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Abstract

In applications such as training transformers on NLP tasks, or distributed learning
in the presence of corrupted nodes, the stochastic gradients have a heavy-tailed
distribution. We argue that in these settings, momentum is not the best suited
method for estimating the gradient. Instead, variants of momentum with different
forms of clipping are better suited. Our argument is based on the following: in
the presence of heavy tailed noise the sample median of the gradient is a better
estimate than the sample mean. We then devise new iterative methods for com-
puting the sample median on the fly based on the SPP (stochastic proximal point)
method. These SPP methods applied to different definitions of median give rise to
known and new type of clipped momentum estimates. We find that these clipped
momentum estimates are more robust at estimating the gradient in the presence of
noise coming from an α-stable distribution, and for a transformer architecture on
the PTB and Wikitext-2 datasets, in particular when the batch size is large.

Consider the problem
min
w∈Rd

ℓ(w), ℓ(w) := Ex∼P [ℓ(w;x)] (1)

where P is the distribution over data and ℓ(w;x) is a loss function. Here we are interested in cases
where the distribution of ∇wℓ(w;x) := ∇ℓ(w;x) may have significant outliers, is heavy tailed, or
just very non-Gaussian. To give a few examples:

Language. For language modelling tasks, Zipf’s law [20] states that the k-th most frequent word
of a corpus appears with probability proportional to k−s for s ≥ 0. In other words, natural language
roughly follows an inverse powerlaw distribution. Clearly, this is more heavy-tailed than a Gaussian
where the tails go to zero exponentially.

Transformer gradients. It has been observed empirically that the gradients for training trans-
former architectures on language tasks are more heavy-tailed compared to, for example, convolu-
tional models for image data [19, 11]. One possible explanation for this might be that the gradients
inherit the heavy-tailed properties of the underlying data distribution P . This is clearly the case in
the simple setting of linear least squares

min
w∈Rd

Ex,y∼P

[
1

2
∥ ⟨x,w⟩ − y∥2

]
.
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The gradient is given by ∇ℓ(w; (x, y)) = x(x⊤w − y), and hence the distribution of ∇ℓ(w) =
Ex,y∼P [∇ℓ(w;x)] is governed by the distribution of the data (x, y). For example, having large
outliers in x will result in large outliers in ∇ℓ(w;x).

Corrupted nodes. In distributed learning, a well-studied scenario is when some of the nodes are
malicious and can communicate adversarial updates. Many techniques have been developed in order
to make training robust to this setting [4, 8, 10]. This line of research is also closely related to error
feedback in federated learning [9, 14] and learning under differential privacy constraints [10].

Problems of form (1) are typically solved with SGD-type methods, that is

wt+1 = wt − ηtgt, (SGD)

where ηt > 0 is a learning rate, and gt is an estimate of ∇ℓ(wt) = E [∇ℓ(wt;x)]. The standard
way to obtain gt is to sample a mini-batch of data xt ∼ D, and select gt = ∇ℓ(wt;xt) or use an
exponentially weighted momentum estimate.

In the presence of heavy tails, the sample median is a more robust estimator of the mean (see Fig. 1
for a simple example). Consequently, to estimate the gradient in the presence of heavy-tailed noise
we should consider the median. But there are three issues: (i) computing the median is expensive
(classical iterative methods are Weiszfeld‘s algorithm [17] or modifications thereof [16]), (ii) the
distribution of the gradient changes with the weights w, and (iii) the gradient is a d-dimensional
vector and there are several different notions of median in Rd.

To resolve the first two issues, we consider only online iterative methods for estimating the median.
These iterative estimates are cheap to compute, thus resolving the first issue. Furthermore, being
iterative and online they can adapt as the distribution of the gradient changes. As for the third issue,
we consider the median with respect to a divergence. This includes as a special case the classical
notion of the geometric median.

The online iterative methods we consider are Stochastic (Sub-)Gradient Descent (SGD), and Stochas-
tic Proximal Point (SPP). By using these two iterative methods, and different notions of median, we
recover as a special case several well-known techniques such as heavy-ball momentum [13], clipping
[7, 18] (such as Clip21 for distributed learning [10]), and signed gradient methods. In particular
the observation that Clip21 is an online estimator of a geometric median appears to be new, and
could have consequences for its application in distributed learning. Our proposed framework allows
to unify the different motivations for previously developed techniques, but also to derive new robust
estimators.

1 Sample median as a robust mean estimator

Let us give some basic definitions and properties of the median. For a real-valued random variable
Z, its median is the solution to the problem

median(Z) := argmin
m∈R

Ez∼Z [|m− z|] , (2)

where we use Ez∼Z [·] to denote taking expectation with respect to whichever distribution governs
Z. In contrast to the mean, the median is always defined (though it may not be unique) [3]. If Z has
a continuous density, taking the derivative1 in (2) and setting to zero gives

Ez∼Z [sgn(m− z)] = 0,

which is satisfied if m is greater than or equal to half of the elements (wrt. the density of Z), and
less than or equal to the other half.

Since we are interested in approximating the median of the gradient, we need a notion of median
that generalizes to random vectors Z ∈ Rd. For this, we use the geometric median [6, 17, 2] defined
as

median(Z) := argmin
m∈Rd

Ez∼Z [∥m− z∥2], (3)

1The case where the set of subgradients is not a singleton is a null set and hence can be disregarded.
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where ∥z∥2 :=
√∑d

i=1 z
2
i is the ℓ2-norm. Though the ℓ2-norm is often used in defining the

geometric median, other norms might also induce robust gradient estimates. More generally, we are
interested in estimators that solve

medianD(Z) := argmin
m∈Rd

Ez∼Z [D(m− z)] , (4)

where D : Rd → R≥0 is a function, which can be thought of as a distance measure or divergence.
We assume that D is such that (4) admits a solution. If the function D heavily penalizes large values
then (4) will be sensitive to outliers. This is the case for D = 1

2∥ · ∥
2
2, which grows quadratically. In

contrast D = ∥ · ∥2 and D = ∥ · ∥1 grow only linearly, and thus (4) will be less sensitive to outliers.

For Cauchy distributions, it is known that the
variance of the sample median is finite for
sample size 2n + 1 ≥ 5, while the variance
of the sample mean is not finite [1]. Further,
the breakdown point of the median estimator
is roughly one half, meaning that at least half
of the samples need to be outliers to let the
estimator become useless, whereas for the mean
the breakdown point is one over the sample
size [5, 12]. See Fig. 1 for an illustration of the
sensitivity of mean and median to outliers.

Here we show that by choosing different diver-
gences D, and using standard iterative meth-
ods for computing (4), we recover many well
known robust gradient estimators. These in-
clude estimators from distributed learning with
adversarial nodes, heavy tailed problems, and
problems with outliers. The iterative meth-
ods we use are stochastic (sub)gradient descent
(SGD), and stochastic proximal point (SPP). Us-
ing different norms we also explore some new
directions for robust gradient estimation.

-3 3

-3

3

population mean
population median
sample mean
sample median

Figure 1: An illustration why the sample me-
dian can be a better estimator for the population
mean than the sample median. Blue dots mark
a sample of the full population. The outliers in
the outer circle result in the sample mean mov-
ing away from the true mean.

2 Iterative estimator of the median gradient

First we consider the task of estimating the gradient from a fixed distribution. In the context of
training machine learning models, g ∈ Rd will be a stochastic gradient for a fixed weight, i.e. it
is sampled from ∇ℓ(w;x), for some fixed w, where x ∼ P is sampled from training data. In the
next section we will consider what happens when the distribution of g changes, as is the case during
optimization since the parameters change.

Let D : Rd → R≥0 be a closed, proper, and convex function. As discussed in the previous section,
the geometric median is a robust estimator, given by

argmin
m∈Rd

Eg [D(m− g)] . (5)

Since we know the distribution of g will evolve as the parameters w evolve, we will only consider
iterative methods for computing (5); more specifically, we consider either stochastic subgradient
descent or stochastic proximal point (SPP). Let mt ∈ Rd be our current gradient estimate.

Stochastic (Sub-)Gradient Descent. We can solve (5) by iteratively taking steps of stochastic
subgradient descent, where in each iteration we sample a gradient g, then update our current estimate
mt by subtracting a stochastic subgradient as follows:

mt+1 = mt − τut, ut ∈ ∂D(mt − g), (6)

where τ > 0 is the learning rate, and ut is a subgradient. Since D could be a non-differentiable
function such as the ℓ2- or ℓ1-norm, we use subgradients instead of gradients. As a first simple
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example of (6), consider the case where D = 1
2∥ · ∥

2
2. In this case (6) becomes

mt+1 = mt − τ(mt − g) = (1− τ)mt + τg. (7)

This is the momentum [13, 15] estimator of the gradient, with momentum parameter β = 1− τ .

Stochastic Proximal Point. Because D will be a relatively simple function, such as a norm, we
can compute its proximal operator and use SPP, given by

mt+1 = proxτD(mt; g) := argmin
y∈Rd

D(y − g) +
1

2τ
∥y −mt∥2. (8)

The proximal point method is sometimes referred to as the implicit gradient method, because it can
also be written as

mt+1 = mt − τut, ut ∈ ∂D(mt+1 − g). (9)
Note that the subgradient is evaluated at mt+1−g, thus mt+1 appears on both sides of the inclusion,
which is why this is an implicit update, as opposed to an explicit update as is the case in (6). Because
of this implicit inclusion (9), computing a step of the proximal point method often requires an
additional subroutine to solve (9), making it potentially impractical. Fortunately, in our setting the
proximal operator of D will have a closed form solution which can be computed as

proxτD(mt; g)
y=ŷ+g
= g + argmin

ŷ∈Rd

D(ŷ) +
1

2τ
∥ŷ − (mt − g)∥2

=: g + proxτD(mt − g). (10)

As a first simple example of (8), consider again the case where D = 1
2∥ · ∥

2
2. In this case (8) gives

mt+1 =

(
1− τ

1 + τ

)
mt +

τ

1 + τ
g. (11)

This is again equivalent to the momentum gradient estimate, where the momentum parameter is
given by β = 1− τ/(1+ τ) = 1/(1+ τ). Though we have again arrived at the momentum method,
curiously the momentum parameter β is such that β ∈ [0, 1), which is what is used in practice. This
is in contrast to (7) where β ∈ [−∞, 1) since τ > 0. Because of this, and because SPP is generally
considered a better method when it can be applied, we will now focus on SPP.

So far, using either (6) or SPP with D = 1
2∥ · ∥22 has resulted in the momentum method. We now

consider other divergences, and uncover both known and new methods.

Vectorwise clipping. If we choose D := ∥ · ∥2 we arrive at a type of clipping that protects against
sampled gradient with large norms by shrinking their norm.

Lemma 2.1. For D := ∥ · ∥2 the update (8) is given by

mt+1 = mt + clipτ,2(g −mt) (12)

=
(
1− τ

max{τ, ∥g −mt∥2}

)
mt +

τ

max{τ, ∥g −mt∥2}
g, (13)

where

clipτ,2(v) :=
τ

max{τ, ∥v∥2}
v, ∀v ∈ Rd, τ > 0. (14)

Proof. Follows from (10) and Lemma A.2 since

mt+1 = g + argmin
ŷ∈Rd

∥ŷ∥2 +
1

2τ
∥ŷ − (mt − g)∥2 = g + proxτ∥·∥2

(mt − g).

Update (12) is identical to Clip21 [10]. In particular, it has also the form of a momentum update,
but contrary to before the momentum coefficient now depends on t.

Componentwise clipping. If D := ∥ · ∥1, we again arrive at a form of clipping, but a clipping that
protects against gradients with large individual entries by shrinking the entries independently.

4



Lemma 2.2. For D := ∥ · ∥1 the update (8) is given by

mt+1 = mt + clipτ,1(g −mt). (15)

where we define

clipτ,1(v) := min{max{v,−τ}, τ}, ∀v ∈ Rd, τ > 0. (16)

In the above, the max and min operators are defined component-wise.

Proof. Follows from (10) and Lemma A.1 since

mt+1 = g + argmin
ŷ∈Rd

∥ŷ∥1 +
1

2τ
∥ŷ − (mt − g)∥2 = g + proxτ∥·∥1

(mt − g).

In Appendix B we also consider more applications of stochastic subgradient descent (6). There
we show that when D = ∥ · ∥1 the update (6) results in a type of signed gradient descent. When
D = ∥ · ∥2 the update (6) is a type of momentum with an adaptive momentum coefficient.

3 Gradient estimator in the wild

Our final objective is to use robust gradient estimators within a SGD-type method. Because at each
iteration the weights wt are updated, the distribution of the gradients also changes at each iteration.
Our strategy is to interweave updates in the parameters wt with updates in the gradient estimators
mt. That is, let C : Rd → Rd be a given operator (e.g. a clipping operator), we consider methods of
the form

gt = ∇ℓ(wt;xt) (Sample gradient)
mt+1 = mt + C(gt −mt) (Update gradient estimate)
wt+1 = wt − ηtmt+1 (Update parameters)

(17)

When C is the identity operator (17) reduces to (SGD). If C is equal to clipτ,2 or clipτ,1, the gradient
update (17) is equivalent to (12) or (15), respectively.

This method (17) decomposes the problem (1) into two steps: first, do an online update of the
gradient estimator mt, and then take a descent step using this estimator mt+1. That is, as we can
not access the full gradient ∇ℓ(wt), we estimate it with mt+1, using only samples gt = ∇ℓ(wt;xt).
Second, we update weights wt, which in turn changes the distribution of the stochastic gradients.
Thus our gradient estimator mt is constantly playing catch up.

4 Experiments

Here we use VClip to refer to vectorwise clipping (14) and CClip for componentwise clipping (16).

4.1 Estimating a Gradient with α-stable noise

In a first experiment, we verify the hypothesis that estimating the median is more stable when the
distribution P is heavy-tailed.

We consider the problem of estimating a fixed vector (resembling the true gradient at fixed weights),
under varying degree of heavy-tailedness. For this purpose, we choose P to be the α-stable distri-
bution Pα with stability parameter 0 < α ≤ 2 and skeweness parameter 0. The family of α-stable
distributions is suitable because α controls the degree of heavy-tailedness: P1 is equal to the Cauchy
distribution, and P2 is equal to a Gaussian.

Setup. We generate a fixed oracle vector ĝ ∈ Rd with d = 10 where each component is generated
i.i.d standard Gaussian. In each iteration, a sample gt is generated as follows: each coordinate of
(gt)i is (independently) sampled from Pα with location (ĝ)i and varying values for 0 < α ≤ 2.
Importantly, the median of Pα is equal to the location (i.e. ĝ) for all values of α. On the contrary,
for α ≤ 1 the mean of Pα is not defined, and otherwise equal to the median.
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Figure 2: τ = 0.01 Left: Final error for varying values of α (from left to right, distributions are more
heavy-tailed). Shaded area marks minimal and maximal value over the 50 independent runs. Right:
Convergence plot for all methods for 1

α ∈ [0.5, 1.5] (higher value of 1
α corresponds to heavier tails).
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Figure 3: Encoder transformer on PTB dataset, with weights fixed at initialization. We use momen-
tum, clipτ,1 and clipτ,2 to estimate the full-batch gradient.

We run several of the methods presented above with a fixed step size τ > 0 and track the relative
ℓ2-error ∥mt−ĝ∥2

∥ĝ∥2
. For each method and distribution, we run 1000 iterations and 50 different seeds.

Discussion. From Fig. 2 we find that as the noise becomes more heavy-tailed (as α decreases),
momentum fails to produce accurate estimates of the oracle ĝ. On the other hand, both vectorwise
clipping (VClip) and coordinatewise clipping (CClip) are relatively robust to heavy tails. Most
pronounced, we observe that the error of CClip even slightly decreases with α decreasing. Both
VClip and CClip are iteratively approaching the median instead of the mean - in conclusion, online
median estimators are more robust to heavy tails as expected.

4.2 Transformer with Fixed Weights

For our second experiment, we run momentum, vectorwise and componentwise clipping, with the
goal of estimating the full gradient for a transformer architecture with fixed weights. The weights
are fixed at initialization. The setup is identical to the one described in [11], in particular Fig-
ure 1 therein: we use a simple transformer for the PTB dataset, and try three different batch sizes
{64, 256, 1024}. The same experiment for the Wikitext-2 setup from [11] can be found in Fig. 4.

Discussion. From Fig. 3, we observe two phenomena: in the long run, momentum attains the lowest
error for estimating the full batch gradient. However, the initial decrease of the error is much faster
for CClip, followed by VClip. This is important when using these estimates within a training setup
such as (17), where we only do one iteration of gradient estimation, followed by an update of the
weight (and hence a change in the full-batch gradient). Secondly, we observe that the difference
in convergence speeds is most pronounced when the batch size increases. Hence, being robust to
outliers seems not to be solvable only by increasing the batch size and thus decreasing the noise of
the mini-batch gradient. In fact, the contrary seems to be the case. This is similar to the observations
made in [11].
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Figure 4: Encoder transformer on Wikitext-2 dataset, with weights fixed at initialization. We use
momentum, clipτ,1 and clipτ,2 to estimate the full-batch gradient.

A Auxiliary Lemmas

Lemma A.1. Let m, g ∈ Rd and τ > 0. Then, g + proxτ∥·∥1
(m− g) = m+ clipτ,1(g −m).

Proof. For i ∈ [d], we have

[
g + proxτ∥·∥1

(m− g)
]
i
=


gi + (mi − gi − τ) = mi − τ if mi − gi > τ,

gi − (gi −mi − τ) = mi + τ if mi − gi < −τ,

gi else.

Clearly, this is equal to m+ clipτ,1(g −m).

Lemma A.2. Let m, g ∈ Rd and τ > 0. Then, g + proxτ∥·∥2
(m− g) = m+ clipτ,2(g −m).

Proof. We have proxτ∥·∥2
(m− g) = (1− τ

∥m−g∥ )(m− g) if ∥m− g∥ ≥ τ else zero. Thus,

g + proxτ∥·∥2
(m− g) =

{
g + (1− τ

∥m−g∥ )(m− g) = m+ τ
∥g−m∥ (g −m) if ∥m− g∥ ≥ τ,

g else.

Clearly, this is equal to m+ clipτ,2(g −m).

B Subgradient update for ∥ · ∥1 and ∥ · ∥2

Signed increment: If we choose D := ∥ · ∥1, update (6) gives

mt+1 = mt + τ sgn(g −mt),

where the sgn-operator can take any value in [−1, 1] for coordinates where gt,i = mt,i.

Adaptive momentum: If we choose D := ∥ · ∥2, and if g ̸= mt, update (6) gives

mt+1 = mt − τ
mt − g

∥mt − g∥
=

(
1− τ

∥mt − g∥
)
mt +

τ

∥mt − g∥
g.

This can be seen as heavy-ball momentum with an adaptive momentum parameter.
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