanism for this is suggested
by Figure 3, which shows a more spatially detailed represen-
tation emerging with more training data. More interestingly,
Figure 5 also shows that adding training data for additional
species (which are not evaluated at test time) improves per-
formance as well. That is, the model can better predict the
distributions of the S&T birds by also learning the distribu-
tions of other birds, plants, insects, etc. Intuitively, it seems
reasonable that training on more species could lead to a
richer and more useful geospatial representation. However,
the direct benefit of additional training data for the species
of interest is far larger. If we were given a fixed budget of
training examples to allocate among species as we wished,
we should prefer to have a larger number of training ex-
amples per species (instead of fewer training examples per
species, but spread across a greater number of species).

Low-shot performance is surprisingly good. In Table 1 we
see that a SINR trained with LAN−full and only 10 examples
per category (i.e. ∼1% of the training data) beats the “Best
Discretized Grid” baseline (which uses all of the training
data) on every task. SINRs seem to be capable of capturing
general spatial patterns using relatively little data. While
this is encouraging, we expect that more data is necessary
to capture fine detail as suggested by Figure 3 and Figure 7.

How are our tasks related? In this work we study four
spatial prediction tasks. This tasks differ in their spatial do-
mains, evaluation metrics, and categories of interest, but it is
reasonable to wonder to what extent they may be related. In
Figure 6 we show the pairwise correlations between scores
on our tasks. Some tasks are highly correlated (e.g. S&T
and Geo Features, 0.92) while others are not (e.g. IUCN
and Geo Prior, 0.39).
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Figure 6. Performance correlations across our four tasks: S&T,
IUCN, Geo Prior (GP), and Geo Feature (GF). Values are Pearson
product-moment correlation coefficients. The correlations are
computed across 12 SINR models: LAN−SSDL, LAN−SLDS, and
LAN−full for 10, 100, 1000, and All training examples per class.
All models use coordinates as input.

Imbalance hurts performance, but not too much. In
Table 1 we notice that a SINR trained with all of the training
data often performs worse than a SINR trained on up to 1000
examples per class. This pattern is clearest for the IUCN and
Geo Prior tasks. Capping the number of training examples
per class reduces the amount of training data, but it also
reduces class imbalance in the training set (some categories
have as many as ∼ 105 training examples). It seems that the
benefit of reducing class imbalance outweighs the benefit
of additional training data in these cases. However, it is
important to keep in mind that the performance drops we
are discussing are small. For instance, for a SINR trained
with LAN−full and coordinates as input, switching from
1000 training examples to all of the training data changes
performance by -0.79 MAP for the S&T task, -0.25 MAP
for the IUCN task, -1.1 ∆ Top-1 for the Geo Prior task,
and +0.004 for the Geo Feature task. Given the extreme
imbalance in the training set and the fact that we do not
explicitly handle class imbalance during training, it may be
surprising that the performance drops are not larger.

Loss function rankings may not generalize across do-
mains. The presence-only SDM problem in this work and
the single positive image classification problem in Cole et al.
(2021) are both SPML problems. Despite this formal equiv-
alence, it does not seem that the best methods for SPML
image classification are also the best methods for presence-
only SDM. Zhou et al. (2022) show that their “maximum
entropy” loss performs much better than the “assume nega-
tive” loss across a number of image classification datasets.
However, all of the “maximum entropy” losses in Table 1
(LME−SSDL, LME−SLDS, LME−full) underperform their
“assume negative” counterparts (LAN−SSDL, LAN−SLDS,
LAN−full). Thus, the benchmarks in this paper are comple-
mentary to those in Cole et al. (2021) and may be useful in
developing a more holistic understanding of SPML learning.

4.5. Limitations
It is important to be aware of the limitations associated
with our analysis. As noted, the training set is heavily
imbalanced, both in terms of the species themselves and
where the data was collected. In practice, some of the most
biodiverse regions are underrepresented. This is partially
because some species are more common and thus more
likely to be observed than others by iNaturalist users. We
do not explicitly deal with species imbalance in the training
data, other than by showing that the ranking of methods
does not significantly vary even when the training data for
each species is capped to the same upper limit (see Table 1).

Reliably evaluating the performance of SDMs for many
species and locations is a long standing challenge. To ad-
dress this issue, we present a suite of complementary bench-
marks that attempt to evaluate different facets of this spatial
prediction problem. However, obtaining ground truth range
data for thousands of species remains very difficult. While
we believe our benchmarks to be a significant step forward,
they are likely to have blind spots, e.g. they are limited to
well-described species and can contain inaccuracies.

Finally, care should be taken before making conservation
decisions based on the outputs of models such as the ones
presented here. Our goal in this work is to demonstrate the
promise of large-scale representation learning for species
distribution modeling. Our models have not been calibrated
or validated beyond the experiments illustrated above.

5. Conclusion
We explored the problem of species range mapping through
the lens of learning spatial implicit neural representations
(SINRs). In doing so, we connected recent work on im-
plicit coordinate networks and learning multi-label classi-
fiers from limited supervision. We hope our contributions
encourage more machine learning researchers to work on
this important problem. While the initial results are encour-
aging, there are many avenues for future work. For example,
our models make no use of time (Mac Aodha et al., 2019),
do not account for spatial bias (Chen & Gomes, 2019), and
have no inductive biases for encoding spatially varying sig-
nals (Ramasinghe & Lucey, 2022).
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Figure 7. Visualization of SINR predictions for Wood Thrush when varying the amount of training data (rows) for different loss functions
(columns). Model predictions are generated at the centroid of the rendered hexagons for a coarse H3 grid (resolution three), signifying
locations where we can evaluate the model outputs for the S&T task. We convert the predictions to binary values using the threshold that
maximizes the F1 score on the S&T data. This is done for each configuration independently. In practice this threshold would be chosen by
a practitioner to meet particular project requirements. A model that matches the S&T task exactly would show only green and light grey
hexagons. All models improve their range maps when given access to more data, as expected. LAN−SSDL overestimates the western
range extent and misses the southern extent with few examples, but refines these extents with additional data. LAN−full starts off with
most of the range covered (few “False Negative” hexagons) and proceeds to tighten the boundaries with more data. The range predicted
by LAN−SLDS is somewhere in between. All models use coordinates as input.
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R. O., Zimmermann, N. E., and Elith, J. What do we gain
from simplicity versus complexity in species distribution
models? Ecography, 37(12):1267–1281, 2014.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. In ECCV,
2020.

Norberg, A., Abrego, N., Blanchet, F. G., Adler, F. R.,
Anderson, B. J., Anttila, J., Araújo, M. B., Dallas, T.,
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Appendix
A. Additional Results
A.1. How much does performance vary when we re-train a SINR?

The goal of this section is to provide a sense for how much variance in the performance of a SINR is due to randomness
in the training process. We show S&T results for multiple independently trained SINRs in Figure A1. First, we observe
that (as expected) performance varies more when training on 10 examples per class than it does when training on 100 or
1000 examples per class. Second, we note that deviation from the mean is typically less than 0.5 MAP and always less than
1.0 MAP. This provides some context for understanding whether a difference between two models is likely to be “real” or
merely due to randomness.

10 100 1000
# / Class

1.0

0.5

0.0

0.5
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M
AP

Figure A1. S&T results for SINRs trained with the LAN−full loss and varying amounts of training data. For each training data level, we
show the mean-subtracted performance for 5 independent training runs. For this figure, the training examples selected for each class are
re-sampled for each run. Thus, the randomness we see in this figure combines the randomness due to retraining and the randomness
due to training data selection. Deviation from the mean is typically less the 0.5 MAP, and is always less than 1.0 MAP. All models use
coordinates as input.

A.2. Additional Qualitative Results

To build some intuition for the behavior of LAN−SSDL, LAN−SLDS, and LAN−full, we compare these losses on three species
that are known to have interesting ranges in Figure A2.

B. Additional Discussion
B.1. How do the benchmark tasks proposed in this paper compare to existing SDM benchmarks?

Presence-only SDM is notoriously tricky to evaluate (Beery et al., 2021), and there are few public benchmark datasets
available for the task. Here we will discuss the two most relevant lines of prior work that have approached this evaluation
problem (one from the ecology community and one from the machine learning community), and discuss where our
benchmark is similar and different.

To the best of our knowledge, Elith et al. (2006) was the first attempt to systematically compare presence-only SDM
algorithms across many species and locations. That work compared 16 SDM algorithms on a collection of taxonomically-
specific datasets from 6 different regions, covering a total of 226 species. Presence-only data was used for training and
presence-absence data was used for evaluation. Unfortunately the data was not made publicly available until Elith et al.
(2020). There are two main issues with this benchmark. First, the benchmark is not suitable for studying large-scale joint
SDM. It has a small number of species overall, and there are at most 54 covered in any region. Second, the species in the
dataset are anonymized. This makes it impossible to use their dataset to study large-scale SDM, because we cannot increase
the size of their training with external data nor can we evaluate our trained models on their test data.
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Figure A2. Loss function comparison (columns) for three different species of birds (rows). All models were trained with 1000 examples
per class. See Figure 7 for an explanation of the plots. These species were chosen for visualization because their ranges have interesting
complementary properties. (Top Row) Barn Swallow is a species that occurs across the globe. (Middle Row) Blue Rock-Thrush is a
species whose range goes from the data rich Western Palearctic biogeographic realm, through a data sparse area, and back to a more data
rich area of eastern Asia. (Bottom Row) Black Oystercatcher is a species whose range hugs the west coast of the United States. Unlike in
other visualizations, these maps for Black Oystercatcher do not use a mask to filter out predictions from non-land regions. Here, we
specifically wanted to see if the models learned to follow the coastline. We observe that LAN−SLDS incorrectly expands the range into the
Pacific. All models use coordinates as input.

Another line of work comes from the GeoLifeCLEF series of datasets and competitions (Botella et al., 2018a; 2019; Deneu
et al., 2020; Cole et al., 2020; Lorieul et al., 2021; 2022). These benchmarks represent an attempt to scale up presence-only
SDM, with the 2022 dataset covering 17k species with 1.6M species observations the U.S. and France. As in our benchmark,
all of their training data is drawn from community science projects. The primary limitation of the GeoLifeCLEF benchmarks
is that they use spatially biased presence-only data at test time, evaluating the problem as an information retrieval task
instead of a spatial prediction task.

Our benchmark can be viewed as a significant expansion of the GeoLifeCLEF line of work. Instead of being geographically
limited to France and the U.S., we allow data from anywhere in the world. (See Figure A6 for a visualization of the
spatial coverage of the S&T and IUCN tasks.) Instead of evaluating with presence-only data, we use presence-absence data
like Elith et al. (2020). However, unlike Elith et al. (2020), we work at a large scale that allows us to study data scaling
in SDM. Our indirect evaluation tasks (Geo Prior and Geo Feature) add complementary dimensions to presence-absence
evaluation, and have no counterpart in Cole et al. (2020) or Elith et al. (2020).

B.2. Environmental Covariates vs. Coordinates

One important characteristic of any SDM is whether or not it is spatially explicit. Spatially explicit SDMs include geospatial
coordinates as part of the model input (Domisch et al., 2019). Traditional covariate-based SDMs include only environmental
features (e.g. altitude, distance to roads, average temperature, etc.) in the input (Elith & Leathwick, 2009).

Covariate-based SDMs are often understood to reflect habitat suitability, because they learn a relationship between
environmental characteristics and observed species occurrence patterns. A covariate-based SDM will make the same
predictions for all locations with same covariates, even if those locations are on different continents. Furthermore, covariates
sets must be selected by hand and are often limited in their spatial resolution and coverage.

By contrast, spatially explicit SDMs can model the fact that a species may be present in one location and absent in another,
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even if those two locations have similar characteristics. However, spatially explicit models are unlikely to generalize to
locations that are spatially distant from the training data – such locations are simply out of distribution.

SINRs trained with coordinates are spatially explicit, so our goal is not to learn from data in one location and extrapolate
to distant locations. Instead, our goal is to use abundant (but noisy and biased) species observation data to approximate
high-quality expert range maps. Our locations of interest are the same during training and testing. The difference is the
training data source and quality. See Merow et al. (2014) for a more nuanced discussion of extrapolation vs. interpolation
and the role of model complexity in SDM.

B.3. The Role of Time

Some species are immobile (e.g. trees), while others (e.g. birds) may occupy different areas at different times of the year.
For this reason, there has long been interest in the temporal dynamics of species distributions (Collins & Glenn, 1991;
Guisan & Rahbek, 2011). However, traditional SDMs use environmental features as input, which seldom include temporal
structure (Elith et al., 2020; Norberg et al., 2019). For instance, the popular WorldClim bioclimatic variables used in many
SDM papers are non-temporal (Hijmans et al., 2005). It is therefore not unusual for papers on SDM to make no explicit
considerations for temporal information. Similarly, in this work we do not use temporal information during training or
evaluation. However, we consider this to be an interesting area for future work.

C. Implementation Details
C.1. Network Architecture

We use the network in Figure A3 for our location encoder fθ. This is identical to the architecture in Mac Aodha et al.
(2019), and similar architectures have been used for other tasks (Martinez et al., 2017). The right side of the figure shows
the network structure, consisting of one standard linear layer and four residual layers. The left side of the figure shows the
structure of a single residual layer. Note that all layers have the same number of nodes. Every layer of the network has 256
nodes and we use p = 0.5 for the dropout probability.

C.2. Training Details

Environment. All models were trained on an Amazon AWS p3.2xlarge instance with a Tesla V100 GPU and 60 GB
RAM. The model training code was written in PyTorch (v1.7.0).

Hyperparameters. All models were trained for 10 epochs using a batch size of 2048 and a learning rate of 5e− 4. We used
the Adam optimizer with an exponential learning rate decay schedule of

learning rate = initial learning rate× epoch0.98

where epoch ∈ {0, 1, . . . , 9}. For LAN−full and LGP we set λ = 2048.

C.3. Environmental Features

When environmental features are required for model inputs, we use the elevation and bioclimatic rasters from WorldClim
2.1 (Fick & Hijmans, 2017) at the 5 arc-minute spatial resolution. We normalize each covariate independently by subtracting
the mean and dividing by standard deviation (ignoring NaN values). We then replace NaN values with zeros i.e. the new
mean value.

C.4. Baselines

C.4.1. LOGISTIC REGRESSION

This section discusses our implementation of logistic regression with environmental covariates. The architecture for this
approach is equivalent to a SINR but replacing the location encoder fθ with the identity function. Then we can in principle
use any of our loss functions for training. All other training details follow Appendix C.2.
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Figure A3. Network diagram for the fully connected network (with residual connections) which we use for our location encoder fθ .

C.4.2. DISCRETIZED GRID

In this section we describe our discretized grid baseline for the S&T, IUCN, and Geo Prior tasks, which is a simple spatial
binning method. Once we choose a resolution level, the H3 geospatial indexing library (H3W) defines a collection of W
cells {H1, . . . ,HW } that partition the globe. For instance, W = 2,016,842 at resolution level five. We show discretized grid
results for a few different resolution choices in Table A1. Below we describe the discretized grid baseline in more detail.

For the S&T and IUCN tasks, we can compute a score for any hexagon and species as follows:

1. We compute the number of occurrences of species j in hex w as

nwj =

N∑
i=1

1[xi∈Hw]1[zij=1] (6)

for 1 ≤ w ≤ W and 1 ≤ j ≤ S.

2. Let Ht be a hexagon we wish to evaluate at test time. For any species 1 ≤ j ≤ S, we compute a prediction for Ht as

ŷj =
ntj

max1≤w≤W nwj
. (7)

That is, ŷj measures how often species j was observed in Ht (relative to how often species j occurred in the location where
it was observed most often). These predictions always fall between 0 and 1, which ensures that they are compatible with the
average precision metrics we use for S&T and IUCN evaluation.

For the Geo Prior task, the first step is the same but the second step is different:

1. We compute the number of occurrences of species j in hex w as

nwj =

N∑
i=1

1[xi∈Hw]1[zij=1] (8)

for 1 ≤ w ≤ W and 1 ≤ j ≤ S.

2. Let Ht be a hexagon we wish to evaluate at test time. For any species 1 ≤ j ≤ S, we compute a prediction for Ht as

ŷj = 1[nwj>0]. (9)

That is, any species which were not observed in Ht are “ruled out” for the downstream image classification problem.
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Table A1. Discretized Grid baseline results on test data when using various hexagon resolution for “training” the model. As this baseline
does not learn a location encoder, it is not possible to evaluate on the Geo Feature task.

Species Range IUCN Geo Prior
Hex Res # / Cls. MAP MAP ∆ Top-1
0 All 54.67 21.89 3.5
1 All 61.56 37.13 4.1
2 All 61.03 36.92 3.1
3 All 51.09 26.57 -0.9

D. Training Dataset
D.1. Dataset Construction

Our training data was collected by the users of the community science platform iNaturalist (iNa). iNaturalist users take
photographs of plants and animals, which they then upload to the platform. Other users review these images and attempt
to identify the species. The final species labels are decided by the consensus of the community. Each species observation
consists of an image and associated metadata indicating when, where, and by whom the observation was made. iNaturalist
data only contains presence observations, i.e. we do not have access to any confirmed absences in our training data.

Specifically, our training data was sourced from the iNaturalist AWS Open Dataset3 in May 2022. This public split of the
data does not include location data for sensitive species if they are deemed to be threatened by location disclosure. We began
by filtering the species observations according to the following rules:

1. Observations must have valid valid longitude and latitude data.

2. Observations must be identified to the species level by the iNaturalist community. Observations which can only be
identified to coarser levels of specificity are discarded.

3. Observations must have research grade status, which indicates that there is a consensus from the iNaturalist community
regarding their taxonomic identity.

After this filtering process, species with fewer than 50 observations were removed from the dataset. We also remove any
species which are marked as inactive4. Finally, we only included observations made prior to 2022. This will enable a
temporal split from 2022 onward to be used as a validation set in the future. After filtering, we were left with 35,500,262
valid observations from 47,375 distinct species. A visualization of the geographical distribution of the resulting data can be
seen in Figure A4. As Figure A5 shows, our training data is heavily imbalanced, reflecting the natural frequency with which
they are reported to iNaturalist (Van Horn et al., 2018).

D.2. Changing the Number of Training Examples per Category

In the main paper we consider the impact of the number of observations per species in the training set by training on different
sub-sampled datasets. We construct these datasets by choosing k observations per species, uniformly at random. We set a
seed to ensure that we are always using the same k observations per category. We also make certain that sampled datasets
are nested, so the dataset with k1 examples per category is a superset of the dataset with k2 < k1 examples per category. If a
category has fewer than k observations, we use them all.

D.3. Changing the Number of Training Categories

In the main paper we also consider the impact of the number of species in the training set. In particular, we consider the
following nested subsets:

• The set of 535 bird species in the eBird Status & Trends dataset (Fink et al., 2020).

• The eBird Status & Trends species plus an additional A randomly selected species, where A ∈
{4000, 8000, 16000, 24000}.
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Figure A4. Histogram of the locations of the observations from our iNaturalist training set. Here we bin the data for all 35 million
observations across all 47,375 species. Darker colors indicate fewer observations, brighter colors indicate more. The training data is
biased towards North America, Europe, and New Zealand.

E. Evaluation Tasks
Here we provide additional details on the benchmark tasks used in the main paper. For each task, we outline the dataset
properties, how it was collected, and the evaluation metrics used. In Figure A6 we visualize the spatial coverage of the S&T
and IUCN tasks.

E.1. S&T: eBird Stats and Trends Range Maps

Task: The goal of this task is to evaluate the effectiveness of models trained on noisy crowdsourced data from iNaturalist
for predicting species range maps. We use the eBird Status & Trends data from Fink et al. (2020) to evaluate our range
predictions. This dataset consists of estimated relative abundance maps for 535 species of birds predominately found in
North America, but also other regions. The relative abundance maps are computed at a spatial resolution of 3× 3 km. The
predictions are the output of an expert crafted model (Fink et al., 2020) that has been trained on tens of millions of presence
and absence observations, makes use of additional expert knowledge to perform data filtering, and uses rich environmental
covariates as input. While not without its own limitations, we treat this data as the ground truth for evaluation purposes as it
is developed using much higher quality data and expert knowledge compared to what we use to train our models.

Dataset: We first download the rasterized abundance data for each species for all weeks of 2021 using the eBird API. We
next reprojected each species’ raster stack into latitude and longitude coordinates. We then spatially binned the data using
H3 hexagons (i.e. cells) at resolution five5. 2,016,842 cells cover the world at this resolution, each with an average area of
252.9km2. We finally sum all the relative abundance values for each cell, for each week of the year, for each species. Cells
with nonzero values are considered present locations, cells with zero values are considered absent locations.

Our goal is to predict the presence or absence of a given species in each hexagon using the eBird Status & Trends output
as the (psuedo) ground truth. The evaluation regions are restricted to those where the eBird Status & Trends models have
determined that there is sufficient data to make a prediction for a given species. Thus, the set of evaluation regions can
vary from species to species. For example, Melozone aberti has 127,270 locations with known presence or absence,
of which 549 are deemed present. On the other hand, Columba livia has 499,406 locations with known presence or
absence, of which 132,807 are deemed present.

The eBird Status & Trends data provides species presence and absence information for each location over the course of the

3https://github.com/inaturalist/inaturalist-open-data
4https://www.inaturalist.org/pages/how+taxon+changes+work
5https://h3geo.org
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Figure A5. Summary statistics for our training observations data from iNaturalist. (Left) Distribution of observations over species. (Right)
Distribution of observations over users (i.e. observers).

year. For the purposes of our evaluation, we collapse the time dimension and count a hexagon region as being a presence for
a given bird if the output of their model is greater than zero for any week in the year for that species.

Evaluation: We use mean average precision (MAP) for evaluation, only evaluating on valid regions for a given species.

E.2. IUCN: Range Maps

Task: The goal of this task is similar to the previous one, i.e. to predict the geographical range of a set of species. However,
instead of target range maps that are estimated by another model, here we use expert curated range maps (encoded as
geospatial polygons) from the International Union for Conservation of Nature (IUCN) (IUC). This set of data contains a
more taxonomically and geographically diverse set of species compared to the Stats and Trends task, as it contains mammals,
reptiles, and amphibians, in addition to birds. The bird data in this task comes from BirdLife International (Bir). The IUCN
data is from the ‘2022-2 update”, last updated on the 9th of December 2022, and the BirdLife data is the “2022.2” version.

Dataset: Of the 47k species in our training set, we first exclude all species where more than 10% of the iNaturalist
observations fall outside of the expert defined ranges and where there a taxonomic difference between IUCN and iNaturalist.
This leaves 2,418 species that overlap with our training set. The data is contains 1,368 birds, 438 reptiles, 330 mammals, and
282 amphibians. Note our filtering cannot account for false positive regions from the IUCN data as we have no mechanism
of extracting true absence from the iNaturalist source data.

Using the H3 geospatial indexing library (H3W), we sample all locations (i.e. latitude and longitude coordinates) at
resolution five to determine if each location is contained within the IUCN range polygon(s) for a given species. This results
in 2,016,842 locations for each species, where each location denotes the centroid of the corresponding H3 cell. Each location
is either marked as a true presence (if the cell centroid is contained within an IUCN polygon(s)) or a true absence (if the
cell is not contained within a polygon). Note, these expert range maps cannot necessarily be assumed to be the objective
“ground truth” (i.e. species ranges can shift over time), but serve as strong proxy for it. A visualization of the expert provided
ranges for a subset of species is shown in Figure A7.

Evaluation: As for the S&T task, we use mean average precision (MAP) as the evaluation metric, which results in a single
score for a model averaged across all species.

E.3. Geo Prior: Geographical Priors for Image Classification

Task: The goal of this task is to combine the outputs of the models trained for species range estimation on the iNaturalist
dataset with computer vision image classifier predictions. This evaluation protocol has also been explored in other work, e.g.
Berg et al. (2014); Mac Aodha et al. (2019). We simply weight the probabilistic image classifier predictions for a given
image with the species presence predictions from the location where that image was taken. The intuition is that the range
prediction reduces the probability of a given species being predicted by the vision model if the range estimation model
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Figure A6. Visualization of the number of species present at different locations for the S&T task (top) and the IUCN task (bottom).
Darker colors indicate fewer species, brighter colors indicate more species. The IUCN task has much broader coverage than the S&T
task.

predicts that the species is not likely to be present at that location.

Dataset: For the vision classifier, we use an image classification model developed by the iNaturalist community science
platform 6. This model is an Xception network (Chollet, 2017) that has been trained on 55,000 different taxonomic entities
(i.e. classes) from over 27 million images. We take the predictions from the final classification layer of the classifier, and
do not apply any of their sophisticated taxonomic post-processing. There are a total of 49,333 species in the set of 55,000
classes – the others are higher levels in the taxonomy, e.g. genera. The images used to train the image classifier come from
observations that were added to iNaturalist prior to December 2021.

We then constructed a test set consisting of all research grade observations (i.e. those observations for which there is a
consensus from the iNaturalist community as to which species is present in the image). The images in the test set only
contain the set of species that were observed at training time, i.e. we do not consider the open-set prediction problem. The
observations were selected from between January and May 2022 to ensure that they did not overlap with the training set. We
take at most ten observations per species, which results in 282,974 total observations from 39,444 species. In practice, many
species do not have 10 observations. In total there are 2,721 species (with 9,808 total images) that are not present in our
range estimation training set. For each of the 282,974 observations, we extract the predictions from the deep image classifier

6https://www.inaturalist.org/blog/63931-the-latest-computer-vision-model-updates
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Lesser Whitethroat Bowring’s Supple Skink

Northern Yellow-shouldered Bat European Tree Frog

Figure A7. Expert defined ranges for four randomly selected species from our IUCN range evaluation task. The yellow regions indicate
locations where the species is said to be present, otherwise they are absent. Light blue and darker blue indicate ocean and land respectively,
and are only included for visualization purposes.

across all 39,444 remaining species.

Evaluation: Performance is evaluated in terms of top-1 accuracy, where the ground truth species label is provided by the
iNaturalist community. Without using any information about where an image was taken, the computer vision model alone
obtains an accuracy of 75.4%, which increases to 90.4% for top-5 accuracy. During evaluation, if a species is not present in
a range model, we simply set the output for the range model for that species to 1.0.

E.4. Geo Feature: Environmental Representation Learning

Task: This task aims to evaluate how well features extracted from deep models trained to perform species range estimation
can generalize to other dense spatial prediction tasks. Unlike the other benchmark tasks that use the species occupancy
outputs directly, this is a transfer learning task. We remove the classification head hϕ and evaluate the trained location
encoder fθ in terms of downstream environmental prediction tasks. The intuition is that a model that is effective at range
estimation may have learned a good representation of the local environment. If so, that representation should be transferable
to other environmental tasks with minimal adaptation.

This task is inspired by the linear evaluation protocol that is commonly used in self-supervised learning, e.g. Chen et al.
(2020). In that setting, the features of the backbone model are frozen and a linear classifier is trained on them to evaluate how
effective they are on various downstream classification tasks. In our case, instead of classification, we aim to regress various
continuous environmental properties from the learned feature representations of our range estimation models. A related
evaluation protocol was recently used in Rolf et al. (2021) for the case of evaluating models trained on remote sensing data.

Dataset: The task contains nine different environmental data layers which have been collected using Google Earth Engine 7.
The nine data layers are described in Table A2. For each of the layers, we have rasterized the data so that the entire globe is
represented as a 2004× 4008 pixel image. Each pixel represents the measured value for a given layer for the geographical
region encompassed by the pixel. Example images can be seen in Figure A8.

Evaluation: For evaluation, we crop the region of interest to the contiguous United States and grid it into training and test
cells. The spatial resolution of the training and testing cells are illustrated in Figure A8 (right). Note, we simply ignore
locations that are not in the training or test sets, e.g. the ocean. This results in 51,422 training points and 50,140 test points.
Features are then extracted from the location encoder for the spatial coordinates specified in the training split, and then a

7https://earthengine.google.com
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Figure A8. Here we illustrate two of the nine evaluation layers used in the Geo Feature prediction task (left and middle). On the right we
indicate which regions contain pixels that are in the train or test split, or simply ignored during evaluation.

linear ridge regressor is trained on the train pixels and evaluated on the held out test pixels. The input features are normalized
to the range [0, 1]. We cross validate the regularization weighting term α of the regressor on the training set, exploring the
set α ∈ {0.1, 1.0, 10.0}. Performance is reported as the coefficient of determination R2 on the test pixels, averaged across
all nine layers.

F. Reproducibility Statement
The information needed to implement and train the models outlined in this paper is provided in Appendix C. In addition, the
different training losses we study are described in Section 3.2. Training and evaluation code is available at:

https://github.com/elijahcole/sinr

G. Ethics
This work makes use of species observation data provided by the iNaturalist community. We only use the public data exports
from iNaturalist, ensuring that sensitive data (e.g. data related to species at risk of extinction) is not used by our models.

As noted in the limitations section in the main paper, extreme care must be taken when attempting to interpret any species
range predictions from the models presented in this paper. Our work is intended to provide (i) a proof-of-concept for
large-scale joint species distribution modeling with SINRs and (ii) benchmarks for further model development and analysis.
However, our models have failure modes and our benchmarks have blind spots. Further validation is necessary before using
these models for conservation planning or other consequential use cases.
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Table A2. Description and sources of the nine environmental spatial layers that are part of our Geo Feature prediction task.
Name Task Units Range
AGC Above ground living biomass carbon stock density

of combined woody and herbaceous cover in 2010.
NASA/ORNL/biomass carbon density/v1 -
agb

Mg C/ha 0 to 129

ELE GMTED2010: Global multi-resolution terrain elevation
data 2010. Masked to land only. USGS/GMTED2010 -
be75

meters -457 to 8746

LAI The sum of the one-sided green leaf area per unit ground
area. JAXA/GCOM-C/L3/LAND/LAI/V2 - LAI AVE
- 2020

(leaf area per ground area) 0 to 65531

NTV Percent of a pixel which is covered by non-tree vegeta-
tion. JAXA/GCOM-C/L3/LAND/LAI/V2 - LAI AVE
- 20202

% 0 to 100

NOV Percent of a pixel which is not vegetated.
MODIS/006/MOD44B - Percent NonVegetated

% 0 to 100

POD UN adjusted estimated population density.
CIESIN/GPWv411/GPW UNWPP-Adjusted
Population Density -
unwpp-adjusted population density

# of persons / km2 0 to 778120

SNC Normalized difference snow index snow cover.
MODIS/006/MOD10A1 - NDSI Snow Cover -
2019

(amount snow cover) 0 to 100

SOM Soil moisture, derived using a one-dimensional soil wa-
ter balance model. IDAHO EPSCORTERRACLIMATE -
soil - 2020

mm 0 to 8882

TRC The percentage of pixel area covered by
trees. NASA/MEASURES/GFCC/TC/v3 -
tree canopy cover - 2000-2020

% 0 to 100
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