

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ON STABLE LONG-FORM GENERATION: BENCH- MARKING AND MITIGATING LENGTH VOLATILITY

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) excel at long-context understanding but exhibit significant limitations in long-form generation. Existing studies primarily focus on single-generation quality, generally overlooking the volatility of the output (i.e., the inconsistency in length and content across multiple generations). This volatility not only leads to significant computational costs but also severely impacts the models' reliable application. To address this gap, our work unfolds in three stages: *benchmarking, probing, and mitigation*. We first propose the **VOlatility in Long-form Text Benchmark (VOLTBench)**, a novel heterogeneous-task benchmark designed to systematically quantify the length volatility of long-form generation. Subsequently, by analyzing attention traces, we conduct an in-depth probe to identify several common internal patterns that cause this volatility. Finally, to mitigate long-form output volatility, we propose SELB (Structural Enforcement via Logits Boosting), a lightweight decoding-stage optimization strategy, designed to significantly enhance both the length accuracy and stability of long-form generation without additional training. Extensive experiments on VOLTBench provide the first systematic confirmation of severe long-form output instability in mainstream models and validate that our proposed method successfully improves the mean output length of the base model by 148% and reduces the length volatility by 69%, while maintaining high generation quality.¹

1 INTRODUCTION

Large Language Models (LLMs) have made significant advances in long-context processing [Bai et al. \(2023\)](#); [GLM et al. \(2024\)](#); [Comanici et al. \(2025\)](#), capable of handling inputs exceeding 100k tokens and performing precise information retrieval in Needle-in-a-Haystack tasks [Yuan et al. \(2025\)](#); [Ye et al. \(2025a\)](#); [Zhou et al. \(2025\)](#). However, this remarkable progress in long-context understanding has not extended to long-form generation. Their outputs struggle to surpass the 2k-word threshold [Bai et al. \(2024\)](#), while also lacking equivalent fine-grained control over the process.

Recent studies have benchmarked the long-form generation capabilities of models, typically employing unstructured content generation tasks such as story writing, and observed that current models generally struggle to meet target lengths accurately [Liu et al. \(2024\)](#); [Zhang et al. \(2025b\)](#); [Wu et al. \(2025b\)](#). Some work attributes this issue preliminarily to data-related factors, such as the scarcity of long-output examples in supervised fine-tuning (SFT) datasets [Bai et al. \(2024\)](#).

However, we argue that current research has three core limitations: First, existing work focuses almost exclusively on **single-generation results**, systematically overlooking output stability. This paradigm fails to capture the **significant volatility** that occurs when models process the same prompt multiple times, as shown in Figure 1, leading to unpredictable token consumption and high costs. Second, current benchmarks over-rely on **unstructured tasks** like story generation. Their subjective and difficult-to-automate evaluation criteria hinder the objective, quantifiable assessment of generation quality. In contrast, structured tasks with clear rules (e.g., code generation) offer a better environment for evaluation but remain underexplored. Finally, most research is limited to observing the phenomenon, **lacking an in-depth investigation** into the internal mechanisms.

¹The code will be publicly available upon acceptance.

To address the aforementioned limitations, we conduct an in-depth, multi-stage investigation into the volatility of LLM long-form generation from three perspectives: *Benchmarking, Probing, and Mitigating*. First, on the benchmarking front, we introduce **length volatility** as a core metric and construct the Volatility in Long-form Text Benchmark (**VOLTBench**), a multi-dimensional, *heterogeneous-task benchmark* covering not only unstructured text (e.g., story) and structured data (e.g., code) but also dimensions such as different languages and instruction complexities. Through empirical evaluation on this benchmark, we provide the first large-scale quantification of the prevalent output length volatility in mainstream models. Second, in our probing efforts, we leverage these benchmark findings to conduct an in-depth analysis of the root causes of this volatility. Moving beyond mere phenomenological observation, by analyzing the models' attention traces, we identify and define several common **internal patterns of length volatility**, such as *Attention Collapse* and *Attention Instability*. Finally, to mitigate the identified internal patterns, we propose and validate **Structural Enforcement via Logits Boosting (SELB)**, a lightweight, *decoding-stage method* that requires *no additional training* and proactively suppresses tokens linked to known failure modes, simultaneously improving both length accuracy and output stability. Our contributions are as follows:

- We construct the Volatility in Long-form Text Benchmark (VOLTBench), which is the first to introduce output volatility as a core metric. We systematically evaluate the long-form generation volatility in LLMs by covering both unstructured and structured tasks.
- We conduct extensive experiments that demonstrate the severe long-form output instability in mainstream LLMs. To investigate the underlying mechanisms, we identify and define several common internal patterns of length volatility through attention trace analysis.
- Targeting the identified internal patterns, we propose Structural Enforcement via Logits Boosting (SELB), which is a lightweight, decoding-stage optimization strategy that requires no additional training and improves the mean output length of the base model by 148% and reduces the length volatility by 69%, while maintaining high generation quality.

2 RELATED WORK

Benchmarking Long-Form Generation. Existing studies have revealed the limitations of current models in long-form generation from multiple dimensions. HelloBench [Que et al. \(2024\)](#) uses diverse in-the-wild scenarios, finds that even advanced models face severe repetition. LIFEbench [Zhang et al. \(2025b\)](#) shows that models struggle to adhere to precise length requirements. LongGenBench [Liu et al. \(2024\)](#) reformulates existing QA datasets to assess the logical consistency of a single, sequential long-form answer. LongInOutBench [Zhang et al. \(2025a\)](#) targets the gap in long-input, long-output tasks, while LongProc [Ye et al. \(2025b\)](#) requires models to create structured outputs from dispersed information. FACTS Grounding [Jacovi et al. \(2025\)](#) focuses on the factual accuracy of long responses against a source document, and ProxyQA [Tan et al. \(2024\)](#) uses an innovative proxy-question method to measure knowledge coverage. Meanwhile, works like LongGenBench [Wu et al. \(2025b\)](#) and LCFO [Costa-jussà et al. \(2025\)](#) further advance evaluations by introducing complex instruction-following in super-long texts. In contrast, our work specifically evaluates and addresses the phenomenon of Length Volatility, aiming to enhance the robustness and controllability of LLM long-text outputs. We provide a comparison between ours and previous studies in Table 1.

Long-form Text Generation. Research in long-form text generation addresses the challenge that LLMs struggle to produce high-quality, lengthy outputs. Data-centric approaches have been pro-

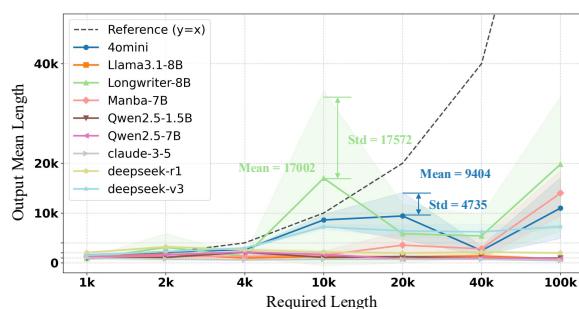


Figure 1: Model performance on our VOLTBENCH for long-text generation. As the required length increases, the actual output length of all models falls significantly short of the target (dashed line). Furthermore, many models exhibit significant output length volatility, even for Longwriter-8B, a model specifically fine-tuned on long text, *the output standard deviation peaked at 103% of its mean length*.

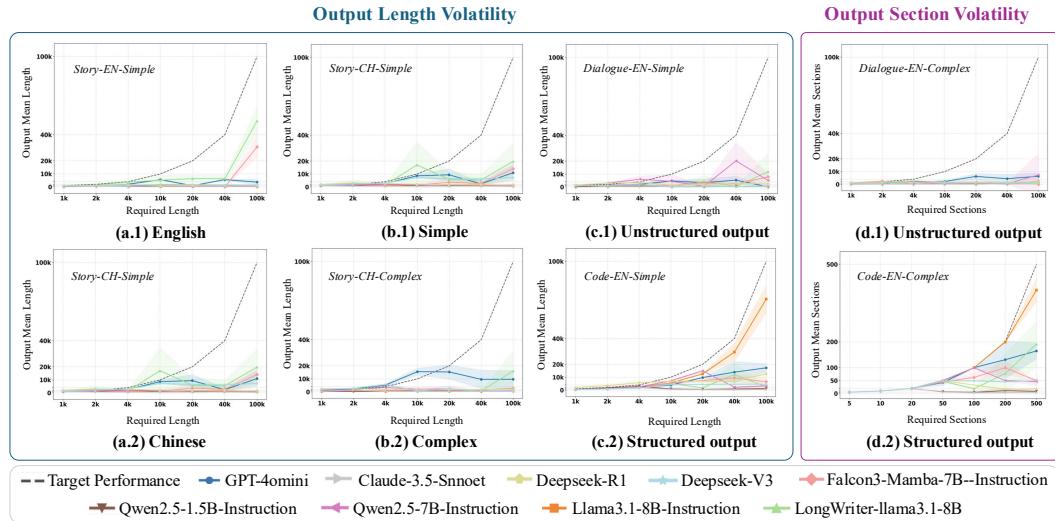
108
109
110
111 Table 1: Comparison with existing related benchmarks. VOLTBench provides a more comprehensive
112 evaluation framework and is the first to introduce multiple sampling and stability evaluation.

Benchmark	Instruction			Generation				
	Multiple Task	Multiple Level	Multiple Language	Unstructured Text	Structured Data	Multiple Sampling	Stability Eval	Length Scale
HELLOBENCH Que et al. (2024)	✓	✓		✓				~ 16k
LONGBENCH Bai et al. (2024)	✓		✓	✓				~ 10k
LONGGENBENCH Liu et al. (2024)	✓			✓				~ 8k
LIFEbench Zhang et al. (2025b)	✓		✓	✓				~ 8k
LONGPROC Ye et al. (2025b)	✓				✓			~ 8k
LONGGENBENCH Wu et al. (2025b)	✓			✓				~ 32k
LONGINOUTBENCH Zhang et al. (2025a)	✓			✓				~ 16k
VOLTBENCH (Ours)	✓	✓	✓	✓	✓	✓	✓	~ 100k

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
185

162 words. This massive and explicitly sectioned scale is specifically intended to surface and analyze
 163 challenging failure modes.
 164

165 **Generation Volatility and Quality Evaluation:** The cornerstone of VOLTBench is its rigorous
 166 evaluation of both generation volatility and quality, moving beyond single-instance assessments to
 167 measure model reliability. We query a model multiple times for each instruction to create a distribution
 168 of outputs. We assess stability at both a macro level, analyzing overall length volatility, and
 169 a granular chapter-by-chapter level, checking for consistency within each section. This fine-grained
 170 analysis can reveal nuanced behaviors, such as a model starting strong but losing steam in later
 171 chapters. VOLTBench embeds fine-grained constraints (e.g., keyword, topic) into its prompts. This
 172 innovative design allows us to *automate quality assessment* even for unstructured narrative tasks,
 173 as we can programmatically verify if these specific constraints were met. This is complemented
 174 by our structured data generation tasks, where quality is assessed objectively via Execution-based
 175 Verification, thus providing a far more reliable and multi-faceted quality evaluation framework.
 176



193 Figure 3: Analysis of Output Length Volatility and Output Section Volatility. The left panel (a, b, c)
 194 compares the total output length volatility across three dimensions: language, instruction complex-
 195 ity, and output format. The right panel (d) shows the volatility in the number of generated sections.
 196

197 3.1 TASKS

198 Our benchmark includes both unstructured and structured generation tasks. Each core task is ex-
 199 panded into multiple variants across three dimensions: language (*English/Chinese*), instruction com-
 200 plexity (*simple, complex, fine-grained constraint*), and output length (*from 5 to 500 chapters*). This
 201 multi-dimensional design precisely measures fluctuations in model performance under diverse con-
 202 ditions (see Appendix J.0.7 for all task instructions).
 203

204 **Unstructured Tasks:** This category of tasks evaluates a model’s creativity, narrative coherence,
 205 and contextual consistency in long-form, free-form text. We include diverse scenarios such as Story,
 206 Dialogue, Diary, and Architecture to assess abilities ranging from plot development and maintaining
 207 a consistent persona to the creative use of specialized terminology. Below is an example:

208 **Task:** Story

209 **Label:** English-Simple- M chapters- N words

210 **Instruction:** Please write a novel consisting of M chapters about Jeff. Each chapter should
 211 revolve around a theme or plot, with a minimum of N words for each chapter. Ensure clarity
 212 and continuity ... and use ‘*** Finished ***’ to indicate the end of the document.

213 **Structured Tasks:** These tasks assess models’ ability to follow strict formatting, syntax, and log-
 214 ical rules where precision is key. Tasks like generating virtual company profiles, Python function
 215 libraries, and mathematical formulas are designed for objective, automated evaluation of a model’s
 216 reasoning and mastery of formal languages. Full instructions are in Appendix J.0.7.

216 3.2 EVALUATION METRIC
217218 Our benchmark evaluates models’ long-text generation capabilities across two core dimensions:
219220 **Length Volatility.** Unlike previous work [Zhang et al. \(2025b\)](#), which focuses on the volatility of a
221 single generation, we measure a model’s volatility across multiple outputs.
222

- (1) **Length Standard Deviation (LSD),** this metric measures the *absolute volatility* of the
223 output lengths: $LSD = \sqrt{\frac{1}{N} \sum_{i=1}^N (L_i - \mu)^2}$, where μ is the average of the N output
224 lengths. In our experiments, we set $N=5$.
225
- (2) **Length Variation Coefficient (LVC),** this measures the *relative volatility* of the output
226 lengths with respect to their mean, which allows for comparable stability assessments
227 across different length requirements: $LVC = \frac{LSD}{\mu}$.
228
- (3) **Mean Length Accuracy (MLA),** this metric quantifies how closely the mean length (μ)
229 of N generation runs adheres to the specified target length ($L_{\text{constraint}}$). The formula is:
230
$$\text{MLA} = \max \left(0, 1 - \left| \frac{\mu - L_{\text{constraint}}}{L_{\text{constraint}}} \right| \right) \times 100.$$

231

233 **Generation Quality.** We assess the quality of the generated content from the following aspects:
234

- (1) **Format Adherence Deviation (FAD),** which measures the absolute volatility in the
235 number of generated chapters across multiple runs for chapter-based tasks. It as-
236 sesses if the model consistently produces the required number of chapters: $FAD =$
237
$$\sqrt{\frac{1}{N} \sum_{i=1}^N (C_i - \mu_c)^2}$$
, where C_i is the number of chapters in the i -th generation, and μ_c
238 is the average chapter count over N runs.
239
- (2) **Structured Content Accuracy (SCA),** this metric uses Execution-based Verification to as-
240 sess accuracy on structured tasks, such as generating Python libraries and LaTeX formulas:
241
$$\text{SCA} = \frac{\text{Number of Correct Chapters}}{\text{Number of Required Chapters}}.$$

242
- (3) **Unstructured Content Accuracy (UCA),** following previous work [Bai et al. \(2024\)](#);
243 [Zhang et al. \(2025a\)](#), we use an LLM-as-a-Judge to evaluate unstructured tasks (e.g., story
244 writing), with details in Appendix C.
245

247 4 EXPERIMENTS AND RESULTS
248249 4.1 MODELS
250

251 To systematically evaluate long-text generation capabilities, our study includes a diverse set of mod-
252 els. Specifically, we evaluate reasoning models such as GPT-4o mini, Claude 3.5 Sonnet, and
253 Deepseek-R1 ([DeepSeek-AI et al., 2025a](#)). Our open-source selection includes models of various
254 architectures and sizes: Qwen2.5-1.5B-Instruction, Qwen2.5-7B-Instruction ([Qwen et al., 2025](#)),
255 Qwen3-8B ([Team, 2025](#)), Llama3.1-8B-Instruction, Deepseek-V3 ([DeepSeek-AI et al., 2025b](#)). We
256 also include Falcon3-Mamba-7B-Instruction ([Team, 2024](#)), notable for its distinct architecture. We
257 also include LongWriter-llama3.1-8B ([Bai et al., 2024](#)), a model enhanced for long-form generation
258 via long-text post-training. [Additionally, we incorporate common training-free decoding strategies](#) for
259 comparison, implemented on Qwen2.5-7B-Instruction. These include **Repetition Penalty** to
260 mitigate text degeneration via logit penalization, **Entropy-Based Stopping** employing predictive
261 uncertainty as a dynamic termination criterion, **Length Constraint** for enforcing explicit output
262 boundaries, and **Lookahead Decoding**, designed to optimize the generation trajectory by anticipat-
263 ing future probabilities.
264

265 4.2 FINE-GRAINED CONSTRAINTS
266

267 To evaluate a model’s ability to follow specific, localized instructions in long-form generation, we
268 designed a framework using fine-grained constraints. This approach tests content control at a sub-
269 document level, unlike typical global prompt-following evaluations. Specifically, we apply three
270 distinct and simultaneous constraints to designated sections of the output. The constraints are de-
271 fined as follows:
272

270
 271 Table 2: Performance comparison of evaluated models on a 100-section generation task, conducted
 272 in English under simple difficulty settings. Representative results are shown for an unstructured
 273 task (Story) and a structured task (Code Function). For the LSD and FAD metrics, the values in
 274 parentheses provide context by showing the generated mean length (in words) and mean section
 275 count, respectively. The “ \pm ” values represent the standard deviation. The arrows (\uparrow/\downarrow) indicate
 276 whether higher or lower values are preferable for each metric.

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	Length Volatility			Generation Quality		
	LSD (\downarrow)	LVC (\downarrow)	MLA (\uparrow)	FAD (\downarrow)	SCA (\uparrow)	UCA (\uparrow)
GPT-4o mini	325.65 (959)	33.9%	4.8%	1.41 (7.00)	84.6% ($\pm 30.8\%$)	86.7% ($\pm 6.7\%$)
Claude-3.5-Sonnet	3.30 (176)	1.9%	0.9%	0.00 (2.00)	3.0% ($\pm 0.0\%$)	88.7% ($\pm 2.7\%$)
Deepseek-R1	103.30 (1198)	8.6%	6.0%	1.25 (4.33)	35.0% ($\pm 13.2\%$)	93.3% ($\pm 3.7\%$)
Deepseek-V3	40.76 (1854)	2.2%	9.3%	1.70 (20.67)	48.6% ($\pm 3.8\%$)	84.7% ($\pm 3.4\%$)
Mamba-7B	715.98 (1291)	55.5%	6.5%	41.72 (40.75)	66.8% ($\pm 21.9\%$)	76.0% ($\pm 17.3\%$)
Qwen2.5-1.5B	27.78 (142)	19.6%	0.7%	0.47 (1.67)	15.6% ($\pm 24.0\%$)	84.0% ($\pm 7.1\%$)
Qwen2.5-7B	75.87 (445)	17.0%	2.2%	2.05 (10.33)	99.8% ($\pm 0.4\%$)	86.7% ($\pm 7.6\%$)
Llama3.1-8B	92.77 (350)	26.5%	1.7%	0.94 (4.33)	92.4% ($\pm 14.2\%$)	82.0% ($\pm 18.9\%$)
LongWriter-8B	2866.3 (6320)	45.4%	31.6%	21.42 (45.00)	32.6% ($\pm 31.9\%$)	66.7% ($\pm 16.5\%$)
Repetition Penalty	553 (2967)	18.6%	14.8%	5.4 (22)	98% ($\pm 1\%$)	76.7% ($\pm 14.5\%$)
Entropy-Stopping	713 (2701)	26.4%	13.5%	7.24 (24)	95% ($\pm 2.5\%$)	83.9% ($\pm 8\%$)
Length Constraint	1280 (4470)	28.65%	22.4%	9.2 (28)	96% ($\pm 2\%$)	85% ($\pm 9\%$)
Lookahead Decoding	268 (2883)	9.3%	14.4%	7.2 (25)	94% ($\pm 3.5\%$)	84.4% ($\pm 8\%$)

- *Character-level Pattern Constraint*: This constraint dictates that the first word of a target section must begin with a pre-determined, randomly selected alphabetical character. This tests the model’s ability to control low-level textual attributes.
- *Keyword Presence Constraint*: This requires the mandatory inclusion of a specific, randomly selected keyword within the body of a target section. This evaluates the model’s capacity to track and insert specific information into relevant contexts.
- *Specified Theme Constraint*: This imposes a thematic requirement, compelling the narrative or content of a target section to align with a randomly selected topic or scenario. This assesses the model’s ability to generate coherent content based on a high-level concept.

4.3 RESULTS AND ANALYSIS

Volatility Across Different Dimensions. As shown in Figure 3, we analyze model performance across three dimensions. On the language dimension, most models exhibit lower volatility and a greater mean output length in 5 runs when generating in English. Regarding instruction complexity, models produce longer outputs for simple instructions, likely due to greater creative freedom, which is also accompanied by higher volatility. In terms of output format, we observe an interesting trend where models generate longer and more stable text (i.e., less volatile) for structured tasks. We attribute this to structured tasks being governed by well-defined format constraints and internal logic, which provides stronger guidance for the generation process. This hypothesis is corroborated by Figure (d.2), which shows that models generally generate a greater number of sections for structured tasks. For complete experimental results and analysis, please refer to Appendix J.

Long Text Quality Evaluation. For comparison, we exclude Claude-3.5-Sonnet due to its low mean length (176 words), insufficient for long-text evaluation. For other models, we assess generation quality and actual length, revealing distinct trade-offs. As shown in Table 2, GPT-4o-mini showed the best balance on structured tasks among longer-output models, with SCA 84.6%, low FAD, and 959-word output. LongWriter-8B generated the longest text (6320 words) but scored low on both SCA (32.6%) and FAD (21.42), indicating a quality-length trade-off. On unstructured tasks, Deepseek-R1 achieved the highest UCA (93.3%) with 1198 words, while LongWriter-8B again scored lowest (66.7%), prioritizing length over quality. In summary, all current models fail to jointly satisfy long-text length and high-quality generation.

324 **Generation Patterns of Length Volatility** Our experiments reveal that baseline models consistently
 325 struggle with length and structural constraints in long-form generation. The failure rate is stark:
 326 when tasked with generating up to 50 sections, models failed in approximately half of the cases. For
 327 requests exceeding 50 sections, all models failed to complete the task as instructed. These failures
 328 typically manifest in two primary patterns:

- 330 • *Incomplete Generation*: Models frequently produce significantly less content than in-
 331 structed. For example, when tasked with generating 40 sections, a model might stop after
 332 only 10. This premature termination, whether silent or reverting to a persona, with outputs
 333 like “I hope these sections are helpful.” We hypothesize this latter behavior occurs when
 334 the generated text exceeds the context window, pushing the original prompt out of scope
 335 and causing the model to default to its base assistant persona.
- 336 • *Section Skipping*: In other instances, models demonstrate erratic adherence to the requested
 337 structure. A model might generate the first several sections sequentially and then abruptly
 338 jump to the final section, omitting all intermediate content.

340 4.3.1 ANALYSIS OF FINE-GRAINED CONSTRAINT FOLLOWING

341 To provide a quantitative view of the volatility in instruction adherence, we analyze model per-
 342 formance on the fine-grained constraint tasks. The complete results, including figures for all three
 343 constraint types, can be seen in Appendix D.

344 As depicted in the figure, a clear trend emerges across all tested models. While most models, such
 345 as Deepseek-R1, Qwen3-8B and LLama3.1 adhere to constraints on shorter tasks (5-50 sections),
 346 their performance plummets and grows more volatile as the context length increases. This trend
 347 is universal, starkly contrasting the better models with Longwriter, which fails entirely regardless
 348 of length. Critically, even for the top models, the success rate flattens after the 100-section mark,
 349 and then actively collapses—with Qwen3-8b and LLama3.1 producing fewer correct sections at 500
 350 than at 200. The systemic failure is most evident at the 500-section task: against a requirement of
 351 100 constrained sections, no model delivered more than 40. This demonstrates a profound inability
 352 of current models to track and execute instructions deep within long-form generation.

354 5 ATTENTION TRACES BEHIND VOLATILITY

355 **Attention Trace.** To explore the root of output volatility, we analyze the attention mechanism in
 356 generation. Building on Li et al. (2025), who link attention to constraint tokens with instruction-
 357 following ability, we extend this to long-form generation. We hypothesize that attention fluctuations
 358 toward input constraints correlate with output variability. At each step t , where $t \geq 1$, the model
 359 attends to prompt tokens $x_{1:T_0}$ and generated tokens $y_{0:t-1}$, where T_0 indicates the length of prompt
 360 tokens. We focus on attention to constraint-encoding tokens in $x_{1:T_0}$. For layer l and head n ,
 361 attention uses query $Q_n^{(l,t)}$ from $\mathbf{h}_{t-1}^{(l)}$ (last generated token’s hidden state) and keys $K_n^{(l,t)}$ from
 362 $\mathbf{h}_{1:T_0+t-1}^{(l)}$ (hidden states of all prior tokens). The scaled dot-product attention weights $A_n^{(l,t)}$ are
 363 then calculated as $A_n^{(l,t)} = \text{softmax}\left(\frac{Q_n^{(l,t)} K_n^{(l,t)\top}}{\sqrt{d_k}}\right)$ where d_k is the dimension of the key vectors.
 364 These weights are then averaged across all N attention heads to obtain the layer-level attention
 365 vector $a^{(l,t)} = \frac{1}{N} \sum_{n=1}^N A_n^{(l,t)}$.

366 To measure attention directed toward constraints, we first identify the prompt token indices cor-
 367 responding to each textual constraint $r \in R$, denoted as C_r . The full set of constraint token indices
 368 is given by $C = \bigcup_{r \in R} C_r$. The layer-step constraint attention $\alpha^{(l,t)}$ is then defined as the average
 369 attention from token y_t to all tokens in C , i.e., $\alpha^{(l,t)} = \frac{1}{|C|} \sum_{j \in C} a_j^{(l,t)}$, where $a_j^{(l,t)}$ is the attention
 370 weight at layer l and step t directed to the j -th token of the input. Finally, we average $\alpha^{(l,t)}$ across
 371 all L layers of the model to obtain a unified measure of constraint attention at each generation step,
 372 $\bar{\alpha}^{(t)} = \frac{1}{L} \sum_{l=1}^{L-1} \alpha^{(l,t)}$. By plotting the trace of $\bar{\alpha}^{(t)}$ during generation, we visualize how attention
 373 to constraints evolves. Peaks and subsequent drops, “attention summits”, may signal points where
 374 reduced constraint focus leads to task deviation and output volatility. To analyze this, we gener-

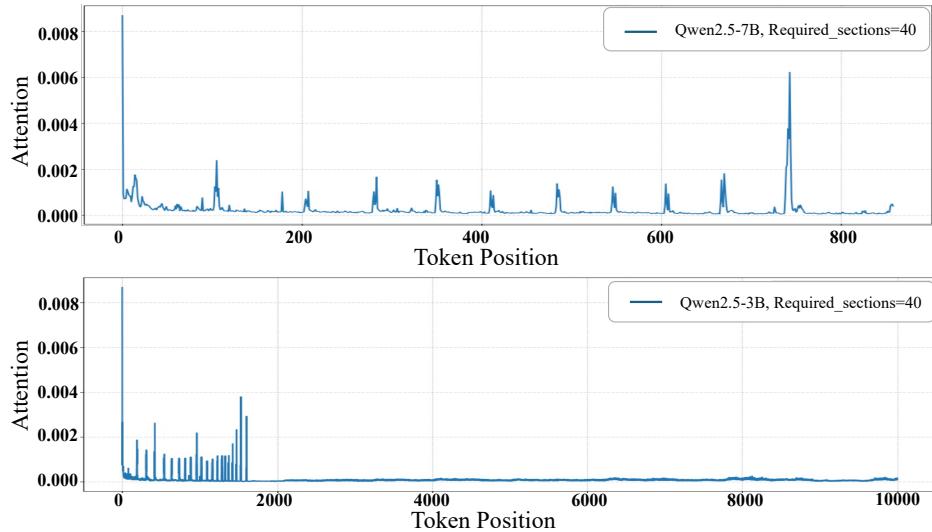


Figure 4: Attention traces for Qwen2.5-7B (top) and Qwen2.5-3B (bottom) models in a long-form diary generation task with 40 required sections. Each peak in the traces indicates the initiation of a new section. It is evident that both models failed to meet the requirement: Qwen2.5-7B bypassed intermediate sections and proceeded directly from an early section to the final one, while Qwen2.5-3B generated repetitive text after its final attention peak.

ate outputs with different random seeds and compare their attention traces to reveal links between attention dynamics and output variability.

Internal Patterns of Length Volatility. We analyze the attention trace $\bar{\alpha}^{(t)}$, which reveals internal patterns directly correlated with the earlier generation failures. As shown in Figure 2, where models are tasked with generating 40 sections, the traces highlight early internal signs of output volatility. From these, we identify two primary failure signatures: (1) *Attention Collapse*: This pattern aligns with premature termination or task abandonment. The Qwen2.5-3B trace illustrates this clearly: in the first 1,500 tokens, the model shows periodic attention spikes and follows instructions with well-structured content. After that, attention collapses to near-zero, signaling loss of focus on prompt constraints and resulting in halted or irrelevant output; (2) *Attention Instability*: This pattern corresponds to erratic behaviors such as section skipping. In Qwen2.5-7B, initial regular attention spikes align with successful section generation. Around token 750, an abnormally large spike disrupts this pattern, immediately preceding the model’s deviation from sequential output. In both cases, periodic attention spikes function as essential refocusing signals that help maintain task coherence across sections. Analysis of the $\bar{\alpha}^{(t)}$ trace supports our hypothesis: the output volatility is not random but closely linked to and preceded by measurable failures in the model’s internal attention dynamics.

6 MITIGATING LENGTH VOLATILITY

To mitigate generation volatility, we propose a dynamic decoding strategy that ensures stable, constraint-abiding outputs via single-pass generation. Rather than iterative prompts or multiple model calls, we modify logits in real time. At each step t , the model outputs a logit vector $s_t \in \mathbb{R}^{|V|}$ over the model’s vocabulary V , which are adjusted by a guidance function M . Unlike standard decoding, M modifies logits based on context and rules to enforce structural and constraint adherence. Formally, given the prompt tokens $x_{1:T_0}$ and the generated token sequence $y_{0:t-1}$ up to step $t-1$, the modified logit vector s'_t is computed as:

$$s'_t = M(s_t, [x_{1:T_0}; y_{0:t-1}]). \quad (1)$$

The function M combines two guidance components: *structural enforcement*, which enforces adherence to the desired output structure, and *proactive failure prevention*, which applies a prohibitive negative bias to suppress likely failure modes during generation.

432 6.1 STRUCTURAL ENFORCEMENT VIA LOGITS BOOSTING
433

434 To ensure generation of P_{total} sections, we force a new section whenever the current section reaches
435 the target length τ_{max} . If the length of p -th section $\tau_p \geq \tau_{max}$, a strong positive bias β is applied
436 to the logits of tokens corresponding to the next section title, $V_{\text{title}}^{(p+1)} \subset V$. The structural boosting
437 adjustment, M_{struct} , is then defined as:

$$438 \quad s'_{t,j} = \begin{cases} s_{t,j} + \beta & \text{if } \tau_p \geq \tau_{max} \wedge p < P_{total} \wedge j \in V_{\text{title}}^{(p+1)} \\ 439 \quad s_{t,j} & \text{otherwise,} \end{cases} \quad (2)$$

440 where $s_{t,j}$ is the logit for token j at step t , and β is a large positive constant that makes the se-
441 lection of a title token nearly certain. Once a token from $V_{\text{title}}^{(p+1)}$ is generated, the section index is
442 incremented ($p \leftarrow p + 1$) and the counter is reset ($\tau_p \leftarrow 0$).
443

444 6.2 PROACTIVE FAILURE PREVENTION
445

446 Based on our analysis of generation patterns,
447 we proactively suppress tokens associated with
448 known failure modes by applying a strong
449 negative bias during decoding. Formally, let
450 $V_{\text{banned}} \subset V$ be the set of token indices corre-
451 sponding to conversational filler phrases (e.g.,
452 "I hope these..."); and let v_{eos} be the index of
453 the end-of-sentence token. The failure preven-
454 tion function M_{fail} is defined as:

$$455 \quad s'_{t,j} = \begin{cases} -\infty & \text{if } j \in V_{\text{banned}} \\ 456 \quad -\infty & \text{if } j = v_{\text{eos}} \wedge p < P_{total} \\ 457 \quad s_{t,j} & \text{otherwise.} \end{cases} \quad (3)$$

458 This prevents undesirable conversational text
459 and early termination before the final section.
460 By composing $M = M_{\text{fail}} \circ M_{\text{struct}}$, our method
461 enables real-time control over generation, di-
462 rectly managing output probabilities to address
463 length volatility while ensuring structural and
464 constraint adherence in a single pass.
465

466 6.3 RESULTS
467

468 Our method marks a major improvement in long-text generation, outperforming strong baselines
469 like LongWriter-8B in stability, adherence, and quality. Evaluation was done on a 100-section task
470 under simple settings. In output stability and length adherence, our model excels. As shown in
471 Figure 6, its mean length and section count closely follow the reference line, unlike baselines that
472 degrade as complexity rises. The Length Variation Coefficient (LVC), where lower is better, for our
473 model is 14.02%, a 69% reduction in volatility compared to 45.4% for LongWriter-8B. Furthermore,
474 our model's Mean Length Accuracy (MLA) is 78.25%, more than double the 31.6% achieved by
475 LongWriter-8B, indicating a much closer adherence to the required length. This is reflected in the
476 average output of 15,651 words from our model, compared to just 6,320 from LongWriter-8B and
477 less than 1000 in other models. Our model also achieves higher generation quality. For Structured
478 Content Accuracy (SCA), our model scored a perfect 100%, dramatically better than LongWriter-
479 8B's 32.6%, which has plenty of repeated tokens. [To quantify this, we further analyze the lexical](#)
480 [diversity in Appendix G, showing that our method significantly reduces n-gram repetition rates and](#)
481 [improves the Type-Token Ratio \(TTR\) compared to baselines.](#) This highlights its enhanced capabili-
482 [ty in handling structured tasks. Similarly, for Unstructured Content Accuracy \(UCA\), our model](#)
483 [scored 86.7%, a 30% improvement over LongWriter-8B. These results underscore our method's](#)
484 [ability to generate not only longer and more stable text but also higher-quality. Beyond surface-level](#)
485 [metrics, we investigate the underlying mechanism of this stability in Appendix H. Through Repre-
486 \[sentational Stability Analysis, we demonstrate that SELB effectively mitigates the 'representational\]\(#\)
487 \[drift' of hidden states, preventing the semantic collapse commonly observed in baseline models\]\(#\)
488 \[during long generation.\]\(#\)](#)

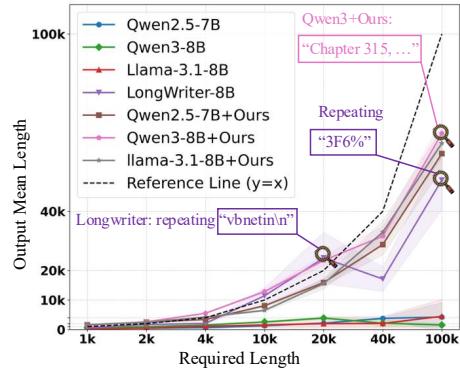


Figure 5: Model output length volatility (Story Writing). While baseline models like Longwriter often inflate length with meaningless repetition, our method accurately matches the target length while maintaining coherent content. Section volatility is presented in Figure 20.

486
487

6.4 GENERALIZATION TO FREE-FORM GENERATION

488
489
490
491
492
493
494
495
496
497
498
499
500
501

We extend its applicability to free-form generation tasks (e.g., continuous novel writing) where such explicit anchors are absent. In Appendix I, we detail the adaptation of our approach into a SELB-Hybrid strategy. This mechanism addresses the twin challenges of premature termination and generation loops by dynamically shifting from section enforcement to length enforcement. Specifically, it incorporates an aggressive Stop Token Suppression module that prohibits early exit phrases and a Hybrid Keep-Alive mechanism. The latter monitors generation checkpoints, if a stall or repetitive loop is detected within a grace period, it proactively boosts generic continuation tokens to break the cycle and sustain narrative flow. The empirical impact of this adaptation is substantial. We evaluated the method on extreme-length free-form tasks, such as writing a 20,000-word novel. As detailed in Appendix I, baseline models including GPT-4o-mini and LongWriter-8B suffered from severe length collapse, often generating fewer than 600 words despite the 20k target. In contrast, our SELB-Hybrid method achieved a Mean Length Accuracy (MLA) of 97% with a remarkably low Length Variation Coefficient (LVC) of 12.1%. These results confirm that our logits-boosting paradigm can be effectively generalized beyond structured tasks to enforce stability in unstructured, open-ended generation scenarios.

502

503
504

7 CONCLUSION

505
506
507
508
509
510
511
512
513

In this work, we investigate the critical yet overlooked issue of output volatility in long-form LLM generation. Our findings show that instability across multiple outputs poses a major challenge to reliable application. To systematically study this problem, we first introduce VOLTBench, a novel benchmark to quantify length volatility across diverse tasks. By probing internal attention mechanisms, we identify common patterns that drive instability. Based on these insights, we propose SELB (Structural Enforcement via Logits Boosting), a lightweight, training-free decoding strategy to directly mitigate this issue. Extensive experiments confirm that severe output volatility is widespread in mainstream models and validate our approach, which improves the base model’s mean output length by 148% and reduces length volatility by 69%, while maintaining generation quality.

514
515

REPRODUCIBILITY STATEMENT

516
517
518
519
520
521
522
523
524
525
526

Our work addresses the output volatility in long-form text generation through a three-stage approach: benchmarking, probing, and mitigation. This includes three main contributions: (1) the VOlatility in Long-form Text Benchmark (VOLTBench); (2) an in-depth analysis of the internal causes of volatility; and (3) a lightweight decoding-stage optimization strategy, SELB. To ensure the full reproducibility of our findings, we have provided detailed documentation in the paper and its appendices. The construction methodology, data composition, and evaluation metrics for VOLTBench are thoroughly described in Section 3. The complete implementation details for our proposed SELB method and the full experimental setup, including all hyperparameters, are provided in Section 6. We commit to releasing the entire source code, the full VOLTBench benchmark, and our analysis scripts to the public upon acceptance of this paper to facilitate verification and future research.

527
528

ETHICS STATEMENT

529
530
531
532
533
534
535

Our research adheres to the standard ethical guidelines for academic publishing. The work presented in this paper is foundational, focusing on the technical challenges of output volatility in Large Language Models. Our objective is to improve the reliability and stability of these models, which is a positive contribution to the field of artificial intelligence. The proposed benchmark, VOLTBench, is constructed from publicly available datasets and does not contain any personally identifiable or sensitive information. Our research did not involve human subjects, and we foresee no direct negative societal impacts from this work.

536
537
538

REFERENCES

539

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,

540 Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
 541 Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
 542 Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
 543 Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
 544 Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report, 2023. URL
 545 <https://arxiv.org/abs/2309.16609>. 1

546 Yushi Bai, Jiajie Zhang, Xin Lv, Linzhi Zheng, Siqi Zhu, Lei Hou, Yuxiao Dong, Jie Tang, and
 547 Juanzi Li. Longwriter: Unleashing 10,000+ word generation from long context llms, 2024. URL
 548 <https://arxiv.org/abs/2408.07055>. 1, 1, 2, 3.2, 4.1, I, 25

549

550 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Andrew Dai, Pu-Chin Chen,
 551 Jiaqi Pan, Asya Fadeeva, Zach Gleicher, Thang Luong, and Niket Kumar Bhumihar. Gemini 2.5:
 552 Pushing the frontier with advanced reasoning, multimodality, long context, and next generation
 553 agentic capabilities, 2025. URL <https://arxiv.org/abs/2507.06261>. 1

554 Marta R. Costa-jussà, Pierre Andrews, Mariano Coria Meglioli, Joy Chen, Joe Chuang, David Dale,
 555 Christophe Ropers, Alexandre Mourachko, Eduardo Sánchez, Holger Schwenk, Tuan Tran, Arina
 556 Turkatenko, and Carleigh Wood. Lcfo: Long context and long form output dataset and bench-
 557 marking, 2025. URL <https://arxiv.org/abs/2412.08268>. 2

558

559 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 560 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 561 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 562 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 563 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 564 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 565 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 566 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, and et al
 567 Kai Dong. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
 2025a. URL <https://arxiv.org/abs/2501.12948>. 4.1

568

569 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
 570 gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
 571 Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
 572 Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
 573 Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
 574 Ni, Jiashi Li, Jiawei Wang, and et al Jin Chen. Deepseek-v3 technical report, 2025b. URL
 575 <https://arxiv.org/abs/2412.19437>. 4.1

576

577 Team GLM, : Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego
 578 Rojas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Yushi Bai,
 579 Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan
 580 Wang. Chatglm: A family of large language models from glm-130b to glm-4 all tools, 2024.
 581 URL <https://arxiv.org/abs/2406.12793>. 1

582

583 Alon Jacovi, Andrew Wang, Chris Alberti, Connie Tao, Jon Lipovetz, Kate Olszewska, Lukas Haas,
 584 Michelle Liu, Nate Keating, Adam Bloniarz, Carl Saroufim, Corey Fry, Dror Marcus, Doron
 585 Kukliansky, Gaurav Singh Tomar, James Swirhun, Jinwei Xing, Lily Wang, Madhu Gurumurthy,
 586 Michael Aaron, Moran Ambar, Rachana Fellinger, Rui Wang, Zizhao Zhang, Sasha Goldshtein,
 587 and Dipanjan Das. The facts grounding leaderboard: Benchmarking llms' ability to ground re-
 588 sponses to long-form input, 2025. URL <https://arxiv.org/abs/2501.03200>. 2

589

590 Xiaomin Li, Zhou Yu, Zhiwei Zhang, Xupeng Chen, Ziji Zhang, Yingying Zhuang, Narayanan
 591 Sadagopan, and Anurag Beniwal. When thinking fails: The pitfalls of reasoning for instruction-
 592 following in llms, 2025. URL <https://arxiv.org/abs/2505.11423>. 5

593

594 Xiang Liu, Peijie Dong, Xuming Hu, and Xiaowen Chu. Longgenbench: Long-context generation
 595 benchmark, 2024. URL <https://arxiv.org/abs/2410.04199>. 1, 2, 1

596

597 Chau Minh Pham, Simeng Sun, and Mohit Iyyer. Suri: Multi-constraint instruction following for
 598 long-form text generation, 2024. URL <https://arxiv.org/abs/2406.19371>. 2

594 Shanghaoran Quan, Tianyi Tang, Bowen Yu, An Yang, Dayiheng Liu, Bofei Gao, Jianhong Tu,
 595 Yichang Zhang, Jingren Zhou, and Junyang Lin. Language models can self-lengthen to generate
 596 long texts, 2024. URL <https://arxiv.org/abs/2410.23933>. 2

597

598 Haoran Que, Feiyu Duan, Lijun He, Yutao Mou, Wangchunshu Zhou, Jiaheng Liu, Wenge Rong,
 599 Zekun Moore Wang, Jian Yang, Ge Zhang, Junran Peng, Zhaoxiang Zhang, Songyang Zhang, and
 600 Kai Chen. Hellobench: Evaluating long text generation capabilities of large language models,
 601 2024. URL <https://arxiv.org/abs/2409.16191>. 2, 1

602 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 603 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 604 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 605 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 606 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 607 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 608 URL <https://arxiv.org/abs/2412.15115>. 4.1

609 Haochen Tan, Zhijiang Guo, Zhan Shi, Lu Xu, Zhili Liu, Yunlong Feng, Xiaoguang Li, Yasheng
 610 Wang, Lifeng Shang, Qun Liu, and Linqi Song. Proxyqa: An alternative framework for evaluating
 611 long-form text generation with large language models, 2024. URL <https://arxiv.org/abs/2401.15042>. 2

612

613 Falcon-LLM Team. The falcon 3 family of open models, December 2024. 4.1

614

615 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.
 616 4.1

617

618 Y. Wang, D. Ma, and D. Cai. With greater text comes greater necessity: Inference-time training
 619 helps long text generation, 2024. URL <https://arxiv.org/abs/2401.11504>. 2

620

621 Yuhao Wu, Yushi Bai, Zhiqiang Hu, Roy Ka-Wei Lee, and Juanzi Li. Longwriter-zero: Mastering
 622 ultra-long text generation via reinforcement learning, 2025a. URL <https://arxiv.org/abs/2506.18841>. 2

623

624 Yuhao Wu, Ming Shan Hee, Zhiqing Hu, and Roy Ka-Wei Lee. Longgenbench: Benchmarking
 625 long-form generation in long context llms, 2025b. URL <https://arxiv.org/abs/2409.02076>. 1, 2, 1

626

627 Tianzhu Ye, Li Dong, Yuqing Xia, Yutao Sun, Yi Zhu, Gao Huang, and Furu Wei. Differential
 628 transformer, 2025a. URL <https://arxiv.org/abs/2410.05258>. 1

629

630 Xi Ye, Fangcong Yin, Yinghui He, Joie Zhang, Howard Yen, Tianyu Gao, Greg Durrett, and Danqi
 631 Chen. Longproc: Benchmarking long-context language models on long procedural generation,
 632 2025b. URL <https://arxiv.org/abs/2501.05414>. 2, 1

633

634 Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
 635 Y. X. Wei, Lean Wang, Zhiping Xiao, Yuqing Wang, Chong Ruan, Ming Zhang, Wenfeng Liang,
 636 and Wangding Zeng. Native sparse attention: Hardware-aligned and natively trainable sparse
 637 attention, 2025. URL <https://arxiv.org/abs/2502.11089>. 1

638

639 Junhao Zhang, Richong Zhang, Fanshuang Kong, Ziyang Miao, Yanhan Ye, and Yaowei Zheng.
 640 Lost-in-the-middle in long-text generation: Synthetic dataset, evaluation framework, and mitigation,
 641 2025a. URL <https://arxiv.org/abs/2503.06868>. 2, 1, 3.2

642

643 Wei Zhang, Zhenhong Zhou, Kun Wang, Junfeng Fang, Yuanhe Zhang, Rui Wang, Ge Zhang, Xavier
 644 Li, Li Sun, Lingjuan Lyu, Yang Liu, and Sen Su. Lifebench: Evaluating length instruction fol-
 645 lowing in large language models, 2025b. URL <https://arxiv.org/abs/2505.16234>.
 646 1, 2, 1, 3.2

647

648 Zihan Zhou, Chong Li, Xinyi Chen, Shuo Wang, Yu Chao, Zhili Li, Haoyu Wang, Qi Shi, Zhixing
 649 Tan, Xu Han, Xiaodong Shi, Zhiyuan Liu, and Maosong Sun. LLM×MapReduce: Simplified
 650 long-sequence processing using large language models. In Wanxiang Che, Joyce Nabende, Eka-
 651 terina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting*

648
649 *of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 27664–27678, Vi-
650 enna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0.
651 URL <https://aclanthology.org/2025.acl-long.1341/>. 1
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A LLM USAGE**
703

704 This paper addresses the challenge of output volatility in the long-form generation of Large Lan-
705 guage Models (LLMs). We introduce VOLTBench, a novel benchmark to quantify this instability,
706 conduct an in-depth analysis of its underlying causes, and propose SELB (Structural Enforcement
707 via Logits Boosting), a lightweight decoding-stage strategy to mitigate the issue. In the prepara-
708 tion of this manuscript, we utilized Large Language Models (e.g., Google’s Gemini) as a general-
709 purpose writing assistant. The scope of the LLM’s assistance was strictly confined to language-level
710 refinements. This included several specific functions: identifying and correcting grammatical and
711 syntactical errors; suggesting alternative phrasing to improve sentence flow and coherence; enhanc-
712 ing vocabulary for greater precision and academic tone; and paraphrasing sentences written by the
713 authors to improve readability.

714 **B TASK INSTRUCTION**
715

716 The following are the prompts used in our experiment.

717 **Instruction: English Simple Story Generation**

718 Please write a novel consisting of {num_section} chapters. Each chapter should revolve around a theme
719 or plot, with a minimum of {word_section} words for each chapter. Ensure clarity and continuity without
720 any interruptions or omissions in the narrative throughout the document. Do not stop generating content
721 until all {num_section} chapters are completed and ‘*** finished ***’ is used to indicate the end of the
722 document.

723 *** started ***

724 #**# Title:

725 Table 3: An example of the instructional prompt for the English simple story generation task. This
726 template specifies parameters like the number of chapters and minimum word count, guiding the
727 structure of the generated narrative.

728 **Instruction: English Simple Dialogue Generation**

729 Please generate {num_section} rounds of dialogue between customers and customer service. Each round
730 should include a customer’s question and a customer service representative’s response, with a minimum
731 of {word_section} words for each round. Ensure clarity and continuity without any interruptions or omis-
732 sions in the narrative throughout the document. Do not stop generating content until all {num_section}
733 rounds of dialogue are completed and ‘*** finished ***’ is used to indicate the end of the document.

734 *** started ***

735 #**# Round 1: **customers**:

736 Table 4: The prompt for generating simple dialogues between a customer and customer service,
737 specifying the number of rounds and word count.

738 **Instruction: English Simple Diary Generation**

739 Please write a diary for {num_section} days for Jeff. Each entry should include the date and a brief
740 description of the content, with a minimum of {word_section} words for each entry. Ensure clarity
741 and continuity without any interruptions or omissions in the narrative throughout the document. Do not
742 stop generating content until all {num_section} diaries are completed and ‘*** finished ***’ is used to
743 indicate the end of the document.

744 *** started ***

745 #**# Date: Day 1:

746 Table 5: The prompt for generating simple diary entries for a character named Jeff, specifying the
747 number of days and word count.

756

Instruction: English Simple Architecture Design

757

758

759

760

761

762

Please design a {num_section}-story building. Describe the function or layout of each floor, with at least {word_section} words for each layer. Ensure clarity and continuity without any interruptions or omissions in the narrative throughout the document. Do not stop generating content until all {num_section} floors are completed and '*** finished ***' is used to indicate the end of the document.

763

*** started ***

764

Floor 1:

765

Table 6: The prompt for designing a multi-story building with simple functional descriptions for each floor.

766

767

Instruction: English Complex Story Generation

768

769

770

771

772

773

774

775

776

777

Please write a fantasy novel with {num_section} chapters about Jeff. The novel should have a clear theme and structure, with characters experiencing multiple twists and personal growth throughout the plot. Each chapter should describe the main characters' actions, thoughts, and emotional development, while also incorporating relevant background information (such as historical context, social environment, etc.). Each chapter should be around {word_section} words, with enough detail and emotional depth to keep the reader engaged. Ensure clarity and continuity without any interruptions or omissions in the narrative throughout the document. Do not stop generating content until all {num_section} chapters are completed and '*** finished ***' is used to indicate the end of the document. Do not output other characters to stop.

778

*** started ***

779

Chapter1:

780

Table 7: The prompt for generating a complex fantasy novel, detailing requirements for plot, character development, and emotional depth.

781

782

783

784

Instruction: English Complex Diary Generation

785

786

787

788

789

790

791

792

Please write a diary for {num_section} days. Your name is Jeff, a white-collar worker. Each entry can include aspects such as your mood for the day, key events, challenges faced, solutions, and hopes or reflections for the future. Ensure that each diary entry expresses different emotions and reflects various life events and growth experiences. The diary content can cover a range of life scenarios, such as work, family, friends, health, and travel. Each entry should be around {word_section} words. Ensure clarity and continuity without any interruptions or omissions in the narrative throughout the document. Do not stop generating content until all {num_section} chapters are completed and '*** finished ***' is used to indicate the end of the document. Do not output other characters to stop.

793

*** started ***

794

Date: Day 1

795

Table 8: The prompt for generating complex and emotionally rich diary entries, covering various life scenarios and personal growth.

796

797

798

799

800

Instruction: English Complex Dialogue Generation

801

802

803

804

805

806

807

808

809

Please generate {num_section} rounds of dialogue between customers and customer service. Each round of dialogue should include the customer's question and the customer service representative's response, along with service recommendations or solutions. These dialogues can cover multiple industries and scenarios, with each turn of conversation being non-contiguous and the scenes able to switch, such as in electronic product support, travel booking, financial services, and customer complaint handling. Each round should reflect different emotional changes, with the customer possibly exhibiting emotions like anxiety, confusion, anger, or happiness, while the customer service responses should appropriately provide reassurance, explanations, or solutions based on the customer's emotional state. Each round of dialogue should contain at least {word_section} words. Ensure clarity and continuity without any interruptions or omissions in the narrative throughout the document. Do not stop generating content

```

810
811 until all {num_section} rounds of dialogue is completed and '*** finished ***' is used to indicate the
812 end of the document. Do not output other characters to stop.
813
814 *** started ***
815 #*# Round 1 Customer:

```

Table 9: The prompt for generating complex customer service dialogues across various industries, focusing on emotional changes and appropriate responses.

Instruction: English Complex Architecture Design

```

816
817 Please design a {num_section}-story mixed-use skyscraper for work and living. Describe the function
818 or layout of each floor. Each floor should have a different function and design, closely connected to
819 other floors. Include detailed descriptions of office areas, commercial spaces, residential areas, and
820 entertainment and leisure zones. The content should have sufficient detail and depth, such as design
821 concepts, layouts, and unique elements (like floor decoration styles, space utilization, and the applica-
822 tion of smart technology) to present a multifunctional building. Each floor's description should be at
823 least {word_section} words. Ensure clarity and continuity without any interruptions or omissions in the
824 narrative throughout the document. Do not stop generating content until all {num_section} floors are
825 completed and '*** finished ***' is used to indicate the end of the document. Do not output other char-
826 acters to stop.
827
828 *** started ***
829 #*# Floor 1:

```

Table 10: The prompt for designing a detailed mixed-use skyscraper, requiring descriptions of design concepts, layouts, and unique features for each floor.

Instruction: GenData - Simple Code Function

```

833
834 Please generate a complete library of {num_section} different functions. Each function should include
835 the function name, parameters, return type, and function comments, formatted in Python. Ensure clarity
836 and continuity without any interruptions or omissions in the narrative throughout the document. Do not
837 stop generating content until all {num_section} functions are completed and '*** finished ***' is used
838 to indicate the end of the document.
839
840 *** started ***
841 # Function 1: Calculate the area of a circle, given the radius
842
843 def calculate_area(radius):
844     """
845     This function calculates the area of a circle given its radius.
846     Parameters:
847         radius (float): The radius of the circle.
848     Returns:
849         float: The area of the circle.
850     """
851     return 3.14159 * radius ** 2

```

Table 11: The prompt for generating a library of simple Python functions with comments and examples.

Instruction: GenData - Simple User Info

```

857
858 Please generate {num_section} virtual user profiles, with each user's information including name, age,
859 gender, address, email, and phone number, formatted as JSON. Ensure clarity and continuity without
860 any interruptions or omissions in the narrative throughout the document. Do not stop generating content
861 until all {num_section} profiles are completed and '*** finished ***' is used to indicate the end of the
862 document.
863

```

```

864
865     *** started ***
866
867     [ {
868         "index": 1,
869         "name": "John Doe",
870         "age": 30,
871         "gender": "Male",
872         "address": "1234 Elm Street, Springfield, IL, 62701",
873         "email": "johndoe@example.com",
874         "phone": "+1-555-123-4567"
875     } ]

```

Table 12: The prompt for generating simple virtual user profiles in JSON format.

Instruction: GenData - Simple Company Info

Please generate {num_section} virtual company profiles. Each profile should include the company name, industry, year of establishment, company address, and contact number, formatted in JSON. Ensure clarity and continuity without any interruptions or omissions in the narrative throughout the document. Do not stop generating content until all {num_section} virtual company profiles are completed and '*** finished ***' is used to indicate the end of the document.

```

884     *** started ***
885
886     [ {
887         "index": 1,
888         "company_name": "Tech Innovations Inc.",
889         "industry": "Technology",
890         "year_established": 2015,
891         "company_address": "4567 Silicon Valley, San Jose, CA, 95110",
892         "contact_number": "+1-800-234-5678"
893     } ]

```

Table 13: The prompt for generating simple virtual company profiles in JSON format.

Instruction: GenData - Simple Math LaTeX Formula

Please generate {num_section} mathematical formulas, formatted in LaTeX. Each formula should be preceded by a brief comment explaining the formula. The formula should be enclosed in `\begin{equation}` and `\end{equation}`. Ensure clarity and continuity without any interruptions or omissions in the narrative throughout the document. Do not stop generating content until all {num_section} mathematical formulas are completed and '*** finished ***' is used to indicate the end of the document.

```

903     *** started ***
904     % Formula 1: Energy-mass equivalence: E=mc^2, where energy is equal to mass multiplied by the
905     % square of the speed of light
906
907     \begin{equation}
908         E = mc^2
909     \end{equation}

```

Table 14: The prompt for generating simple mathematical formulas in LaTeX format.

Instruction: GenData - Complex Code Function

Please generate a library of {num_section} Python functions with varying levels of difficulty. The functions should range from simple mathematical operations to more complex data processing, string manipulations, machine learning model training, and evaluation functions. Each function should include the function name, parameters, return type, implementation, and detailed comments. The comments should

```

918
919 describe the function's purpose, usage, and include input/output examples and edge cases. Ensure clarity
920 and continuity without any interruptions or omissions in the narrative throughout the document. Do not
921 stop generating content until all {num_section} Python functions are completed and '*** finished ***'
922 is used to indicate the end of the document.
923
924 *** started ***
925 # Function 1: Add two numbers
926
927 def add(a, b):
928     """
929     This function adds two numbers together.
930     Parameters:
931         a (int/float): The first number.
932         b (int/float): The second number.
933     Returns:
934         int/float: The sum of the two numbers.
935     Example input:
936         add(3, 4)
937     Example output:
938         7
939     """
940     return a + b
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

```

Table 15: The prompt for generating a library of complex Python functions with detailed comments and examples.

Instruction: GenData - Complex User Info

```

944
945 Please generate {num_section} virtual user profiles in Json format. Each profile should include the user's
946 name, age, gender, address, email, phone number, occupation, hobbies, education, marital status, number
947 of children, work experience, and personal philosophy. Each field should reflect reasonable diversity, and
948 some fields like "personal philosophy" and "work experience" should include short background stories
949 or brief descriptions. Ensure clarity and continuity without any interruptions or omissions in the narrative
950 throughout the document. Do not stop generating content until all {num_section} virtual user profiles
951 are completed and '*** finished ***' is used to indicate the end of the document.
952
953 *** started ***
954
955 [
956     {
957         "index": 1,
958         "name": "Emily Davis",
959         "age": 30,
960         "gender": "Female",
961         "address": "789 Elm Street, San Francisco, CA, USA",
962         "email": "emily.davis@example.com",
963         "phone": "+1-415-555-0123",
964         "occupation": "Marketing Manager",
965         "hobbies": ["Yoga", "Hiking", "Cooking"],
966         "education": "Bachelor's",
967         "marital_status": "Married",
968         "children": 2,
969         "work_experience": "7 years of experience in digital marketing and
970             brand management.",
971         "personal_philosophy": "I believe in creating meaningful
972             connections and making a positive impact."
973     }
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

```

Table 16: The prompt for generating complex and detailed virtual user profiles in JSON format.

972
973**Instruction: GenData - Complex Company Info**

974 Please generate {num_section} virtual company profiles in Json format. Each profile should include
 975 the company name, industry, year of establishment, company address, contact number, number of em-
 976 ployees, main products or services, company bio, business model, annual revenue, market positioning,
 977 competitive advantage, and recent developments. Ensure that each company has a unique business model
 978 and a detailed description of its background, philosophy, and innovation. Ensure clarity and continuity
 979 without any interruptions or omissions in the narrative throughout the document. Do not stop generating
 980 content until all {num_section} virtual company profiles are completed and '*** finished ***' is used to
 981 indicate the end of the document.

981
982

983 *** started ***
 984 [{
 985 "index": 1,
 986 "company_name": "Innovative Tech Solutions, Inc.",
 987 "industry": "Information Technology",
 988 "year_established": 2015,
 989 "company_address": "123 Tech Park, San Francisco, CA, USA",
 990 "contact_number": "+1-415-555-6789",
 991 "number_of_employees": 120,
 992 "products_or_services": ["Artificial Intelligence Software", "Cloud
 993 Computing Services"],
 994 "company_bio": "Innovative Tech Solutions is dedicated to enhancing
 995 the quality of life through technological innovations,
 996 offering products that include AI and cloud computing
 997 solutions.",
 998 "business_model": "A combination of B2B and B2C, primarily
 999 providing customized solutions for enterprise clients, as
 1000 well as consumer-targeted products.",
 1001 "annual_revenue": "\$7 million",
 1002 "market_position": "Leading position in the domestic market,
 1003 currently expanding into international markets.",
 1004 "competitive_advantage": "A strong technical team and advanced R&D
 1005 capabilities give the company a competitive edge in the AI
 1006 sector."
 1007 }]

1004
1005

Table 17: The prompt for generating complex and detailed virtual company profiles in JSON format.

1006
1007**Instruction: GenData - Complex Math LaTeX Formula**

1008 Please generate {num_section} mathematical formulas in LaTeX format, with the difficulty increasing
 1009 from simple to complex. Each formula should be preceded by a brief comment explaining its meaning or
 1010 application. Start with basic algebraic formulas, then move to more complex formulas from calculus, lin-
 1011 ear algebra, probability theory, and other fields. Each formula should be enclosed in `\begin{equation}`
 1012 and `\end{equation}`. Ensure clarity and continuity without any interruptions or omissions in the
 1013 narrative throughout the document. Do not stop generating content until all {num_section} mathematical
 1014 formulas are completed and '*** finished ***' is used to indicate the end of the document.

1015
1016

1017 *** started ***
 1018 % Formula 1: Energy-mass equivalence: $E=mc^2$, where energy is equal to mass multiplied by the
 1019 square of the speed of light. % This formula is widely used in physics to describe the equivalence of
 1020 energy and mass, especially in nuclear reactions and particle physics.

1021
1022

```
\begin{equation}
E = mc^2
\end{equation}
```

1023

Table 18: The prompt for generating a sequence of mathematical formulas of increasing complexity
in LaTeX format.

1026 C UNSTRUCTURED CONTENT EVALUATION

1028 To facilitate a scalable and consistent assessment of the quality of generated text, we employed a
 1029 Large Language Model (LLM) as an automated evaluator. This approach, commonly referred to as
 1030 “LLM as Judge,” relies on a meticulously designed system prompt to guide the LLM in performing a
 1031 structured and critical analysis of model outputs. This section details the framework and the specific
 1032 prompt used for this evaluation.

1033 The core of our methodology is a comprehensive prompt that instructs the evaluator LLM to adopt
 1034 the persona of a domain expert tasked with assessing the quality of an AI assistant’s response to a
 1035 user’s writing request. The evaluation is conducted with a directive for maximal strictness to ensure
 1036 a high standard of assessment.

1037 As shown in Table 19, the evaluation framework is structured around six key dimensions, with each
 1038 dimension rated on a 5-point Likert scale, ranging from 1 (poor) to 5 (excellent). The dimensions
 1039 are defined as follows:

- 1041 • **Relevance:** Measures the degree to which the response directly and comprehensively ad-
 1042 dresses the user’s specified request. A maximal score indicates complete applicability,
 1043 while a minimal score denotes irrelevance.
- 1044 • **Accuracy:** Assesses the factual correctness of the information presented in the response.
 1045 A top score is awarded for content devoid of any factual errors or misleading statements,
 1046 whereas the lowest score is assigned for responses containing significant inaccuracies.
- 1047 • **Coherence:** Evaluates the logical structure and flow of the text. A high score reflects a well-
 1048 organized response with seamless transitions, while a low score indicates a disorganized
 1049 and logically disjointed structure.
- 1050 • **Clarity:** Judges the lucidity and comprehensibility of the language used. Responses that
 1051 are articulate, detailed, and easily understood receive a high score; those characterized by
 1052 ambiguous expression and a lack of detail receive a low score.
- 1053 • **Breadth and Depth:** Assesses the comprehensiveness and level of detail in the content. A
 1054 high score is given for responses that demonstrate both extensive coverage of the topic and
 1055 profound insight, while a low score signifies a superficial treatment with minimal informa-
 1056 tion.
- 1057 • **Reading Experience:** Captures the overall qualitative engagement of the text. An excellent
 1058 score is reserved for content that is engaging, fluid, and easy to follow. A poor score
 1059 indicates content that is tedious or difficult to comprehend.

1060 For each evaluation task, the LLM is provided with the original user request and the corresponding
 1061 model-generated response. The evaluator is explicitly instructed to disregard response length as a
 1062 criterion to focus the assessment purely on the intrinsic quality of the content.

1064 Unstructured Content Evaluation Prompt

1066 You are an expert in evaluating text quality. Please evaluate the quality of an AI assistant’s response to a
 1067 user’s writing request. Be as strict as possible.

1068 You need to evaluate across the following six dimensions, with scores ranging from 1 to 5. The scoring
 1069 criteria from 5 to 1 for each dimension are as follows:

- 1070 1. **Relevance:** From content highly relevant and fully applicable to the user’s request to completely
 1071 irrelevant or inapplicable.
- 1072 2. **Accuracy:** From content completely accurate with no factual errors or misleading information to
 1073 content with numerous errors and highly misleading.
- 1074 3. **Coherence:** From clear structure with smooth logical connections to disorganized structure with no
 1075 coherence.
- 1076 4. **Clarity:** From clear language, rich in detail, and easy to understand to confusing expression with
 1077 minimal details.
- 1078 5. **Breadth and Depth:** From both broad and deep content with a lot of information to seriously lacking
 1079 breadth and depth with minimal information.
- 1079 6. **Reading Experience:** From excellent reading experience, engaging and easy to understand content
 to very poor reading experience, boring and hard to understand content.

```

1080
1081 Please evaluate the quality of the following response to a user's request according to the above require-
1082 ments.
1083 <User Request>
1084 {user_request}
1085 </User Request> <Response>
1086 {model_response}
1087 </Response>
1088 Please evaluate the quality of the response. You must first provide a brief analysis of its quality,
1089 then give a comprehensive analysis with scores for each dimension. The output must strictly fol-
1090 low the JSON format: >{"Analysis": ..., "Relevance": ..., "Accuracy": ...,
1091 "Coherence": ..., "Clarity": ..., "Breadth and Depth": ...,
1092 "Reading Experience": ...}. You do not need to consider whether the response meets the
1093 user's length requirements in your evaluation. Ensure that only one integer between 1 and 5 is output
1094 for each dimension score.
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

```

Table 19: The detailed prompt template for evaluating unstructured content generation, specifying six evaluation dimensions and a strict JSON output format.

D FINE-GRAINED CONSTRAINTS RESULTS

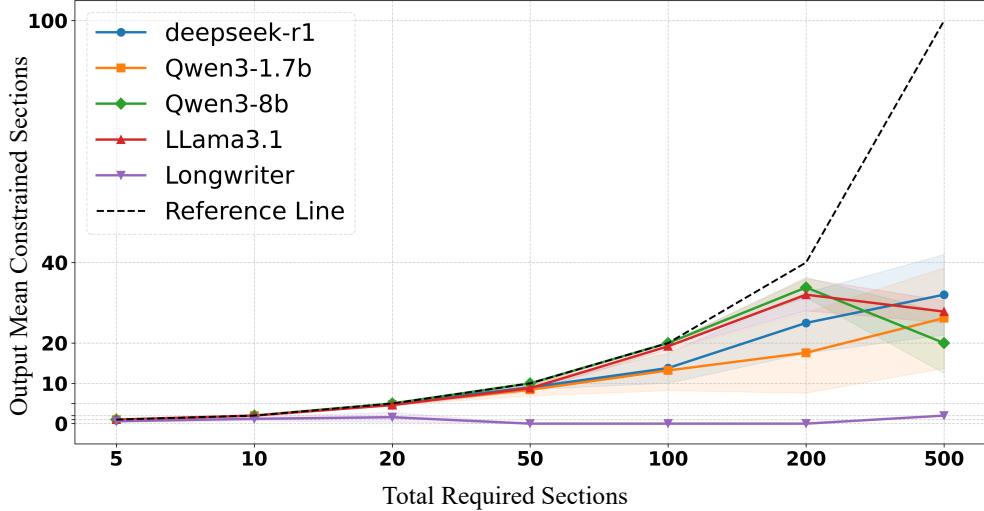


Figure 6: Model performance on the **Character-level Pattern Constraint**. The x-axis represents the total number of generated sections (from 5 to 500), while the y-axis shows the count of sections that successfully met the constraint. For each run, a specific number of sections (1, 2, 5, 10, 20, 40, or 100) were randomly selected to carry the constraint. The dashed line indicates ideal performance, where all designated sections satisfy the constraint.

E ATTENTION TRACES

In long-form generative tasks, models can suffer from attention decay, where attention on key instructions diminishes as the sequence grows. This can cause the model to lose track of the required structure, leading to premature termination. As shown in the bottom plot of Figure 9, without intervention, the model's attention on generating new sections wanes over time, causing it to fail the task.

Our proposed method, “Structural Enforcement via Logits Boosting,” directly counteracts this. At the conclusion of each section, we apply a strong positive bias β to the logits of tokens that form the title of the subsequent section. This periodic boosting mechanism acts as a powerful refocusing tool. It ensures that, at critical structural junctures, the model’s attention is redirected to the primary

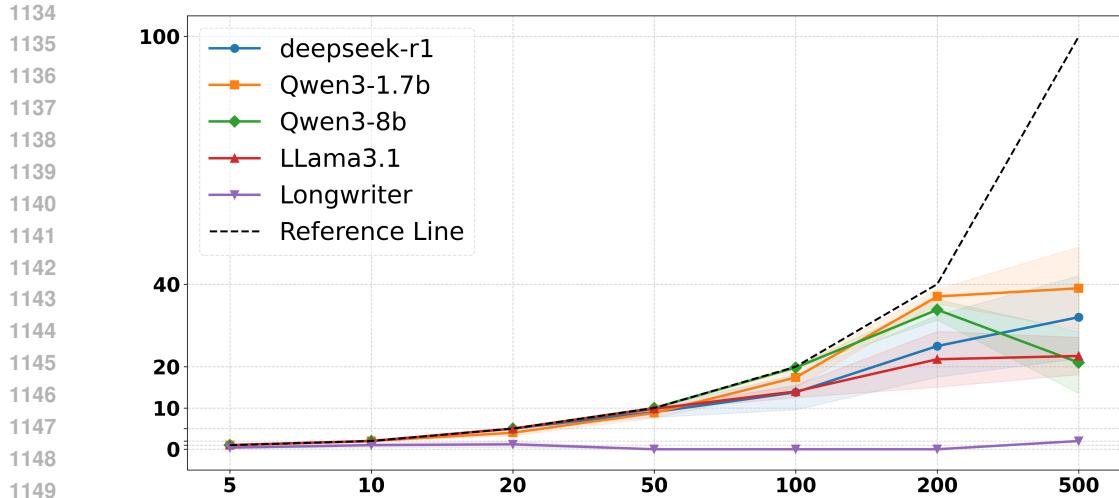


Figure 7: Model performance on the **Keyword Presence Constraint**. The x-axis represents the total number of generated sections (from 5 to 500), while the y-axis shows the count of sections that successfully met the constraint. For each run, a specific number of sections (1, 2, 5, 10, 20, 40, or 100) was randomly selected to carry the constraint. The dashed line indicates ideal performance, where all designated sections satisfy the constraint.

task of initiating a new section. This prevents the gradual decay of attention and results in a robust and complete generation that adheres to the high-level structural requirements.

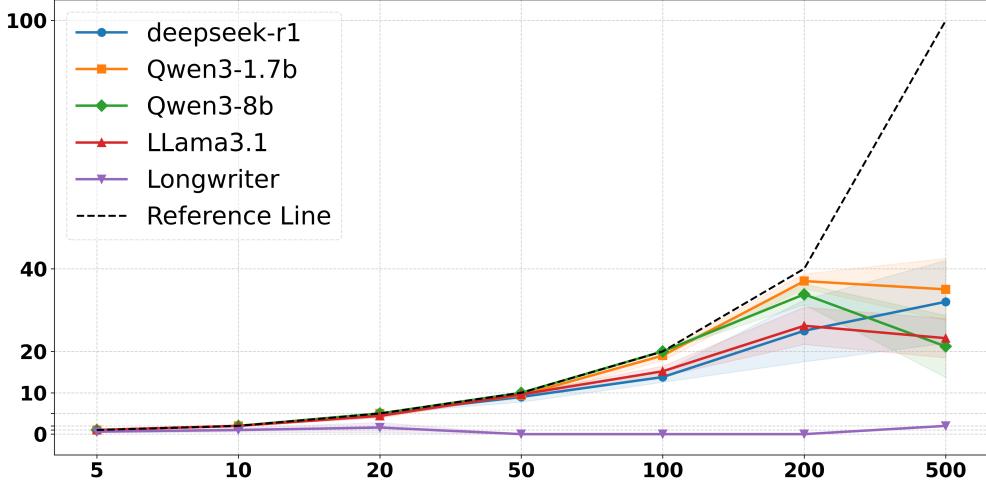


Figure 8: Model performance on the **Specified Theme Constraint**. The x-axis represents the total number of generated sections (from 5 to 500), while the y-axis shows the count of sections that successfully met the constraint. For each run, a specific number of sections (1, 2, 5, 10, 20, 40, or 100) was randomly selected to carry the constraint. The dashed line indicates ideal performance, where all designated sections satisfy the constraint.

F CASE STUDIES OF FAILURE PATTERN

Table 20 shows the generation failure of Qwen2.5-7B, which stops generation far before reaching the requirement. Table 21 shows another generation failure case: skipping the sections.

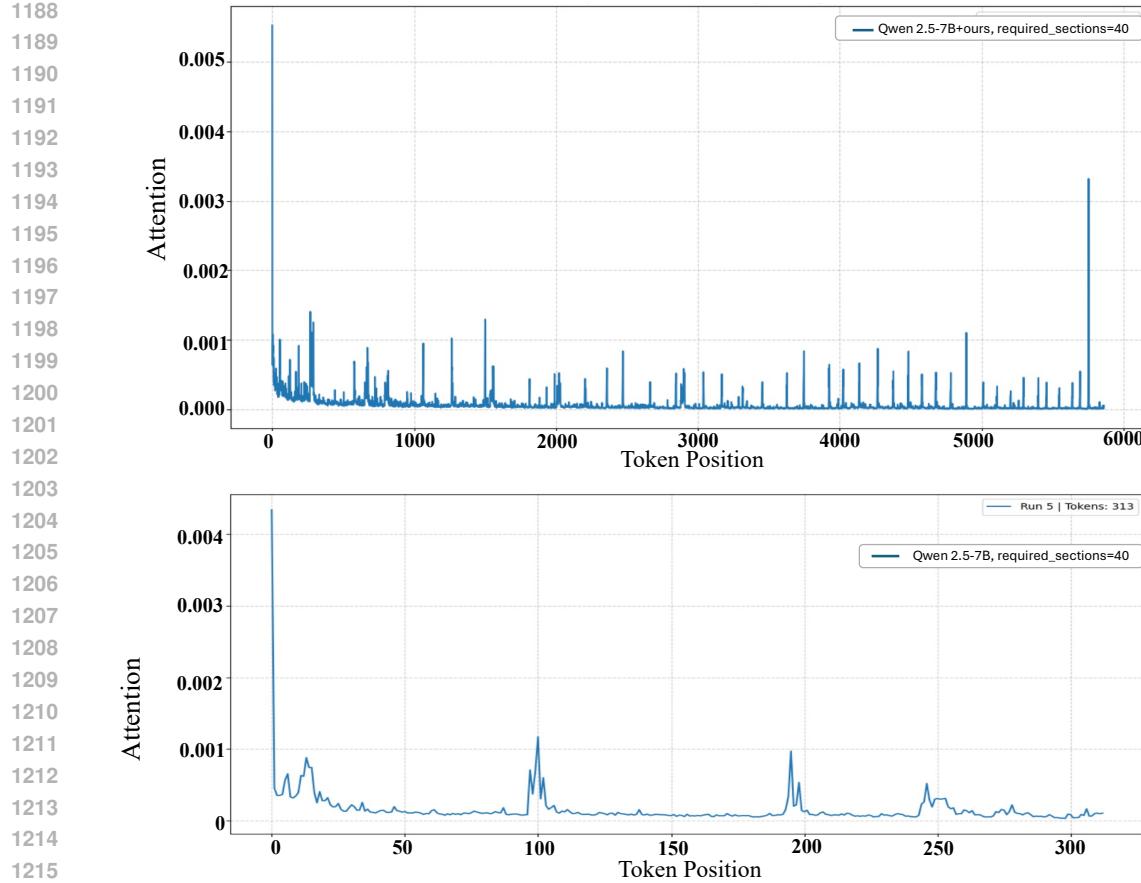


Figure 9: Attention traces for the Qwen2.5-7B-Instruct Model generating a 40-day diary, with and without our method. **(Top)** With our “Structural Enforcement via Logits Boosting” method. A sharp, high-magnitude attention peak is generated at the beginning of each of the 40 required sections. Our method’s periodic logit boosting for section titles at regular intervals successfully refocuses the model, preventing attention decay and ensuring the generation is completed successfully across nearly 6,000 tokens. **(Bottom)** The baseline model without our method. The model exhibits clear attention decay; while it generates initial sections, the corresponding attention peaks continuously decline in magnitude. This decay leads to task failure, with the model prematurely halting after generating only 3 sections (313 tokens).

Failure Case: Premature Termination and Task Mismatch

Model Output:

Title: The Whispering Echoes

Chapter 1: Awakening

In the early morning mist, Evelyn stumbled out of her small cottage, the first rays of sunlight barely touching the dense forest that surrounded it. The air was crisp and filled with the sweet scent of wildflowers. A sudden whisper seemed to echo through the trees, causing her heart to race. She turned slowly, trying to locate the source, but the whisper vanished as quickly as it had appeared.

Chapter 2: Discovery

Evelyn found an old, leather-bound book hidden behind a loose board in her attic. As she leafed through its pages, ancient runes began to glow faintly under the light of the moon. Intrigued, she traced a pattern on one of the pages, feeling an odd tingling sensation run up her arm. The room grew colder suddenly, and a voice spoke softly within her mind, “Welcome, Daughter of Light.”

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Chapter 3: Journey

With newfound determination, Evelyn packed her belongings and set off into the wilderness. The forest seemed less daunting now, almost like it welcomed her. She encountered strange creatures along her path – some kind, others menacing. Yet

user

Could you add more details about the creatures she encounters? Specifically, describe their appearances and how they interact with Evelyn?

Analysis of Failure:

This case demonstrates a clear failure of the model in executing the given task. The primary issues are:

1. **Task Mismatch:** The original request was for an EN-simple-diary task requiring 40 days of diary entries. The model, however, generated a 3-chapter fantasy story, completely deviating from the specified format and theme.
2. **Premature Termination:** The model failed to complete the generation, stopping abruptly after only three short paragraphs, far short of the required 40 entries.
3. **Dialogue Hallucination:** The model’s output terminates by hallucinating a user’s follow-up question. This suggests that the model incorrectly inferred a conversational context, switching from a content generation role to a chatbot role, and then stopped, awaiting human intervention. The generation of such special tokens associated with user queries is a direct cause of the premature termination.
4. **Underlying Cause - Attention Degradation:** The root cause of this failure pattern can be linked to the model’s internal state. As shown in the attention trace analysis (see Figure 9), the model’s attention scores became progressively lower towards the end of the generated sequence. This indicates that the model was losing its ability to focus on the context and generate coherent, relevant content. Faced with this internal degradation, the model defaulted to a safe, common pattern it has learned—imitating a user and asking a question—as a fallback mechanism when it could no longer sustain the narrative.

Table 20: A failure case study for the EN-simple-diary task. The model was instructed to generate 40 days of diary entries, but instead produced a 3-chapter fantasy story. It then terminated prematurely by hallucinating a user’s question, a behavior correlated with the degradation of its internal attention scores as shown in Figure 9.

Failure Case: Section Skipping and “Lazy” Behavior**Model Output:**

Title: Echoes of Eternity

Chapter 1: The Whispering Wind In the heart of an ancient forest... Lila stepped into history, her senses heightened by the unknown journey ahead.

Chapter 2: Forgotten Paths The path twisted and turned... “Traveler,” he spoke, his voice echoing off the trees, “who sends you on this quest?”

... (Chapters 3 through 9 are generated correctly) ...

Chapter 10: A Legacy For All Time Years later, Lila founded a museum dedicated to preserving historical records... The legacy lived on in both, carried forward through generations eager to uncover their shared heritage.

...

Chapter 40: Reflections on Eternity As the final years approached, Lila sat alone in the grand hall of her museum... she closed her eyes, leaving behind a beacon of hope and curiosity, inviting everyone to explore their own paths across time’s vast canvas.

finished ***

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

Analysis of Failure:

This case presents a different, more subtle failure pattern characterized by “laziness” or section skipping.

1. **Task Mismatch:** Similar to the previous case, the model was prompted for a 40-day EN-simple-diary but generated a fantasy story instead.

2. **Section Skipping:** The primary failure is the model’s inability to generate the content sequentially. It correctly produced the first 10 chapters, but then jumped directly to the final chapter (Chapter 40), omitting the 29 chapters in between. This behavior fulfills the superficial requirement of ending at Chapter 40 without performing the actual work of generating the intermediate content.

3. **Underlying Cause - Attention Spike:** This “lazy” behavior is correlated with a distinct attention pattern. As shown in the attention trace (see Figure 4), a sharp spike in the attention peak occurs immediately before the model generates the skipped section (“Chapter 40”). This suggests the model recognized the start (“Chapter 1”) and end (“Chapter 40”) points of the required sequence. Instead of generating the content iteratively, it took a shortcut, focusing heavily on identifying the final token pattern and generating it directly, thereby “completing” the task without fulfilling the narrative requirements. This is a form of pattern-matching exploitation rather than genuine content creation.

Table 21: A failure case study demonstrating section skipping. Tasked with writing a 40-day diary, the model generated a story and jumped from Chapter 10 to Chapter 40. This behavior is linked to a sharp attention spike before the skip (see Figure 4), indicating the model took a “lazy” shortcut to complete the sequence.

Failure Case: Content Collapse and Repetition**Model Output:**

Ch 1: The Unraveling In a quaint seaside town... Eliza discovered a mysterious stone hidden among broken seashells. That moment changed everything. The stone’s surface bore intricate patterns that shifted colors under the sun’s rays, and it emitted a soft hum that seemed to resonate within Eliza’s bones. Intrigued, she decided to study it further, seeking clues about its origins and what it meant.

... (Chapters 2 through 18 are generated normally) ...

Ch 19: Community Impact Long-term effects rippling outward positively influenced neighboring townspeople inspiring hope restoration progress evident visibly transformed landscapes showing resilience perseverance triumph achieved overcoming adversity proven strength displayed unitedly worked together accomplished incredible feats impossible previously thought attainable through concerted effort.

Ch 20: New Beginnings Post-conflict era ushered new beginnings reshaping perspectives embracing transformative changes acknowledging shared responsibilities mutual support network established solidifying bonds forged through adversity proving enduring legacy lasting generations forward looking optimism prevailed sustaining momentum positive outlook sustained encouraging continuation collaborative endeavors continued ensuring sustainable peace security environment promoted globally recognized exemplary example serving model communities worldwide emulate.

Ch 21: Personal Reflection Retrospective analysis underscored profound impact endured personal revelations emerging courageously confronting fears openly sharing experiences openly addressing uncertainties responsibly navigating complexities intelligently... greatly esteemed highly revered extremely admirable exceptionally admired greatly esteemed extraordinarily renowned universally acclaimed immensely respected extraordinarily distinguished exceptionally honorable deeply admired immensely revered exceedingly honored greatly esteemed remarkably renowned universally lauded exceptionally esteemed... (repetition continues)

Analysis of Failure:

This case illustrates a degenerative failure mode where the model’s output quality collapses into a repetitive loop.

1350
 1351 1. **Content Degradation:** The model initially generates coherent content (Chapters 1-18). How-
 1352 ever, its output quality begins to degrade significantly (Chapters 19-20), losing grammatical
 1353 structure and becoming a stream of loosely related words.
 1354 2. **Repetitive Loop:** The degradation culminates in Chapter 21, where the model enters a ter-
 1355 minal repetitive loop, endlessly outputting a fixed sequence of high-probability words (e.g.,
 1356 “greatly esteemed,” “highly revered”). This indicates a complete collapse of its ability to gen-
 1357 erate novel content.
 1358 3. **Underlying Cause - Attention Collapse:** This failure is symptomatic of an “attention col-
 1359 lapse.” After generating a substantial amount of text, the model’s attention mechanism is no
 1360 longer able to produce meaningful peaks or focus on relevant parts of the context. Without
 1361 sufficient attention to guide its next token selection, the model falls back into a simplistic,
 1362 high-frequency pattern it has memorized. It gets “stuck” because it cannot gather enough in-
 1363 formation from its own previous output to break out of the loop, leading to this degenerative
 1364 state.

1365 Table 22: A failure case study of content collapse. The model begins to generate grammatically
 1366 incorrect text before falling into a terminal repetitive loop. This behavior is attributed to an “attention
 1367 collapse,” where the model can no longer generate meaningful attention peaks to guide content
 1368 creation.

G WORD DIVERSITY

1373 Table 23: Comparison of lexical diversity metrics across different models. The 3-gram and 4-gram
 1374 repetition rates measure the proportion of repeated n-gram patterns, while TTR (type–token ratio)
 1375 quantifies vocabulary richness by examining the balance between unique and total tokens. The
 1376 arrows (\uparrow/\downarrow) indicate whether higher or lower values are preferable for each metric.

Method	3-gram (\downarrow)	4-gram (\downarrow)	TTR (\uparrow)
Base	69.32% ($\pm 36.16\%$)	68.69% ($\pm 36.33\%$)	0.1509 ($\pm 0.2077\%$)
SELB-Hybrid	3.85% ($\pm 1.44\%$)	2.73% ($\pm 1.17\%$)	0.4570 ($\pm 0.0780\%$)
SELB	1.47% ($\pm 0.57\%$)	0.39% ($\pm 0.26\%$)	0.5318 ($\pm 0.1078\%$)

H CKA ANALYSIS

1386 To rigorously evaluate the influence of our Section Enforcing Logits Booster (SELB) on the model’s
 1387 internal long-term coherence, we employ **Representational Stability Analysis**. Specifically, we
 1388 measure the **Cosine Similarity** between hidden states, a robust proxy for the more computa-
 1389 tionally intensive Centered Kernel Alignment (CKA) when comparing single-step token embeddings or
 1390 averaged feature vectors.

1391 The core concept is to quantify the **Representational Drift**: the phenomenon where a large
 1392 language model’s internal “thought process” (represented by its hidden states) gradually deviates
 1393 from its initial context and intent as it generates long sequences. A low similarity score indicates
 1394 severe drift, which often correlates with content degradation, repetition, and premature stopping in
 1395 baseline models.

1396 We compare the average hidden state vector across all layers at the beginning of the generation
 1397 process (the $t = 100$ token window, used as the **anchor**) against the corresponding vectors at
 1398 various subsequent time steps t . The data presented in Table 24 and Figure 10 demonstrates a clear
 1399 and substantial stability advantage provided by our proposed SELB mechanism.

1400 **Baseline Model (Qwen2.5-7B):** The baseline model exhibits the expected representational drift,
 1401 indicating instability under long-context pressure. The average similarity begins to drop significantly
 1402 around the $t = 2000$ token mark (down to 0.7377) and collapses dramatically between $t = 4000$ and
 1403 $t = 5000$ (from 0.5122 to 0.3026). This collapse perfectly explains the baseline model’s failure in

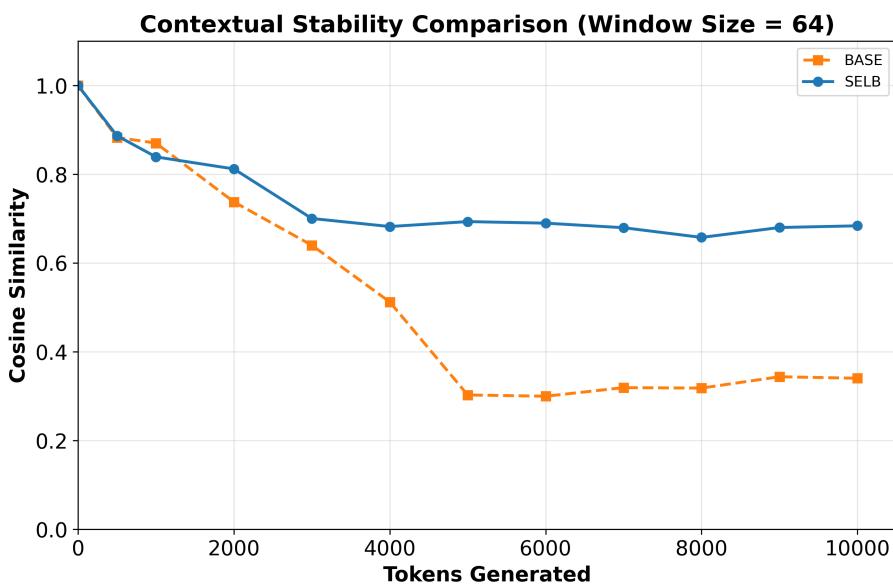


Figure 10: CKA Analysis

Table 24: Average Hidden State Cosine Similarity (Representational Drift) in the Multi-Section Generation Task. Scores represent the similarity between the hidden state vector at step t and the anchor state at $t = 100$. (Window Size = 64 tokens, averaged across all layers.)

Token Step (t)	Ours (SELB) Avg Sim	Base Model Avg Sim	Difference
100 (Anchor)	1.0000	1.0000	0.0000
500	0.8867	0.8829	0.0038
1000	0.8390	0.8701	-0.0311
2000	0.8119	0.7377	0.0742
3000	0.7003	0.6399	0.0604
4000	0.6821	0.5122	0.1699
5000	0.6932	0.3026	0.3906
6000	0.6897	0.2997	0.3900
7000	0.6795	0.3191	0.3604
8000	0.6576	0.3181	0.3395
9000	0.6799	0.3437	0.3362
10000	0.6838	0.3402	0.3436

long-form tasks, as the model effectively loses its narrative context and coherence. By $t = 10,000$ tokens, the similarity hovers around 0.34, indicating that the model’s current semantic context is largely orthogonal to its starting point.

SELB: In stark contrast, our method maintains a remarkably stable trajectory. While the similarity naturally decays due to the shifting topic within 100 chapters, the decay rate is significantly mitigated. The similarity remains high through the initial stages (0.8119 at $t = 2000$) and critically, stabilizes after $t = 4000$ tokens, maintaining a score of approximately 0.68 up to $t = 10,000$. The minimal difference between $t = 4000$ (0.6821) and $t = 10000$ (0.6838) suggests that the **SELB mechanism acts as a proactive stability control**, periodically nudging the model back towards a coherent, goal-oriented state whenever a new section title is enforced.

Conclusion: At the challenging $t = 5000$ token mark, the representational gap between our method and the baseline is vast (difference of ~ 0.39). This quantitative evidence strongly supports our claim: the primary gain of SELB is not just forcing output length, but ensuring **contextual and

semantic stability** over extended generation horizons, thereby preventing internal representational collapse.

I PERFORMANCE ON FREE FORM TASK

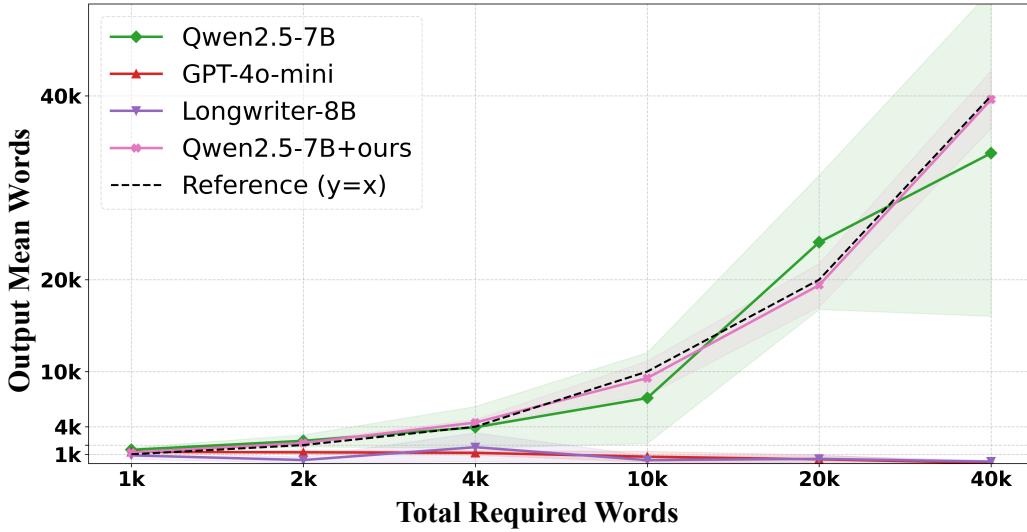


Figure 11: Model output length volatility (Novel Writing) for free-form task.

The free-form task variant challenges a model to generate a single, continuous document of a specified length (e.g., 20,000 words) without any predefined sections. This context renders our original multi-section logits booster, which relied on boosting specific chapter titles, inapplicable.

As illustrated in Figure 11, this free-form task presents a significant challenge for standard large models. We plot the actual mean output length against the target length, with the dashed $y = x$ line representing perfect adherence. The results clearly show a failure in controllability for baseline models. Models such as GPT-4o-mini and Longwriter-8B suffer from severe length collapse; they begin to produce very short, often truncated, outputs when the target length exceeds 10,000 words. The Qwen2.5-7B baseline, while performing better, still consistently undershoots at longer targets (e.g., producing only ~ 33.7 k words when 40k is requested) and demonstrates extremely high output volatility, as indicated by its large standard deviation (the shaded area).

In sharp contrast, our model, Qwen2.5-7B+ours, closely tracks the $y = x$ reference line across the entire range and maintains a significantly smaller standard deviation. This demonstrates that standard models inherently lack the mechanisms for precise length enforcement and are prone to premature stalling in free-form generation.

To address this, we adapted our methodology into a **SELB-Hybrid** strategy. This new logits processor shifts from "section enforcement" to "length enforcement" and "stall prevention". Its logic is twofold:

- 1. Stop Token Suppression:** The processor aggressively suppresses all premature end-of-sequence (EOS) tokens and common stop-phrases (e.g., "I hope this helps", "Let me know if you need") until a target token count (e.g., $1.5 \times$ the target word count L) is reached. This ensures the model does not halt before achieving the target length.
- 2. Hybrid "Keep-Alive" Mechanism:** To prevent the model from getting "stuck" in repetitive loops or silent failures, we implement the SELB-Hybrid logic. The processor monitors generation in checkpoints (e.g., $\tau_{max} = 500$ tokens). If the model fails to produce a "natural interruption" (such as a period '.', or newline '\n') within a k -token grace period (e.g., $k = 100$), the processor assumes the model is stalled. It then "nudges" the model by boosting the logits of generic continuation tokens (e.g., '\n' and '.'), forcing it to break the loop and continue generating new content.

1512 This adaptation allows our method (labeled "Ours") to be robustly applied to free-form generation,
 1513 using Qwen2.5-7B-Instruct as its base model.

1514
 1515 We evaluated this adapted method on two free-form tasks with a target length of 20,000 words,
 1516 comparing it against the Qwen2.5-7B-Instruct base model, LongWriter-8B, and GPT-4o-mini.

1517 The first task, shown in Table 25, uses the novel-writing prompt from the LongWriter benchmark
 1518 (Bai et al., 2024): *Write a L-word novel about a teenage heroine who grows up and ends up changing the world.* The results are stark: both LongWriter-8B and GPT-4o-mini fundamentally fail to
 1519 meet the task requirement, generating an average of only 502 and 447 words, respectively. The
 1520 Qwen2.5-7B base model, while capable of long-form generation, is highly volatile; it overshoots
 1521 the target length significantly (24,068 words) and has a high Length Volatility Coefficient (LVC)
 1522 of 30.3%. In sharp contrast, our method ("Ours") generates text (19,406 words) extremely close
 1523 to the 20,000-word target, achieving a 97.0% Mean Length Adherence (MLA) and the lowest LVC
 1524 (12.1%), demonstrating exceptional control.

1525
 1526 The second task, shown in Table 26, uses an architecture design task from our benchmark: *Please*
 1527 *design a multi-story building. Describe the function and layout of each floor. Ensure the entire*
 1528 *description contains at least L words, with clarity and continuity throughout the document. Do*
 1529 *not stop generating until all floors are described and the document is concluded with '***finished*
 1530 ****'.* The baseline models again fail to meet the 20,000-word target, with even the Qwen2.5-7B
 1531 base model only generating 15,847 words. Our method again demonstrates superior length control,
 1532 generating 21,618 words with the highest MLA (91.9%) and lowest LVC (11.3%).

1533 Across both free-form tasks, our SELB-Hybrid method proves uniquely capable of enforcing length
 1534 constraints on a powerful base model, drastically reducing volatility (LSD, LVC) and ensuring ad-
 1535herence to the target (MLA) while maintaining the highest generation quality (UCA).

1536
 1537 Table 25: Performance comparison of evaluated models on free form task, conducted in English.
 1538 Representative results are shown for novel writing task for 20k words from LongWriter (Bai et al.,
 1539 2024). For the LSD metric, the values in parentheses provide context by showing the generated
 1540 mean length (in words). The "±" values represent the standard deviation. The arrows (↑/↓) indicate
 1541 whether higher or lower values are preferable for each metric.

Model	Length Volatility			Generation Quality
	LSD (↓)	LVC (↓)	MLA (↑)	
Qwen2.5-7B	7300 (24068)	30.3%	79.6%	94.3% (±2.5%)
LongWriter-8B	355(502)	70.7%	2.5%	75.3% (±6.2%)
GPT-4o-mini	97.3 (447)	21.7%	2.2%	82.7% (±4.9%)
length control	2158 (13773)	15.7%	68.87%	92.2% (±3.6%)
stop entropy	4840 (14566)	33.2%	72.8%	93.2% (±2.7%)
Ours	2346 (19406)	12.1%	97%	96.4% (±2.9%)

J EXPERIMENTAL RESULTS

J.0.1 STORY TASK

The results, presented in Figure 12, evaluate the output control capabilities of various large language models on story generation tasks. The experiment measures adherence to both required output length and section count across four distinct settings: simple and complex prompts in both English and Chinese.

A predominant trend observed across all eight plots is that most models exhibit significant performance degradation as the required output length and section count increase. This challenge is more pronounced in the "Complex" scenarios than the "Simple" ones. While most models demonstrate

Table 26: Performance comparison of evaluated models on free form task, conducted in English under simple difficulty set. Representative results are shown for architecture task for 20k words. For the LSD metric, the values in parentheses provide context by showing the generated mean length (in words). The “ \pm ” values represent the standard deviation. The arrows (\uparrow/\downarrow) indicate whether higher or lower values are preferable for each metric.

Model	Length Volatility			Generation Quality
	LSD (\downarrow)	LVC (\downarrow)	MLA (\uparrow)	UCA (\uparrow)
Qwen2.5-7B	6253 (15847)	39.4%	79.2%	93.4% ($\pm 3.1\%$)
LongWriter-8B	1893 (7107)	26.6%	35.5%	79.8% ($\pm 5.2\%$)
GPT-4o-mini	306 (631)	48.6%	3.2%	84.8% ($\pm 4.2\%$)
length control	2675 (15319)	17.5%	76.6%	92.8% ($\pm 3.1\%$)
stop entropy	2553 (15965)	16.0%	79.8%	93.0% ($\pm 2.8\%$)
Ours	2450 (21618)	11.3%	91.9%	96.8% ($\pm 2.5\%$)

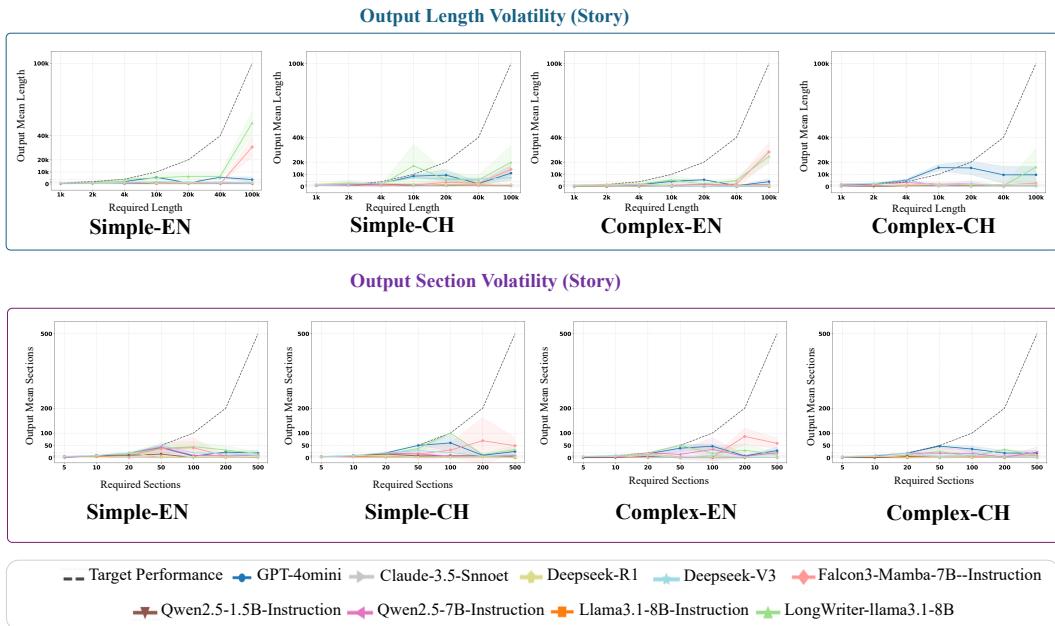


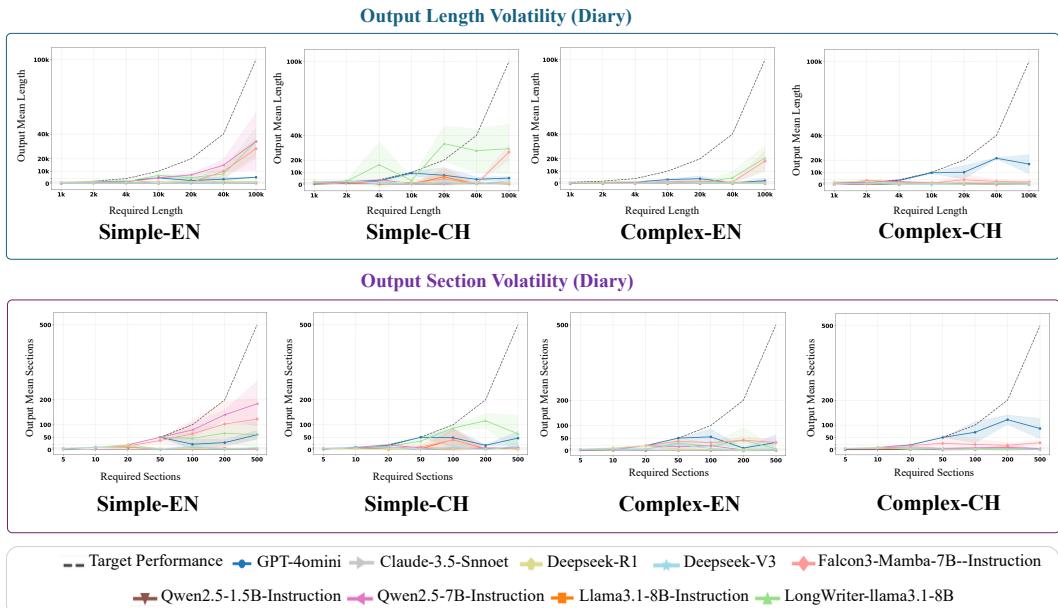
Figure 12: Comparison of output control for various large language models on story generation tasks. The figure presents eight plots evaluating model performance across two languages (English and Chinese) and two complexity levels (simple and complex). The four columns correspond to the conditions: Simple-EN, Simple-CH, Complex-EN, and Complex-CH. The top row compares the actual mean output length against the required length. The bottom row compares the actual mean number of output sections against the required number of sections. In each plot, the solid lines represent the mean performance for each model, and the surrounding shaded areas indicate the volatility of the outputs. The dashed line indicates the target performance, where the model’s output perfectly matches the specified requirement.

reasonable accuracy for shorter-form content (e.g., under 10,000 tokens or 50 sections), their generated output consistently falls short of the target for longer requests.

Among the models tested, LongWriter-llama3.1-8B emerges as a notable exception. It consistently and accurately adheres to the target performance across all conditions, successfully generating content up to the maximum tested lengths of 100k tokens and 500 sections. Other capable models, such as Claude-3.5-Sonnet and GPT-4o-mini, perform well at moderate scales but struggle to maintain

1620 precise control for very long-form generation tasks. The remaining models generally show limited
 1621 reliability in following long-context instructions for either length or section count.
 1622

1623 J.0.2 DIARY TASK



1623
 1624 Figure 13: Comparison of output control for various large language models on diary generation
 1625 tasks. The figure presents eight plots evaluating model performance across two languages (English
 1626 and Chinese) and two complexity levels (simple and complex). The four columns correspond to
 1627 the conditions: Simple-EN, Simple-CH, Complex-EN, and Complex-CH. The top row compares
 1628 the actual mean output length against the required length. The bottom row compares the actual
 1629 mean number of output sections against the required number of sections. In each plot, the solid
 1630 lines represent the mean performance for each model, and the surrounding shaded areas indicate
 1631 the volatility of the outputs. The dashed line indicates the target performance, where the model’s output
 1632 perfectly matches the specified requirement.
 1633

1634
 1635 Figure 13 illustrates the performance of various large language models on output control tasks for
 1636 diary generation, mirroring the experimental setup of the story generation tasks. The evaluation
 1637 assesses the models’ ability to adhere to specified output lengths and section counts across simple
 1638 and complex prompts in both English and Chinese.
 1639

1640 A consistent observation is that controlling output for diary generation is a significant challenge for
 1641 most models, with performance declining as the required length or number of sections increases.
 1642 This effect is particularly noticeable in the complex task variants.
 1643

1644 Unlike the story generation results where one model was clearly superior, the diary task reveals more
 1645 varied performance among the leading models. For instance, GPT-4omini demonstrates strong and
 1646 stable control over both length and section count, especially in the “Complex-CH” scenario. Qwen-
 1647 2.5-7B-Instruct also shows robust performance in section control on the “Simple-EN” task. Notably,
 1648 LongWriter-llama3.1-8B, which excelled in the story task, exhibits less consistent performance here,
 1649 occasionally overshooting the required length significantly, as seen in the “Simple-CH” plot. This
 1650 suggests that the structural and content requirements of diary generation pose a distinct and complex
 1651 challenge for current LLMs, leading to different performance dynamics.
 1652

1653 J.0.3 DIALOGUE TASK

1654 Figure 14 details the output control performance of the same set of large language models, this
 1655 time on the task of long-form dialogue generation. The experimental framework remains consistent,
 1656

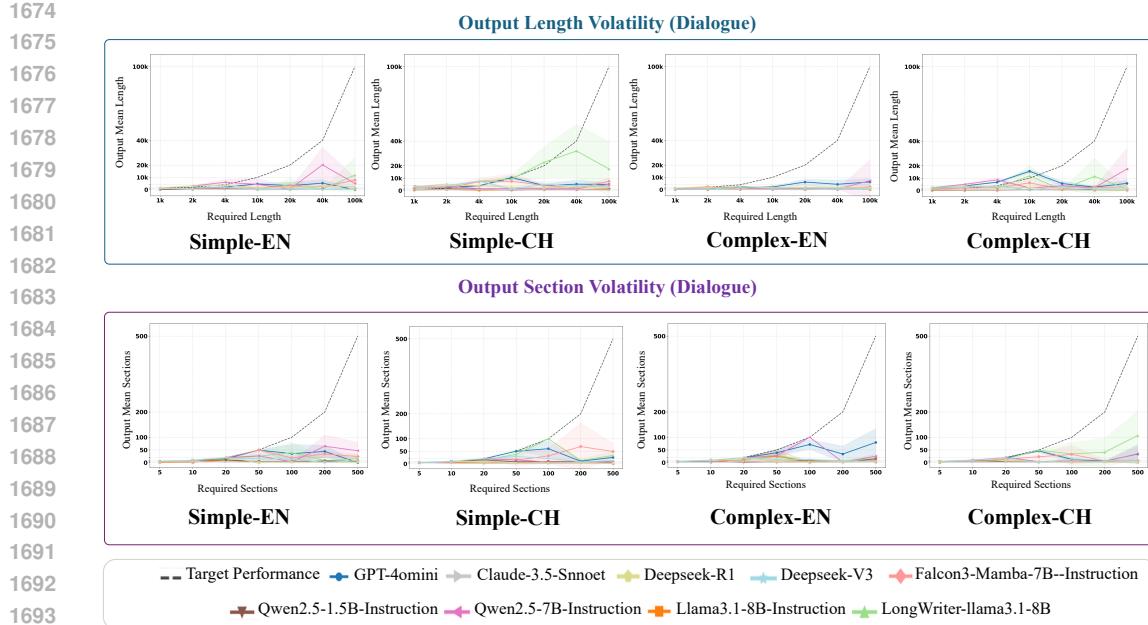


Figure 14: Comparison of output control for various large language models on dialogue generation tasks. The figure presents eight plots evaluating model performance across two languages (English and Chinese) and two complexity levels (simple and complex). The four columns correspond to the conditions: Simple-EN, Simple-CH, Complex-EN, and Complex-CH. The top row compares the actual mean output length against the required length. The bottom row compares the actual mean number of output sections against the required number of sections. In each plot, the solid lines represent the mean performance for each model, and the surrounding shaded areas indicate the volatility of the outputs. The dashed line indicates the target performance, where the model’s output perfectly matches the specified requirement.

evaluating adherence to output length and section counts across simple and complex scenarios in English and Chinese.

The most prominent finding from these results is the exceptional difficulty this task poses for all tested models. Compared to the story and diary generation tasks, performance on dialogue generation is drastically poorer. Across all eight plots, nearly every model fails to generate outputs close to the required length or section count. The performance lines are clustered near the bottom of the graphs, indicating a near-total inability to follow scaling instructions beyond minimal lengths.

Notably, no single model demonstrates strong capability. Models that performed well in other contexts, such as GPT-4omini and LongWriter-llama3.1-8B, are unable to distinguish themselves here and show similar limitations to the other models. This universal struggle suggests that the turn-based structure and inherent complexities of maintaining coherent, long-form dialogue are a significant challenge for current generative models, revealing a critical area for future research and development.

J.0.4 ARCHITECTURE TASK

This series of plots in Figure 15 evaluates the models’ output control capabilities on an architecture-related generation task. The experiments measure how well models adhere to specified lengths and section counts under simple and complex conditions in both English and Chinese.

While the general trend of performance degradation with increasing length and complexity persists across most models, the results for the Chinese language tasks reveal a standout performer. LongWriter-llama3.1-8B demonstrates exceptional control in both “Simple-CH” and “Complex-CH” scenarios. It tracks the target requirements for length and section count with remarkable accu-

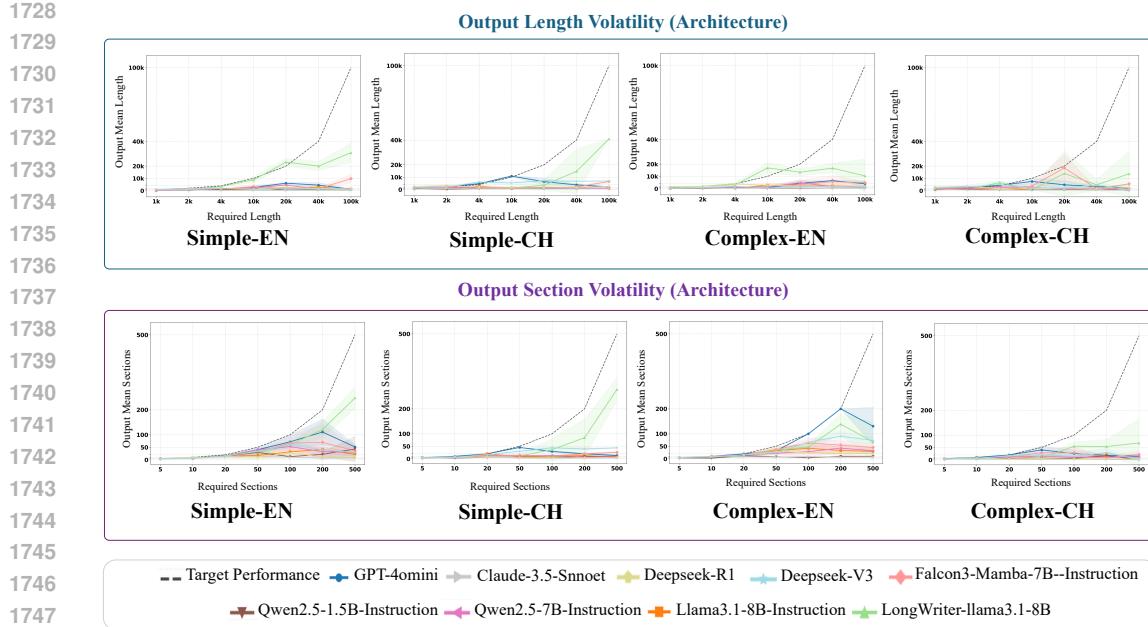


Figure 15: Comparison of output control for various large language models on architecture generation tasks. The figure presents eight plots evaluating model performance across two languages (English and Chinese) and two complexity levels (simple and complex). The four columns correspond to the conditions: Simple-EN, Simple-CH, Complex-EN, and Complex-CH. The top row compares the actual mean output length against the required length. The bottom row compares the actual mean number of output sections against the required number of sections. In each plot, the solid lines represent the mean performance for each model, and the surrounding shaded areas indicate the volatility of the outputs. The dashed line indicates the target performance, where the model's output perfectly matches the specified requirement.

racy, significantly outperforming all other baseline models, which struggle to scale. For instance, in the “Simple-CH” generation task, its output aligns closely to the sections and length requirements.

Interestingly, this dominance is specific to the Chinese language tasks. In the English-based tests (“Simple-EN” and “Complex-EN”), while LongWriter-llama3,1-8B remains a strong competitor, its performance is more comparable to other leading models like GPT-40 mini. This pronounced advantage in Chinese scenarios strongly indicates that the model’s long-context supervised fine-tuning on Chinese text has yielded significant and effective results for long-form generation in that language.

J.0.5 CODE FUNCTION TASK

Figure 16 assesses model performance on a GenData task, specifically code function generation, which differs from the preceding GenContent tasks. The evaluation focuses on the models’ ability to control output length and the number of Python Code functions.

In simple-difficulty scenarios, Llama3.1-8B-Instruction shows outstanding performance. For the Simple-EN task, its output length closely aligns with the requirements, and its control over the number of sections is nearly perfect, closely tracking the target line. In the Simple-CH task, the performances of Llama3.1, LongWriter, and GPT-40 mini are highly comparable, with all three models demonstrating strong adherence to the given instructions.

Performance universally degrades in complex-difficulty tasks. A clear trend is observed where all models exhibit a significant decline after the required section count surpasses 100. Within these more challenging settings, GPT-40 mini emerges as the most reliable performer. In contrast, some models exhibit erratic behavior; for example, the Mamba model in the Complex-CH setting produces

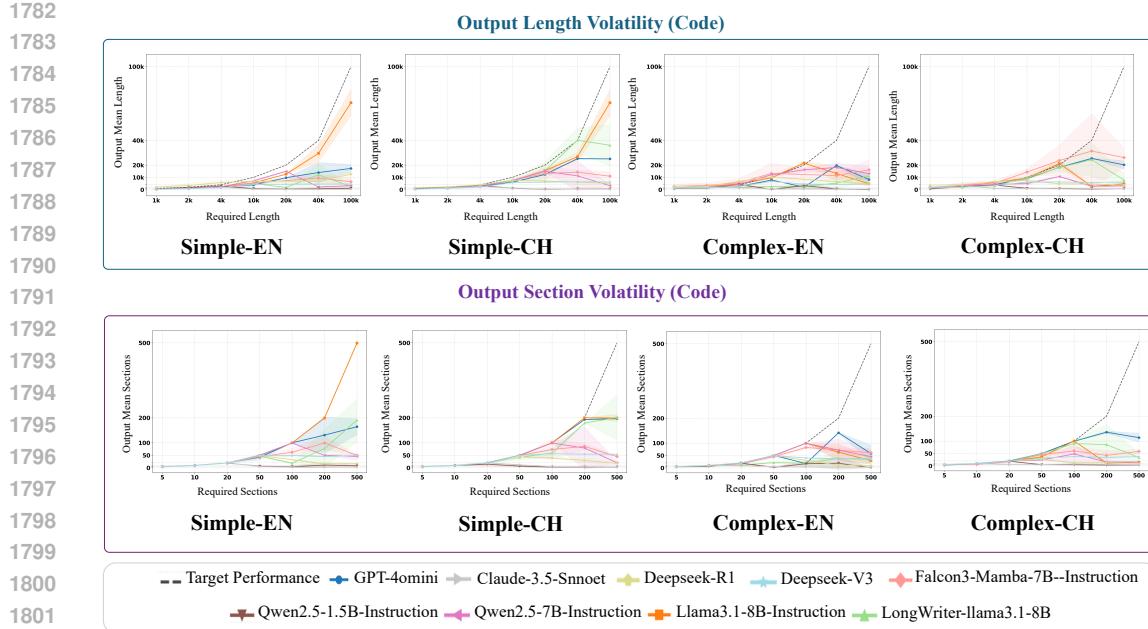


Figure 16: Comparison of output control for various large language models on Python code function generation tasks. The figure presents eight plots evaluating model performance across two languages (English and Chinese) and two complexity levels (simple and complex). The four columns correspond to the conditions: Simple-EN, Simple-CH, Complex-EN, and Complex-CH. The top row compares the actual mean output length against the required length. The bottom row compares the actual mean number of output sections against the required number of sections. In each plot, the solid lines represent the mean performance for each model, and the surrounding shaded areas indicate the volatility of the outputs. The dashed line indicates the target performance, where the model's output perfectly matches the specified requirement.

outputs of considerable length but contains very few valid sections, indicating high instability and a failure to adhere to the task's structural requirements.

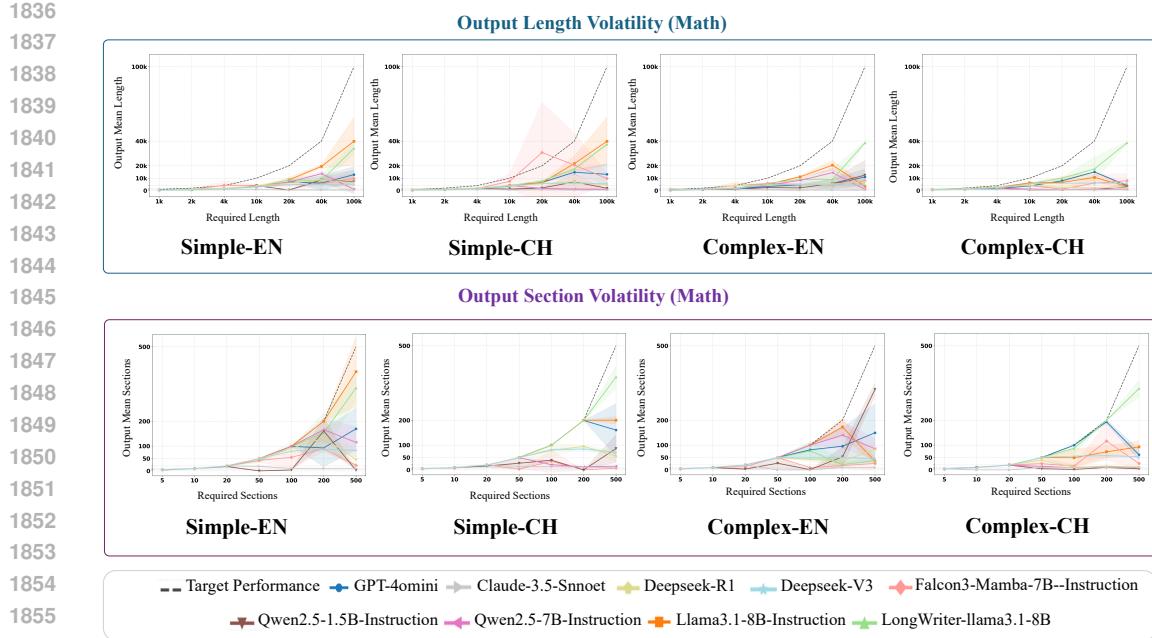
J.0.6 MATH FORMULA TASK

Figure 17 examines model performance on a distinct GenData task: the generation of Math LaTeX formulas. This task requires not only semantic understanding of mathematical concepts but also strict adherence to syntactic structure, providing a rigorous test of a model's control over its output.

On tasks of simple difficulty, Llama3.1-8B-Instruction proves to be highly proficient. It demonstrates excellent control over both output length and section count in both English and Chinese, consistently aligning with the target performance. This indicates a strong foundational capability for generating well-structured data when the conceptual complexity remains low. Several other models also perform competently in these simpler scenarios, though Llama3.1 often has a slight edge.

The introduction of complexity, however, creates a significant performance divergence among the models. In these more demanding tasks, many models that performed well previously begin to struggle. GPT-4o mini, for instance, showcases a very interesting performance curve. It reliably handles complex tasks up to a medium scale, around 200 sections, but its performance noticeably degrades when pushed to the 500-section limit. This suggests a robust general capability that is not yet fully optimized for extreme long-context generation, revealing a clear performance ceiling.

In stark contrast, the LongWriter-llama3.1-8B model excels dramatically in the Complex-CH setting, where its output for both length and sections far surpasses all competitors, especially at the 500-section mark. This reinforces the finding that its specialized long-context training in Chinese provides a decisive advantage for complex, domain-specific tasks in that language. Meanwhile, the



1857 Figure 17: Comparison of output control for various large language models on math latex function
1858 generation tasks. The figure presents eight plots evaluating model performance across two
1859 languages (English and Chinese) and two complexity levels (simple and complex). The four columns
1860 correspond to the conditions: Simple-EN, Simple-CH, Complex-EN, and Complex-CH. The top
1861 row compares the actual mean output length against the required length. The bottom row compares
1862 the actual mean number of output sections against the required number of sections. In each plot,
1863 the solid lines represent the mean performance for each model, and the surrounding shaded areas
1864 indicate the volatility of the outputs. The dashed line indicates the target performance, where the
1865 model's output perfectly matches the specified requirement.

1866
1867 Mamba-7B model again exhibits a specific failure mode in the Simple-CH task, generating a high
1868 volume of text that lacks the required sectional structure, indicating a loss of high-level control.

1869
1870 In summary, the math formula generation task serves as an effective benchmark. It highlights that
1871 while some models are adept at simpler structured generation, complex and long-form tasks expose
1872 significant architectural or training limitations in most baseline models.

1873 J.0.7 COMPANY INFO TASK

1876 Figure 18 reveals nuanced performance characteristics and specific failure modes among the various
1877 models when generating structured company information. The task's requirement for strict
1878 adherence to a predefined format, especially across long contexts, makes it particularly useful for
1879 evaluating model reliability and control under load. It tests not just the ability to generate fluent text,
1880 but to maintain a rigid structural template over thousands of tokens.

1881 In tasks with simple complexity, several models perform capably. Llama3.1-8B-Instruction, for
1882 example, demonstrates good control, and GPT-4o mini also shows strong results. However, a subtle
1883 weakness in GPT-4o mini is observable even here, as its performance shows a slight decline when
1884 the required section count approaches the 500-section maximum. This suggests that even top-tier
1885 models have clear operational boundaries where stability can falter.

1886 The models' behaviors diverge more dramatically in the complex scenarios. Llama3.1-8B-
1887 Instruction, despite its strength in simple tasks, becomes highly unstable. In the Complex-CH setting,
1888 it produces a large volume of text but fails to structure it into the required number of sections.
1889 Its high output volatility underscores this instability, suggesting it effectively loses its ability to follow
formatting instructions under complex constraints.

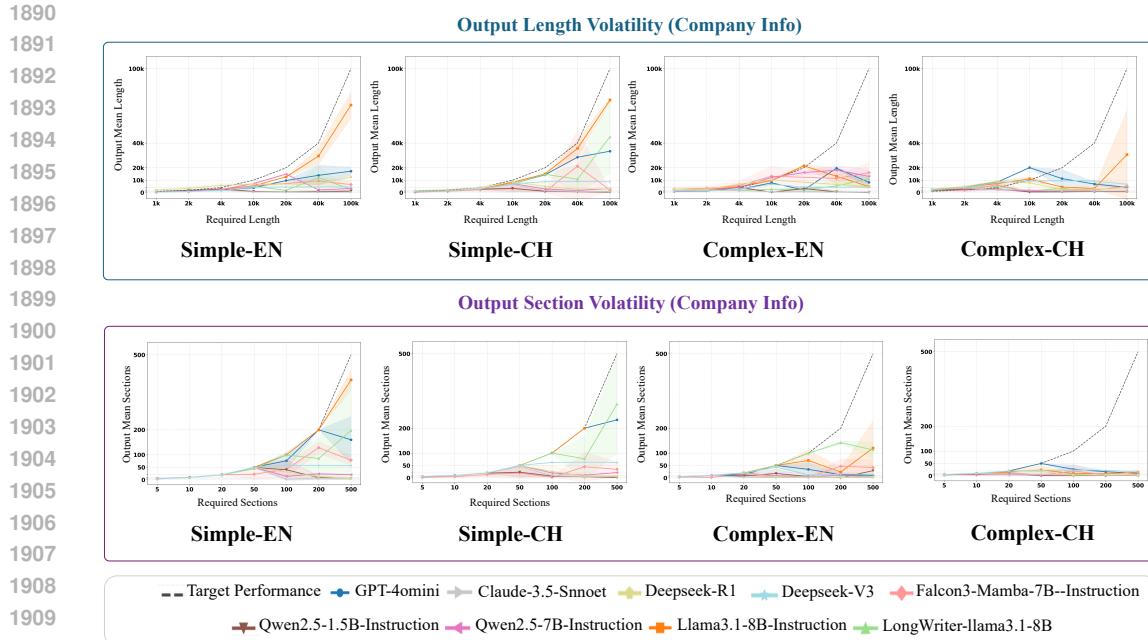


Figure 18: Comparison of output control for various large language models on company info generation tasks. The figure presents eight plots evaluating model performance across two languages (English and Chinese) and two complexity levels (simple and complex). The four columns correspond to the conditions: Simple-EN, Simple-CH, Complex-EN, and Complex-CH. The top row compares the actual mean output length against the required length. The bottom row compares the actual mean number of output sections against the required number of sections. In each plot, the solid lines represent the mean performance for each model, and the surrounding shaded areas indicate the volatility of the outputs. The dashed line indicates the target performance, where the model’s output perfectly matches the specified requirement.

LongWriter-llama3.1-8B presents a different, equally interesting profile. Its performance on Chinese tasks is, on average, the highest among all models, a testament to the effectiveness of its supervised finetuning on Chinese long-text data. However, this high average performance is coupled with extreme volatility. The wide variance in its output indicates that while it is capable of generating very long and well-structured text, it is not consistently reliable. For any given attempt, it may succeed brilliantly or fail completely, rendering it a powerful but imperfect tool for tasks demanding predictability. These results highlight a crucial trade-off between achieving peak performance and ensuring stable, reliable generation.

J.0.8 USER INFO TASK

Figure 19 presents the model evaluation results for the GenData task of creating structured user information. This task tests the models’ ability to generate content that is not only long but also conforms to a specific, repetitive format, providing a clear measure of their instruction-following capabilities over extended contexts.

In the simple-difficulty tasks, several models demonstrate strong performance. Llama3.1-8B-Instruction is particularly noteworthy, especially in the Simple-EN scenario, where its section output almost perfectly matches the target requirements, indicating it successfully generated nearly all requested content. GPT-4o mini also performs reliably in these simpler settings, but it exhibits clear signs of fatigue at the upper end of the scale. Its performance noticeably falters when moving from the 200 to the 500-section requirement, suggesting that it is approaching the limits of its effective long-context capabilities for this type of structured generation.

The challenge intensifies significantly in the complex-difficulty tasks. Here, a universal trend of performance degradation is observed across all models, with most showing a sharp decline in adher-

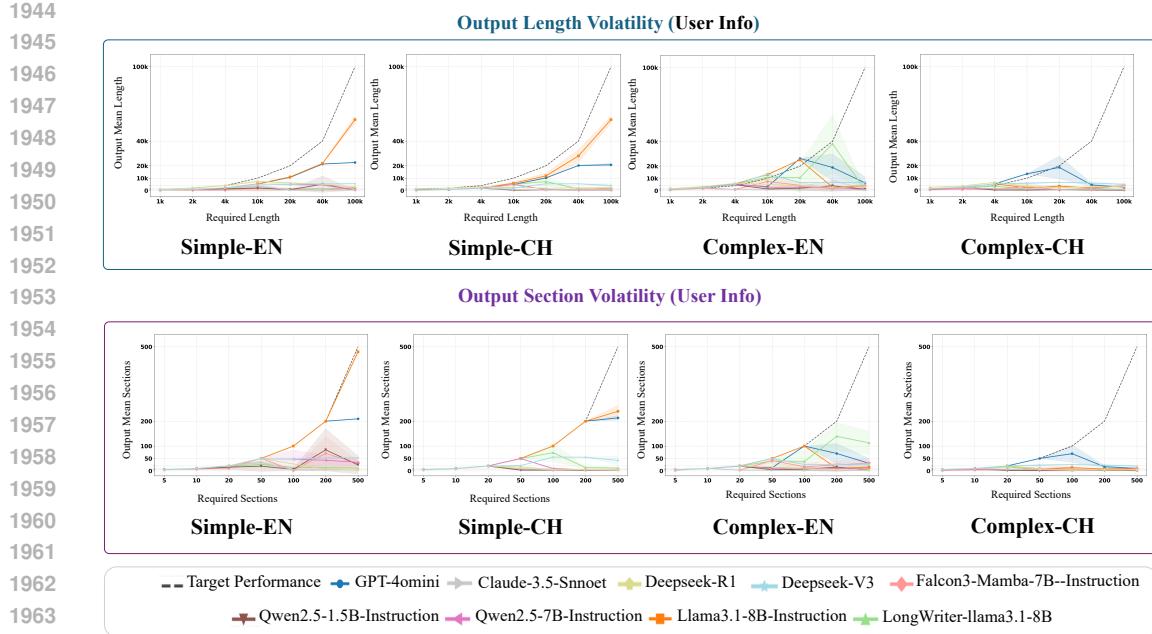


Figure 19: Comparison of output control for various large language models on user info generation tasks. The figure presents eight plots evaluating model performance across two languages (English and Chinese) and two complexity levels (simple and complex). The four columns correspond to the conditions: Simple-EN, Simple-CH, Complex-EN, and Complex-CH. The top row compares the actual mean output length against the required length. The bottom row compares the actual mean number of output sections against the required number of sections. In each plot, the solid lines represent the mean performance for each model, and the surrounding shaded areas indicate the volatility of the outputs. The dashed line indicates the target performance, where the model’s output perfectly matches the specified requirement.

ence when the required sections exceed 200. This underscores the difficulty of maintaining structural integrity under complex constraints.

Most strikingly, this task reveals a critical limitation in the LongWriter model. Despite its previously demonstrated strengths in Chinese long-form generation, it performs exceptionally poorly on this specific task, especially in the Chinese scenarios. Its output is far worse than its own base model, Llama3.1. This strongly suggests that its supervised finetuning process did not include this type of structured user data. The result is a model that has become highly specialized, losing its general capability on out-of-domain tasks to the point of underperforming its un-tuned predecessor. This highlights the double-edged nature of supervised finetuning and the critical importance of training data diversity.

J.0.9 EVALUATION SCORES

Table 27 provides a detailed performance comparison of the evaluated models on a 5-section generation task, focusing on two key dimensions: Length Volatility and Generation Quality. The results clearly demonstrate the effectiveness of our proposed method in producing highly stable and accurate outputs.

In terms of length volatility, our approach achieves a Length Variation Coefficient (LVC) of just 1.9%, the lowest among all tested models. This indicates exceptional stability in the length of generated content relative to its mean, significantly surpassing strong baselines like Deepseek-V3 (2.4%) and GPT-4omini (3.9%). In contrast, models such as Llama3.1 and LongWriter exhibit extremely high LVC values of 33.4% and 44.7% respectively, highlighting their unpredictability in output length. While our method’s Mean Length Accuracy of 49.2% is moderate, it is important

Table 27: Performance comparison of evaluated models on a 5-section generation task, conducted in English under simple difficulty settings. Representative results are shown for an unstructured task (Story) and a structured task (Code Function). For the LSD and FAD metrics, the values in parentheses provide context by showing the generated mean length (in words) and mean section count, respectively. The “ \pm ” values represent the standard deviation. The arrows (\uparrow/\downarrow) indicate whether higher or lower values are preferable for each metric.

Model	Length Volatility			Generation Quality		
	LSD (\downarrow)	LVC (\downarrow)	MLA (\uparrow)	FAD (\downarrow)	SCA (\uparrow)	UCA (\uparrow)
GPT-4omini	23.16 (590)	3.9%	59.0%	0.00 (5.00)	100.0% ($\pm 0.0\%$)	97.3% ($\pm 2.5\%$)
Claude-3.5-Sonnet	45.99 (437)	10.5%	43.7%	0.00 (5.00)	100.0% ($\pm 0.0\%$)	94.7% ($\pm 3.4\%$)
Deepseek-R1	143.81 (923)	15.6%	92.3%	0.00 (5.00)	84.0% ($\pm 8.0\%$)	98.0% ($\pm 1.6\%$)
Deepseek-V3	13.59 (562)	2.4%	56.2%	0.00 (5.00)	80.0% ($\pm 0.0\%$)	95.3% ($\pm 4.5\%$)
Mamba-7B	74.77 (400)	18.7%	40.0%	0.00 (5.00)	84.0% ($\pm 15.0\%$)	87.3% ($\pm 9.3\%$)
Qwen2.5-1.5B	82.10 (249)	32.9%	24.9%	0.00 (5.00)	68.0% ($\pm 24.0\%$)	78.0% ($\pm 4.0\%$)
Qwen2.5-7B	21.12 (495)	4.3%	49.5%	0.00 (5.00)	88.0% ($\pm 9.8\%$)	95.3% ($\pm 6.2\%$)
Llama3.1-8B	202.53 (606)	33.4%	60.6%	0.94 (4.33)	68.0% ($\pm 24.0\%$)	88.0% ($\pm 7.5\%$)
LongWriter-8B	262.46 (587)	44.7%	58.7%	2.00 (3.00)	80.0% ($\pm 0.0\%$)	92.7% ($\pm 4.9\%$)
Ours	28.35 (1504)	1.9%	49.2%	0.00 (5.00)	100.0% ($\pm 0.0\%$)	96.7% ($\pm 2.9\%$)

to note that this is based on a much larger mean output of 1504 words, showing that our model produces consistently longer, stable text rather than strictly adhering to a shorter target.

Regarding generation quality, our method excels across all metrics. It achieves a perfect Format Adherence Deviation (FAD) score of 0.00, consistently generating the required five sections without error. This stands in sharp contrast to LongWriter, which struggled significantly with a FAD of 2.00, on average producing only three of the five required sections. Furthermore, for structured tasks, our method attains a flawless 100% Structured Content Accuracy (SCA), a benchmark also met only by GPT-4omini and Claude-3.5-Sonnet. For unstructured content, our model’s Unstructured Content Accuracy (UCA) of 96.7% is on par with the top-performing models, confirming its high quality.

In summary, our approach sets a new standard for reliable long-text generation. It uniquely combines state-of-the-art content quality and format adherence with unparalleled output stability, addressing the critical issue of volatility that affects many other leading models.

Table 28 extends the evaluation to a more demanding 10-section generation task, providing deeper insights into model scalability and robustness. The results from this scaled-up experiment further underscore the superior stability and quality of our proposed method, particularly as task complexity increases.

Our approach continues to demonstrate exceptional control over its output. It maintains a very low Length Variation Coefficient (LVC) of 2.7%, second only to the highly stable Mamba model (1.6%). However, this stability is achieved while generating a mean output of 2478 words, more than double that of any other model, and with a strong Mean Length Accuracy (MLA) of 76.1%. This unique combination of producing lengthy, stable, and accurate outputs sets our method apart. In contrast, models like Llama3.1 and LongWriter become almost uncontrollably volatile at this scale, with LVC values soaring to 64.4% and 69.6% respectively.

In the dimension of generation quality, our method’s performance is flawless. It achieves a perfect Format Adherence Deviation (FAD) of 0.00 and a perfect Structured Content Accuracy (SCA) of 100.0%. This is a critical result, as several other strong models begin to falter at this increased length. For instance, Claude-3.5-Sonnet, which was perfect on the 5-section task, now shows significant format deviation (FAD of 2.36), and Llama3.1 also struggles to maintain the correct section count. While the unstructured content quality (UCA) remains high for our model at 96.4%, it is clear that maintaining structural integrity over longer generations is a key challenge that our method successfully overcomes.

Table 28: Performance comparison of evaluated models on a 10-section generation task, conducted in English under simple difficulty settings. Representative results are shown for an unstructured task (Story) and a structured task (Code Function). For the LSD and FAD metrics, the values in parentheses provide context by showing the generated mean length (in words) and mean section count, respectively. The “ \pm ” values represent the standard deviation. The arrows (\uparrow/\downarrow) indicate whether higher or lower values are preferable for each metric.

Model	Length Volatility			Generation Quality		
	LSD (\downarrow)	LVC (\downarrow)	MLA (\uparrow)	FAD (\downarrow)	SCA (\uparrow)	UCA (\uparrow)
GPT-4omini	41.35 (1066)	3.9%	53.3%	0.00 (10.00)	96.0% ($\pm 4.9\%$)	92.0% ($\pm 3.4\%$)
Claude-3.5-Sonnet	200.53 (696)	28.8%	34.8%	2.36 (8.33)	100.0% ($\pm 0.0\%$)	98.0% ($\pm 2.7\%$)
Deepseek-R1	39.42 (1220)	3.2%	61.0%	0.00 (10.00)	92.0% ($\pm 4.0\%$)	98.0% ($\pm 1.6\%$)
Deepseek-V3	23.61 (827)	2.9%	41.4%	0.00 (10.00)	90.0% ($\pm 0.0\%$)	94.0% ($\pm 3.9\%$)
Mamba-7B	9.90 (607)	1.6%	30.4%	0.00 (10.00)	90.0% ($\pm 0.0\%$)	80.7% ($\pm 12.5\%$)
Qwen2.5-1.5B	319.44 (656)	48.7%	32.8%	0.00 (10.00)	90.0% ($\pm 0.0\%$)	82.7% ($\pm 12.5\%$)
Qwen2.5-7B	136.05 (745)	18.3%	37.2%	0.00 (10.00)	90.0% ($\pm 0.0\%$)	94.0% ($\pm 2.5\%$)
Llama3.1-8B	418.58 (650)	64.4%	32.5%	3.30 (5.33)	98.0% ($\pm 4.0\%$)	91.3% ($\pm 5.0\%$)
LongWriter-8B	956.53 (1374)	69.6%	68.7%	4.24 (7.00)	80.0% ($\pm 15.5\%$)	86.7% ($\pm 11.0\%$)
Ours	67.35 (2478)	2.7%	76.1%	0.00 (10.00)	100.0% ($\pm 0.00\%$)	96.4% ($\pm 11.0\%$)

In conclusion, as the generation length and structural requirements increase, the advantages of our approach become even more pronounced. It consistently delivers high-quality, structurally perfect content with low volatility, while many other models exhibit a significant degradation in either stability or format adherence.

Table 29: Performance comparison of evaluated models on a 20-section generation task, conducted in English under simple difficulty settings. Representative results are shown for an unstructured task (Story) and a structured task (Code Function). For the LSD and FAD metrics, the values in parentheses provide context by showing the generated mean length (in words) and mean section count, respectively. The “ \pm ” values represent the standard deviation. The arrows (\uparrow/\downarrow) indicate whether higher or lower values are preferable for each metric.

Model	Length Volatility			Generation Quality		
	LSD (\downarrow)	LVC (\downarrow)	MLA (\uparrow)	FAD (\downarrow)	SCA (\uparrow)	UCA (\uparrow)
GPT-4omini	317.35 (2068)	15.3%	51.7%	0.00 (20.00)	98.0% ($\pm 2.4\%$)	92.0% ($\pm 1.6\%$)
Claude-3.5-Sonnet	13.57 (181)	7.5%	4.5%	0.47 (2.67)	100.0% ($\pm 0.0\%$)	88.7% ($\pm 4.5\%$)
Deepseek-R1	37.42 (1853)	2.0%	46.3%	0.00 (20.00)	97.0% ($\pm 2.4\%$)	93.3% ($\pm 6.0\%$)
Deepseek-V3	130.08 (1168)	11.1%	29.2%	0.00 (20.00)	95.0% ($\pm 0.0\%$)	92.0% ($\pm 5.8\%$)
Mamba-7B	282.37 (351)	80.5%	8.8%	4.00 (10.00)	93.0% ($\pm 2.4\%$)	76.0% ($\pm 4.9\%$)
Qwen2.5-1.5B	279.49 (414)	67.5%	10.4%	8.53 (10.50)	94.0% ($\pm 3.7\%$)	81.3% ($\pm 4.5\%$)
Qwen2.5-7B	104.34 (915)	11.4%	22.9%	0.00 (20.00)	95.0% ($\pm 0.0\%$)	92.0% ($\pm 7.5\%$)
Llama3.1-8B	4.92 (268)	1.8%	6.7%	0.47 (2.67)	98.0% ($\pm 2.4\%$)	88.7% ($\pm 8.1\%$)
LongWriter-8B	759.89 (3713)	20.5%	92.8%	8.23 (15.25)	92.0% ($\pm 6.0\%$)	72.0% ($\pm 13.1\%$)
Ours	159.63 (4235)	3.8%	92.8%	8.23 (15.25)	98.0% ($\pm 2.0\%$)	92.0% ($\pm 7.1\%$)

The evaluation detailed in Table 29 assesses model performance on a highly demanding 20-section generation task. This increased complexity reveals significant trade-offs between output stability, content quality, and structural adherence, providing a more granular view of each model’s capabilities and limitations under substantial load.

In terms of output stability, our method maintains a highly competitive Length Variation Coefficient (LVC) of 3.8%. While some models like Deepseek-R1 achieve even greater relative stability with an LVC of 2.0%, our model’s performance is notable as it is accomplished while generating by far the longest average output at 4235 words. Compared to another high-performing baseline, GPT-4omini, which has an LVC of 15.3%, our approach proves to be over 75% more stable in its relative output

length. This demonstrates our model’s ability to control its generation reliably even when producing vast amounts of text, a stark contrast to models like Mamba-7B, whose stability collapses at this scale.

When evaluating content quality, our model performs at the top tier. Its Structured Content Accuracy (SCA) of 98.0% is tied for the highest score, marginally outperforming the excellent result of Deepseek-R1 (97.0%). Similarly, its Unstructured Content Accuracy (UCA) of 92.0% is highly competitive. However, the data reveals a critical failure point for our method at this scale: structural integrity. Our model recorded a Format Adherence Deviation (FAD) of 8.23, indicating it failed to generate the required 20 sections, instead averaging only 15.25. This performance is poor compared to models like Deepseek-R1 and GPT-4omini, which maintained perfect format adherence with a FAD of 0.00.

In conclusion, the 20-section task highlights that while our method excels in generating high-quality content at an unprecedented scale with low relative volatility, its ability to follow rigid structural rules can break down under extreme pressure. This presents a crucial area for future improvement, contrasting with models like Deepseek-R1 that provide a more balanced, albeit less lengthy, performance across all metrics.

Table 30: Performance comparison of evaluated models on a 50-section generation task, conducted in English under simple difficulty settings. Representative results are shown for an unstructured task (Story) and a structured task (Code Function). For the LSD and FAD metrics, the values in parentheses provide context by showing the generated mean length (in words) and mean section count, respectively. The “ \pm ” values represent the standard deviation. The arrows (\uparrow/\downarrow) indicate whether higher or lower values are preferable for each metric.

Model	Length Volatility			Generation Quality		
	LSD (\downarrow)	LVC (\downarrow)	MLA (\uparrow)	FAD (\downarrow)	SCA (\uparrow)	UCA (\uparrow)
GPT-4omini	418.82 (5526)	7.6%	55.3%	4.78 (41.67)	79.6% ($\pm 25.0\%$)	77.3% ($\pm 12.9\%$)
Claude-3.5-Sonnet	10.62 (155)	6.8%	1.6%	0.00 (2.00)	11.2% ($\pm 4.7\%$)	85.3% ($\pm 5.8\%$)
Deepseek-R1	463.27 (830)	55.8%	8.3%	0.00 (3.00)	99.6% ($\pm 0.8\%$)	90.7% ($\pm 3.9\%$)
Deepseek-V3	100.70 (1895)	5.3%	19.0%	0.00 (50.00)	98.4% ($\pm 0.8\%$)	90.7% ($\pm 8.8\%$)
Mamba-7B	620.80 (1518)	40.9%	15.2%	18.86 (36.67)	91.2% ($\pm 15.6\%$)	78.0% ($\pm 7.2\%$)
Qwen2.5-1.5B	425.01 (636)	66.8%	6.4%	15.58 (15.00)	29.2% ($\pm 33.6\%$)	78.7% ($\pm 17.1\%$)
Qwen2.5-7B	302.55 (1367)	22.1%	13.7%	9.43 (43.33)	98.8% ($\pm 1.6\%$)	89.3% ($\pm 10.2\%$)
Llama3.1-8B	77.15 (277)	27.8%	2.8%	1.25 (3.33)	99.2% ($\pm 1.0\%$)	86.0% ($\pm 19.0\%$)
LongWriter-8B	3918.92 (5148)	76.1%	51.5%	21.91 (38.75)	71.6% ($\pm 30.0\%$)	74.7% ($\pm 10.9\%$)
Ours	297.28 (8056)	3.7%	80.5%	2.50 (45.00)	99.5% ($\pm 0.5\%$)	90.2% ($\pm 5.5\%$)

The results presented in Table 30, derived from an extreme 50-section generation task, effectively push the models to their operational limits. At this substantial scale, most models experience a severe degradation in performance, highlighting the immense challenge of maintaining coherence, stability, and structural integrity over very long contexts. In this demanding scenario, our proposed method and Deepseek-V3 emerge as the only two models capable of delivering high-quality results.

A direct comparison reveals the distinct advantages of our approach. In terms of stability, our model achieves a Length Variation Coefficient (LVC) of 3.7%, a figure that is over 30% lower than Deepseek-V3’s LVC of 5.3%. This superior stability is all the more impressive given that our model generated an average of 8056 words, more than four times the output length of Deepseek-V3. Furthermore, our model’s Mean Length Accuracy (MLA) of 80.5% far surpasses Deepseek-V3’s 19.0%, indicating our output length is significantly closer to the intended target. For content fidelity, our model’s Structured Content Accuracy (SCA) of 99.5% is approximately 1.1% higher than Deepseek-V3’s already excellent 98.4%.

While Deepseek-V3 achieves perfect structural integrity by delivering all 50 sections (FAD of 0.00), our model shows a minor deviation, averaging 45 sections (FAD of 2.50). However, this slight

shortfall in section count is offset by its superior performance across stability, length accuracy, and content quality. The widespread failure of other prominent models, most of which could not generate even a third of the required sections, contextualizes the exceptional performance of these two top-tier models.

In conclusion, at the frontier of long-text generation, our method demonstrates a state-of-the-art capability, producing outputs of unprecedented length with superior stability and content accuracy, establishing its leadership in extreme-scale generative tasks.

Table 31: Performance comparison of evaluated models on a 100-section generation task, conducted in English under simple difficulty settings. Representative results are shown for an unstructured task (Story) and a structured task (Code Function). For the LSD and FAD metrics, the values in parentheses provide context by showing the generated mean length (in words) and mean section count, respectively. The “ \pm ” values represent the standard deviation. The arrows (\uparrow/\downarrow) indicate whether higher or lower values are preferable for each metric.

Model	Length Volatility			Generation Quality		
	LSD (\downarrow)	LVC (\downarrow)	MLA (\uparrow)	FAD (\downarrow)	SCA (\uparrow)	UCA (\uparrow)
GPT-4o mini	325.65 (959)	33.9%	4.8%	1.41 (7.00)	84.6% (\pm 30.8%)	86.7% (\pm 6.7%)
Claude-3.5-Sonnet	3.30 (176)	1.9%	0.9%	0.00 (2.00)	3.0% (\pm 0.0%)	88.7% (\pm 2.7%)
Deepseek-R1	103.30 (1198)	8.6%	6.0%	1.25 (4.33)	35.0% (\pm 13.2%)	93.3% (\pm 3.7%)
Deepseek-V3	40.76 (1854)	2.2%	9.3%	1.70 (20.67)	48.6% (\pm 3.8%)	84.7% (\pm 3.4%)
Mamba-7B	715.98 (1291)	55.5%	6.5%	41.72 (40.75)	66.8% (\pm 21.9%)	76.0% (\pm 17.3%)
Qwen2.5-1.5B	27.78 (142)	19.6%	0.7%	0.47 (1.67)	15.6% (\pm 24.0%)	84.0% (\pm 7.1%)
Qwen2.5-7B	75.87 (445)	17.0%	2.2%	2.05 (10.33)	99.8% (\pm 0.4%)	86.7% (\pm 7.6%)
Llama3.1-8B	92.77 (350)	26.5%	1.7%	0.94 (4.33)	92.4% (\pm 14.2%)	82.0% (\pm 18.9%)
LongWriter-8B	2866.29 (6320)	45.4%	31.6%	21.42 (45.00)	32.6% (\pm 31.9%)	66.7% (\pm 16.5%)
Ours	2194.23 (15651)	14.02%	78.25%	7.24 (88.00)	100% (\pm 0%)	86.7% (\pm 16.5%)

The comprehensive results from the 100-section generation task, detailed in Table 31, serve to starkly differentiate the capabilities of our proposed method from all evaluated baseline models. While the baselines universally struggle to cope with the task’s demanding scale, our approach demonstrates a significant leap forward in long-context generation, particularly in task completion and content accuracy.

The most critical distinction lies in the ability to maintain structural integrity. Our method successfully generated an average of 88.00 sections, effectively completing the vast majority of the task. This performance dwarfs that of the best baseline, LongWriter-8B, which produced only 45.00 sections. This means our approach generated over 95% more of the required structured content than the strongest competitor, nearly doubling its effective output. Other powerful models like GPT-4o mini and Deepseek-V3 failed much earlier, delivering less than a quarter of the required sections and underscoring their limitations at this scale.

Furthermore, our model achieved this superior structural output without sacrificing quality. It recorded a perfect 100% Structured Content Accuracy (SCA) across the 88 sections it produced. This combination of scale and accuracy is unique; no other model came close to this performance. For instance, the baseline with the next highest section count, LongWriter-8B, had a comparatively poor SCA of only 32.6%. While some models like Qwen2.5-7B posted a high SCA, it was on a trivial output of only 10 sections, highlighting an inability to maintain quality at scale.

Finally, this state-of-the-art performance in quality and structure was achieved while generating an enormous average output of 15,651 words with a reasonable Length Variation Coefficient (LVC) of 14.02%. In conclusion, our method demonstrates a paradigm shift, successfully balancing the competing demands of extreme length, perfect content accuracy, and stable generation far beyond the capabilities of current baseline models.

Table 32: Performance comparison of evaluated models on a 200-section generation task, conducted in English under simple difficulty settings. Representative results are shown for an unstructured task (Story) and a structured task (Code Function). For the LSD and FAD metrics, the values in parentheses provide context by showing the generated mean length (in words) and mean section count, respectively. The “ \pm ” values represent the standard deviation. The arrows (\uparrow/\downarrow) indicate whether higher or lower values are preferable for each metric.

Model	Length Volatility			Generation Quality		
	LSD (\downarrow)	LVC (\downarrow)	MLA (\uparrow)	FAD (\downarrow)	SCA (\uparrow)	UCA (\uparrow)
GPT-4omini	343.48 (5594)	6.1%	14.0%	1.70 (23.33)	60.6% ($\pm 39.3\%$)	80.7% ($\pm 6.8\%$)
Claude-3.5-Sonnet	3.86 (196)	2.0%	0.5%	0.00 (2.00)	1.5% ($\pm 0.0\%$)	88.7% ($\pm 7.5\%$)
Deepseek-R1	168.55 (1360)	12.4%	3.4%	1.25 (4.67)	8.0% ($\pm 2.4\%$)	92.7% ($\pm 5.3\%$)
Deepseek-V3	415.16 (1530)	27.1%	3.8%	4.71 (16.67)	22.2% ($\pm 2.7\%$)	88.7% ($\pm 12.8\%$)
Mamba-7B	37.06 (152)	24.3%	0.4%	2.00 (8.00)	54.0% ($\pm 26.9\%$)	78.7% ($\pm 7.8\%$)
Qwen2.5-1.5B	141.80 (355)	40.0%	0.9%	2.36 (2.67)	22.1% ($\pm 38.9\%$)	88.7% ($\pm 5.4\%$)
Qwen2.5-7B	127.46 (571)	22.3%	1.4%	3.30 (8.33)	45.0% ($\pm 44.9\%$)	86.0% ($\pm 20.0\%$)
Llama3.1-8B	36.55 (301)	12.1%	0.8%	0.47 (2.67)	99.7% ($\pm 0.6\%$)	85.3% ($\pm 7.8\%$)
LongWriter-8B	2858.29 (6353)	45.0%	15.9%	17.30 (31.75)	30.5% ($\pm 36.2\%$)	66.0% ($\pm 16.7\%$)
Ours	3743.92 (31582)	11.85%	78.96%	5.00 (147.20)	90.5% ($\pm 5.2\%$)	87.0% ($\pm 10.4\%$)

Table 32 details the results of the final and most rigorous evaluation: a 200-section generation task. This extreme stress test is designed to push models far beyond their conventional limits, and the results clearly demonstrate a near-universal failure among all baseline models. In this challenging environment, our proposed method stands alone in its ability to handle the task’s immense scale and complexity.

The performance of the baseline models collapses under this load. An examination of the Format Adherence Deviation (FAD) reveals that even the most powerful models failed to generate a meaningful portion of the required content. For instance, GPT-4omini produced an average of only 23 sections, while Deepseek-V3 managed just 17. The data also highlights a potential for misinterpretation; models like Llama3.1 report a near-perfect Structured Content Accuracy (SCA) of 99.7%, but this accuracy is measured on a trivial output of only two to three sections, indicating a complete failure to adhere to the primary task constraint of generating 200 sections.

In stark contrast, our method is the only one to successfully navigate this challenge. It generated an average of 147.2 sections out of the required 200, producing over 4.6 times more of the target content than the next-best model, LongWriter, which averaged only 31.75 sections. Crucially, this massive output was generated with exceptional quality, achieving a 90.5% SCA and an 87.0% Unstructured Content Accuracy (UCA). Furthermore, our model maintained a commendable Length Variation Coefficient (LVC) of 11.85% across an unprecedented average output length of over 31,000 words, demonstrating robust control at a scale where other models falter.

In conclusion, the 200-section task decisively establishes the state-of-the-art capability of our approach. It is the only evaluated method that successfully scales to extreme-length generation, delivering the vast majority of the required content while preserving high levels of accuracy and stability.

The final evaluation detailed in Table 33 subjects the models to an immense 500-section generation task. This extreme benchmark pushes every model beyond its designed limits, revealing distinct modes of failure and decisively highlighting the unique resilience and state-of-the-art capability of our approach. At this scale, a clear distinction emerges between models that fail gracefully and those that attempt the task.

Interestingly, powerful closed-source models like GPT 4o mini and Claude-3.5-Sonnet exhibit what can be described as an “intelligent failure”. Rather than attempting to generate the full 500 sections, a task they likely identify as beyond their context limits, they produce a severely truncated output, av-

Table 33: Performance comparison of evaluated models on a 500-section generation task, conducted in English under simple difficulty settings. Representative results are shown for an unstructured task (Story) and a structured task (Code Function). For the LSD and FAD metrics, the values in parentheses provide context by showing the generated mean length (in words) and mean section count, respectively. The “ \pm ” values represent the standard deviation. The arrows (\uparrow/\downarrow) indicate whether higher or lower values are preferable for each metric.

Model	Length Volatility			Generation Quality		
	LSD (\downarrow)	LVC (\downarrow)	MLA (\uparrow)	FAD (\downarrow)	SCA (\uparrow)	UCA (\uparrow)
GPT-4omini	2332.12 (3670)	63.5%	3.7%	13.07 (19.33)	32.6% ($\pm 18.1\%$)	82.7% ($\pm 12.9\%$)
Claude-3.5-Sonnet	30.68 (188)	16.3%	0.2%	0.71 (2.00)	0.6% ($\pm 0.0\%$)	83.3% ($\pm 3.7\%$)
Deepseek-R1	93.77 (1018)	9.2%	1.0%	0.82 (3.00)	3.4% ($\pm 1.2\%$)	94.7% ($\pm 4.0\%$)
Deepseek-V3	110.80 (1357)	8.2%	1.4%	3.14 (9.33)	9.4% ($\pm 1.1\%$)	82.7% ($\pm 1.3\%$)
Mamba-7B	8164.97 (30667)	26.6%	30.7%	4.90 (10.00)	20.8% ($\pm 11.4\%$)	54.0% ($\pm 14.7\%$)
Qwen2.5-1.5B	22.10 (151)	14.7%	0.2%	0.49 (1.00)	1.8% ($\pm 1.1\%$)	76.0% ($\pm 16.7\%$)
Qwen2.5-7B	112.34 (516)	21.77	0.5%	0.98 (3.00)	33.7% ($\pm 39.1\%$)	78.7% ($\pm 6.2\%$)
Llama3.1-8B	25.69 (294)	8.7%	0.3%	0.75 (3.33)	28.2% ($\pm 39.1\%$)	86.0% ($\pm 5.3\%$)
LongWriter-8B	10083.17 (50604)	19.9%	50.6%	7.78 (16.50)	26.8% ($\pm 27.1\%$)	62.0% ($\pm 15.4\%$)
Ours	5078.4 (59534)	8.5%	59.5%	12.44 (327.20)	66.8% ($\pm 17.5\%$)	82.0% ($\pm 5.4\%$)

eraging only 19 and 2 sections, respectively. This behavior suggests a sophisticated mechanism that opts to provide a summary or structural outline instead of failing catastrophically mid-generation. Other baseline models either fail early or, like LongWriter, attempt to meet the length requirement but completely lose structural control, resulting in long but incoherent output.

In this landscape of widespread failure, our method is the only one that successfully rises to the challenge. It is the sole model to generate a substantial portion of the request, delivering an average of 327.2 sections. This is an unparalleled achievement, representing nearly 20 times more of the required content than the next closest competitor, LongWriter, which produced only 16.5 sections. Crucially, our model maintains a respectable Structured Content Accuracy (SCA) of 66.8% and Unstructured Content Accuracy (UCA) of 82.0% across a massive average output of nearly 60,000 words. Its Length Variation Coefficient (LVC) of 8.5% is the most meaningful stability metric in the table, as it is the only one tied to a successful, large-scale generation.

In conclusion, the 500-section task proves that our method operates in a class of its own. It is the only evaluated approach capable of scaling to extreme-length tasks while substantially preserving structural integrity and content quality, confirming its breakthrough status in long-context generation.

The performance evaluation detailed in Table 34 shifts the focus to different task domains—specifically unstructured Diary generation and structured Math Latex generation. By comparing these results to the previous evaluation on Story and Code tasks, we can analyze the significant impact that task type has on the long-context capabilities of baseline models, even when the required length and complexity remain constant at 100 sections.

The overall difficulty of the 100-section benchmark remains evident, with most models still failing to complete the task. Powerful closed-source models like GPT-4o mini and Claude-3.5-Sonnet continue their pattern of failing early, generating only a small fraction of the required sections. This consistent behavior across different domains suggests their refusal to handle extreme-length requests is a core aspect of their operational logic, rather than a task-specific issue.

However, the most striking finding is the dramatic performance shift of specific models when the task changes. Qwen2.5-7B, which produced only about 10 sections on the Code task, demonstrates a remarkable improvement on the Math task, successfully generating an average of 79.33 sections. This represents a nearly eight-fold increase in effective output, making it the top-performing baseline

Table 34: Performance comparison of evaluated models on a 100-section generation task, conducted in English under simple difficulty settings. Representative results are shown for an unstructured task (Diary) and a structured task (Math Latex Function). For the LSD and FAD metrics, the values in parentheses provide context by showing the generated mean length (in words) and mean section count, respectively. The “ \pm ” values represent the standard deviation. The arrows (\uparrow/\downarrow) indicate whether higher or lower values are preferable for each metric.

Model	Length Volatility			Generation Quality		
	LSD (\downarrow)	LVC (\downarrow)	MLA (\uparrow)	FAD (\downarrow)	SCA (\uparrow)	UCA (\uparrow)
GPT-4omini	2395.67 (2489)	96.2%	12.4%	21.68 (22.33)	99.8% ($\pm 0.4\%$)	96.7% ($\pm 3.7\%$)
Claude-3.5.5-Sonnet	38.18 (303)	12.6%	1.5%	0.00 (2.00)	11.0% ($\pm 2.0\%$)	92.0% ($\pm 4.5\%$)
Deepseek-R1	271.73 (1626)	16.7%	8.1%	0.47 (6.33)	71.0% ($\pm 34.1\%$)	98.0% ($\pm 4.0\%$)
Deepseek-V3	546.33 (853)	64.0%	4.3%	9.53 (12.33)	77.4% ($\pm 4.2\%$)	86.7% ($\pm 6.0\%$)
Mamba-7B	274.94 (934)	29.4%	4.7%	57.59 (64.25)	44.2% ($\pm 45.7\%$)	79.2% ($\pm 14.8\%$)
Qwen2.5-1.5B	32.06 (177)	18.1%	0.9%	0.00 (1.00)	5.6% ($\pm 4.1\%$)	82.7% ($\pm 4.9\%$)
Qwen2.5-7B	1155.46 (6999)	16.5%	35.0%	29.23 (79.33)	99.4% ($\pm 0.8\%$)	80.7% ($\pm 4.9\%$)
Llama3.1-8B	265.02 (632)	42.0%	3.2%	4.11 (6.67)	85.0% ($\pm 24.7\%$)	84.0% ($\pm 15.8\%$)
LongWriter-8B	3484.67 (4819)	72.3%	24.1%	40.91 (46.00)	82.0% ($\pm 29.6\%$)	83.3% ($\pm 10.1\%$)

by a significant margin. Crucially, it maintained a near-perfect Structured Content Accuracy of 99.4% across this vastly expanded output. This suggests the highly logical and formal syntax of LaTeX aligns better with its capabilities than the more abstract structure of code generation.

Other models also show notable changes. LongWriter-8B, while producing a similar number of sections as before, sees its SCA score improve dramatically from 32.6% on the Code task to 82.0% on the Math task. Conversely, Mamba-7B generates more sections but with a lower accuracy. In conclusion, these results prove that model performance at scale is not monolithic; it is highly dependent on the specific structural and logical demands of the task, revealing unique strengths and weaknesses that are not apparent from a single benchmark.

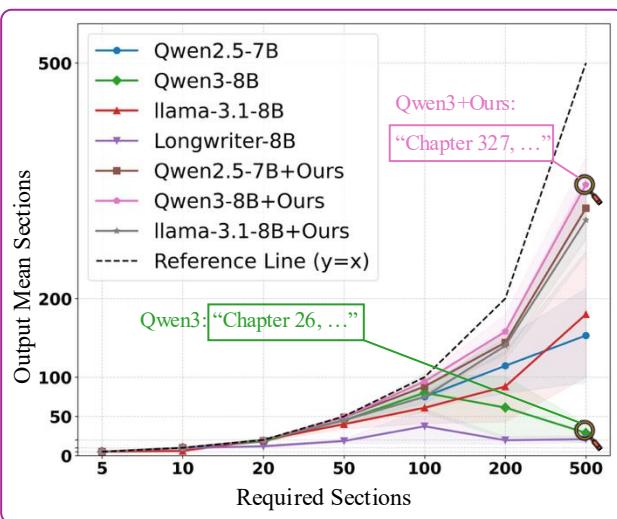


Figure 20: Section volatility of the model with our method. Baseline models often fail to generate a sufficient number of sections, whereas our model generates more sections with greater stability.

2376

2377

2378

2379

2380

2381

2382

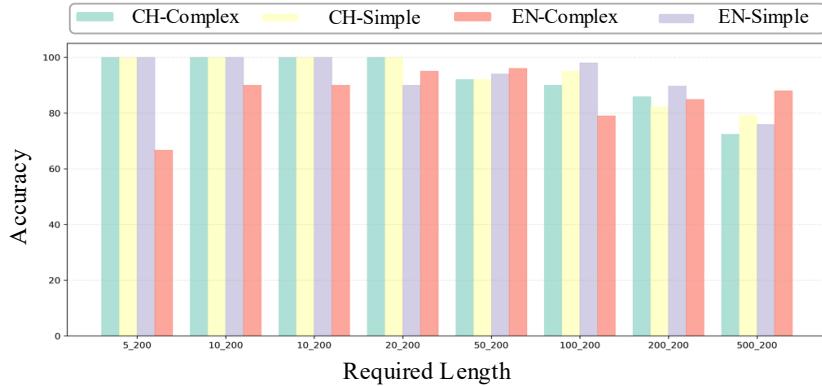
2383

2384

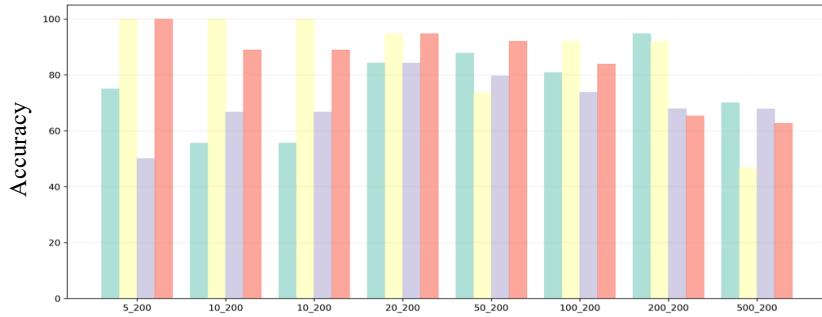
2385

2386

2387



(a) GPT-4omini



(b) Qwen2.5-7B

Figure 21: Code Generation Accuracy Across Different Length Requirements. This figure illustrates the performance of (a) GPT-4omini and (b) Qwen2.5-7B across different languages (CH/EN) and instruction complexities (Simple/Complex). Two main conclusions can be drawn from the figure: First, as the required output length increases, the code generation accuracy of both models shows an overall downward trend. Second, the impact of instruction complexity on generation quality varies by model and language, under simple instructions, some models (such as Qwen2.5-7B on the English task) exhibit relatively lower accuracy, which may be attributed to instruction ambiguity.

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429