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Abstract

Deep reinforcement learning has achieved remarkable success in learning control policies
from pixels across a wide range of tasks, yet its application remains hindered by low
sample efficiency, requiring significantly more environment interactions than humans to
reach comparable performance. Model-based reinforcement learning (MBRL) offers a
solution by leveraging learnt world models to generate simulated experience, thereby
improving sample efficiency. In visually complex environments, small or dynamic
elements can be critical for decision-making. However, traditional MBRL methods in
pixel-based environments typically rely on auto-encoding with an Lo loss, which is
dominated by large areas and often fails to capture decision-relevant details. To address
these limitations, we propose an object-centric MBRL pipeline, which integrates
recent advances in computer vision to allow agents to focus on key decision-related
elements. We demonstrate OC-STORM’s practical value in overcoming the limitations
of conventional MBRL approaches on both Atari games and the visually complex game
Hollow Knight.

1 Introduction

Over the past decade, deep reinforcement learning (DRL) algorithms have demonstrated remarkable
capabilities across a wide-range of tasks (Silver et al., 2016; Mnih et al., 2015; Hafner et al., 2023).
However, applying DRL to real-world scenarios remains challenging due to low sample efficiency,
meaning DRL agents require significantly more environment interactions than humans to achieve
comparable performance. A promising solution to this problem is model-based reinforcement
learning (MBRL) (Sutton & Barto, 2018; Ha & Schmidhuber, 2018). By utilizing predictions from a
learned world model, MBRL enables agents to generate and learn from simulated trajectories, thereby
reducing reliance on direct interactions with the real environment and improving sample efficiency.

Recent MBRL methods typically train the world model in a self-supervised autoregressive manner
(Hafner et al., 2023; Zhang et al., 2023; Micheli et al., 2023; Alonso et al., 2024). The training
objective in pixel-based environments is usually defined with L, or Huber (Huber, 1964) recon-
struction loss. While such an approach is simple and effective in many cases, it can fail to capture
decision-relevant information. When the key targets are too small, the background is dynamic, or
there are too many decision-irrelevant objects in the scene, the agent can easily miss these key targets,
leading to poor performance.

Meanwhile, recent advances in computer vision, such as open-set detection and segmentation tech-
nologies including SAM (Kirillov et al., 2023; Ravi et al., 2024), Cutie (Cheng et al., 2023), and
GroundingDINO (Liu et al., 2023), have revolutionized our ability to identify objects in diverse
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environments. These models excel at detecting or segmenting objects in out-of-domain cases without
further finetuning. By integrating these capabilities into reinforcement learning, the agent can imme-
diately focus on essential decision-relevant elements, bypassing the need to study how to extract key
information from raw observations.

To mitigate the limitations of reconstruction losses in previous MBRL methods, we propose an
object-centric model-based reinforcement learning pipeline that leverages these advances in
computer vision. This pipeline involves four steps:

1. Annotating key objects in a small number of frames using segmentation masks.

2. Extracting object features through a parameter-frozen pre-trained vision foundation model
conditioned on these annotations. In this work, we use Cutie (Cheng et al., 2023).

3. Utilizing both these object features and the raw observations as inputs for training an object-
centric world model that predicts the dynamics of the environment while considering the
relationships between different objects and the scene.

4. Training the policy with imagined trajectories generated by the world model.

Since the MBRL component of this pipeline is based on STORM (Zhang et al., 2023), we name
our method OC-STORM. To our knowledge, we are the first to successfully adopt object-centric
learning on Atari and the visually more complex game Hollow Knight without relying on an extensive
number of labels or accessing internal game states (Delfosse et al., 2023; Jain, 2024). OC-STORM
outperforms the baseline STORM on 18 of 26 tasks in the Atari 100k benchmark and achieves the
best-known sample efficiency on several Hollow Knight bosses.

2 Preliminaries

2.1 Object Extraction
Object detection and segmentation have been active areas of e P e ey
research in recent years, leading to the development of various
influential methods. Appendix B.3 provides a brief review of
the methods which we considered for extracting object represen-
tations for reinforcement learning agents (Cheng & Schwing,
2022; Kirillov et al., 2023; Zhang et al., 2024; Ravi et al., 2024;
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Cutie is a retrieval-based video object segmentation algorithm  Fijgyre 1: A simplified illustra-
capable of generating consistent representations across frames. (ion of the object transformer in
The core component of Cutie is the object transformer, depicted  Cygie. The tuples in square brack-
in Figure 1, which integrates pixel-level and object-level fea- g represent the shapes of the corre-
tures. This integration enriches pixel-level information with sponding tensors. For more details,
high-level object semantics, thereby improving segmentation  please refer to the original paper
accuracy. The object-level feature is a compact vector, which  (Cheng et al., 2023).

we employ to represent the corresponding object.

The object memory of Cutie is first initialized with mask-pooling over pixel features and then refined
with the object transformer. For the pooling mask, Cutie generates 16 different masks to cover different
aspects of the object. The 16 object memory features and pooling masks are equally divided into
foreground and background components by default. The first half integrates information belonging to
the object, while the second half is targeted toward the background. Since backgrounds may vary
across different scenes, the background features can shift and become inconsistent. Therefore, only
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the first 8 foreground features are used as input to the agent. Consequently, each object is represented
by a 256 x 8 = 2048-dimensional vector.

As the pixel features are combined with positional embeddings, the resulting object memory encap-
sulates both the state and position of objects. Therefore, if the object is segmented correctly, this
representation should theoretically be sufficient for decision-making. Evidence supporting this claim
is presented in Section 5.1.

2.2 Model-Based Reinforcement Learning

MBRL involves two steps. In the model learning step, the agent uses collected data to train a
predictive model of the environment’s dynamics. In the policy optimization step, the agent uses
this model to simulate the environment to improve the policy. Although real experience could also
be used for training, modern MBRL methods often rely solely on simulated trajectories for policy
optimization. Our work also follows this pipeline and is closely connected with STORM (Zhang
et al., 2023) and DreamerV3 (Hafner et al., 2023). Since this part of the literature review often repeats
in recent MBRL works, we leave these details in the Appendix B for readers to reference.

3 Method

Figure 2 shows the full structure of our method. Our approach first employs self-supervised learning
to model the environment’s dynamics, then trains a model-free policy within the model’s imagined
trajectories. In this section, ¢, 1, and 8 denote the world model parameters, the critic (value) network
parameters, and the actor (policy) network parameters, respectively. Additionally, L refers to the
batch length of the sampling or imagination trajectory segments, and 7" is the length of an episode.

3.1 Object Feature and Visual Input

Our model leverages the first 8 output object memory features generated by Cutie’s object transformer
(Cheng et al., 2023), as described in Section 2.1. For visual input, we resize the original observation
to a resolution of 64 x 64, following previous settings (Hafner et al., 2023; Zhang et al., 2023). The
inputs are described by the following equations, where ¢ denotes the timestep, and K represents the
number of objects within the observation:

Observation: 0, € R3XHXW.
Object features: s?bje“ = Cutie(o;) € RE*2048 1)
Visual input: syisual — Resize(o;) € R3¥64%64,

The value of K is specific to the environment and predetermined by the user. For example, in Atari
Pong, we set K = 3 to account for the two paddles and one ball. Additionally, though not explicitly
stated in the equation, Cutie maintains internal states to retain information from previous observations,
improving tracking consistency. These states are reset at the start of each episode.

3.2 Categorical VAE

Modelling an autoregressive sequence model on raw inputs often results in compounding errors
(Hafner et al., 2023; Zhang et al., 2023; Alonso et al., 2024). To mitigate this, we employ a categorical
VAE (Kingma & Welling, 2014; Hafner et al., 2023), which transforms input states s; into a discrete
latent stochastic variable z;, as formulated in Equation 2. The VAE encoder (¢4) and decoder (p) are
implemented as multi-layer perceptrons (MLPs) for object feature vectors and convolutional neural
networks (CNNs) for visual observations:

Encoder:  z; ~ qy(zs;) € REX16%16 op R32x32

: 2
Decoder: 5, = py(2) € REX2048 [ p3x64x64
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Figure 2: The model structure of our proposed OC-STORM. The tuples in square brackets represent
the shapes of the corresponding tensors, where L denotes the batch length or sequence length, K
is the number of objects, and H and W are the image height and width, respectively. The object
module constitutes the proposed object-centric component, while the visual module processes resized
raw observations. K * is explained in Section 3.3. The trainable token and positional embeddings are
broadcasted to match the shapes of the corresponding tensors. The reward logit is 255-dimensional
and used for the symlog two-hot loss (Hafner et al., 2023).

As sampling from a distribution lacks gradients for backpropagation, we apply the straight-through
gradient trick (Bengio et al., 2013; Hafner et al., 2021) to retain them. The VAE treats each of the
K objects independently. Each latent variable comprises 16 categories with 16 classes for an object
and 32 categories with 32 classes for the visual input. The configuration of 32 x 32 is inherited from
prior work (Hafner et al., 2023; Zhang et al., 2023; Robine et al., 2023), while the 16 x 16 design is
motivated by the fact that a single object contains less information than the entire scene.

3.3 Spatial-Temporal Transformer

The spatial-temporal transformer is designed to predict the future states of objects. Each transformer
block contains a spatial attention block and a causal temporal attention block. Spatial attention
among objects (21,22, ..., zK) facilitates understanding inter-object relationships within a timestep.
Causal temporal attention across timesteps (2}, 23, ..., 2%) predicts an object’s future trajectory.
We concatenate the actions with the object and visual states to provide the control signal. The
spatial-temporal transformer is formulated as follows, where h represents the hidden states or the
transformer output, and 1 : L denotes timesteps from 1 to L:

bject _vi
Transformer:  hy.p, = fy(2].7 Jzylsual g),

hl = RK*XLX256

3)

The model can utilize either or both the object features and the visual input, with the visual input
treated as an object during processing. We use K * to account for the variability in the number of
objects due to different input choices. Specifically, K* can be K (object module only), K + 1 (both
modules), or 1 (visual module only, which corresponds to the baseline STORM).

3.4 Prediction Heads

The hidden states generated by the transformer are used to predict environment dynamics, rewards,

and termination signals. The dynamics predictor ggy“ is an MLP that predicts the distribution of

the next step’s latent variable. The reward and termination predictors ggeward and g(};ermination are
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self-attention mechanisms, with structures depicted in Figure 2. A query token gathers information
from multiple objects, similar to the CLS token in natural language processing (Devlin et al., 2019).
The predictors are formulated as follows:

Dynamics predictor: Ziy1 ~ ggy“(2t+1|ht),
Reward predictor: Py = ggeward(ht), 4
Termination predictor: 7= g(fcrmination(ht).

3.5 Training of the World Model and the Policy

The world model is trained in a self-supervised manner, optimizing it end-to-end. The policy is
trained over simulated trajectories generated by the world model and is optimized with a model-free
actor-critic algorithm. Our setup closely follows DreamerV3 (Hafner et al., 2023), which is also
similar to other MBRL methods (Zhang et al., 2023; Micheli et al., 2023; Robine et al., 2023). Full
details are provided in Appendix D.

4 Experiments

We first evaluate the performance of our method on the Atari 100k benchmark (Bellemare et al.,
2013), which serves as a standard testbed for measuring the sample efficiency of MBRL methods
(Kaiser et al., 2020; Micheli et al., 2023; Hafner et al., 2023). We then further test our method on
Hollow Knight (TeamCherry, 2017), which is a highly acclaimed game released in 2017. The core
gameplay of Hollow Knight revolves around world exploration and combat with enemies, and we
focus on combat with bosses in this work. Compared to Atari games, Hollow Knight’s boss fights are
visually more complex, with most key information representable as objects, making it well-suited to
demonstrating the capabilities of our proposed pipeline.

As outlined in Section 3, our method can utilize either object features, visual observations, or both.
In this section, all reported results from our method incorporate both types of inputs. A more detailed
analysis of input selection will be presented in Section 5.2.

4.1 Atari 100k

We adhere to the Atari 100k settings established in previous work Bellemare et al. (2013); Hafner et al.
(2023); Alonso et al. (2024); Zhang et al. (2023). In Atari, 100k samples correspond to approximately
1.85 hours of real-time gameplay. For each environment, we conduct five experiments using different
random seeds. Each seed’s performance is evaluated by the mean return across 20 episodes, and
we report the average of these five mean episode returns. The human normalized score (HNS) is
calculated with (score — random_score)/(human_score — random_score).

Table 1: Game scores and overall human-normalized scores on the selected games in the Atari 100k
benchmark. The detailed results for each environment and the number of annotated objects are
reported in Apppendix A.

Game Random Human \ IRIS DreamerV3 STORM STORM* \ OC-STORM
HNS mean 0% 100% | 105% 125% 122% 114.2% 134.8%
HNS median 0% 100% 29% 49% 42% 42.5% 43.8%

The results are shown in Table 1. Overall, OC-STORM outperforms STORM on 18 of 26 tasks.
To further assess the effectiveness of our method, we categorize the 26 games into two groups:
games in which all relevant information can be captured by objects, and games in which some
background information may be helpful. This categorization of environments is listed in Table 2.
For environments where key elements can be primarily represented as objects, we find OC-STORM
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significantly outperforms the baseline. For environments requiring a deeper understanding of back-
ground information, OC-STORM performs on par with the baseline. This confirms the value of our
object-centric approach.

4.2 Hollow Knight

While' the Atari‘ benchmark is Wid.ely Table 2: Human normalized mean of two categories in Atari
used in the reinforcement learning ok OC-STORM outperforms the baseline in games that

commu.mty, it .has hml.tatlons for can be represented as objects and is on par with the baseline
evaluating an object-centric approach. ;. .. games.

First, many Atari games require de-

tailed background information, such Category Games STORM*  OC-STORM
as boundaries, terrains, and mini- All key information ~ Assault, Asterix, BankHeist, Break- 116.5%  142.8%
h- h t b 1 for the decision can out, Boxing, ChopperCommand,
maps, which may no ¢ casily rep- be represented as ob- DemonAttack, Freeway, Jamesbond,
resented as distinct objects. Sec-  Jeots Kangaroo, KungFuMaster, Pong,
d h d 1i . RoadRunner, Seaquest, UpNDown
(?n ’ Some games ave dup lcate eI:ltl_ Not all key informa- ~Alien, Amidar, BattleZone, Crazy- 130.0% 124.0%
ties with identical appearances, which tion for the decision Climber, Frostbite, Gopher, Hero,
[ . can be represented as  Krull, MsPacman, PrivateEye,
Cutie inherently struggles to differen- objects with Cutie  Qbert

tiate. Lastly, Atari’s visual simplicity
allows methods like DreamerV3 and
STORM to capture environments and backgrounds almost perfectly, but such simplicity would be
rarely seen in real-world scenarios. In contrast, the boss fights in Hollow Knight offer a more suitable
testbed, where the visuals are much more complex, including dynamic and distracting elements.

For Hollow Knight, we similarly limit the number of samples to 100k, equivalent to approximately
3.1 hours of real-time gameplay at 9 FPS. For each boss, we conduct 3 experiments with different
random seeds. Each seed’s performance is measured by the mean episode return across 20 runs, and
the average of these 3 mean returns is reported.

Since Hollow Knight is not yet an established benchmark, existing methods differ significantly in
sample step limits, resolution, environment wrapping, reward functions, boss selection, etc. This
makes direct comparisons with existing methods challenging. As the primary goal of this work is to
improve MBRL through the use of object-centric representations, we therefore compare our results
with the equivalent baseline algorithm STORM. Nevertheless, we include the results from Yang
(2023) on the boss Hornet Protector for a rough comparison in Appendix E.5.

Table 3: Episode returns and win rates (WR) of STORM and the proposed OC-STORM on Hollow
Knight. The “#Objects" column shows the number of annotated objects for a boss. Scores that are
the highest or within 5% of the highest score are highlighted in bold. We provide training curves in
Appendix E.6.

Boss name Random Optimal | STORM OC-STORM | STORM WR  OC-STORM WR | #Objects
God Tamer 10 56 35.0 41.7 70.0% 55.0% 4
Hornet Protector 7 37 28.1 324 66.7% 100.0% 2
Mage Lord 3 38 19.6 28.0 5.0% 48.0% 3
Mantis Lords 2 42 332 35.2 71.7% 83.3% 3
Mawlek 8 41 36.9 37.2 98.3% 98.3% 3
Pure Vessel 2 55 89 15.7 0.0% 0.0% 2
Pure Vessel (400k) 2 55 253 35.0 6.7% 13.3% 2

As seen in Table 3, though the original STORM can also learn a good policy on Hollow Kight, our
proposed object-centric method converges significantly faster and yields stronger performance in
most cases, especially when the environment is more challenging, such as for Mage Lord and Pure
Vessel. Additionally, to evaluate the upper limit of our agent, we conduct a 400k run on Pure Vessel,
which demonstrates that our agent can defeat one of the most difficult bosses in the game with enough
training.
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5 Analysis

5.1 Completeness of the Object Representation

As described in Section 2.1, we utilize the output
feature of Cutie’s object transformer. While this
feature theoretically contains all the state and po-
sitional information of an object, it is uncertain
whether it fully captures these details in practice.
Specifically, we need to determine if the masked
pooling could potentially obscure positional in-
formation. The agent’s performance, as demon-
strated in Section 4, provides general quantitative
evidence. Here, we present qualitative evidence to
support this claim.
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Figure 3: Observation reconstructions on Atari
Boxing with two object feature vectors as inputs.
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To validate the completeness of the object repre-
sentation, we trained a 4-layer ConvTranspose2d . . i .
(Zeiler et al., 2010) decoder on the Atari Boxing Th‘? ObJ?Ct rpask fow 18 generatfad using Cutie,
game. This decoder takes two 2048-dimensional which highlights the relevant objects.

object features as inputs, corresponding to the

white and black players, respectively, to reconstruct the observation. The dataset was collected
using a random policy, with 10,000 frames for training and 1,000 frames for validation. Sample
reconstructions result from the validation set are shown in Figure 3. This indicates that these features
effectively capture the state and position of the objects.

5.2 Choice of the Object Representation

Cutie offers compact vector representations of objects, which are utilized in our method. Another
option would have been to directly utilize the generated mask as part of our input, as in FOCUS
(Ferraro et al., 2023). To assess the effectiveness of using feature vectors versus masks for object
representation, we conduct an ablation study, with results displayed in Figure 4.

Figure 4 shows that the vector-based representa- Atari Boxing Atari Pong
tion generally results in stronger performance than o 2
the mask-based representation. ! In some environ-
ments, using only the vector representation leads

to faster convergence than incorporating the visual =

50k 100k 50k 100k
mOdUIe' Combining bOth mOduleS Offers COHSiS- Hollow Knight MageLord Hollow Knight HornetProtector
tent improvements across most environments, par- 3 0
ticularly in Hollow Knight. 20 N
The main reason for using both vector and visual N 10
modules is that in some environments, the vec- ’ 50k 100k 50k 100k
tor generated by Cutie may lose information with- - LE:JETVY;:TI (OC-STORM) - —— z:c‘:i (STORM)

out providing access to the visual observation as
well. The mask representation may perform worse
since downsampling the model-generated masks to
STORM’s 64 x 64 could make them excessively
coarse, but using high-resolution visual input would significantly increase computational cost. In
contrast, the vector representation is summarized from high-resolution input, which is more consistent,
fine-grained and computationally efficient.

Figure 4: Training episode returns for different
input module configurations.

'We use a solid line to represent the mean of 5 seeds and use a semi-transparent background to represent the standard
deviation. “Vector" and “visual" correspond to the object module and visual module, respectively, as depicted in Figure 2.
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5.3 Analysis of Segmentation Model Errors

To mimic segmentation model failure, we ran- Atari Boxing Atari Pong
domly set the object feature vector to 0. This 4 20
operation is identical to how we process the fea-
ture when Cuite detects nothing, as described in
Appendix G.2. We conduct experiments on Atari "
Boxing and Pong with different zeroing probabil- 50K 100k 50K 100k
ities. To avoid interference from visual inputs, we v T T 0%

only use the object module in these experiments.

50

Figure 5: Training curves for Atari Boxing and
The results are presented in Figure 5. As the de-  Pong with 4 different zeroing probabilities.
tection accuracy of the vision model increases, the

agent’s performance improves accordingly. This also demonstrates the robustness of OC-STORM in
handling unstable detection results. Additionally, since the zeroing process is purely random and the
agent is trained only after the termination of each episode, every new episode during training serves
as an indicator of test-time failure performance.

5.4 Additional Experiments and Analysis

To further demonstrate the effectiveness of OC-STORM, we also conduct experiments on Metaworld,
a continuous control robotics benchmark, in Appendix F. The results demonstrate promising sample
efficiency, providing evidence that OC-STORM can perform well on novel object-centric environ-
ments out-of-the-box, without significant adaptation of the pipeline or extensive tuning. We also
include additional analysis on policy design and few-shot labeling, as well as an overview of the
computational overhead of OC-STORM.

6 Conclusions and Limitations

In this work, we introduced OC-STORM, a MBRL pipeline designed to improve sample efficiency
in visually complex environments. By integrating recent advances in object segmentation and
detection, we mitigate the limitations of traditional reconstruction-based MBRL methods, which
may be dominated by large background areas and overlook decision-relevant details. Through
experiments on Atari and Hollow Knight, we demonstrated that object-centric learning could be
successfully implemented without relying on internal game states or extensive labelling, highlighting
the adaptability of our method to complex, visually rich environments. OC-STORM represents a
meaningful step toward combining modern computer vision with reinforcement learning, offering an
efficient framework for training agents in visually complex settings.

Our method has two main limitations, each of which corresponds to a potential future direction:

1. Duplicated instances: Current video object segmentation algorithms are primarily developed
and trained to track a single object. When a scene contains two or more identical or similar
objects, approaches like Cutie (Cheng et al., 2023) may fail to segment each object correctly
and thus may affect performance.

2. Background representation: Our object representations do not capture elements that cannot
be easily described as objects or compact vectors, such as walls, map boundaries, or the overall
scene layout. Though we included visual inputs, the agent may still lose critical information
for decision-making if those parts are small in pixel areas. This is a general limitation of any
object-centric representation method.

These limitations are further illustrated and explained in Appendix I.
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A Full results on Atari 100k

Table 4: Game scores and overall human-normalized scores on the selected games in the Atari 100k
benchmark. The “#Objects" column shows the number of annotated objects for an environment.
Scores that are the highest or within 5% of the highest score are highlighted in bold. STORM?*
denotes the results of re-running STORM using our codebase. Compared to the original version,
we use a more lightweight configuration for faster training and decision-making on Hollow Knight.
STORM* shares an identical configuration to the proposed OC-STORM, except for module usage.
The higher score between OC-STORM and the baseline STORM* is underlined.

Game Random Human | IRIS DreamerV3 STORM DIAMOND | STORM* OC-STORM | #Objects
Alien 228 7128 | 420 1118 984 744 748.2 1101.4 4
Amidar 6 1720 | 143 97 205 226 144 162.7 2
Assault 222 742 | 1524 683 801 1526 | 1376.7 1270.4 4
Asterix 210 8503 | 854 1062 1028 3698 1318.5 1753.5 3
BankHeist 14 753 53 398 641 20 990 1075.2 3
BattleZone 2360 37188 | 13074 20300 13540 4702 5830 4590 3
Boxing 0 12 70 82 80 87 81.2 92.2 2
Breakout 2 30 84 10 16 132 41 525 3
ChopperCommand 811 7388 | 1565 2222 1888 1370 1644 2090 4
CrazyClimber 10780 35829 | 59234 86225 66776 99168 79196 84111 2
Demon Attack 152 1971 | 2034 577 165 288 324.6 4113 4
Freeway 0 30 31 0 0 33 0 0 2
Frostbite 65 4335 | 259 3377 1316 274 365.9 259.6 3
Gopher 258 2413 | 2236 2160 8240 5898 | 53072 4456.8 2
Hero 1027 30826 | 7037 13354 11044 5622 | 11434.1 6441.4 2
James Bond 29 303 | 463 540 509 427 408 347 4
Kangaroo 52 3035 | 838 2643 4208 5382 3512 4218 4
Krull 1598 2666 | 6616 8171 8413 8610 | 6522.2 9714.6 2
KungFuMaster 256 22736 | 21760 25900 26182 18714 20046 24988 3
MsPacman 307 6952 | 999 1521 2673 1958 1489.5 2400.7 2
Pong 21 15 15 -4 11 20 184 20.6 3
PrivateEye 25 69571 | 100 3238 7781 114 100 85 3
Qbert 164 13455 | 746 2921 4522 4499 | 29105 4546.2 3
RoadRunner 12 7845 | 9615 19230 17564 20673 14841 20482 4
Seaquest 68 42055 | 661 962 525 551 5574 712.2 3
UpNDown 533 11693 | 3546 46910 7985 3856 | 6127.9 6623.2 3
HNS mean 0%  100% | 105% 125%  122% 146% | 114.2% 134.8%

HNS median 0%  100% | 29% 49% 42% 37% 42.5% 43.8%

B Related Work

B.1 Model-based reinforcement learning

Ha & Schmidhuber (2018) first demonstrated the feasibility of learning by imagination in pixel-based
environments. SimPLe (Kaiser et al., 2020) further extended this idea to Atari games (Bellemare
et al., 2013), though with limited efficiency. The Dreamer series (Hafner et al., 2019; 2021; 2023)
employs categorical variational autoencoders and recurrent neural networks (RNNs), to achieve
robust performance across diverse domains. Dreamer introduces both a stable discretization method
and a set of techniques for robust optimization across domains with diverse observations, dynamics,
rewards, and goals. TWM (Robine et al., 2023) and STORM (Zhang et al., 2023) replace the RNN
sequence model in Dreamer with transformers, enhancing parallelism during training. TWM encodes
the observation, reward, and termination as three input tokens for the transformer, while STORM
encodes them as a single token, demonstrating better efficiency. IRIS (Micheli et al., 2023), and
improved efficiency variants A-IRIS (Micheli et al., 2024) and REM (Cohen et al., 2024), utilize
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VQ-VAE (van den Oord et al., 2017) for multi-token latent representations. DIAMOND (Alonso
et al., 2024) employs a diffusion process as the world model, further improving the final performance.
All of these methods predominantly use an Ly reconstruction loss for self-supervised learning.

B.2 Object-Centric Reinforcement Learning

Object-centric learning has gained increasing attention in both the machine learning and cognitive
psychology fields (Driess et al., 2023; Delfosse et al., 2023). Human infants inherently possess an
understanding of objects (Spelke, 1990), suggesting that object extraction from visual observations
may be fundamental for high-level decision-making. From a data processing perspective, utilizing
object information can significantly reduce computational costs compared to raw visual inputs.

Many attempts have been made to introduce object-centric learning to reinforcement learning systems.
However, to our knowledge, no existing methods could be directly applied to Atari games or Hollow
Knight without leveraging internal game states or an extensive number of annotations. These
object-centric learning methods broadly follow two main trends: two-stage and end-to-end.

Two-Stage methods usually first use computer vision models or techniques to detect objects, then
train the policy based on this object-level information. Current approaches often require labour-
heavy task-specific fine-tuning (Devin et al., 2018; Liu et al., 2021), access to game memories
(Delfosse et al., 2023; Jain, 2024), or leverage game-specific observation structures (Stanic et al.,
2024). FOCUS (Ferraro et al., 2023), the most similar work to ours, is a model-based method that
uses TrackingAnything (Yang et al., 2023) to generate segmentation masks, which are then fed
into DreamerV2 (Hafner et al., 2021) for policy training. However, using binary masks for object
representation limits efficiency, which will be discussed in Section 5.2. Moreover, FOCUS has
only been tested on six robot control tasks and hasn’t been fully explored in more visually complex
environments.

End-to-End methods jointly learn object perception and policy, often using unsupervised slot-based
approaches (Locatello et al., 2020) to discover and represent objects. While these methods allow the
visual module to be trained alongside the world model or policy network, their unsupervised learning
nature leads to poor object detection quality, especially in noisy, real-world scenes. As a result,
they are typically limited to simple object-centric benchmarks (Watters et al., 2024; Ahmed et al.,
2021) and struggle to generalize to visually complex tasks. Several model-based (Veerapaneni et al.,
2019; Lin et al., 2020; van Bergen & Lanillos, 2022) and model-free (Yoon et al., 2023; Haramati
et al., 2024) algorithms have used these ideas. Nakano et al. (2024) added slot attention to STORM,
achieving stronger performance on the OCRL benchmark (Yoon et al., 2023). Our work also builds
on STORM, but we use a pre-trained vision model instead of unsupervised slot attention, allowing us
to better handle more visually complex environments.
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B.3 Review of Object Representation Methods

Table 5: A brief review of state-of-the-art methods in different fields of computer vision related to
object-centric reinforcement learning.

Method Description

Cutie Retrieval-based semi-supervised video object segmentation algorithm. Provides
compact vector representation of objects using an object transformer (Cheng
et al., 2023).

XMem Retrieval-based semi-supervised video object segmentation algorithm with multi-
level memory system. Lacks compact object representation (Cheng & Schwing,
2022).

SAM Open-set image segmentation algorithm. Generates masks via user prompts but
requires a prompt for each frame in a video (Kirillov et al., 2023).

TrackAnything SAM + XMem for fine-grained video segmentation. Requires double amount of
computing compared to XMem (Yang et al., 2023).

PerSAM One-shot enhancement of SAM. Difficult to expand to few-shot cases (Zhang
et al., 2024).

SAM2 Semi-supervised video object segmentation algorithm. Capable of providing
compact vector representations. Potentially being more efficient than Cutie on
object-centric MBRL (Ravi et al., 2024).

YOLO Closed-set object detection algorithm. Requires extensive annotations for training
or fine-tuning (Redmon et al., 2016; Jocher et al., 2023).

GroundingDINO Open-set object detection algorithm. Generates object bounding boxes using

natural language prompts but struggles with rare or abstract cases, such as video
game players (Liu et al., 2023).

Slot attention

Unsupervised image object discovery and segmentation algorithm. Underper-
forms compared to supervised methods (Locatello et al., 2020).

SAVi Unsupervised video object discovery and segmentation algorithm. Evaluation is
semi-supervised, though training is unsupervised. Underperforms compared to
semi-supervised methods (Kipf et al., 2022; Elsayed et al., 2022).

Omnimotion Video point-tracking algorithm. Provides pixel-level tracking but lacks object-
level information and does not support few-shot scenarios (Wang et al., 2023).

Unimatch Dense optical flow and depth estimation algorithm. Useful for moving identity

detection but cannot extract object-level information and struggles with out-of-
domain generalization (Xu et al., 2023).

SAM?2 (Ravi et al., 2024) provides a strong alternative to Cutie, and could also be integrated into our
proposed pipeline. As it was published concurrently with this work, we leave the investigation to
future work.
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C Reconstruction Analysis in STORM

Reconstruction Ground Truth

Probabilities

Figure 6: Sample ground truth observations from the Hollow Knight boss Hornet Protector, the
reconstruction results of STORM, and the probabilities of the 32 x 32 latent distribution. In this
instance, STORM was trained on 200k samples. The key characters are missing in the reconstructions.

As mentioned in Section 1, MBRL methods that rely on Lo reconstruction loss may miss key elements
for controlling. Here, we present a qualitative reconstruction example using STORM (Zhang et al.,
2023), as shown in Figure 6. Since the 64 x 64 image processed by the model may be hard to interpret,
a high-resolution sample is provided in Figure 7.

The two main characters in the game are the Knight on the left (in white and black) and the boss
Hornet Protector on the right (in red). The 9 “masks" in the top left represent the Knight’s remaining
health, showing 1 health point remaining and 8 lost in the case depicted in Figure 7.

The autoencoder captures static or large-area features, such as lighting, shadows, streaks, smoke,
and health indicators, which are not crucial for gameplay or rewards. However, the model struggles
with character positions and states. While MBRL methods have shown nearly perfect reconstruction
and simulation in some simpler environments like Atari games (Micheli et al., 2023; Zhang et al.,
2023), they face challenges in visually complex environments such as Hollow Knight or real-life
scenes. Similar difficulties could also be observed in Minecraft (Guss et al., 2021), as depicted in the
DreamerV3 paper (Hafner et al., 2023).

Figure 7: Sample high-resolution frame from the Hollow Knight boss Hornet Protector. Though not
visible in this figure, the background is dynamic, which adds to the challenge of learning for the
world model.

Despite missing key objects in reconstructions, MBRL algorithms (Zhang et al., 2023; Hafner et al.,
2023) that learn solely from generated trajectories still achieve reasonable control in these tasks. The
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precise reasons for this remain unclear. One possible explanation is that the encoder, even without
perfect reconstructions, can differentiate character states and generate distinct latent distributions, as
illustrated in Figure 6.

These results indicate that even with reward and termination supervision, the world model struggles
to prioritize key objects. Simply increasing resolution may not help, as the reconstruction loss still
weighs characters proportionally to the whole scene, potentially inflating computation and memory
costs. Increasing latent variables, as in IRIS (Micheli et al., 2023) or using multi-step diffusion, as in
DIAMOND (Alonso et al., 2024), could improve performance but is computationally expensive.

Thus, our proposed object-centric representation offers an effective solution to these challenges.

D Loss Functions

D.1 World Model Learning

The world model is trained in a self-supervised manner, optimizing it end-to-end. Our setup closely
follows DreamerV3 (Hafner et al., 2023), with details presented for completeness. We use mean
squared error (MSE) loss for reconstructing the original inputs, symlog two-hot loss Lgy, (Hafner
et al., 2023) for reward prediction, and binary cross-entropy (BCE) loss for termination signal
prediction. These losses, collectively referred to as prediction loss, are defined as:

Lored(®) = |18t — s¢l13 + Lsym (Pe,7¢) + 7 log 7 + (1 — 7¢) log(1 — 7¢) . &)
—_——
Reconstruction Loss Reward Loss Termination Loss

The dynamics loss L’fy“(qb) guides the sequence model in predicting the next distribution. The
representation loss £, (¢) allows the encoder’s output to be weakly influenced by the sequence
model’s prediction, ensuring that the dynamics are not overly difficult to learn. These losses are
identical Kullback-Leibler (KL) divergence losses except for their gradient propagation settings. We
use sg(+) to denote the stop gradient operation. The dynamics and representation losses are defined

as:

Layn(¢) = max(1, KL [sg(qs(ze41]5:41)) || 957" (Gegahe)]), (6a)
Lyep(¢) = max(1, KL[gg(ze41|5041) || sg(g?y“(ét+1lht))})~ (6b)

The max operation represents free bits for KL divergence, encouraging the model to focus on
optimizing prediction losses for better feature extraction if the KL divergence is too small.

The total loss function for training the world model is calculated as follows, where [Ep denotes the
expectation over samples from the replay buffer:

L(¢) = Ep | Lprea(¢) + Layn(@) + 0.5Lsep ()| @)

The coefficient of 0.5 for L., is used to prevent posterior collapse (Lucas et al., 2019), a situation
where the model produces the same distribution for different inputs, causing the dynamics loss to
trivially converge to 0. The imbalanced KL divergence loss helps to mitigate this issue.

D.2 Policy Learning

The policy learning approach closely follows that of DreamerV3 (Hafner et al., 2023), with modi-
fications specific to our method. The key differences lie in the input for the policy and the action
dimension for the game Hollow Knight. We use the concatenation of object latents, object hidden
states, visual latents, and visual hidden states as input features. For Hollow Knight, a multi-discrete
action space is employed.
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The agent learns entirely on the imagination trajectories generated by the world model. To begin
the imagination process, we first sample a short contextual trajectory from the replay buffer. During
imagination, future environmental inputs s;y.;, are unknown, and sampling from the posterior
distribution g (2¢|s;) is unavailable. Thus, we sample the latent variable from the prior distribution
ggyn(2t+1|ht) and optimize the policy over Z;,1. However, during testing, the agent interacts
directly with the environment, allowing access to the posterior distribution of the last observation.
This introduces a difference in notation. For simplicity, we do not distinguish between z; and 2; in
the following descriptions.

The agent uses both the latent variable 2; and hidden states h; as inputs, as defined below:
T
Critic: Vi (24, he) = Er, 0 [Z ,Yer_k},
k=0 ®)

Actor: ay ~ 7T9<at|Zt, ht)

Here, T is the number of timesteps in the episode. We use two separate MLPs for the critic and actor
networks. The symbol ¢ indicates that the trajectories are generated within the imagination process
of the world model.

For value loss, we employ the A-return G7 (Sutton & Barto, 2018; Hafner et al., 2023) to improve
value estimation. It is recursively defined as follows, where 7, is the reward predicted by the world
model, and 7; represents the predicted termination signal:

G =7+ y(1—7) [(1 — A)Vi(zee1, heg) + AGN | (92)
G} = Vy(zr,hz). (9b)

To regularize the value function, we maintain an exponential moving average (EMA) of the critic’s

parameters, as defined in Equation (10). This regularization technique stabilizes training and helps

prevent overfitting, where ), represents the current critic parameters, o is the decay rate, and wg}_\/{A

denotes the updated critic parameters:

Pt = oM 4 (1 — o)y (10)

For policy gradient loss, we apply return-based normalization for the advantage value. The normal-
ization ratio S is defined in Equation (11) as the range between the 95th and 5th percentiles of the
A-return Gi‘ across the batch (Hafner et al., 2023):

S = percentile(G7, 95) — percentile(G?}, 5). (11)

The complete loss functions for the actor-critic algorithm are given by Equation (12):

G -V,
LO)=Er, 4 {—sg(M) In g (a2, he) — nH(m)(at|zt7 ht))} , (12a)

L) =y {zsym <V¢(zt, he), sg(Gg\)) + Loym <V¢(zt, he),sg(Vigeia (24, ht)))] . (12b)

Here, H(-) denotes the entropy of the policy distribution, and 7 = 1 x 1073 is the coefficient for
entropy loss.

E Hollow Knight

E.1 Related Work

Despite its popularity among players, Hollow Knight has seen limited use as a benchmark for research
in reinforcement learning. We introduce repositories, published research, and other relevant resources
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that leverage or explore Hollow Knight as a benchmark. Cui (2021) employs DQN (Mnih et al., 2015)
and its variants but requires modding the game background to black to enhance character perception.
Yang (2023) uses the Rainbow algorithm (Hessel et al., 2018) with additional techniques like DrQ
(Yarats et al., 2022; 2021), achieving high win rates against several of the game’s bosses. Yang’s
repository has been widely forked and adopted. Building on his work, Lee (2023) studies the effect
of reward shaping, while Sun (2024) focuses on improving training efficiency by tuning the game
interaction configuration and switching to the PPO algorithm (Schulman et al., 2017). Jain (2024)
leverages internal game states to extract hitboxes as input for the algorithm, representing them as
segmentation masks that are passed to DQN or PPO.

E.2 Environment Configuration

Hollow Knight is a modern video game developed with Unity (Technologies, 2005). To our knowl-
edge, efficient simulators for this game, such as those available for Atari (Brockman et al., 2016;
Towers et al., 2023), do not exist. Therefore, we developed a custom wrapper that captures screenshots
of the game at 9 FPS and sends keyboard signals to execute actions. The 9 FPS rate is a choice
based on the author’s experience with the game and considerations for computational efficiency. To
obtain reward signals, we developed a modding plugin (Bham & Wyza, 2017) that logs when the
player-controlled character (the Knight) either hits an enemy or is hit. Our wrapper then parses this
log file to generate reward and termination signals.

The game execution and agent training are conducted on a Windows machine. To monitor training
progress and statistics without interrupting the game, we needed a method to send keyboard inputs to
a background or unfocused window. However, Windows lacks an API for this purpose. As a result,
the game window must remain in the foreground, fully occupying the training device and hindering
monitoring. To address this, we utilized a Hyper-V (Cooley, 2022) Windows virtual machine to
run the game in the background, with Ray (Moritz et al., 2018) facilitating communication between
the host and virtual machine. Training and processing occur on the host machine, while the virtual
machine handles interactions with the environment. This setup can be extended to distributed nodes,
with some handling game rendering and others managing training tasks.

For in-game configuration, the charms (Wiki, 2018) are set to Unbreakable Strength, Quick Slash,
Soul Catcher, and Shaman Stone across all experiments. This configuration is chosen to explore the
agent’s fighting potential rather than its glitch-finding abilities.

E.3 Action Space

All previous works utilize a human-specified action space rather than the original keyboard inputs.
For example, in the Yang (2023) implementation, short and long jumps are treated as two distinct
actions, which are originally controlled by the duration of the jump button press. His environment
wrapper handles this difference with a fixed command. While this design reduces the exploration and
computational costs for reinforcement learning agents, it cannot capture the full range of possible
actions in the game. Advanced operations, as demonstrated in this video (CrankyTemplar, 2018),
require full control of the keyboard. Therefore, we design the action space as a multi-binary-discrete
one that directly binds to the press and release of the physical keyboard, which will be explained in
Section E.3.

We design the action space as a multi-binary-discrete space directly tied to the press and release
states of eight specific keys on the keyboard. These keys include W, A, S, and D for movement
directions, and J, K, L, and I for attack, jump, dash, and spell actions, respectively. Each key’s state
is represented as a binary variable, where 0 corresponds to a key release and 1 corresponds to a key
press. The action can therefore be described as a € {0, 1}, with each element representing the
binary state of one key. The key’s state is maintained between frames, and a toggle signal is sent only
when there is a change in the key state from 0 — 1 (press) or 1 — 0 (release).
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The probability of an action is determined by the independent probabilities of each key’s state:

mg(ak|z, h) (13)

o

mg(alz,h) =

E
Il
-

where a* denotes the state of the k-th key.

The entropy of the action space, H(mg(a|z, h)), is the sum of the entropies of the individual key
states:

H(mg(alz,h)) = > H(mg(a"|2,h)) (14)
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~
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-

This design provides fine-grained control over the agent’s actions, allowing for the execution of
complex manoeuvres while maintaining a tractable exploration space for reinforcement learning.

E.4 Reward Shaping in Hollow Knight

Most existing methods (Yang, 2023; Sun, 2024; Jain, 2024; Cui, 2021; Lee, 2023) for Hollow Knight
use a reward structure of +1 for hitting an enemy and -1 for taking damage. Some approaches
modify the weighting ratios, while others introduce auxiliary rewards for performing specific actions.
However, we found that these settings are suboptimal for training reinforcement learning agents.

Our method assigns a +1 reward signal for hitting an enemy and a virtual termination signal upon
being hit. The game continues until the episode naturally ends. The termination signal is stored in
the replay buffer for training the world model, treating health loss as a life-loss event. Leveraging
life-loss information is a common technique that aids in value estimation (Ye et al., 2021; Micheli
et al., 2023; Zhang et al., 2023; Alonso et al., 2024). Additionally, the Knight can damage enemies
in multiple ways, and these damages are normalized against the base attack damage to compute the
positive reward.

HornetProtector MantisLords

304

20+ 20

0 50k 100k 0 50k 100k
—— OC-STORM Legacy rewards

Figure 8: Training episode returns for Hollow Knight’s Hornet Protector and Mantis Lords under
different reward settings. “Legacy rewards" refer to the reward scheme used in prior works. For
comparison, we aligned the returns from "legacy rewards" with our baseline settings by accounting
for lost health.

Here, we present the key differences between the two reward settings. As illustrated in Figure 8,
our reward configuration is more robust than those used in previous studies, resulting in signifi-
cantly improved performance, especially in more challenging environments like Mantis Lords. This
improvement can be analyzed from two perspectives:

1. Terminating the episode upon being hit better aligns with human cognition and the agent’s
expected behaviour. The aim is for the agent to deal as much damage as possible without
taking any. While this may seem aggressive, raising concerns that the agent might sacrifice
itself to deal more damage, neither our qualitative nor quantitative results show this tendency.
Survival naturally offers more opportunities to deal future damage, which the agent learns to
prioritize. Although applying a negative penalty for being hit could prevent the agent from
sustaining multiple consecutive hits in highly unfavourable situations, such scenarios should
not occur under an optimal or near-optimal policy.
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2. While maintaining the same optimal policy, truncating future rewards upon being hit sig-
nificantly reduces the variance in value estimation. Hollow Knight is a highly stochastic
environment where bosses behave aggressively yet unpredictably. Estimating value directly
over an episode (lasting approximately 300 to 700 timesteps) is inherently challenging in such
settings.

E.5 Comparision with a Model-Free Baseline

As introduced in Section E.1, Yang’s repository (Yang, 2023) is a widely recognized implementation
within the community. In this section, we compare the performance against the boss Hornet Protector.

Yang’s reward structure assigns +0.8 for hitting an enemy and -0.8 for taking damage, with additional
auxiliary rewards on the order of 1 x 10~* for various actions. A small feedback reward is also given
at the end of each episode. The choice of a 0.8 weight factor for rewards reflects the use of +1/-1
reward clipping, with a margin reserved for the auxiliary rewards. We provide a broad comparison
with this approach below.

HornetProtector episode return HornetProtector win rate

N /_//\/\ : Y

0
/ 0.0

0 50k 100k 0 50k 100k

Legacy rewards — Yang

Figure 9: Training episode returns and win rates on Hollow Knight’s Hornet Protector with our
proposed method and Yang’s (Yang, 2023) method. “Legacy rewards" are as described in Section
E.4. We applied some preprocessing to align the two returns for easier comparison, so the “legacy
rewards" curve may appear different from the one shown in the previous section. The win rate is
more straightforward and can be used for comparison without changing.

As shown in Figure 9, our implementation is more efficient than Yang’s. As we noted in Section 4.2,
there are significant differences between our methods, making this not necessarily a fair comparison
from an algorithmic standpoint. This comparison is intended solely to demonstrate the efficiency of
our implementation.

Additionally, Yang claims that his agent can achieve 10 wins out of 10 battles, which is accurate
despite his win rate in our plot appearing to be lower than 100%. Two reasons may lead to this. First,
his original sample steps are greater than ours, which may account for differences in performance.
Second, our in-game charm configuration (Wiki, 2018) differs from the one used in his implementation.
When testing Yang’s implementation, we retained our current charm settings, which likely impacted
the win rate results.
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E.6 Training Curves
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Figure 10: The training episode returns on Hollow Knight. We use a solid line to represent the mean
of 3 seeds and use a semi-transparent background to represent the standard deviation.
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F Additional Experiments and Analysis

F.1 Additional Experiments on Meta-World

To evaluate the potential of OC-STORM on continuous control tasks, we conduct 4 experiments on
the Meta-world benchmark. We compare our results with MWM (Seo et al., 2022), which is also
designed to help the world model to focus on small dynamic objects. We choose 1 easy, 2 medium,
and 1 hard task according to the MWM paper (see Seo et al. (2022) Appendix F, Experiments Details).
These tasks are randomly selected to cover different objects and policies.

As shown in Figure 11, OC-STORM demonstrates improved sample efficiency on 3 of 4 tasks,
providing evidence that this approach can also perform well on continuous tasks out-of-the-box,
without significant adaptation of the pipeline or extensive tuning for these very different continuous
control environments.

Meta-world reach Meta-world sweep
100% 100%

0% 0% Z-

0 100k 200k 0 200k 400k

Meta-world basketball Meta-world pick-out-of-hole

% o
25% 25%

o [~ o
0 200k 400k 0 500k 1000k
—— OC-STORM STORM ~ —— MWM

DreamerV2

Figure 11: Training success rates on 4 Meta-world (Yu et al., 2019) tasks. The data of MWM (Seo
et al., 2022) and DreamerV?2 (Hafner et al., 2021) is from the MWM paper. OC-STORM generally
exhibits higher sample efficiency than STORM. In some tasks, it also outperforms MWM in terms of
efficiency and performance.

We provide the sample annotation masks used in our Meta-world exeriments below in Figure 12.

basketball

ﬁl"’

pick-out-of-hole reach

sweep

Observation

Figure 12: Sample frames and annotation masks for Meta-world tasks.

Annotation mask

F.2 Attention-Based policy or MLP-based Policy

When handling multiple objects, naturally one would think of an attention-based policy network like
the self-attention predictor described in Figure 2. A previous work OC-SA (Stanic et al., 2024) has
also explored such structure. However, we still design our actor and critic networks as MLPs which
take the concatenation of object latent variables and hidden states as input.
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We found that the attention-based policy tends to overfit pre-learned behaviours and makes it hard
to learn new knowledge. This won’t be a major issue in stationary games like Boxing but will face
trouble in non-stationary games like Pong. For example, the attention-based policy can quickly learn
how to catch the ball but can’t efficiently learn how to score against the opponent. On the one hand,
we can confirm that by visually checking the rendered episodes. On the other hand, numerically
speaking, we can observe the episode length of playing Pong. If the episode length increases while
the episode returns remain at the same level, then we can tell that the agent learns how to catch the
ball, but is stuck in that local optimum.

Atari Boxing Atari Pong Atari Pong episode length
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Figure 13: Training episode returns for Atari Boxing, Pong and episode lengths for Pong of attention-
based policy and MLP-based policy. The attention-based policy can learn as quickly as the MLP-based
policy for catching the ball but struggles to transition to the scoring phase in Atari Pong.

As the results plotted in Figure 13, we can tell that attention-based policy suffers from that issue. The
episode length of both policies rises at a similar speed before 50k steps, but it declines slower for the
attention-based policy after that. The experiments are conducted using only the object module, so the
MLP-based policy curves are identical to the "vector" ones in Figure 4. As the visual latent itself
contains all the information, the agent can choose only to use that part of the information and thus
may affect our judgement on the effectiveness of the attention-based policy.

Though the attention-based policy has the potential to handle a dynamic number of objects, our
experiments are conducted on a fixed number. As it doesn’t demonstrate superior performance
than the MLP-based policy in our case, we always use MLP-based in other tasks for consistency in
evaluation.

F.3 TImpact of the Number of Annotations

Since Cutie is a retrieval-based algorithm that stores past frames and masks in a buffer for reference,
it naturally supports the use of multiple annotation masks beyond the first frame by substituting
model-generated masks in the buffer. Incorporating more label masks can capture a wider range of
object states, leading to more consistent segmentation results. However, reducing the number of
labels can further lower annotation costs and computational complexity. In this section, we explore
the impact of the number of labels on agent performance. To eliminate the influence of visual input,
we conduct these experiments using only the object module.

Atari Boxing Atari Pong

100

0 50k 100k 0 50k 100k

Figure 14: Training episode returns for Atari Boxing and Pong with different numbers of annotation
segmentation masks. Increasing the number of annotation masks enhances the robustness of the
agent’s performance.
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As shown in Figure 14, increasing the number of annotation segmentation masks enhances the
robustness of the agent’s performance, even in visually static environments like Atari Boxing and
Pong. In these environments, a single frame can include all necessary objects for decision-making.
However, Cutie may lose track of objects if their states deviate significantly from those in the labelled
masks, such as the punching state versus the standing state in Boxing, or the paddle in Pong when it
is partially off-screen and appears shorter than when centred.

Moreover, in complex environments like Hollow Knight and Minecraft, a single frame may not
capture all objects, which often necessitates additional segmentation masks. For consistency in
evaluation, we use six annotation segmentation masks for Atari and twelve for Hollow Knight.

F.4 The Computational Overhead of OC-STORM

The computational overhead of OC-STORM on Atari games with an NVIDIA GeForce RTX 3090 is
shown in Table 6. The input resolution for Cutie is 320%420 (double the original 160%210). Thus the
computational cost of introducing Cutie is acceptable in many cases.

Table 6: The computational overhead of OC-STORM on Atari games. The three numbers in a block
here mean sample or evaluation speed (iterations/second), training speed (iterations/second) and
hours spent for a train with a 100k sample budget, respectively.

Algorithm ‘ 0 objects ‘ 1 object ‘ 2 objects ‘ 3 objects
STORM* 114it/s 8.1it/s 3.67h

OC-STORM (obj module only) 32it/s  8.8it/s 4.02h | 32it/s 8.5it/s 4.14h | 31it/s 7.8it/s 4.46h
OC-STORM (both modules) - 28it/s  5.9it/s 570h | 27it/s 5.5it/s 6.08h | 27it/s 5.3it/s 6.27h

G Details for the Use of Cutie

G.1 Number of Annotations and Input Resolutions

To prompt Cutie, we use 6 annotation masks per Atari game and 12 per Hollow Knight boss. One
potential critique is that few-shot annotation requires prior knowledge of the environment, which may
seem unsuitable for general agent learning. However, we view this process as akin to informing the
agent of certain task rules. While rewards can reflect task rules, they are often too sparse to facilitate
an understanding of complex environments. Just as humans may initially struggle to understand how
to play a game without being told the rules, there is no reason not to inform agents of key objects.
Therefore, we believe this pipeline holds practical value in many cases.

For Atari, we upscale the observation from 210 x 160 to 420 x 320. This upscaling aids in the
identification of small objects in Atari games, such as the ball in Pong and Breakout. For each game,
we hand annotate 6 masks.

For Hollow Knight, we resize the observation’s shorter side to 480p while maintaining the aspect
ratio before inputting it into the Cutie. For each game, we hand annotate 12 masks.

G.2 Modifications for Integration with STORM

‘We make no modifications to the official implementation, except for caching and copying internal
variables.

The only special process involves setting the object feature vector to O when Cutie loses track of
the object. Cutie uses an attention guidance mask within its object transformer, which restricts
which visual features the object feature can attend to. This mask is trained as part of an auxiliary
segmentation task. When the attention guidance mask is set to all 1s (0 allows attention and 1
rejects it), indicating that Cutie cannot find strong evidence of the object’s presence in the scene, the
transformer theoretically should reject all attention from the visual features.
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However, in this situation, Cutie inverts the mask, allowing the object feature to attend to all visual
features in an attempt to search for the object in the scene. As a result, the attention becomes scattered
across the observation space, leading to unpredictable output for the object feature. This unpredictable
behaviour complicates learning in the world model.

To address this, we set the object feature vector to 0 when the attention guidance mask is entirely 1.
This informs the world model that the object feature is missing, rather than reflecting a random state.
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H Hyperparameters

Table 7: Hyperparameters for both Atari and Hollow Knight. The life loss information configuration
aligns with the setup used in EfficientZero (Ye et al., 2021). Regarding data sampling, each time we
sample B trajectories of length 7" for world model training, and sample By trajectories of length C
for starting the imagination process. The train ratio is defined as the number of gradient steps over
the number of environment steps.

Hyperparameter Symbol Value
Transformer layers K 2
Transformer feature dimension D 256
Transformer heads - 4
Dropout probability p 0.1
World model training batch size By 32
World model training batch length T 32
Imagination batch size B 512
Imagination context length C 4
Imagination horizon L 16
Train ratio - 1
Environment context length - 16
Gamma ¥ 0.985
Lambda A 0.95
Entropy coefficiency n 1x1073
Critic EMA decay o 0.98
Optimizer - Adam (Kingma & Ba, 2015)
Activation functions - SiLU (Elfwing et al., 2018)
World model learning rate - 1.0 x 107*
World model gradient clipping - 1000
Actor-critic learning rate - 3.0 x 107
Actor-critic gradient clipping - 100
Gray scale input - False
Frame stacking - False
Atari frame skipping - 4 (max over last 2 frames)
Hollow Knight FPS - 9
Use of life information - True
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I Illustration of Limitations

(a) Miss one lord. (b) Succesfully identify two lords.

Figure 15: Sample frame and segmentation masks generated by Cutie from the Hollow Knight Mantis
Lords. Cutie may lose track of one of the lords (represented with green masks). This tracking issue
is more likely to occur not only in this scenario but also in other environments where duplicated
instances are present, compared to scenes with a single instance.
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(a) Sample frame. (b) Annotation mask.

Figure 16: Sample frame and annotation segmentation masks from Atari Gopher. We only specify
two objects for Gopher. The tunnel in the ground is challenging to encode as an object given our
model structure.
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J Sample Annotations for Atari Games and Hollow Knight

Figure 18 and 17 present sample frames and annotations used by our method in Atari and Hollow
Knight, respectively. For each Atari game, we annotate 6 frames, and for each boss in Hollow Knight,
we annotate 12 frames.

Annotation mask
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Figure 17: Sample frames and annotation masks for Hollow Knight bosses.
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Figure 18: Sample frames and annotation masks for Atari games.
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