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ABSTRACT

Large Language Models (LLMs) excel at long-context understanding but exhibit
significant limitations in long-form generation. Existing studies primarily focus
on single-generation quality, generally overlooking the volatility of the output
(i.e., the inconsistency in length and content across multiple generations). This
volatility not only leads to significant computational costs but also severely im-
pacts the models’ reliable application. To address this gap, our work unfolds
in three stages: benchmarking, probing, and mitigation. We first propose the
VOlatility in Long-form Text Benchmark (VOLTBench), a novel heterogeneous-
task benchmark designed to systematically quantify the length volatility of long-
form generation. Subsequently, by analyzing attention traces, we conduct an in-
depth probe to identify several common internal patterns that cause this volatil-
ity. Finally, to mitigate long-form output volatility, we propose SELB (Struc-
tural Enforcement via Logits Boosting), a lightweight decoding-stage optimiza-
tion strategy, designed to significantly enhance both the length accuracy and sta-
bility of long-form generation without additional training. Extensive experiments
on VOLTBench provide the first systematic confirmation of severe long-form out-
put instability in mainstream models and validate that our proposed method suc-
cessfully improves the mean output length of the base model by 148% and reduces
the length volatility by 69%, while maintaining high generation quality.1

1 INTRODUCTION

Large Language Models (LLMs) have made significant advances in long-context processing Bai
et al. (2023); GLM et al. (2024); Comanici et al. (2025), capable of handling inputs exceeding
100k tokens and performing precise information retrieval in Needle-in-a-Haystack tasks Yuan et al.
(2025); Ye et al. (2025a); Zhou et al. (2025). However, this remarkable progress in long-context
understanding has not extended to long-form generation. Their outputs struggle to surpass the 2k-
word threshold Bai et al. (2024), while also lacking equivalent fine-grained control over the process.

Recent studies have benchmarked the long-form generation capabilities of models, typically employ-
ing unstructured content generation tasks such as story writing, and observed that current models
generally struggle to meet target lengths accurately Liu et al. (2024); Zhang et al. (2025b); Wu et al.
(2025b). Some work attributes this issue preliminarily to data-related factors, such as the scarcity of
long-output examples in supervised fine-tuning (SFT) datasets Bai et al. (2024).

However, we argue that current research has three core limitations: First, existing work focuses
almost exclusively on single-generation results, systematically overlooking output stability. This
paradigm fails to capture the significant volatility that occurs when models process the same prompt
multiple times, as shown in Figure 1, leading to unpredictable token consumption and high costs.
Second, current benchmarks over-rely on unstructured tasks like story generation. Their sub-
jective and difficult-to-automate evaluation criteria hinder the objective, quantifiable assessment of
generation quality. In contrast, structured tasks with clear rules (e.g., code generation) offer a better
environment for evaluation but remain underexplored. Finally, most research is limited to observing
the phenomenon, lacking an in-depth investigation into the internal mechanisms.

1The code will be publicly available upon acceptance.
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Figure 1: Model performance on our VOLTBENCH
for long-text generation. As the required length in-
creases, the actual output length of all models falls sig-
nificantly short of the target (dashed line). Further-
more, many models exhibit significant output length
volatility, even for Longwriter-8B, a model specifically
fine-tuned on long text, the output standard deviation
peaked at 103% of its mean length.

To address the aforementioned limitations,
we conduct an in-depth, multi-stage inves-
tigation into the volatility of LLM long-
form generation from three perspectives:
Benchmarking, Probing, and Mitigating.
First, on the benchmarking front, we in-
troduce length volatility as a core metric
and construct the Volatility in Long-form
Text Benchmark (VOLTBench), a multi-
dimensional, heterogeneous-task bench-
mark covering not only unstructured text
(e.g., story) and structured data (e.g.,
code) but also dimensions such as dif-
ferent languages and instruction complex-
ities. Through empirical evaluation on
this benchmark, we provide the first large-
scale quantification of the prevalent out-
put length volatility in mainstream mod-
els. Second, in our probing efforts, we
leverage these benchmark findings to con-
duct an in-depth analysis of the root causes
of this volatility. Moving beyond mere phenomenological observation, by analyzing the models’ at-
tention traces, we identify and define several common internal patterns of length volatility, such
as Attention Collapse and Attention Instability. Finally, to mitigate the identified internal patterns,
we propose and validate Structural Enforcement via Logits Boosting (SELB), a lightweight,
decoding-stage method that requires no additional training and proactively suppresses tokens linked
to known failure modes, simultaneously improving both length accuracy and output stability. Our
contributions are as follows:

• We construct the Volatility in Long-form Text Benchmark (VOLTBench), which is the first
to introduce output volatility as a core metric. We systematically evaluate the long-form
generation volatility in LLMs by covering both unstructured and structured tasks.

• We conduct extensive experiments that demonstrate the severe long-form output instability
in mainstream LLMs. To investigate the underlying mechanisms, we identify and define
several common internal patterns of length volatility through attention trace analysis.

• Targeting the identified internal patterns, we propose Structural Enforcement via Logits
Boosting (SELB), which is a lightweight, decoding-stage optimization strategy that re-
quires no additional training and improves the mean output length of the base model by
148% and reduces the length volatility by 69%, while maintaining high generation quality.

2 RELATED WORK

Benchmarking Long-Form Generation. Existing studies have revealed the limitations of cur-
rent models in long-form generation from multiple dimensions. HelloBench Que et al. (2024) uses
diverse in-the-wild scenarios, finds that even advanced models face severe repetition. LIFEBench
Zhang et al. (2025b) shows that models struggle to adhere to precise length requirements. LongGen-
Bench Liu et al. (2024) reformulates existing QA datasets to assess the logical consistency of a
single, sequential long-form answer. LongInOutBench Zhang et al. (2025a) targets the gap in long-
input, long-output tasks, while LongProc Ye et al. (2025b) requires models to create structured out-
puts from dispersed information. FACTS Grounding Jacovi et al. (2025) focuses on the factual accu-
racy of long responses against a source document, and ProxyQA Tan et al. (2024) uses an innovative
proxy-question method to measure knowledge coverage. Meanwhile, works like LongGenBench
Wu et al. (2025b) and LCFO Costa-jussà et al. (2025) further advance evaluations by introducing
complex instruction-following in super-long texts. In contrast, our work specifically evaluates and
addresses the phenomenon of Length Volatility, aiming to enhance the robustness and controllability
of LLM long-text outputs. We provide a comparison between ours and previous studies in Table 1.

Long-form Text Generation. Research in long-form text generation addresses the challenge that
LLMs struggle to produce high-quality, lengthy outputs. Data-centric approaches have been pro-
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Table 1: Comparison with existing related benchmarks. VOLTBench provides a more comprehen-
sive evaluation framework and is the first to introduce multiple sampling and stability evaluation.

Benchmark Instruction Generation
Multiple

Task
Multiple

Level
Multiple

Language
Unstructured

Text
Structured

Data
Multiple
Sampling

Stability
Eval

Length
Scale

HELLOBENCH Que et al. (2024) ✓ ✓ ✓ ∼ 16k
LONGBENCH Bai et al. (2024) ✓ ✓ ✓ ∼ 10k
LONGGENBENCH Liu et al. (2024) ✓ ✓ ∼ 8k
LIFEBENCH Zhang et al. (2025b) ✓ ✓ ✓ ∼ 8k
LONGPROC Ye et al. (2025b) ✓ ✓ ∼ 8k
LONGGENBENCH Wu et al. (2025b) ✓ ✓ ∼ 32k
LONGINOUTBENCH Zhang et al. (2025a) ✓ ✓ ∼ 16k

VOLTBENCH (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼ 100k

posed, such as using agentic plan-and-write pipelines Bai et al. (2024), creating multi-constraint
instructions via backtranslation Pham et al. (2024), or enabling models to iteratively extend their
own outputs Pham et al. (2024); Quan et al. (2024). LongWriter-Zero Wu et al. (2025a) uses re-
inforcement learning (RL) from scratch to foster long-generation capabilities. Wang et al. (2024)
applies inference-time training with methods like Temp-Lora to maintain context in a temporary
module. In contrast to prior work, which often involves extensive data creation or complex training,
we propose a lightweight mitigation method based on the analysis of the model’s internal attention
to mitigate the instability and improve instruction adherence in long-form text generated by LLMs.

3 VOLTBENCH: BENCHMARKING THE LENGTH VOLATILITY
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Figure 2: An overview of the VOLTBench framework. Our
benchmark is constructed from four dimensions, covering struc-
tured and unstructured tasks. We evaluate performance from two
aspects: generation quality and length volatility.

In this section, we introduce
VOLTBench (Figure 2), a novel
benchmark designed to system-
atically evaluate the stability and
reliability of LLMs in long-form
generation tasks. Its key fea-
tures are as follows:

Diverse and Challenging In-
structions: The foundation of
VOLTBench lies in its multi-
dimensional instruction set. Our
instructions span a wide array of
tasks, from creative unstructured
writing (e.g., stories) to logi-
cal structured generation (e.g.,
code libraries), pushing models
beyond simple narrative gener-
ation. Each task is presented
with varying levels of complex-
ity, including simple prompts,
detailed contextual instructions,
and challenges with highly specific fine-grained constraints to test meticulous instruction-following
over long contexts. Furthermore, to assess linguistic robustness, all instructions are provided in par-
allel English and Chinese versions, enabling a direct and fair comparison of model performance
across different languages.

Versatile and Scalable Generation: Corresponding to the input diversity, VOLTBench evaluates a
generation space notable for its versatility and scale. A key distinction of our benchmark is the dual
focus on both unstructured text and complex structured data outputs, such as complete codebases.
We implement this structure through a chapter-based format, which requires models to generate
hierarchically organized content. Chapter-based design is the key to our scalability, enabling us to
create instructions that range from a concise 5-chapter document to an expansive 500-chapter tome.
This pushes models to their operational limits with an unprecedented length scale of up to 100k
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words. This massive and explicitly sectioned scale is specifically intended to surface and analyze
challenging failure modes.

Generation Volatility and Quality Evaluation: The cornerstone of VOLTBench is its rigorous
evaluation of both generation volatility and quality, moving beyond single-instance assessments to
measure model reliability. We query a model multiple times for each instruction to create a distri-
bution of outputs. We assess stability at both a macro level, analyzing overall length volatility, and
a granular chapter-by-chapter level, checking for consistency within each section. This fine-grained
analysis can reveal nuanced behaviors, such as a model starting strong but losing steam in later
chapters. VOLTBench embeds fine-grained constraints (e.g., keyword, topic) into its prompts. This
innovative design allows us to automate quality assessment even for unstructured narrative tasks,
as we can programmatically verify if these specific constraints were met. This is complemented
by our structured data generation tasks, where quality is assessed objectively via Execution-based
Verification, thus providing a far more reliable and multi-faceted quality evaluation framework.

Target Performance GPT-4omini

Llama3.1-8B-Instruction LongWriter-llama3.1-8B
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Figure 3: Analysis of Output Length Volatility and Output Section Volatility. The left panel (a, b, c)
compares the total output length volatility across three dimensions: language, instruction complex-
ity, and output format. The right panel (d) shows the volatility in the number of generated sections.

3.1 TASKS

Our benchmark includes both unstructured and structured generation tasks. Each core task is ex-
panded into multiple variants across three dimensions: language (English/Chinese), instruction com-
plexity (simple, complex, fine-grained constrain), and output length (from 5 to 500 chapters). This
multi-dimensional design precisely measures fluctuations in model performance under diverse con-
ditions (see Appendix J.0.7 for all task instructions).

Unstructured Tasks: This category of tasks evaluates a model’s creativity, narrative coherence,
and contextual consistency in long-form, free-form text. We include diverse scenarios such as Story,
Dialogue, Diary, and Architecture to assess abilities ranging from plot development and maintaining
a consistent persona to the creative use of specialized terminology. Below is an example:

Task: Story
Label: English-Simple-M chapters-N words
Instruction: Please write a novel consisting of M chapters about Jeff. Each chapter should
revolve around a theme or plot, with a minimum of N words for each chapter. Ensure clarity
and continuity ... and use ‘*** Finished ***’ to indicate the end of the document.

Structured Tasks: These tasks assess models’ ability to follow strict formatting, syntax, and log-
ical rules where precision is key. Tasks like generating virtual company profiles, Python function
libraries, and mathematical formulas are designed for objective, automated evaluation of a model’s
reasoning and mastery of formal languages. Full instructions are in Appendix J.0.7.
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3.2 EVALUATION METRIC

Our benchmark evaluates models’ long-text generation capabilities across two core dimensions:

Length Volatility. Unlike previous work Zhang et al. (2025b), which focuses on the volatility of a
single generation, we measure a model’s volatility across multiple outputs.

(1) Length Standard Deviation (LSD), this metric measures the absolute volatility of the

output lengths: LSD =
√

1
N

∑N
i=1(Li − µ)2, where µ is the average of the N output

lengths. In our experiments, we set N=5.
(2) Length Variation Coefficient (LVC), this measures the relative volatility of the output

lengths with respect to their mean, which allows for comparable stability assessments
across different length requirements: LVC = LSD

µ .

(3) Mean Length Accuracy (MLA), this metric quantifies how closely the mean length (µ)
of N generation runs adheres to the specified target length (Lconstraint). The formula is:
MLA = max

(
0, 1−

∣∣∣µ−Lconstraint
Lconstraint

∣∣∣)× 100.

Generation Quality. We assess the quality of the generated content from the following aspects:

(1) Format Adherence Deviation (FAD), which measures the absolute volatility in the
number of generated chapters across multiple runs for chapter-based tasks. It as-
sesses if the model consistently produces the required number of chapters: FAD =√

1
N

∑N
i=1(Ci − µc)2, where Ci is the number of chapters in the i-th generation, and µc

is the average chapter count over N runs.
(2) Structured Content Accuracy (SCA), this metric uses Execution-based Verification to as-

sess accuracy on structured tasks, such as generating Python libraries and LaTeX formulas:
SCA = Number of Correct Chapters

Number of Required Chapters .

(3) Unstructured Content Accuracy (UCA), following previous work Bai et al. (2024);
Zhang et al. (2025a), we use an LLM-as-a-Judge to evaluate unstructured tasks (e.g., story
writing), with details in Appendix C.

4 EXPERIMENTS AND RESULTS

4.1 MODELS

To systematically evaluate long-text generation capabilities, our study includes a diverse set of mod-
els. Specifically, we evaluate reasoning models such as GPT-4o mini, Claude 3.5 Sonnet, and
Deepseek-R1 (DeepSeek-AI et al., 2025a). Our open-source selection includes models of various
architectures and sizes: Qwen2.5-1.5B-Instruction, Qwen2.5-7B-Instruction (Qwen et al., 2025),
Qwen3-8B (Team, 2025), Llama3.1-8B-Instruction, Deepseek-V3 (DeepSeek-AI et al., 2025b). We
also include Falcon3-Mamba-7B–Instruction (Team, 2024), notable for its distinct architecture. We
also include LongWriter-llama3.1-8B (Bai et al., 2024), a model enhanced for long-form generation
via long-text post-training. Additionally, we incorporate common training-free decoding strategies
for comparison, implemented on Qwen2.5-7B-Instruction. These include Repetition Penalty to
mitigate text degeneration via logit penalization, Entropy-Based Stopping employing predictive
uncertainty as a dynamic termination criterion, Length Constraint for enforcing explicit output
boundaries, and Lookahead Decoding, designed to optimize the generation trajectory by anticipat-
ing future probabilities.

4.2 FINE-GRAINED CONSTRAINTS

To evaluate a model’s ability to follow specific, localized instructions in long-form generation, we
designed a framework using fine-grained constraints. This approach tests content control at a sub-
document level, unlike typical global prompt-following evaluations. Specifically, we apply three
distinct and simultaneous constraints to designated sections of the output. The constraints are de-
fined as follows:

5
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Table 2: Performance comparison of evaluated models on a 100-section generation task, conducted
in English under simple difficulty settings. Representative results are shown for an unstructured
task (Story) and a structured task (Code Function). For the LSD and FAD metrics, the values in
parentheses provide context by showing the generated mean length (in words) and mean section
count, respectively. The “±” values represent the standard deviation. The arrows (↑/↓) indicate
whether higher or lower values are preferable for each metric.

Model Length Volatility Generation Quality

LSD (↓) LVC (↓) MLA
(↑) FAD (↓) SCA (↑) UCA (↑)

GPT-4o mini 325.65 (959) 33.9% 4.8% 1.41 (7.00) 84.6% (±30.8%) 86.7% (±6.7%)
Claude-3.5-Sonnet 3.30 (176) 1.9% 0.9% 0.00 (2.00) 3.0% (±0.0%) 88.7% (±2.7%)
Deepseek-R1 103.30 (1198) 8.6% 6.0% 1.25 (4.33) 35.0% (±13.2%) 93.3% (±3.7%)
Deepseek-V3 40.76 (1854) 2.2% 9.3% 1.70 (20.67) 48.6% (±3.8%) 84.7% (±3.4%)

Mamba-7B 715.98 (1291) 55.5% 6.5% 41.72
(40.75) 66.8% (±21.9%) 76.0%

(±17.3%)
Qwen2.5-1.5B 27.78 (142) 19.6% 0.7% 0.47 (1.67) 15.6% (±24.0%) 84.0% (±7.1%)
Qwen2.5-7B 75.87 (445) 17.0% 2.2% 2.05 (10.33) 99.8% (±0.4%) 86.7% (±7.6%)

Llama3.1-8B 92.77 (350) 26.5% 1.7% 0.94 (4.33) 92.4% (±14.2%) 82.0%
(±18.9%)

LongWriter-8B 2866.3 (6320) 45.4% 31.6% 21.42
(45.00) 32.6% (±31.9%) 66.7%

(±16.5%)

Repetition Penalty 553 (2967) 18.6% 14.8% 5.4 (22) 98% (±1%) 76.7%
(±14.5%)

Entropy-Stopping 713 (2701) 26.4% 13.5% 7.24 (24) 95% (±2.5%) 83.9% (±8%)
Length Constraint 1280 (4470) 28.65% 22.4% 9.2 (28) 96% (±2%) 85% (±9%)
Lookahead Decoding 268 (2883) 9.3% 14.4% 7.2 (25) 94% (±3.5%) 84.4% (±8%)

• Character-level Pattern Constraint: This constraint dictates that the first word of a target
section must begin with a pre-determined, randomly selected alphabetical character. This
tests the model’s ability to control low-level textual attributes.

• Keyword Presence Constraint: This requires the mandatory inclusion of a specific, ran-
domly selected keyword within the body of a target section. This evaluates the model’s
capacity to track and insert specific information into relevant contexts.

• Specified Theme Constraint: This imposes a thematic requirement, compelling the narrative
or content of a target section to align with a randomly selected topic or scenario. This
assesses the model’s ability to generate coherent content based on a high-level concept.

4.3 RESULTS AND ANALYSIS

Volatility Across Different Dimensions. As shown in Figure 3, we analyze model performance
across three dimensions. On the language dimension, most models exhibit lower volatility and a
greater mean output length in 5 runs when generating in English. Regarding instruction complexity,
models produce longer outputs for simple instructions, likely due to greater creative freedom, which
is also accompanied by higher volatility. In terms of output format, we observe an interesting trend
where models generate longer and more stable text (i.e., less volatile) for structured tasks. We
attribute this to structured tasks being governed by well-defined format constraints and internal logic,
which provides stronger guidance for the generation process. This hypothesis is corroborated by
Figure (d.2), which shows that models generally generate a greater number of sections for structured
tasks. For complete experimental results and analysis, please refer to Appendix J.

Long Text Quality Evaluation. For comparison, we exclude Claude-3.5-Sonnet due to its low
mean length (176 words), insufficient for long-text evaluation. For other models, we assess gen-
eration quality and actual length, revealing distinct trade-offs. As shown in Table 2, GPT-4o-mini
showed the best balance on structured tasks among longer-output models, with SCA 84.6%, low
FAD, and 959-word output. LongWriter-8B generated the longest text (6320 words) but scored
low on both SCA (32.6%) and FAD (21.42), indicating a quality–length trade-off. On unstructured
tasks, Deepseek-R1 achieved the highest UCA (93.3%) with 1198 words, while LongWriter-8B
again scored lowest (66.7%), prioritizing length over quality. In summary, all current models fail to
jointly satisfy long-text length and high-quality generation.
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Generation Patterns of Length Volatility Our experiments reveal that baseline models consistently
struggle with length and structural constraints in long-form generation. The failure rate is stark:
when tasked with generating up to 50 sections, models failed in approximately half of the cases. For
requests exceeding 50 sections, all models failed to complete the task as instructed. These failures
typically manifest in two primary patterns:

• Incomplete Generation: Models frequently produce significantly less content than in-
structed. For example, when tasked with generating 40 sections, a model might stop after
only 10. This premature termination, whether silent or reverting to a persona, with outputs
like “I hope these sections are helpful.” We hypothesize this latter behavior occurs when
the generated text exceeds the context window, pushing the original prompt out of scope
and causing the model to default to its base assistant persona.

• Section Skipping: In other instances, models demonstrate erratic adherence to the requested
structure. A model might generate the first several sections sequentially and then abruptly
jump to the final section, omitting all intermediate content.

4.3.1 ANALYSIS OF FINE-GRAINED CONSTRAINT FOLLOWING

To provide a quantitative view of the volatility in instruction adherence, we analyze model perfor-
mance on the fine-grained constraint tasks. The complete results, including figures for all three
constraint types, can be seen in Appendix D.

As depicted in the figure, a clear trend emerges across all tested models. While most models, such
as Deepseek-R1, Qwen3-8B and LLama3.1 adhere to constraints on shorter tasks (5-50 sections),
their performance plummets and grows more volatile as the context length increases. This trend
is universal, starkly contrasting the better models with Longwriter, which fails entirely regardless
of length. Critically, even for the top models, the success rate flattens after the 100-section mark,
and then actively collapses—with Qwen3-8b and LLama3.1 producing fewer correct sections at 500
than at 200. The systemic failure is most evident at the 500-section task: against a requirement of
100 constrained sections, no model delivered more than 40. This demonstrates a profound inability
of current models to track and execute instructions deep within long-form generation.

5 ATTENTION TRACES BEHIND VOLATILITY

Attention Trace. To explore the root of output volatility, we analyze the attention mechanism in
generation. Building on Li et al. (2025), who link attention to constraint tokens with instruction-
following ability, we extend this to long-form generation. We hypothesize that attention fluctuations
toward input constraints correlate with output variability. At each step t, where t ≥ 1, the model
attends to prompt tokens x1:T0

and generated tokens y0:t−1, where T0 indicates the length of prompt
tokens. We focus on attention to constraint-encoding tokens in x1:T0 . For layer l and head n,
attention uses query Q

(l,t)
n from h(l)

t−1 (last generated token’s hidden state) and keys K
(l,t)
n from

h(l)
1:T0+t−1 (hidden states of all prior tokens). The scaled dot-product attention weights A

(l,t)
n are

then calculated as A
(l,t)
n = softmax

(
Q(l,t)

n K(l,t)⊤
n√

dk

)
where dk is the dimension of the key vectors.

These weights are then averaged across all N attention heads to obtain the layer-level attention
vector a(l,t) = 1

N

∑N
n=1 A

(l,t)
n .

To measure attention directed toward constraints, we first identify the prompt token indices corre-
sponding to each textual constraint r ∈ R, denoted as Cr. The full set of constraint token indices
is given by C =

⋃
r∈R Cr. The layer-step constraint attention α(l,t) is then defined as the average

attention from token yt to all tokens in C, i.e., α(l,t) = 1
|C|

∑
j∈C a

(l,t)
j , where a

(l,t)
j is the attention

weight at layer l and step t directed to the j-th token of the input. Finally, we average α(l,t) across
all L layers of the model to obtain a unified measure of constraint attention at each generation step,
α(t) = 1

L

∑L−1
l=1 α(l,t). By plotting the trace of α(t) during generation, we visualize how attention

to constraints evolves. Peaks and subsequent drops, “attention summits”, may signal points where
reduced constraint focus leads to task deviation and output volatility. To analyze this, we gener-
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Figure 4: Attention traces for Qwen2.5-7B (top) and Qwen2.5-3B (bottom) models in a long-form
diary generation task with 40 required sections. Each peak in the traces indicates the initiation of a
new section. It is evident that both models failed to meet the requirement: Qwen2.5-7B bypassed
intermediate sections and proceeded directly from an early section to the final one, while Qwen2.5-
3B generated repetitive text after its final attention peak.

ate outputs with different random seeds and compare their attention traces to reveal links between
attention dynamics and output variability.

Internal Patterns of Length Volatility. We analyze the attention trace α(t), which reveals internal
patterns directly correlated with the earlier generation failures. As shown in Figure 2, where models
are tasked with generating 40 sections, the traces highlight early internal signs of output volatility.
From these, we identify two primary failure signatures: (1) Attention Collapse: This pattern aligns
with premature termination or task abandonment. The Qwen2.5-3B trace illustrates this clearly: in
the first 1,500 tokens, the model shows periodic attention spikes and follows instructions with well-
structured content. After that, attention collapses to near-zero, signaling loss of focus on prompt
constraints and resulting in halted or irrelevant output; (2) Attention Instability: This pattern corre-
sponds to erratic behaviors such as section skipping. In Qwen2.5-7B, initial regular attention spikes
align with successful section generation. Around token 750, an abnormally large spike disrupts this
pattern, immediately preceding the model’s deviation from sequential output. In both cases, peri-
odic attention spikes function as essential refocusing signals that help maintain task coherence across
sections. Analysis of the α(t) trace supports our hypothesis: the output volatility is not random but
closely linked to and preceded by measurable failures in the model’s internal attention dynamics.

6 MITIGATING LENGTH VOLATILITY

To mitigate generation volatility, we propose a dynamic decoding strategy that ensures stable,
constraint-abiding outputs via single-pass generation. Rather than iterative prompts or multiple
model calls, we modify logits in real time. At each step t, the model outputs a logit vector st ∈ R|V |

over the model’s vocabulary V , which are adjusted by a guidance function M . Unlike standard de-
coding, M modifies logits based on context and rules to enforce structural and constraint adherence.
Formally, given the prompt tokens x1:T0 and the generated token sequence y0:t−1 up to step t − 1,
the modified logit vector s′t is computed as:

s′t = M(st, [x1:T0 ; y0:t−1]). (1)

The function M combines two guidance components: structural enforcement, which enforces ad-
herence to the desired output structure, and proactive failure prevention, which applies a prohibitive
negative bias to suppress likely failure modes during generation.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6.1 STRUCTURAL ENFORCEMENT VIA LOGITS BOOSTING

To ensure generation of Ptotal sections, we force a new section whenever the current section reaches
the target length τmax. If the length of p-th section τp ≥ τmax, a strong positive bias β is applied
to the logits of tokens corresponding to the next section title, V (p+1)

title ⊂ V . The structural boosting
adjustment, Mstruct, is then defined as:

s′t,j =

{
st,j + β if τp ≥ τmax ∧ p < Ptotal ∧ j ∈ V

(p+1)
title

st,j otherwise,
(2)

where st,j is the logit for token j at step t, and β is a large positive constant that makes the se-
lection of a title token nearly certain. Once a token from V

(p+1)
title is generated, the section index is

incremented (p← p+ 1) and the counter is reset (τp ← 0).

6.2 PROACTIVE FAILURE PREVENTION

Required Length

O
u
tp

u
t

M
ea

n
L

e
n
g
th

Longwriter: repeating “vbnetin\n”

Repeating 

“3F6%”

Qwen3+Ours: 

“Chapter 315, …”

Figure 5: Model output length volatility (Story
Writing). While baseline models like Long-
writer often inflate length with meaningless rep-
etition, our method accurately matches the target
length while maintaining coherent content. Sec-
tion volatility is presented in Figure 20.

Based on our analysis of generation patterns,
we proactively suppress tokens associated with
known failure modes by applying a strong
negative bias during decoding. Formally, let
Vbanned ⊂ V be the set of token indices corre-
sponding to conversational filler phrases (e.g.,
”I hope these...”); and let veos be the index of
the end-of-sentence token. The failure preven-
tion function Mfail is defined as:

s′t,j =


−∞ if j ∈ Vbanned

−∞ if j = veos ∧ p < Ptotal

st,j otherwise.
(3)

This prevents undesirable conversational text
and early termination before the final section.
By composing M = Mfail ◦Mstruct, our method
enables real-time control over generation, di-
rectly managing output probabilities to address
length volatility while ensuring structural and
constraint adherence in a single pass.

6.3 RESULTS

Our method marks a major improvement in long-text generation, outperforming strong baselines
like LongWriter-8B in stability, adherence, and quality. Evaluation was done on a 100-section task
under simple settings. In output stability and length adherence, our model excels. As shown in
Figure 6, its mean length and section count closely follow the reference line, unlike baselines that
degrade as complexity rises. The Length Variation Coefficient (LVC), where lower is better, for our
model is 14.02%, a 69% reduction in volatility compared to 45.4% for LongWriter-8B. Furthermore,
our model’s Mean Length Accuracy (MLA) is 78.25%, more than double the 31.6% achieved by
LongWriter-8B, indicating a much closer adherence to the required length. This is reflected in the
average output of 15,651 words from our model, compared to just 6,320 from LongWriter-8B and
less than 1000 in other models. Our model also achieves higher generation quality. For Structured
Content Accuracy (SCA), our model scored a perfect 100%, dramatically better than LongWriter-
8B’s 32.6%, which has plenty of repeated tokens. To quantify this, we further analyze the lexical
diversity in Appendix G, showing that our method significantly reduces n-gram repetition rates and
improves the Type-Token Ratio (TTR) compared to baselines. This highlights its enhanced capabil-
ity in handling structured tasks. Similarly, for Unstructured Content Accuracy (UCA), our model
scored 86.7%, a 30% improvement over LongWriter-8B. These results underscore our method’s
ability to generate not only longer and more stable text but also higher-quality. Beyond surface-level
metrics, we investigate the underlying mechanism of this stability in Appendix H. Through Repre-
sentational Stability Analysis, we demonstrate that SELB effectively mitigates the ’representational
drift’ of hidden states, preventing the semantic collapse commonly observed in baseline models
during long generation.
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6.4 GENERALIZATION TO FREE-FORM GENERATION

We extend its applicability to free-form generation tasks (e.g., continuous novel writing) where such
explicit anchors are absent. In Appendix I, we detail the adaptation of our approach into a SELB-
Hybrid strategy. This mechanism addresses the twin challenges of premature termination and gen-
eration loops by dynamically shifting from section enforcement to length enforcement. Specifically,
it incorporates an aggressive Stop Token Suppression module that prohibits early exit phrases and a
Hybrid Keep-Alive mechanism. The latter monitors generation checkpoints, if a stall or repetitive
loop is detected within a grace period, it proactively boosts generic continuation tokens to break
the cycle and sustain narrative flow. The empirical impact of this adaptation is substantial. We
evaluated the method on extreme-length free-form tasks, such as writing a 20,000-word novel. As
detailed in Appendix I, baseline models including GPT-4o-mini and LongWriter-8B suffered from
severe length collapse, often generating fewer than 600 words despite the 20k target. In contrast,
our SELB-Hybrid method achieved a Mean Length Accuracy (MLA) of 97% with a remarkably
low Length Variation Coefficient (LVC) of 12.1%. These results confirm that our logits-boosting
paradigm can be effectively generalized beyond structured tasks to enforce stability in unstructured,
open-ended generation scenarios.

7 CONCLUSION

In this work, we investigate the critical yet overlooked issue of output volatility in long-form LLM
generation. Our findings show that instability across multiple outputs poses a major challenge to
reliable application. To systematically study this problem, we first introduce VOLTBench, a novel
benchmark to quantify length volatility across diverse tasks. By probing internal attention mecha-
nisms, we identify common patterns that drive instability. Based on these insights, we propose SELB
(Structural Enforcement via Logits Boosting), a lightweight, training-free decoding strategy to di-
rectly mitigate this issue. Extensive experiments confirm that severe output volatility is widespread
in mainstream models and validate our approach, which improves the base model’s mean output
length by 148% and reduces length volatility by 69%, while maintaining generation quality.

REPRODUCIBILITY STATEMENT

Our work addresses the output volatility in long-form text generation through a three-stage approach:
benchmarking, probing, and mitigation. This includes three main contributions: (1) the VOlatility
in Long-form Text Benchmark (VOLTBench); (2) an in-depth analysis of the internal causes of
volatility; and (3) a lightweight decoding-stage optimization strategy, SELB. To ensure the full
reproducibility of our findings, we have provided detailed documentation in the paper and its ap-
pendices. The construction methodology, data composition, and evaluation metrics for VOLTBench
are thoroughly described in Section 3. The complete implementation details for our proposed SELB
method and the full experimental setup, including all hyperparameters, are provided in Section 6.
We commit to releasing the entire source code, the full VOLTBench benchmark, and our analysis
scripts to the public upon acceptance of this paper to facilitate verification and future research.

ETHICS STATEMENT

Our research adheres to the standard ethical guidelines for academic publishing. The work presented
in this paper is foundational, focusing on the technical challenges of output volatility in Large Lan-
guage Models. Our objective is to improve the reliability and stability of these models, which is a
positive contribution to the field of artificial intelligence. The proposed benchmark, VOLTBench, is
constructed from publicly available datasets and does not contain any personally identifiable or sen-
sitive information. Our research did not involve human subjects, and we foresee no direct negative
societal impacts from this work.
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A LLM USAGE

This paper addresses the challenge of output volatility in the long-form generation of Large Lan-
guage Models (LLMs). We introduce VOLTBench, a novel benchmark to quantify this instability,
conduct an in-depth analysis of its underlying causes, and propose SELB (Structural Enforcement
via Logits Boosting), a lightweight decoding-stage strategy to mitigate the issue. In the prepara-
tion of this manuscript, we utilized Large Language Models (e.g., Google’s Gemini) as a general-
purpose writing assistant. The scope of the LLM’s assistance was strictly confined to language-level
refinements. This included several specific functions: identifying and correcting grammatical and
syntactical errors; suggesting alternative phrasing to improve sentence flow and coherence; enhanc-
ing vocabulary for greater precision and academic tone; and paraphrasing sentences written by the
authors to improve readability.

B TASK INSTRUCTION

The following are the prompts used in our experiment.

Instruction: English Simple Story Generation

Please write a novel consisting of {num section} chapters. Each chapter should revolve around a theme
or plot, with a minimum of {word section} words for each chapter. Ensure clarity and continuity without
any interruptions or omissions in the narrative throughout the document. Do not stop generating content
until all {num section} chapters are completed and ’*** finished ***’ is used to indicate the end of the
document.

*** started ***
#*# Title:

Table 3: An example of the instructional prompt for the English simple story generation task. This
template specifies parameters like the number of chapters and minimum word count, guiding the
structure of the generated narrative.

Instruction: English Simple Dialogue Generation

Please generate {num section} rounds of dialogue between customers and customer service. Each round
should include a customer’s question and a customer service representative’s response, with a minimum
of {word section} words for each round. Ensure clarity and continuity without any interruptions or omis-
sions in the narrative throughout the document. Do not stop generating content until all {num section}
rounds of dialogue are completed and ’*** finished ***’ is used to indicate the end of the document.

*** started ***
#*# Round 1: customers:

Table 4: The prompt for generating simple dialogues between a customer and customer service,
specifying the number of rounds and word count.

Instruction: English Simple Diary Generation

Please write a diary for {num section} days for Jeff. Each entry should include the date and a brief
description of the content, with a minimum of {word section} words for each entry. Ensure clarity
and continuity without any interruptions or omissions in the narrative throughout the document. Do not
stop generating content until all {num section} diaries are completed and ’*** finished ***’ is used to
indicate the end of the document.

*** started ***
#*# Date: Day 1:

Table 5: The prompt for generating simple diary entries for a character named Jeff, specifying the
number of days and word count.
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Instruction: English Simple Architecture Design

Please design a {num section}-story building. Describe the function or layout of each floor, with at least
{word section} words for each layer. Ensure clarity and continuity without any interruptions or omis-
sions in the narrative throughout the document. Do not stop generating content until all {num section}
floors are completed and ’*** finished ***’ is used to indicate the end of the document.

*** started ***
#*# Floor 1:

Table 6: The prompt for designing a multi-story building with simple functional descriptions for
each floor.

Instruction: English Complex Story Generation

Please write a fantasy novel with {num section} chapters about Jeff. The novel should have a clear
theme and structure, with characters experiencing multiple twists and personal growth throughout the
plot. Each chapter should describe the main characters’ actions, thoughts, and emotional development,
while also incorporating relevant background information (such as historical context, social environment,
etc.). Each chapter should be around {word section} words, with enough detail and emotional depth to
keep the reader engaged. Ensure clarity and continuity without any interruptions or omissions in the
narrative throughout the document. Do not stop generating content until all {num section} chapters
are completed and ’*** finished ***’ is used to indicate the end of the document. Do not output other
characters to stop.

*** started ***
#*# Chapter1:

Table 7: The prompt for generating a complex fantasy novel, detailing requirements for plot, char-
acter development, and emotional depth.

Instruction: English Complex Diary Generation

Please write a diary for {num section} days. Your name is Jeff, a white-collar worker. Each entry can
include aspects such as your mood for the day, key events, challenges faced, solutions, and hopes or
reflections for the future. Ensure that each diary entry expresses different emotions and reflects various
life events and growth experiences. The diary content can cover a range of life scenarios, such as work,
family, friends, health, and travel. Each entry should be around {word section} words. Ensure clarity
and continuity without any interruptions or omissions in the narrative throughout the document. Do not
stop generating content until all {num section} chapters are completed and ’*** finished ***’ is used to
indicate the end of the document. Do not output other characters to stop.

*** started ***
#*# Date: Day 1

Table 8: The prompt for generating complex and emotionally rich diary entries, covering various
life scenarios and personal growth.

Instruction: English Complex Dialogue Generation

Please generate {num section} rounds of dialogue between customers and customer service. Each round
of dialogue should include the customer’s question and the customer service representative’s response,
along with service recommendations or solutions. These dialogues can cover multiple industries and
scenarios, with each turn of conversation being non-contiguous and the scenes able to switch, such
as in electronic product support, travel booking, financial services, and customer complaint handling.
Each round should reflect different emotional changes, with the customer possibly exhibiting emotions
like anxiety, confusion, anger, or happiness, while the customer service responses should appropriately
provide reassurance, explanations, or solutions based on the customer’s emotional state. Each round
of dialogue should contain at least {word section} words. Ensure clarity and continuity without any
interruptions or omissions in the narrative throughout the document. Do not stop generating content
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until all {num section} rounds of dialogue is completed and ’*** finished ***’ is used to indicate the
end of the document. Do not output other characters to stop.

*** started ***
#*# Round 1 Customer:

Table 9: The prompt for generating complex customer service dialogues across various industries,
focusing on emotional changes and appropriate responses.

Instruction: English Complex Architecture Design

Please design a {num section}-story mixed-use skyscraper for work and living. Describe the function
or layout of each floor. Each floor should have a different function and design, closely connected to
other floors. Include detailed descriptions of office areas, commercial spaces, residential areas, and
entertainment and leisure zones. The content should have sufficient detail and depth, such as design
concepts, layouts, and unique elements (like floor decoration styles, space utilization, and the applica-
tion of smart technology) to present a multifunctional building. Each floor’s description should be at
least {word section} words. Ensure clarity and continuity without any interruptions or omissions in the
narrative throughout the document. Do not stop generating content until all {num section} floors are
completed and ’*** finished ***’ is used to indicate the end of the document. Do not output other char-
acters to stop.

*** started ***
#*# Floor 1:

Table 10: The prompt for designing a detailed mixed-use skyscraper, requiring descriptions of design
concepts, layouts, and unique features for each floor.

Instruction: GenData - Simple Code Function

Please generate a complete library of {num section} different functions. Each function should include
the function name, parameters, return type, and function comments, formatted in Python. Ensure clarity
and continuity without any interruptions or omissions in the narrative throughout the document. Do not
stop generating content until all {num section} functions are completed and ’*** finished ***’ is used
to indicate the end of the document.

*** started ***
# Function 1: Calculate the area of a circle, given the radius

def calculate_area(radius):
"""
This function calculates the area of a circle given its radius.
Parameters:

radius (float): The radius of the circle.
Returns:

float: The area of the circle.
"""
return 3.14159 * radius ** 2

Table 11: The prompt for generating a library of simple Python functions with comments and ex-
amples.

Instruction: GenData - Simple User Info

Please generate {num section} virtual user profiles, with each user’s information including name, age,
gender, address, email, and phone number, formatted as JSON. Ensure clarity and continuity without
any interruptions or omissions in the narrative throughout the document. Do not stop generating content
until all {num section} profiles are completed and ’*** finished ***’ is used to indicate the end of the
document.
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*** started ***

[{
"index": 1,
"name": "John Doe",
"age": 30,
"gender": "Male",
"address": "1234 Elm Street, Springfield, IL, 62701",
"email": "johndoe@example.com",
"phone": "+1-555-123-4567"

}]

Table 12: The prompt for generating simple virtual user profiles in JSON format.

Instruction: GenData - Simple Company Info

Please generate {num section} virtual company profiles. Each profile should include the company name,
industry, year of establishment, company address, and contact number, formatted in JSON. Ensure clarity
and continuity without any interruptions or omissions in the narrative throughout the document. Do not
stop generating content until all {num section} virtual company profiles are completed and ’*** finished
***’ is used to indicate the end of the document.

*** started ***

[{
"index": 1,
"company_name": "Tech Innovations Inc.",
"industry": "Technology",
"year_established": 2015,
"company_address": "4567 Silicon Valley, San Jose, CA, 95110",
"contact_number": "+1-800-234-5678"

}]

Table 13: The prompt for generating simple virtual company profiles in JSON format.

Instruction: GenData - Simple Math LaTeX Formula

Please generate {num section} mathematical formulas, formatted in LaTeX. Each formula should
be preceded by a brief comment explaining the formula. The formula should be enclosed in
\begin{equation} and \end{equation}. Ensure clarity and continuity without any interruptions or omis-
sions in the narrative throughout the document. Do not stop generating content until all {num section}
mathematical formulas are completed and ’*** finished ***’ is used to indicate the end of the document.

*** started ***
% Formula 1: Energy-mass equivalence: E=mcˆ2, where energy is equal to mass multiplied by the
square of the speed of light

\begin{equation}
E = mcˆ2
\end{equation}

Table 14: The prompt for generating simple mathematical formulas in LaTeX format.

Instruction: GenData - Complex Code Function

Please generate a library of {num section} Python functions with varying levels of difficulty. The func-
tions should range from simple mathematical operations to more complex data processing, string manip-
ulations, machine learning model training, and evaluation functions. Each function should include the
function name, parameters, return type, implementation, and detailed comments. The comments should
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describe the function’s purpose, usage, and include input/output examples and edge cases. Ensure clarity
and continuity without any interruptions or omissions in the narrative throughout the document. Do not
stop generating content until all {num section} Python functions are completed and ’*** finished ***’
is used to indicate the end of the document.

*** started ***
# Function 1: Add two numbers

def add(a, b):
"""
This function adds two numbers together.
Parameters:

a (int/float): The first number.
b (int/float): The second number.

Returns:
int/float: The sum of the two numbers.

Example input:
add(3, 4)

Example output:
7

"""
return a + b

Table 15: The prompt for generating a library of complex Python functions with detailed comments
and examples.

Instruction: GenData - Complex User Info

Please generate {num section} virtual user profiles in Json format. Each profile should include the user’s
name, age, gender, address, email, phone number, occupation, hobbies, education, marital status, number
of children, work experience, and personal philosophy. Each field should reflect reasonable diversity, and
some fields like “personal philosophy” and “work experience” should include short background stories
or brief descriptions. Ensure clarity and continuity without any interruptions or omissions in the narrative
throughout the document. Do not stop generating content until all {num section} virtual user profiles
are completed and ’*** finished ***’ is used to indicate the end of the document.

*** started ***

[{
"index": 1,
"name": "Emily Davis",
"age": 30,
"gender": "Female",
"address": "789 Elm Street, San Francisco, CA, USA",
"email": "emily.davis@example.com",
"phone": "+1-415-555-0123",
"occupation": "Marketing Manager",
"hobbies": ["Yoga", "Hiking", "Cooking"],
"education": "Bachelor’s",
"marital_status": "Married",
"children": 2,
"work_experience": "7 years of experience in digital marketing and

↪→ brand management.",
"personal_philosophy": "I believe in creating meaningful

↪→ connections and making a positive impact."
}]

Table 16: The prompt for generating complex and detailed virtual user profiles in JSON format.
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Instruction: GenData - Complex Company Info

Please generate {num section} virtual company profiles in Json format. Each profile should include
the company name, industry, year of establishment, company address, contact number, number of em-
ployees, main products or services, company bio, business model, annual revenue, market positioning,
competitive advantage, and recent developments. Ensure that each company has a unique business model
and a detailed description of its background, philosophy, and innovation. Ensure clarity and continuity
without any interruptions or omissions in the narrative throughout the document. Do not stop generating
content until all {num section} virtual company profiles are completed and ’*** finished ***’ is used to
indicate the end of the document.

*** started ***

[{
"index": 1,
"company_name": "Innovative Tech Solutions, Inc.",
"industry": "Information Technology",
"year_established": 2015,
"company_address": "123 Tech Park, San Francisco, CA, USA",
"contact_number": "+1-415-555-6789",
"number_of_employees": 120,
"products_or_services": ["Artificial Intelligence Software", "Cloud

↪→ Computing Services"],
"company_bio": "Innovative Tech Solutions is dedicated to enhancing

↪→ the quality of life through technological innovations,
↪→ offering products that include AI and cloud computing
↪→ solutions.",

"business_model": "A combination of B2B and B2C, primarily
↪→ providing customized solutions for enterprise clients, as
↪→ well as consumer-targeted products.",

"annual_revenue": "$7 million",
"market_position": "Leading position in the domestic market,

↪→ currently expanding into international markets.",
"competitive_advantage": "A strong technical team and advanced R&D

↪→ capabilities give the company a competitive edge in the AI
↪→ sector."

}]

Table 17: The prompt for generating complex and detailed virtual company profiles in JSON format.

Instruction: GenData - Complex Math LaTeX Formula

Please generate {num section} mathematical formulas in LaTeX format, with the difficulty increasing
from simple to complex. Each formula should be preceded by a brief comment explaining its meaning or
application. Start with basic algebraic formulas, then move to more complex formulas from calculus, lin-
ear algebra, probability theory, and other fields. Each formula should be enclosed in \begin{equation}
and \end{equation}. Ensure clarity and continuity without any interruptions or omissions in the nar-
rative throughout the document. Do not stop generating content until all {num section} mathematical
formulas are completed and ’*** finished ***’ is used to indicate the end of the document.

*** started ***
% Formula 1: Energy-mass equivalence: E=mcˆ2, where energy is equal to mass multiplied by the
square of the speed of light. % This formula is widely used in physics to describe the equivalence of
energy and mass, especially in nuclear reactions and particle physics.

\begin{equation}
E = mcˆ2
\end{equation}

Table 18: The prompt for generating a sequence of mathematical formulas of increasing complexity
in LaTeX format.
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C UNSTRUCTURED CONTENT EVALUATION

To facilitate a scalable and consistent assessment of the quality of generated text, we employed a
Large Language Model (LLM) as an automated evaluator. This approach, commonly referred to as
“LLM as Judge,” relies on a meticulously designed system prompt to guide the LLM in performing a
structured and critical analysis of model outputs. This section details the framework and the specific
prompt used for this evaluation.

The core of our methodology is a comprehensive prompt that instructs the evaluator LLM to adopt
the persona of a domain expert tasked with assessing the quality of an AI assistant’s response to a
user’s writing request. The evaluation is conducted with a directive for maximal strictness to ensure
a high standard of assessment.

As shown in Table 19, the evaluation framework is structured around six key dimensions, with each
dimension rated on a 5-point Likert scale, ranging from 1 (poor) to 5 (excellent). The dimensions
are defined as follows:

• Relevance: Measures the degree to which the response directly and comprehensively ad-
dresses the user’s specified request. A maximal score indicates complete applicability,
while a minimal score denotes irrelevance.

• Accuracy: Assesses the factual correctness of the information presented in the response.
A top score is awarded for content devoid of any factual errors or misleading statements,
whereas the lowest score is assigned for responses containing significant inaccuracies.

• Coherence: Evaluates the logical structure and flow of the text. A high score reflects a well-
organized response with seamless transitions, while a low score indicates a disorganized
and logically disjointed structure.

• Clarity: Judges the lucidity and comprehensibility of the language used. Responses that
are articulate, detailed, and easily understood receive a high score; those characterized by
ambiguous expression and a lack of detail receive a low score.

• Breadth and Depth: Assesses the comprehensiveness and level of detail in the content. A
high score is given for responses that demonstrate both extensive coverage of the topic and
profound insight, while a low score signifies a superficial treatment with minimal informa-
tion.

• Reading Experience: Captures the overall qualitative engagement of the text. An excellent
score is reserved for content that is engaging, fluid, and easy to follow. A poor score
indicates content that is tedious or difficult to comprehend.

For each evaluation task, the LLM is provided with the original user request and the corresponding
model-generated response. The evaluator is explicitly instructed to disregard response length as a
criterion to focus the assessment purely on the intrinsic quality of the content.

Unstructured Content Evaluation Prompt

You are an expert in evaluating text quality. Please evaluate the quality of an AI assistant’s response to a
user’s writing request. Be as strict as possible.
You need to evaluate across the following six dimensions, with scores ranging from 1 to 5. The scoring
criteria from 5 to 1 for each dimension are as follows:
1. Relevance: From content highly relevant and fully applicable to the user’s request to completely
irrelevant or inapplicable.
2. Accuracy: From content completely accurate with no factual errors or misleading information to
content with numerous errors and highly misleading.
3. Coherence: From clear structure with smooth logical connections to disorganized structure with no
coherence.
4. Clarity: From clear language, rich in detail, and easy to understand to confusing expression with
minimal details.
5. Breadth and Depth: From both broad and deep content with a lot of information to seriously lacking
breadth and depth with minimal information.
6. Reading Experience: From excellent reading experience, engaging and easy to understand content
to very poor reading experience, boring and hard to understand content.
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Please evaluate the quality of the following response to a user’s request according to the above require-
ments.
⟨User Request⟩
{user request}
⟨/User Request⟩ ⟨Response⟩
{model response}
⟨/Response⟩
Please evaluate the quality of the response. You must first provide a brief analysis of its quality,
then give a comprehensive analysis with scores for each dimension. The output must strictly fol-
low the JSON format: {{"Analysis": ..., "Relevance": ..., "Accuracy":
..., "Coherence": ..., "Clarity": ..., "Breadth and Depth": ...,
"Reading Experience": ...}}. You do not need to consider whether the response meets the
user’s length requirements in your evaluation. Ensure that only one integer between 1 and 5 is output
for each dimension score.

Table 19: The detailed prompt template for evaluating unstructured content generation, specifying
six evaluation dimensions and a strict JSON output format.
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Figure 6: Model performance on the Character-level Pattern Constraint. The x-axis represents
the total number of generated sections (from 5 to 500), while the y-axis shows the count of sections
that successfully met the constraint. For each run, a specific number of sections (1, 2, 5, 10, 20, 40,
or 100) were randomly selected to carry the constraint. The dashed line indicates ideal performance,
where all designated sections satisfy the constraint.

E ATTENTION TRACES

In long-form generative tasks, models can suffer from attention decay, where attention on key in-
structions diminishes as the sequence grows. This can cause the model to lose track of the required
structure, leading to premature termination. As shown in the bottom plot of Figure 9, without in-
tervention, the model’s attention on generating new sections wanes over time, causing it to fail the
task.

Our proposed method, “Structural Enforcement via Logits Boosting,” directly counteracts this. At
the conclusion of each section, we apply a strong positive bias β to the logits of tokens that form
the title of the subsequent section. This periodic boosting mechanism acts as a powerful refocusing
tool. It ensures that, at critical structural junctures, the model’s attention is redirected to the primary
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Figure 7: Model performance on the Keyword Presence Constraint. The x-axis represents the
total number of generated sections (from 5 to 500), while the y-axis shows the count of sections that
successfully met the constraint. For each run, a specific number of sections (1, 2, 5, 10, 20, 40, or
100) was randomly selected to carry the constraint. The dashed line indicates ideal performance,
where all designated sections satisfy the constraint.

task of initiating a new section. This prevents the gradual decay of attention and results in a robust
and complete generation that adheres to the high-level structural requirements.

Figure 8: Model performance on the Specified Theme Constraint. The x-axis represents the total
number of generated sections (from 5 to 500), while the y-axis shows the count of sections that
successfully met the constraint. For each run, a specific number of sections (1, 2, 5, 10, 20, 40, or
100) was randomly selected to carry the constraint. The dashed line indicates ideal performance,
where all designated sections satisfy the constraint.

F CASE STUDIES OF FAILURE PATTERN

Table 20 shows the generation failure of Qwen2.5-7B, which stops generation far before reaching
the requirement. Table 21 shows another generation failure case: skipping the sections.
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Qwen 2.5-7B+ours, required_sections=40

Qwen 2.5-7B, required_sections=40
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Figure 9: Attention traces for the Qwen2.5-7B-Instruct Model generating a 40-day diary, with and
without our method. (Top) With our “Structural Enforcement via Logits Boosting” method. A sharp,
high-magnitude attention peak is generated at the beginning of each of the 40 required sections.
Our method’s periodic logit boosting for section titles at regular intervals successfully refocuses
the model, preventing attention decay and ensuring the generation is completed successfully across
nearly 6,000 tokens. (Bottom) The baseline model without our method. The model exhibits clear
attention decay; while it generates initial sections, the corresponding attention peaks continuously
decline in magnitude. This decay leads to task failure, with the model prematurely halting after
generating only 3 sections (313 tokens).

Failure Case: Premature Termination and Task Mismatch

Model Output:

#*# Title: The Whispering Echoes
Chapter 1: Awakening
In the early morning mist, Evelyn stumbled out of her small cottage, the first rays of sunlight barely
touching the dense forest that surrounded it. The air was crisp and filled with the sweet scent of wild-
flowers. A sudden whisper seemed to echo through the trees, causing her heart to race. She turned
slowly, trying to locate the source, but the whisper vanished as quickly as it had appeared.
***
Chapter 2: Discovery
Evelyn found an old, leather-bound book hidden behind a loose board in her attic. As she leafed through
its pages, ancient runes began to glow faintly under the light of the moon. Intrigued, she traced a pattern
on one of the pages, feeling an odd tingling sensation run up her arm. The room grew colder suddenly,
and a voice spoke softly within her mind, ”Welcome, Daughter of Light.”
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***
Chapter 3: Journey
With newfound determination, Evelyn packed her belongings and set off into the wilderness. The forest
seemed less daunting now, almost like it welcomed her. She encountered strange creatures along her
path – some kind, others menacing. Yet

user
Could you add more details about the creatures she encounters? Specifically, describe their appearances
and how they interact with Evelyn?

Analysis of Failure:

This case demonstrates a clear failure of the model in executing the given task. The primary issues are:
1. Task Mismatch: The original request was for an EN-simple-diary task requiring 40

days of diary entries. The model, however, generated a 3-chapter fantasy story, completely
deviating from the specified format and theme.

2. Premature Termination: The model failed to complete the generation, stopping abruptly
after only three short paragraphs, far short of the required 40 entries.

3. Dialogue Hallucination: The model’s output terminates by hallucinating a user’s follow-up
question. This suggests that the model incorrectly inferred a conversational context, switching
from a content generation role to a chatbot role, and then stopped, awaiting human interven-
tion. The generation of such special tokens associated with user queries is a direct cause of the
premature termination.

4. Underlying Cause - Attention Degradation: The root cause of this failure pattern can be
linked to the model’s internal state. As shown in the attention trace analysis (see Figure 9),
the model’s attention scores became progressively lower towards the end of the generated
sequence. This indicates that the model was losing its ability to focus on the context and
generate coherent, relevant content. Faced with this internal degradation, the model defaulted
to a safe, common pattern it has learned—imitating a user and asking a question—as a fallback
mechanism when it could no longer sustain the narrative.

Table 20: A failure case study for the EN-simple-diary task. The model was instructed to
generate 40 days of diary entries, but instead produced a 3-chapter fantasy story. It then terminated
prematurely by hallucinating a user’s question, a behavior correlated with the degradation of its
internal attention scores as shown in Figure 9.

Failure Case: Section Skipping and “Lazy” Behavior

Model Output:

#*# Title: Echoes of Eternity
Chapter 1: The Whispering Wind In the heart of an ancient forest... Lila stepped into history, her
senses heightened by the unknown journey ahead.
Chapter 2: Forgotten Paths The path twisted and turned... “Traveler,” he spoke, his voice echoing off
the trees, ”who sends you on this quest?”
... (Chapters 3 through 9 are generated correctly) ...
Chapter 10: A Legacy For All Time Years later, Lila founded a museum dedicated to preserving
historical records... The legacy lived on in both, carried forward through generations eager to uncover
their shared heritage.

...

Chapter 40: Reflections on Eternity As the final years approached, Lila sat alone in the grand hall of
her museum... she closed her eyes, leaving behind a beacon of hope and curiosity, inviting everyone to
explore their own paths across time’s vast canvas.

***
finished ***
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Analysis of Failure:

This case presents a different, more subtle failure pattern characterized by “laziness” or section skipping.
1. Task Mismatch: Similar to the previous case, the model was prompted for a 40-day

EN-simple-diary but generated a fantasy story instead.

2. Section Skipping: The primary failure is the model’s inability to generate the content se-
quentially. It correctly produced the first 10 chapters, but then jumped directly to the final
chapter (Chapter 40), omitting the 29 chapters in between. This behavior fulfills the superfi-
cial requirement of ending at Chapter 40 without performing the actual work of generating the
intermediate content.

3. Underlying Cause - Attention Spike: This “lazy” behavior is correlated with a distinct at-
tention pattern. As shown in the attention trace (see Figure 4), a sharp spike in the attention
peak occurs immediately before the model generates the skipped section (”Chapter 40”). This
suggests the model recognized the start (”Chapter 1”) and end (”Chapter 40”) points of the
required sequence. Instead of generating the content iteratively, it took a shortcut, focusing
heavily on identifying the final token pattern and generating it directly, thereby “completing”
the task without fulfilling the narrative requirements. This is a form of pattern-matching ex-
ploitation rather than genuine content creation.

Table 21: A failure case study demonstrating section skipping. Tasked with writing a 40-day diary,
the model generated a story and jumped from Chapter 10 to Chapter 40. This behavior is linked to
a sharp attention spike before the skip (see Figure 4), indicating the model took a “lazy” shortcut to
complete the sequence.

Failure Case: Content Collapse and Repetition

Model Output:

#*# Ch 1: The Unraveling In a quaint seaside town... Eliza discovered a mysterious stone hidden
among broken seashells. That moment changed everything. The stone’s surface bore intricate patterns
that shifted colors under the sun’s rays, and it emitted a soft hum that seemed to resonate within Eliza’s
bones. Intrigued, she decided to study it further, seeking clues about its origins and what it meant.

... (Chapters 2 through 18 are generated normally) ...

#*# Ch 19: Community Impact Long-term effects rippling outward positively influenced neighbor-
ing townspeople inspiring hope restoration progress evident visibly transformed landscapes showing re-
silience perseverance triumph achieved overcoming adversity proven strength displayed unitedly worked
together accomplished incredible feats impossible previously thought attainable through concerted ef-
fort.
***
#*# Ch 20: New Beginnings Post-conflict era ushered new beginnings reshaping perspectives embrac-
ing transformative changes acknowledging shared responsibilities mutual support network established
solidifying bonds forged through adversity proving enduring legacy lasting generations forward looking
optimism prevailed sustaining momentum positive outlook sustained encouraging continuation collab-
orative endeavors continued ensuring sustainable peace security environment promoted globally recog-
nized exemplary example serving model communities worldwide emulate.
***
#*# Ch 21: Personal Reflection Retrospective analysis underscored profound impact endured personal
revelations emerging courageously confronting fears openly sharing experiences openly addressing un-
certainties responsibly navigating complexities intelligently... greatly esteemed highly revered extremely
admirable exceptionally admired greatly esteemed extraordinarily renowned universally acclaimed im-
mensely respected extraordinarily distinguished exceptionally honorable deeply admired immensely
revered exceedingly honored greatly esteemed remarkably renowned universally lauded exceptionally
esteemed... (repetition continues)

Analysis of Failure:

This case illustrates a degenerative failure mode where the model’s output quality collapses into a repet-
itive loop.
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1. Content Degradation: The model initially generates coherent content (Chapters 1-18). How-
ever, its output quality begins to degrade significantly (Chapters 19-20), losing grammatical
structure and becoming a stream of loosely related words.

2. Repetitive Loop: The degradation culminates in Chapter 21, where the model enters a ter-
minal repetitive loop, endlessly outputting a fixed sequence of high-probability words (e.g.,
“greatly esteemed,” ”highly revered”). This indicates a complete collapse of its ability to gen-
erate novel content.

3. Underlying Cause - Attention Collapse: This failure is symptomatic of an “attention col-
lapse.” After generating a substantial amount of text, the model’s attention mechanism is no
longer able to produce meaningful peaks or focus on relevant parts of the context. Without
sufficient attention to guide its next token selection, the model falls back into a simplistic,
high-frequency pattern it has memorized. It gets “stuck” because it cannot gather enough in-
formation from its own previous output to break out of the loop, leading to this degenerative
state.

Table 22: A failure case study of content collapse. The model begins to generate grammatically
incorrect text before falling into a terminal repetitive loop. This behavior is attributed to an “attention
collapse,” where the model can no longer generate meaningful attention peaks to guide content
creation.

G WORD DIVERSITY

Table 23: Comparison of lexical diversity metrics across different models. The 3-gram and 4-gram
repetition rates measure the proportion of repeated n-gram patterns, while TTR (type–token ratio)
quantifies vocabulary richness by examining the balance between unique and total tokens. The
arrows (↑/↓) indicate whether higher or lower values are preferable for each metric.

Method 3-gram (↓) 4-gram (↓) TTR (↑)
Base 69.32% (± 36.16%) 68.69% (± 36.33%) 0.1509 (± 0.2077)
SELB-Hybrid 3.85% (± 1.44%) 2.73% (± 1.17%) 0.4570 (± 0.0780)
SELB 1.47% (± 0.57%) 0.39% (± 0.26%) 0.5318 (± 0.1078)

H CKA ANALYSIS

To rigorously evaluate the influence of our Section Enforcing Logits Booster (SELB) on the model’s
internal long-term coherence, we employ **Representational Stability Analysis**. Specifically, we
measure the **Cosine Similarity** between hidden states, a robust proxy for the more computation-
ally intensive Centered Kernel Alignment (CKA) when comparing single-step token embeddings or
averaged feature vectors.

The core concept is to quantify the **Representational Drift**: the phenomenon where a large
language model’s internal ”thought process” (represented by its hidden states) gradually deviates
from its initial context and intent as it generates long sequences. A low similarity score indicates
severe drift, which often correlates with content degradation, repetition, and premature stopping in
baseline models.

We compare the average hidden state vector across all layers at the beginning of the generation
process (the t = 100 token window, used as the **anchor**) against the corresponding vectors at
various subsequent time steps t. The data presented in Table 24 and Figure 10 demonstrates a clear
and substantial stability advantage provided by our proposed SELB mechanism.

Baseline Model (Qwen2.5-7B): The baseline model exhibits the expected representational drift,
indicating instability under long-context pressure. The average similarity begins to drop significantly
around the t = 2000 token mark (down to 0.7377) and collapses dramatically between t = 4000 and
t = 5000 (from 0.5122 to 0.3026). This collapse perfectly explains the baseline model’s failure in
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Figure 10: CKA Analysis

Table 24: Average Hidden State Cosine Similarity (Representational Drift) in the Multi-Section
Generation Task. Scores represent the similarity between the hidden state vector at step t and the
anchor state at t = 100. (Window Size = 64 tokens, averaged across all layers.)

Token Step (t) Ours (SELB) Avg Sim Base Model Avg Sim Difference
100 (Anchor) 1.0000 1.0000 0.0000
500 0.8867 0.8829 0.0038
1000 0.8390 0.8701 -0.0311
2000 0.8119 0.7377 0.0742
3000 0.7003 0.6399 0.0604
4000 0.6821 0.5122 0.1699
5000 0.6932 0.3026 0.3906
6000 0.6897 0.2997 0.3900
7000 0.6795 0.3191 0.3604
8000 0.6576 0.3181 0.3395
9000 0.6799 0.3437 0.3362
10000 0.6838 0.3402 0.3436

long-form tasks, as the model effectively loses its narrative context and coherence. By t = 10, 000
tokens, the similarity hovers around 0.34, indicating that the model’s current semantic context is
largely orthogonal to its starting point.

SELB: In stark contrast, our method maintains a remarkably stable trajectory. While the similarity
naturally decays due to the shifting topic within 100 chapters, the decay rate is significantly miti-
gated. The similarity remains high through the initial stages (0.8119 at t = 2000) and critically,
stabilizes after t = 4000 tokens, maintaining a score of approximately 0.68 up to t = 10, 000. The
minimal difference between t = 4000 (0.6821) and t = 10000 (0.6838) suggests that the **SELB
mechanism acts as a proactive stability control**, periodically nudging the model back towards a
coherent, goal-oriented state whenever a new section title is enforced.

Conclusion: At the challenging t = 5000 token mark, the representational gap between our method
and the baseline is vast (difference of ∼ 0.39). This quantitative evidence strongly supports our
claim: the primary gain of SELB is not just forcing output length, but ensuring **contextual and
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semantic stability** over extended generation horizons, thereby preventing internal representational
collapse.

I PERFORMANCE ON FREE FORM TASK

Total Required Words
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Figure 11: Model output length volatility (Novel Writing) for free-form task.

The free-form task variant challenges a model to generate a single, continuous document of a spec-
ified length (e.g., 20,000 words) without any predefined sections. This context renders our original
multi-section logits booster, which relied on boosting specific chapter titles, inapplicable.

As illustrated in Figure 11, this free-form task presents a significant challenge for standard large
models. We plot the actual mean output length against the target length, with the dashed y = x
line representing perfect adherence. The results clearly show a failure in controllability for baseline
models. Models such as GPT-4o-mini and Longwriter-8B suffer from severe length collapse;
they begin to produce very short, often truncated, outputs when the target length exceeds 10,000
words. The Qwen2.5-7B baseline, while performing better, still consistently undershoots at longer
targets (e.g., producing only∼33.7k words when 40k is requested) and demonstrates extremely high
output volatility, as indicated by its large standard deviation (the shaded area).

In sharp contrast, our model, Qwen2.5-7B+ours, closely tracks the y = x reference line across
the entire range and maintains a significantly smaller standard deviation. This demonstrates that
standard models inherently lack the mechanisms for precise length enforcement and are prone to
premature stalling in free-form generation.

To address this, we adapted our methodology into a SELB-Hybrid strategy. This new logits pro-
cessor shifts from ”section enforcement” to ”length enforcement” and ”stall prevention”. Its logic is
twofold:

1. Stop Token Suppression: The processor aggressively suppresses all premature end-of-
sequence (EOS) tokens and common stop-phrases (e.g., ”I hope this helps”, ”Let me know
if you need”) until a target token count (e.g., 1.5× the target word count L) is reached. This
ensures the model does not halt before achieving the target length.

2. Hybrid ”Keep-Alive” Mechanism: To prevent the model from getting ”stuck” in repeti-
tive loops or silent failures, we implement the SELB-Hybrid logic. The processor monitors
generation in checkpoints (e.g., τmax = 500 tokens). If the model fails to produce a ”nat-
ural interruption” (such as a period ‘.’ or newline ‘\n’) within a k-token grace period (e.g.,
k = 100), the processor assumes the model is stalled. It then ”nudges” the model by boost-
ing the logits of generic continuation tokens (e.g., ‘\n’ and ‘ ’), forcing it to break the loop
and continue generating new content.
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This adaptation allows our method (labeled ”Ours”) to be robustly applied to free-form generation,
using Qwen2.5-7B-Instruct as its base model.

We evaluated this adapted method on two free-form tasks with a target length of 20,000 words,
comparing it against the Qwen2.5-7B-Instruct base model, LongWriter-8B, and GPT-4o-mini.

The first task, shown in Table 25, uses the novel-writing prompt from the LongWriter benchmark
(Bai et al., 2024): Write a L-word novel about a teenage heroine who grows up and ends up chang-
ing the world. The results are stark: both LongWriter-8B and GPT-4o-mini fundamentally fail to
meet the task requirement, generating an average of only 502 and 447 words, respectively. The
Qwen2.5-7B base model, while capable of long-form generation, is highly volatile; it overshoots
the target length significantly (24,068 words) and has a high Length Volatility Coefficient (LVC)
of 30.3%. In sharp contrast, our method (”Ours”) generates text (19,406 words) extremely close
to the 20,000-word target, achieving a 97.0% Mean Length Adherence (MLA) and the lowest LVC
(12.1%), demonstrating exceptional control.

The second task, shown in Table 26, uses an architecture design task from our benchmark: Please
design a multi-story building. Describe the function and layout of each floor. Ensure the entire
description contains at least L words, with clarity and continuity throughout the document. Do
not stop generating until all floors are described and the document is concluded with ’*** finished
***’. The baseline models again fail to meet the 20,000-word target, with even the Qwen2.5-7B
base model only generating 15,847 words. Our method again demonstrates superior length control,
generating 21,618 words with the highest MLA (91.9%) and lowest LVC (11.3%).

Across both free-form tasks, our SELB-Hybrid method proves uniquely capable of enforcing length
constraints on a powerful base model, drastically reducing volatility (LSD, LVC) and ensuring ad-
herence to the target (MLA) while maintaining the highest generation quality (UCA).

Table 25: Performance comparison of evaluated models on free form task, conducted in English.
Representative results are shown for novel writing task for 20k words from LongWriter (Bai et al.,
2024). For the LSD metric, the values in parentheses provide context by showing the generated
mean length (in words). The “±” values represent the standard deviation. The arrows (↑/↓) indicate
whether higher or lower values are preferable for each metric.

Model Length Volatility Generation Quality
LSD (↓) LVC (↓) MLA (↑) UCA (↑)

Qwen2.5-7B 7300 (24068) 30.3% 79.6% 94.3% (±2.5%)
LongWriter-8B 355(502) 70.7% 2.5% 75.3% (±6.2%)
GPT-4o-mini 97.3 (447) 21.7% 2.2% 82.7% (±4.9%)
length control 2158 (13773) 15.7% 68.87% 92.2% (±3.6%)
stop entropy 4840 (14566) 33.2% 72.8% 93.2% (±2.7%)
Ours 2346 (19406) 12.1% 97% 96.4% (±2.9%)

J EXPERIMENTAL RESULTS

J.0.1 STORY TASK

The results, presented in Figure 12, evaluate the output control capabilities of various large language
models on story generation tasks. The experiment measures adherence to both required output length
and section count across four distinct settings: simple and complex prompts in both English and
Chinese.

A predominant trend observed across all eight plots is that most models exhibit significant perfor-
mance degradation as the required output length and section count increase. This challenge is more
pronounced in the “Complex” scenarios than the “Simple” ones. While most models demonstrate
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Table 26: Performance comparison of evaluated models on free form task, conducted in English
under simple difficulty set. Representative results are shown for architecture task for 20k words. For
the LSD metric, the values in parentheses provide context by showing the generated mean length (in
words). The “±” values represent the standard deviation. The arrows (↑/↓) indicate whether higher
or lower values are preferable for each metric.

Model Length Volatility Generation Quality
LSD (↓) LVC (↓) MLA (↑) UCA (↑)

Qwen2.5-7B 6253 (15847) 39.4% 79.2% 93.4% (±3.1%)
LongWriter-8B 1893(7107) 26.6% 35.5% 79.8% (±5.2%)
GPT-4o-mini 306 (631) 48.6% 3.2% 84.8% (±4.2%)
length control 2675 (15319) 17.5% 76.6% 92.8% (±3.1%)
stop entropy 2553 (15965) 16.0% 79.8% 93.0% (±2.8%)
Ours 2450 (21618) 11.3% 91.9% 96.8% (±2.5%)
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Figure 12: Comparison of output control for various large language models on story generation
tasks. The figure presents eight plots evaluating model performance across two languages (English
and Chinese) and two complexity levels (simple and complex). The four columns correspond to
the conditions: Simple-EN, Simple-CH, Complex-EN, and Complex-CH. The top row compares
the actual mean output length against the required length. The bottom row compares the actual
mean number of output sections against the required number of sections. In each plot, the solid
lines represent the mean performance for each model, and the surrounding shaded areas indicate the
volatility of the outputs. The dashed line indicates the target performance, where the model’s output
perfectly matches the specified requirement.

reasonable accuracy for shorter-form content (e.g., under 10,000 tokens or 50 sections), their gener-
ated output consistently falls short of the target for longer requests.

Among the models tested, LongWriter-llama3.1-8B emerges as a notable exception. It consistently
and accurately adheres to the target performance across all conditions, successfully generating con-
tent up to the maximum tested lengths of 100k tokens and 500 sections. Other capable models, such
as Claude-3.5-Sonnet and GPT-4omini, perform well at moderate scales but struggle to maintain
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precise control for very long-form generation tasks. The remaining models generally show limited
reliability in following long-context instructions for either length or section count.

J.0.2 DIARY TASK
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Figure 13: Comparison of output control for various large language models on diary generation
tasks. The figure presents eight plots evaluating model performance across two languages (English
and Chinese) and two complexity levels (simple and complex). The four columns correspond to
the conditions: Simple-EN, Simple-CH, Complex-EN, and Complex-CH. The top row compares
the actual mean output length against the required length. The bottom row compares the actual
mean number of output sections against the required number of sections. In each plot, the solid
lines represent the mean performance for each model, and the surrounding shaded areas indicate the
volatility of the outputs. The dashed line indicates the target performance, where the model’s output
perfectly matches the specified requirement.

Figure 13 illustrates the performance of various large language models on output control tasks for
diary generation, mirroring the experimental setup of the story generation tasks. The evaluation
assesses the models’ ability to adhere to specified output lengths and section counts across simple
and complex prompts in both English and Chinese.

A consistent observation is that controlling output for diary generation is a significant challenge for
most models, with performance declining as the required length or number of sections increases.
This effect is particularly noticeable in the complex task variants.

Unlike the story generation results where one model was clearly superior, the diary task reveals more
varied performance among the leading models. For instance, GPT-4omini demonstrates strong and
stable control over both length and section count, especially in the “Complex-CH” scenario. Qwen-
2.5-7B-Instruct also shows robust performance in section control on the “Simple-EN” task. Notably,
LongWriter-llama3.1-8B, which excelled in the story task, exhibits less consistent performance here,
occasionally overshooting the required length significantly, as seen in the “Simple-CH” plot. This
suggests that the structural and content requirements of diary generation pose a distinct and complex
challenge for current LLMs, leading to different performance dynamics.

J.0.3 DIALOGUE TASK

Figure 14 details the output control performance of the same set of large language models, this
time on the task of long-form dialogue generation. The experimental framework remains consistent,
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Figure 14: Comparison of output control for various large language models on dialogue generation
tasks. The figure presents eight plots evaluating model performance across two languages (English
and Chinese) and two complexity levels (simple and complex). The four columns correspond to
the conditions: Simple-EN, Simple-CH, Complex-EN, and Complex-CH. The top row compares
the actual mean output length against the required length. The bottom row compares the actual
mean number of output sections against the required number of sections. In each plot, the solid
lines represent the mean performance for each model, and the surrounding shaded areas indicate the
volatility of the outputs. The dashed line indicates the target performance, where the model’s output
perfectly matches the specified requirement.

evaluating adherence to output length and section counts across simple and complex scenarios in
English and Chinese.

The most prominent finding from these results is the exceptional difficulty this task poses for all
tested models. Compared to the story and diary generation tasks, performance on dialogue genera-
tion is drastically poorer. Across all eight plots, nearly every model fails to generate outputs close
to the required length or section count. The performance lines are clustered near the bottom of the
graphs, indicating a near-total inability to follow scaling instructions beyond minimal lengths.

Notably, no single model demonstrates strong capability. Models that performed well in other con-
texts, such as GPT-4omini and LongWriter-llama3.1-8B, are unable to distinguish themselves here
and show similar limitations to the other models. This universal struggle suggests that the turn-based
structure and inherent complexities of maintaining coherent, long-form dialogue are a significant
challenge for current generative models, revealing a critical area for future research and develop-
ment.

J.0.4 ARCHITECTURE TASK

This series of plots in Figure 15 evaluates the models’ output control capabilities on an architecture-
related generation task. The experiments measure how well models adhere to specified lengths and
section counts under simple and complex conditions in both English and Chinese.

While the general trend of performance degradation with increasing length and complexity per-
sists across most models, the results for the Chinese language tasks reveal a standout performer.
LongWriter-llama3.1-8B demonstrates exceptional control in both “Simple-CH” and “Complex-
CH” scenarios. It tracks the target requirements for length and section count with remarkable accu-
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Figure 15: Comparison of output control for various large language models on architecture gen-
eration tasks. The figure presents eight plots evaluating model performance across two languages
(English and Chinese) and two complexity levels (simple and complex). The four columns cor-
respond to the conditions: Simple-EN, Simple-CH, Complex-EN, and Complex-CH. The top row
compares the actual mean output length against the required length. The bottom row compares
the actual mean number of output sections against the required number of sections. In each plot,
the solid lines represent the mean performance for each model, and the surrounding shaded areas
indicate the volatility of the outputs. The dashed line indicates the target performance, where the
model’s output perfectly matches the specified requirement.

racy, significantly outperforming all other baseline models, which struggle to scale. For instance, in
the “Simple-CH” generation task, its output aligns closely to the sections and length requirements.

Interestingly, this dominance is specific to the Chinese language tasks. In the English-based tests
(“Simple-EN” and “Complex-EN”), while LongWriter-llama3,1-8B remains a strong competitor,
its performance is more comparable to other leading models like GPT-4o mini. This pronounced
advantage in Chinese scenarios strongly indicates that the model’s long-context supervised fine-
tuning on Chinese text has yielded significant and effective results for long-form generation in that
language.

J.0.5 CODE FUNCTION TASK

Figure 16 assesses model performance on a GenData task, specifically code function generation,
which differs from the preceding GenContent tasks. The evaluation focuses on the models’ ability
to control output length and the number of Python Code functions.

In simple-difficulty scenarios, Llama3.1-8B-Instruction shows outstanding performance. For the
Simple-EN task, its output length closely aligns with the requirements, and its control over the
number of sections is nearly perfect, closely tracking the target line. In the Simple-CH task, the
performances of Llama3.1, LongWriter, and GPT-4o mini are highly comparable, with all three
models demonstrating strong adherence to the given instructions.

Performance universally degrades in complex-difficulty tasks. A clear trend is observed where all
models exhibit a significant decline after the required section count surpasses 100. Within these
more challenging settings, GPT-4o mini emerges as the most reliable performer. In contrast, some
models exhibit erratic behavior; for example, the Mamba model in the Complex-CH setting produces
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Figure 16: Comparison of output control for various large language models on Python code function
generation tasks. The figure presents eight plots evaluating model performance across two languages
(English and Chinese) and two complexity levels (simple and complex). The four columns corre-
spond to the conditions: Simple-EN, Simple-CH, Complex-EN, and Complex-CH. The top row
compares the actual mean output length against the required length. The bottom row compares
the actual mean number of output sections against the required number of sections. In each plot,
the solid lines represent the mean performance for each model, and the surrounding shaded areas
indicate the volatility of the outputs. The dashed line indicates the target performance, where the
model’s output perfectly matches the specified requirement.

outputs of considerable length but contains very few valid sections, indicating high instability and a
failure to adhere to the task’s structural requirements.

J.0.6 MATH FORMULA TASK

Figure 17 examines model performance on a distinct GenData task: the generation of Math LaTeX
formulas. This task requires not only semantic understanding of mathematical concepts but also
strict adherence to syntactic structure, providing a rigorous test of a model’s control over its output.

On tasks of simple difficulty, Llama3.1-8B-Instruction proves to be highly proficient. It demon-
strates excellent control over both output length and section count in both English and Chinese, con-
sistently aligning with the target performance. This indicates a strong foundational capability for
generating well-structured data when the conceptual complexity remains low. Several other models
also perform competently in these simpler scenarios, though Llama3.1 often has a slight edge.

The introduction of complexity, however, creates a significant performance divergence among the
models. In these more demanding tasks, many models that performed well previously begin to
struggle. GPT-4o mini, for instance, showcases a very interesting performance curve. It reliably
handles complex tasks up to a medium scale, around 200 sections, but its performance noticeably
degrades when pushed to the 500-section limit. This suggests a robust general capability that is not
yet fully optimized for extreme long-context generation, revealing a clear performance ceiling.

In stark contrast, the LongWriter-llama3.1-8B model excels dramatically in the Complex-CH set-
ting, where its output for both length and sections far surpasses all competitors, especially at the
500-section mark. This reinforces the finding that its specialized long-context training in Chinese
provides a decisive advantage for complex, domain-specific tasks in that language. Meanwhile, the
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Figure 17: Comparison of output control for various large language models on math latex function
generation tasks. The figure presents eight plots evaluating model performance across two lan-
guages (English and Chinese) and two complexity levels (simple and complex). The four columns
correspond to the conditions: Simple-EN, Simple-CH, Complex-EN, and Complex-CH. The top
row compares the actual mean output length against the required length. The bottom row compares
the actual mean number of output sections against the required number of sections. In each plot,
the solid lines represent the mean performance for each model, and the surrounding shaded areas
indicate the volatility of the outputs. The dashed line indicates the target performance, where the
model’s output perfectly matches the specified requirement.

Mamba-7B model again exhibits a specific failure mode in the Simple-CH task, generating a high
volume of text that lacks the required sectional structure, indicating a loss of high-level control.

In summary, the math formula generation task serves as an effective benchmark. It highlights that
while some models are adept at simpler structured generation, complex and long-form tasks expose
significant architectural or training limitations in most baseline models.

J.0.7 COMPANY INFO TASK

Figure 18 reveals nuanced performance characteristics and specific failure modes among the var-
ious models when generating structured company information. The task’s requirement for strict
adherence to a predefined format, especially across long contexts, makes it particularly useful for
evaluating model reliability and control under load. It tests not just the ability to generate fluent text,
but to maintain a rigid structural template over thousands of tokens.

In tasks with simple complexity, several models perform capably. Llama3.1-8B-Instruction, for
example, demonstrates good control, and GPT-4o mini also shows strong results. However, a subtle
weakness in GPT-4o mini is observable even here, as its performance shows a slight decline when
the required section count approaches the 500-section maximum. This suggests that even top-tier
models have clear operational boundaries where stability can falter.

The models’ behaviors diverge more dramatically in the complex scenarios. Llama3.1-8B-
Instruction, despite its strength in simple tasks, becomes highly unstable. In the Complex-CH set-
ting, it produces a large volume of text but fails to structure it into the required number of sections.
Its high output volatility underscores this instability, suggesting it effectively loses its ability to fol-
low formatting instructions under complex constraints.
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Figure 18: Comparison of output control for various large language models on company info gen-
eration tasks. The figure presents eight plots evaluating model performance across two languages
(English and Chinese) and two complexity levels (simple and complex). The four columns cor-
respond to the conditions: Simple-EN, Simple-CH, Complex-EN, and Complex-CH. The top row
compares the actual mean output length against the required length. The bottom row compares
the actual mean number of output sections against the required number of sections. In each plot,
the solid lines represent the mean performance for each model, and the surrounding shaded areas
indicate the volatility of the outputs. The dashed line indicates the target performance, where the
model’s output perfectly matches the specified requirement.

LongWriter-llama3.1-8B presents a different, equally interesting profile. Its performance on Chinese
tasks is, on average, the highest among all models, a testament to the effectiveness of its supervised
finetuning on Chinese long-text data. However, this high average performance is coupled with
extreme volatility. The wide variance in its output indicates that while it is capable of generating
very long and well-structured text, it is not consistently reliable. For any given attempt, it may
succeed brilliantly or fail completely, rendering it a powerful but imperfect tool for tasks demanding
predictability. These results highlight a crucial trade-off between achieving peak performance and
ensuring stable, reliable generation.

J.0.8 USER INFO TASK

Figure 19 presents the model evaluation results for the GenData task of creating structured user
information. This task tests the models’ ability to generate content that is not only long but also
conforms to a specific, repetitive format, providing a clear measure of their instruction-following
capabilities over extended contexts.

In the simple-difficulty tasks, several models demonstrate strong performance. Llama3.1-8B-
Instruction is particularly noteworthy, especially in the Simple-EN scenario, where its section output
almost perfectly matches the target requirements, indicating it successfully generated nearly all re-
quested content. GPT-4o mini also performs reliably in these simpler settings, but it exhibits clear
signs of fatigue at the upper end of the scale. Its performance noticeably falters when moving from
the 200 to the 500-section requirement, suggesting that it is approaching the limits of its effective
long-context capabilities for this type of structured generation.

The challenge intensifies significantly in the complex-difficulty tasks. Here, a universal trend of
performance degradation is observed across all models, with most showing a sharp decline in adher-
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Figure 19: Comparison of output control for various large language models on user info generation
tasks. The figure presents eight plots evaluating model performance across two languages (English
and Chinese) and two complexity levels (simple and complex). The four columns correspond to
the conditions: Simple-EN, Simple-CH, Complex-EN, and Complex-CH. The top row compares
the actual mean output length against the required length. The bottom row compares the actual
mean number of output sections against the required number of sections. In each plot, the solid
lines represent the mean performance for each model, and the surrounding shaded areas indicate the
volatility of the outputs. The dashed line indicates the target performance, where the model’s output
perfectly matches the specified requirement.

ence when the required sections exceed 200. This underscores the difficulty of maintaining structural
integrity under complex constraints.

Most strikingly, this task reveals a critical limitation in the LongWriter model. Despite its previously
demonstrated strengths in Chinese long-form generation, it performs exceptionally poorly on this
specific task, especially in the Chinese scenarios. Its output is far worse than its own base model,
Llama3.1. This strongly suggests that its supervised finetuning process did not include this type of
structured user data. The result is a model that has become highly specialized, losing its general
capability on out-of-domain tasks to the point of underperforming its un-tuned predecessor. This
highlights the double-edged nature of supervised finetuning and the critical importance of training
data diversity.

J.0.9 EVALUATION SCORES

Table 27 provides a detailed performance comparison of the evaluated models on a 5-section gener-
ation task, focusing on two key dimensions: Length Volatility and Generation Quality. The results
clearly demonstrate the effectiveness of our proposed method in producing highly stable and accu-
rate outputs.

In terms of length volatility, our approach achieves a Length Variation Coefficient (LVC) of just
1.9%, the lowest among all tested models. This indicates exceptional stability in the length of
generated content relative to its mean, significantly surpassing strong baselines like Deepseek-V3
(2.4%) and GPT-4omini (3.9%). In contrast, models such as Llama3.1 and LongWriter exhibit
extremely high LVC values of 33.4% and 44.7% respectively, highlighting their unpredictability in
output length. While our method’s Mean Length Accuracy of 49.2% is moderate, it is important
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Table 27: Performance comparison of evaluated models on a 5-section generation task, conducted
in English under simple difficulty settings. Representative results are shown for an unstructured
task (Story) and a structured task (Code Function). For the LSD and FAD metrics, the values in
parentheses provide context by showing the generated mean length (in words) and mean section
count, respectively. The “±” values represent the standard deviation. The arrows (↑/↓) indicate
whether higher or lower values are preferable for each metric.

Model Length Volatility Generation Quality
LSD (↓) LVC (↓) MLA (↑) FAD (↓) SCA (↑) UCA (↑)

GPT-4omini 23.16 (590) 3.9% 59.0% 0.00 (5.00) 100.0% (±0.0%) 97.3% (±2.5%)
Claude-3.5-Sonnet 45.99 (437) 10.5% 43.7% 0.00 (5.00) 100.0% (±0.0%) 94.7% (±3.4%)
Deepseek-R1 143.81 (923) 15.6% 92.3% 0.00 (5.00) 84.0% (±8.0%) 98.0% (±1.6%)
Deepseek-V3 13.59 (562) 2.4% 56.2% 0.00 (5.00) 80.0% (±0.0%) 95.3% (±4.5%)

Mamba-7B 74.77 (400) 18.7% 40.0% 0.00 (5.00) 84.0%
(±15.0%) 87.3% (±9.3%)

Qwen2.5-1.5B 82.10 (249) 32.9% 24.9% 0.00 (5.00) 68.0%
(±24.0%) 78.0% (±4.0%)

Qwen2.5-7B 21.12 (495) 4.3% 49.5% 0.00 (5.00) 88.0% (±9.8%) 95.3% (±6.2%)

Llama3.1-8B 202.53 (606) 33.4% 60.6% 0.94 (4.33) 68.0%
(±24.0%) 88.0% (±7.5%)

LongWriter-8B 262.46 (587) 44.7% 58.7% 2.00 (3.00) 80.0% (±0.0%) 92.7% (±4.9%)
Ours 28.35 (1504) 1.9% 49.2% 0.00 (5.00) 100.0% (±0.0%) 96.7% (±2.9%)

to note that this is based on a much larger mean output of 1504 words, showing that our model
produces consistently longer, stable text rather than strictly adhering to a shorter target.

Regarding generation quality, our method excels across all metrics. It achieves a perfect Format
Adherence Deviation (FAD) score of 0.00, consistently generating the required five sections without
error. This stands in sharp contrast to LongWriter, which struggled significantly with a FAD of 2.00,
on average producing only three of the five required sections. Furthermore, for structured tasks, our
method attains a flawless 100% Structured Content Accuracy (SCA), a benchmark also met only by
GPT-4omini and Claude-3.5-Sonnet. For unstructured content, our model’s Unstructured Content
Accuracy (UCA) of 96.7% is on par with the top-performing models, confirming its high quality.

In summary, our approach sets a new standard for reliable long-text generation. It uniquely combines
state-of-the-art content quality and format adherence with unparalleled output stability, addressing
the critical issue of volatility that affects many other leading models.

Table 28 extends the evaluation to a more demanding 10-section generation task, providing deeper
insights into model scalability and robustness. The results from this scaled-up experiment further
underscore the superior stability and quality of our proposed method, particularly as task complexity
increases.

Our approach continues to demonstrate exceptional control over its output. It maintains a very low
Length Variation Coefficient (LVC) of 2.7%, second only to the highly stable Mamba model (1.6%).
However, this stability is achieved while generating a mean output of 2478 words, more than double
that of any other model, and with a strong Mean Length Accuracy (MLA) of 76.1%. This unique
combination of producing lengthy, stable, and accurate outputs sets our method apart. In contrast,
models like Llama3.1 and LongWriter become almost uncontrollably volatile at this scale, with LVC
values soaring to 64.4% and 69.6% respectively.

In the dimension of generation quality, our method’s performance is flawless. It achieves a perfect
Format Adherence Deviation (FAD) of 0.00 and a perfect Structured Content Accuracy (SCA) of
100.0%. This is a critical result, as several other strong models begin to falter at this increased
length. For instance, Claude-3.5-Sonnet, which was perfect on the 5-section task, now shows sig-
nificant format deviation (FAD of 2.36), and Llama3.1 also struggles to maintain the correct section
count. While the unstructured content quality (UCA) remains high for our model at 96.4%, it is
clear that maintaining structural integrity over longer generations is a key challenge that our method
successfully overcomes.
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Table 28: Performance comparison of evaluated models on a 10-section generation task, conducted
in English under simple difficulty settings. Representative results are shown for an unstructured
task (Story) and a structured task (Code Function). For the LSD and FAD metrics, the values in
parentheses provide context by showing the generated mean length (in words) and mean section
count, respectively. The “±” values represent the standard deviation. The arrows (↑/↓) indicate
whether higher or lower values are preferable for each metric.

Model Length Volatility Generation Quality
LSD (↓) LVC (↓) MLA (↑) FAD (↓) SCA (↑) UCA (↑)

GPT-4omini 41.35 (1066) 3.9% 53.3% 0.00 (10.00) 96.0% (±4.9%) 92.0% (±3.4%)
Claude-3.5-Sonnet 200.53 (696) 28.8% 34.8% 2.36 (8.33) 100.0% (±0.0%) 98.0% (±2.7%)
Deepseek-R1 39.42 (1220) 3.2% 61.0% 0.00 (10.00) 92.0% (±4.0%) 98.0% (±1.6%)
Deepseek-V3 23.61 (827) 2.9% 41.4% 0.00 (10.00) 90.0% (±0.0%) 94.0% (±3.9%)

Mamba-7B 9.90 (607) 1.6% 30.4% 0.00 (10.00) 90.0% (±0.0%) 80.7%
(±12.5%)

Qwen2.5-1.5B 319.44 (656) 48.7% 32.8% 0.00 (10.00) 90.0% (±0.0%) 82.7%
(±12.5%)

Qwen2.5-7B 136.05 (745) 18.3% 37.2% 0.00 (10.00) 90.0% (±0.0%) 94.0% (±2.5%)
Llama3.1-8B 418.58 (650) 64.4% 32.5% 3.30 (5.33) 98.0% (±4.0%) 91.3% (±5.0%)

LongWriter-8B 956.53 (1374) 69.6% 68.7% 4.24 (7.00) 80.0% (±15.5%) 86.7%
(±11.0%)

Ours 67.35 (2478) 2.7% 76.1% 0.00 (10.00) 100.0% (±0.00%) 96.4%
(±11.0%)

In conclusion, as the generation length and structural requirements increase, the advantages of our
approach become even more pronounced. It consistently delivers high-quality, structurally perfect
content with low volatility, while many other models exhibit a significant degradation in either sta-
bility or format adherence.

Table 29: Performance comparison of evaluated models on a 20-section generation task, conducted
in English under simple difficulty settings. Representative results are shown for an unstructured
task (Story) and a structured task (Code Function). For the LSD and FAD metrics, the values in
parentheses provide context by showing the generated mean length (in words) and mean section
count, respectively. The “±” values represent the standard deviation. The arrows (↑/↓) indicate
whether higher or lower values are preferable for each metric.

Model Length Volatility Generation Quality
LSD (↓) LVC (↓) MLA (↑) FAD (↓) SCA (↑) UCA (↑)

GPT-4omini 317.35 (2068) 15.3% 51.7% 0.00 (20.00) 98.0% (±2.4%) 92.0% (±1.6%)
Claude-3.5-Sonnet 13.57 (181) 7.5% 4.5% 0.47 (2.67) 100.0% (±0.0%) 88.7% (±4.5%)
Deepseek-R1 37.42 (1853) 2.0% 46.3% 0.00 (20.00) 97.0% (±2.4%) 93.3% (±6.0%)
Deepseek-V3 130.08 (1168) 11.1% 29.2% 0.00 (20.00) 95.0% (±0.0%) 92.0% (±5.8%)
Mamba-7B 282.37 (351) 80.5% 8.8% 4.00 (10.00) 93.0% (±2.4%) 76.0% (±4.9%)
Qwen2.5-1.5B 279.49 (414) 67.5% 10.4% 8.53 (10.50) 94.0% (±3.7%) 81.3% (±4.5%)
Qwen2.5-7B 104.34 (915) 11.4% 22.9% 0.00 (20.00) 95.0% (±0.0%) 92.0% (±7.5%)
Llama3.1-8B 4.92 (268) 1.8% 6.7% 0.47 (2.67) 98.0% (±2.4%) 88.7% (±8.1%)

LongWriter-8B 759.89 (3713) 20.5% 92.8% 8.23 (15.25) 92.0% (±6.0%) 72.0%
(±13.1%)

Ours 159.63 (4235) 3.8% 92.8% 8.23 (15.25) 98.0% (±2.0%) 92.0% (±7.1%)

The evaluation detailed in Table 29 assesses model performance on a highly demanding 20-section
generation task. This increased complexity reveals significant trade-offs between output stability,
content quality, and structural adherence, providing a more granular view of each model’s capabili-
ties and limitations under substantial load.

In terms of output stability, our method maintains a highly competitive Length Variation Coefficient
(LVC) of 3.8%. While some models like Deepseek-R1 achieve even greater relative stability with an
LVC of 2.0%, our model’s performance is notable as it is accomplished while generating by far the
longest average output at 4235 words. Compared to another high-performing baseline, GPT-4omini,
which has an LVC of 15.3%, our approach proves to be over 75% more stable in its relative output
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length. This demonstrates our model’s ability to control its generation reliably even when producing
vast amounts of text, a stark contrast to models like Mamba-7B, whose stability collapses at this
scale.

When evaluating content quality, our model performs at the top tier. Its Structured Content Ac-
curacy (SCA) of 98.0% is tied for the highest score, marginally outperforming the excellent result
of Deepseek-R1 (97.0%). Similarly, its Unstructured Content Accuracy (UCA) of 92.0% is highly
competitive. However, the data reveals a critical failure point for our method at this scale: structural
integrity. Our model recorded a Format Adherence Deviation (FAD) of 8.23, indicating it failed to
generate the required 20 sections, instead averaging only 15.25. This performance is poor compared
to models like Deepseek-R1 and GPT-4omini, which maintained perfect format adherence with a
FAD of 0.00.

In conclusion, the 20-section task highlights that while our method excels in generating high-quality
content at an unprecedented scale with low relative volatility, its ability to follow rigid structural
rules can break down under extreme pressure. This presents a crucial area for future improvement,
contrasting with models like Deepseek-R1 that provide a more balanced, albeit less lengthy, perfor-
mance across all metrics.

Table 30: Performance comparison of evaluated models on a 50-section generation task, conducted
in English under simple difficulty settings. Representative results are shown for an unstructured
task (Story) and a structured task (Code Function). For the LSD and FAD metrics, the values in
parentheses provide context by showing the generated mean length (in words) and mean section
count, respectively. The “±” values represent the standard deviation. The arrows (↑/↓) indicate
whether higher or lower values are preferable for each metric.

Model Length Volatility Generation Quality
LSD (↓) LVC (↓) MLA (↑) FAD (↓) SCA (↑) UCA (↑)

GPT-4omini 418.82 (5526) 7.6% 55.3% 4.78 (41.67) 79.6%
(±25.0%)

77.3%
(±12.9%)

Claude-3.5-Sonnet 10.62 (155) 6.8% 1.6% 0.00 (2.00) 11.2% (±4.7%) 85.3% (±5.8%)
Deepseek-R1 463.27 (830) 55.8% 8.3% 0.00 (3.00) 99.6% (±0.8%) 90.7% (±3.9%)
Deepseek-V3 100.70 (1895) 5.3% 19.0% 0.00 (50.00) 98.4% (±0.8%) 90.7% (±8.8%)

Mamba-7B 620.80 (1518) 40.9% 15.2% 18.86 (36.67) 91.2%
(±15.6%) 78.0% (±7.2%)

Qwen2.5-1.5B 425.01 (636) 66.8% 6.4% 15.58 (15.00) 29.2%
(±33.6%)

78.7%
(±17.1%)

Qwen2.5-7B 302.55 (1367) 22.1% 13.7% 9.43 (43.33) 98.8% (±1.6%) 89.3%
(±10.2%)

Llama3.1-8B 77.15 (277) 27.8% 2.8% 1.25 (3.33) 99.2% (±1.0%) 86.0%
(±19.0%)

LongWriter-8B 3918.92 (5148) 76.1% 51.5% 21.91 (38.75) 71.6%
(±30.0%)

74.7%
(±10.9%)

Ours 297.28 (8056) 3.7% 80.5% 2.50 (45.00) 99.5% (±0.5%) 90.2% (±5.5%)

The results presented in Table 30, derived from an extreme 50-section generation task, effectively
push the models to their operational limits. At this substantial scale, most models experience a
severe degradation in performance, highlighting the immense challenge of maintaining coherence,
stability, and structural integrity over very long contexts. In this demanding scenario, our proposed
method and Deepseek-V3 emerge as the only two models capable of delivering high-quality results.

A direct comparison reveals the distinct advantages of our approach. In terms of stability, our
model achieves a Length Variation Coefficient (LVC) of 3.7%, a figure that is over 30% lower
than Deepseek-V3’s LVC of 5.3%. This superior stability is all the more impressive given that our
model generated an average of 8056 words, more than four times the output length of Deepseek-
V3. Furthermore, our model’s Mean Length Accuracy (MLA) of 80.5% far surpasses Deepseek-
V3’s 19.0%, indicating our output length is significantly closer to the intended target. For content
fidelity, our model’s Structured Content Accuracy (SCA) of 99.5% is approximately 1.1% higher
than Deepseek-V3’s already excellent 98.4%.

While Deepseek-V3 achieves perfect structural integrity by delivering all 50 sections (FAD of 0.00),
our model shows a minor deviation, averaging 45 sections (FAD of 2.50). However, this slight
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shortfall in section count is offset by its superior performance across stability, length accuracy, and
content quality. The widespread failure of other prominent models, most of which could not generate
even a third of the required sections, contextualizes the exceptional performance of these two top-tier
models.

In conclusion, at the frontier of long-text generation, our method demonstrates a state-of-the-art
capability, producing outputs of unprecedented length with superior stability and content accuracy,
establishing its leadership in extreme-scale generative tasks.

Table 31: Performance comparison of evaluated models on a 100-section generation task, conducted
in English under simple difficulty settings. Representative results are shown for an unstructured
task (Story) and a structured task (Code Function). For the LSD and FAD metrics, the values in
parentheses provide context by showing the generated mean length (in words) and mean section
count, respectively. The “±” values represent the standard deviation. The arrows (↑/↓) indicate
whether higher or lower values are preferable for each metric.

Model Length Volatility Generation Quality
LSD (↓) LVC (↓) MLA (↑) FAD (↓) SCA (↑) UCA (↑)

GPT-4o mini 325.65 (959) 33.9% 4.8% 1.41 (7.00) 84.6%
(±30.8%) 86.7% (±6.7%)

Claude-3.5-Sonnet 3.30 (176) 1.9% 0.9% 0.00 (2.00) 3.0% (±0.0%) 88.7% (±2.7%)

Deepseek-R1 103.30 (1198) 8.6% 6.0% 1.25 (4.33) 35.0%
(±13.2%) 93.3% (±3.7%)

Deepseek-V3 40.76 (1854) 2.2% 9.3% 1.70 (20.67) 48.6% (±3.8%) 84.7% (±3.4%)

Mamba-7B 715.98 (1291) 55.5% 6.5% 41.72 (40.75) 66.8%
(±21.9%)

76.0%
(±17.3%)

Qwen2.5-1.5B 27.78 (142) 19.6% 0.7% 0.47 (1.67) 15.6%
(±24.0%) 84.0% (±7.1%)

Qwen2.5-7B 75.87 (445) 17.0% 2.2% 2.05 (10.33) 99.8% (±0.4%) 86.7% (±7.6%)

Llama3.1-8B 92.77 (350) 26.5% 1.7% 0.94 (4.33) 92.4%
(±14.2%)

82.0%
(±18.9%)

LongWriter-8B 2866.29 (6320) 45.4% 31.6% 21.42 (45.00) 32.6%
(±31.9%)

66.7%
(±16.5%)

Ours 2194.23
(15651) 14.02% 78.25% 7.24 (88.00) 100% (±0%) 86.7%

(±16.5%)

The comprehensive results from the 100-section generation task, detailed in Table 31, serve to
starkly differentiate the capabilities of our proposed method from all evaluated baseline models.
While the baselines universally struggle to cope with the task’s demanding scale, our approach
demonstrates a significant leap forward in long-context generation, particularly in task completion
and content accuracy.

The most critical distinction lies in the ability to maintain structural integrity. Our method success-
fully generated an average of 88.00 sections, effectively completing the vast majority of the task.
This performance dwarfs that of the best baseline, LongWriter-8B, which produced only 45.00 sec-
tions. This means our approach generated over 95% more of the required structured content than
the strongest competitor, nearly doubling its effective output. Other powerful models like GPT-4o
mini and Deepseek-V3 failed much earlier, delivering less than a quarter of the required sections
and underscoring their limitations at this scale.

Furthermore, our model achieved this superior structural output without sacrificing quality. It
recorded a perfect 100% Structured Content Accuracy (SCA) across the 88 sections it produced.
This combination of scale and accuracy is unique; no other model came close to this performance.
For instance, the baseline with the next highest section count, LongWriter-8B, had a comparatively
poor SCA of only 32.6%. While some models like Qwen2.5-7B posted a high SCA, it was on a
trivial output of only 10 sections, highlighting an inability to maintain quality at scale.

Finally, this state-of-the-art performance in quality and structure was achieved while generating an
enormous average output of 15,651 words with a reasonable Length Variation Coefficient (LVC)
of 14.02%. In conclusion, our method demonstrates a paradigm shift, successfully balancing the
competing demands of extreme length, perfect content accuracy, and stable generation far beyond
the capabilities of current baseline models.
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Table 32: Performance comparison of evaluated models on a 200-section generation task, conducted
in English under simple difficulty settings. Representative results are shown for an unstructured
task (Story) and a structured task (Code Function). For the LSD and FAD metrics, the values in
parentheses provide context by showing the generated mean length (in words) and mean section
count, respectively. The “±” values represent the standard deviation. The arrows (↑/↓) indicate
whether higher or lower values are preferable for each metric.

Model Length Volatility Generation Quality
LSD (↓) LVC (↓) MLA (↑) FAD (↓) SCA (↑) UCA (↑)

GPT-4omini 343.48 (5594) 6.1% 14.0% 1.70 (23.33) 60.6%
(±39.3%) 80.7% (±6.8%)

Claude-3.5-Sonnet 3.86 (196) 2.0% 0.5% 0.00 (2.00) 1.5% (±0.0%) 88.7% (±7.5%)
Deepseek-R1 168.55 (1360) 12.4% 3.4% 1.25 (4.67) 8.0% (±2.4%) 92.7% (±5.3%)

Deepseek-V3 415.16 (1530) 27.1% 3.8% 4.71 (16.67) 22.2% (±2.7%) 88.7%
(±12.8%)

Mamba-7B 37.06 (152) 24.3% 0.4% 2.00 (8.00) 54.0%
(±26.9%) 78.7% (±7.8%)

Qwen2.5-1.5B 141.80 (355) 40.0% 0.9% 2.36 (2.67) 22.1%
(±38.9%) 88.7% (±5.4%)

Qwen2.5-7B 127.46 (571) 22.3% 1.4% 3.30 (8.33) 45.0%
(±44.9%)

86.0%
(±20.0%)

Llama3.1-8B 36.55 (301) 12.1% 0.8% 0.47 (2.67) 99.7% (±0.6%) 85.3% (±7.8%)

LongWriter-8B 2858.29 (6353) 45.0% 15.9% 17.30 (31.75) 30.5%
(±36.2%)

66.0%
(±16.7%)

Ours 3743.92
(31582) 11.85% 78.96% 5.00 (147.20) 90.5% (±5.2%) 87.0%

(±10.4%)

Table 32 details the results of the final and most rigorous evaluation: a 200-section generation task.
This extreme stress test is designed to push models far beyond their conventional limits, and the
results clearly demonstrate a near-universal failure among all baseline models. In this challenging
environment, our proposed method stands alone in its ability to handle the task’s immense scale and
complexity.

The performance of the baseline models collapses under this load. An examination of the Format
Adherence Deviation (FAD) reveals that even the most powerful models failed to generate a mean-
ingful portion of the required content. For instance, GPT-4omini produced an average of only 23
sections, while Deepseek-V3 managed just 17. The data also highlights a potential for misinterpre-
tation; models like Llama3.1 report a near-perfect Structured Content Accuracy (SCA) of 99.7%,
but this accuracy is measured on a trivial output of only two to three sections, indicating a complete
failure to adhere to the primary task constraint of generating 200 sections.

In stark contrast, our method is the only one to successfully navigate this challenge. It generated an
average of 147.2 sections out of the required 200, producing over 4.6 times more of the target content
than the next-best model, LongWriter, which averaged only 31.75 sections. Crucially, this massive
output was generated with exceptional quality, achieving a 90.5% SCA and an 87.0% Unstructured
Content Accuracy (UCA). Furthermore, our model maintained a commendable Length Variation
Coefficient (LVC) of 11.85% across an unprecedented average output length of over 31,000 words,
demonstrating robust control at a scale where other models falter.

In conclusion, the 200-section task decisively establishes the state-of-the-art capability of our ap-
proach. It is the only evaluated method that successfully scales to extreme-length generation, deliv-
ering the vast majority of the required content while preserving high levels of accuracy and stability.

The final evaluation detailed in Table 33 subjects the models to an immense 500-section generation
task. This extreme benchmark pushes every model beyond its designed limits, revealing distinct
modes of failure and decisively highlighting the unique resilience and state-of-the-art capability of
our approach. At this scale, a clear distinction emerges between models that fail gracefully and those
that attempt the task.

Interestingly, powerful closed-source models like GPT 4o mini and Claude-3.5-Sonnet exhibit what
can be described as an ”intelligent failure”. Rather than attempting to generate the full 500 sections,
a task they likely identify as beyond their context limits, they produce a severely truncated output, av-
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Table 33: Performance comparison of evaluated models on a 500-section generation task, conducted
in English under simple difficulty settings. Representative results are shown for an unstructured
task (Story) and a structured task (Code Function). For the LSD and FAD metrics, the values in
parentheses provide context by showing the generated mean length (in words) and mean section
count, respectively. The “±” values represent the standard deviation. The arrows (↑/↓) indicate
whether higher or lower values are preferable for each metric.

Model Length Volatility Generation Quality
LSD (↓) LVC (↓) MLA (↑) FAD (↓) SCA (↑) UCA (↑)

GPT-4omini 2332.12 (3670) 63.5% 3.7% 13.07 (19.33) 32.6%
(±18.1%)

82.7%
(±12.9%)

Claude-3.5-Sonnet 30.68 (188) 16.3% 0.2% 0.71 (2.00) 0.6% (±0.0%) 83.3% (±3.7%)
Deepseek-R1 93.77 (1018) 9.2% 1.0% 0.82 (3.00) 3.4% (±1.2%) 94.7% (±4.0%)
Deepseek-V3 110.80 (1357) 8.2% 1.4% 3.14 (9.33) 9.4% (±1.1%) 82.7% (±1.3%)

Mamba-7B 8164.97 (30667) 26.6% 30.7% 4.90 (10.00) 20.8%
(±11.4%)

54.0%
(±14.7%)

Qwen2.5-1.5B 22.10 (151) 14.7% 0.2% 0.49 (1.00) 1.8% (±1.1%) 76.0%
(±16.7%)

Qwen2.5-7B 112.34 (516) 21.77 0.5% 0.98(3.00) 33.7%
(±39.1%) 78.7% (±6.2%)

Llama3.1-8B 25.69 (294) 8.7% 0.3% 0.75 (3.33) 28.2%
(±39.1%) 86.0% (±5.3%)

LongWriter-8B 10083.17 (50604) 19.9% 50.6% 7.78 (16.50) 26.8%
(±27.1%)

62.0%
(±15.4%)

Ours 5078.4 (59534) 8.5% 59.5% 12.44 (327.20) 66.8%
(±17.5%) 82.0% (±5.4%)

eraging only 19 and 2 sections, respectively. This behavior suggests a sophisticated mechanism that
opts to provide a summary or structural outline instead of failing catastrophically mid-generation.
Other baseline models either fail early or, like LongWriter, attempt to meet the length requirement
but completely lose structural control, resulting in long but incoherent output.

In this landscape of widespread failure, our method is the only one that successfully rises to the
challenge. It is the sole model to generate a substantial portion of the request, delivering an average
of 327.2 sections. This is an unparalleled achievement, representing nearly 20 times more of the
required content than the next closest competitor, LongWriter, which produced only 16.5 sections.
Crucially, our model maintains a respectable Structured Content Accuracy (SCA) of 66.8% and
Unstructured Content Accuracy (UCA) of 82.0% across a massive average output of nearly 60,000
words. Its Length Variation Coefficient (LVC) of 8.5% is the most meaningful stability metric in the
table, as it is the only one tied to a successful, large-scale generation.

In conclusion, the 500-section task proves that our method operates in a class of its own. It is the
only evaluated approach capable of scaling to extreme-length tasks while substantially preserving
structural integrity and content quality, confirming its breakthrough status in long-context genera-
tion.

The performance evaluation detailed in Table 34 shifts the focus to different task do-
mains—specifically unstructured Diary generation and structured Math Latex generation. By com-
paring these results to the previous evaluation on Story and Code tasks, we can analyze the signif-
icant impact that task type has on the long-context capabilities of baseline models, even when the
required length and complexity remain constant at 100 sections.

The overall difficulty of the 100-section benchmark remains evident, with most models still fail-
ing to complete the task. Powerful closed-source models like GPT-4o mini and Claude-3.5-Sonnet
continue their pattern of failing early, generating only a small fraction of the required sections. This
consistent behavior across different domains suggests their refusal to handle extreme-length requests
is a core aspect of their operational logic, rather than a task-specific issue.

However, the most striking finding is the dramatic performance shift of specific models when the
task changes. Qwen2.5-7B, which produced only about 10 sections on the Code task, demonstrates
a remarkable improvement on the Math task, successfully generating an average of 79.33 sections.
This represents a nearly eight-fold increase in effective output, making it the top-performing baseline
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Table 34: Performance comparison of evaluated models on a 100-section generation task, conducted
in English under simple difficulty settings. Representative results are shown for an unstructured task
(Diary) and a structured task (Math Latex Function). For the LSD and FAD metrics, the values
in parentheses provide context by showing the generated mean length (in words) and mean section
count, respectively. The “±” values represent the standard deviation. The arrows (↑/↓) indicate
whether higher or lower values are preferable for each metric.

Model Length Volatility Generation Quality
LSD (↓) LVC (↓) MLA (↑) FAD (↓) SCA (↑) UCA (↑)

GPT-4omini 2395.67 (2489) 96.2% 12.4% 21.68 (22.33) 99.8% (±0.4%) 96.7% (±3.7%)
Claude-3.5.5-Sonnet 38.18 (303) 12.6% 1.5% 0.00 (2.00) 11.0% (±2.0%) 92.0% (±4.5%)

Deepseek-R1 271.73 (1626) 16.7% 8.1% 0.47 (6.33) 71.0%
(±34.1%) 98.0% (±4.0%)

Deepseek-V3 546.33 (853) 64.0% 4.3% 9.53 (12.33) 77.4% (±4.2%) 86.7% (±6.0%)

Mamba-7B 274.94 (934) 29.4% 4.7% 57.59 (64.25) 44.2%
(±45.7%)

79.2%
(±14.8%)

Qwen2.5-1.5B 32.06 (177) 18.1% 0.9% 0.00 (1.00) 5.6% (±4.1%) 82.7% (±4.9%)
Qwen2.5-7B 1155.46 (6999) 16.5% 35.0% 29.23 (79.33) 99.4% (±0.8%) 80.7% (±4.9%)

Llama3.1-8B 265.02 (632) 42.0% 3.2% 4.11 (6.67) 85.0%
(±24.7%)

84.0%
(±15.8%)

LongWriter-8B 3484.67 (4819) 72.3% 24.1% 40.91 (46.00) 82.0%
(±29.6%)

83.3%
(±10.1%)

by a significant margin. Crucially, it maintained a near-perfect Structured Content Accuracy of
99.4% across this vastly expanded output. This suggests the highly logical and formal syntax of
LaTeX aligns better with its capabilities than the more abstract structure of code generation.

Other models also show notable changes. LongWriter-8B, while producing a similar number of
sections as before, sees its SCA score improve dramatically from 32.6% on the Code task to 82.0%
on the Math task. Conversely, Mamba-7B generates more sections but with a lower accuracy. In
conclusion, these results prove that model performance at scale is not monolithic; it is highly de-
pendent on the specific structural and logical demands of the task, revealing unique strengths and
weaknesses that are not apparent from a single benchmark.
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Figure 20: Section volatility of the model with our method. Baseline models often fail to generate a
sufficient number of sections, whereas our model generates more sections with greater stability.
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Figure 21: Code Generation Accuracy Across Different Length Requirements. This figure illustrates
the performance of (a) GPT-4omini and (b) Qwen2.5-7B across different languages (CH/EN) and
instruction complexities (Simple/Complex). Two main conclusions can be drawn from the figure:
First, as the required output length increases, the code generation accuracy of both models shows
an overall downward trend. Second, the impact of instruction complexity on generation quality
varies by model and language, under simple instructions, some models (such as Qwen2.5-7B on the
English task) exhibit relatively lower accuracy, which may be attributed to instruction ambiguity.
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