
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OMNIPARSER FOR PURE VISION BASED GUI AGENT

Anonymous authors
Paper under double-blind review

ABSTRACT

The recent advancements of large vision language models shows their great poten-
tial in driving the agent system operating on user interfaces. However, we argue
that the power multimodal models like GPT-4V as a general agent on multiple
operating systems across different applications is largely underestimated due to
the lack of a robust screen parsing technique capable of: 1) reliably identifying
interactable icons within the user interface, and 2) understanding the semantics of
various elements in a screenshot and accurately associate the intended action with
the corresponding region on the screen. To fill these gaps, we introduce OMNI-
PARSER, a comprehensive method for parsing general user interface screenshots
into structured elements, which significantly enhances the ability of GPT-4V to
generate actions that can be accurately grounded in the corresponding regions of
the interface. We first curated an interactable icon detection dataset using popular
webpages and an icon description dataset. These datasets were utilized to fine-tune
specialized models: a detection model to parse interactable regions on the screen
and a caption model to extract the functional semantics of the detected elements.
OMNIPARSER significantly improves GPT-4V’s performance on ScreenSpot bench-
mark. And on Mind2Web and AITW benchmark, OMNIPARSER with screenshot
only input outperforms the GPT-4V baselines requiring additional information
outside of screenshot. We further demonstrate that OMNIPARSER can seamlessly
integrate with other vision language models, significantly enhancing their agentic
capabilities.

1 INTRODUCTION

Large language models have shown great success in their understanding and reasoning capabilities.
More recent works have explored the use of large vision-language models (VLMs) as agents to
perform complex tasks on the user interface (UI) with the aim of completing tedious tasks to replace
human efforts (YZL+23; YYZ+23; DGZ+23; ZGK+24; HWL+23; YZS+24; WXJ+24; GFH+24;
CSC+24). Despite the promising results, there remains a significant gap between current state-of-the-
arts and creating widely usable agents that can work across multiple platforms, e.g. Windows/MacOS,
IOS/Android and multiple applications (Web broswer Office365, PhotoShop, Adobe), with most
previous work focusing on limiting applications or platforms.

While large multimodal models like GPT-4V and other models trained on UI data (HWL+23;
YZS+24; CSC+24) have demonstrated abilities to understand basic elements of the UI screenshot,
action grounding remains one of the key challenges in converting the actions predicted by LLMs
to the actual actions on screen in terms of keyboard/mouse movement or API call (ZGK+24). It
has been noted that GPT-4V is unable to produce the exact x-y coordinate of the button location,
Set-of-Mark prompting (YZL+23) proposes to overlay a group of bounding boxes each with unique
numeric IDs on to the original image, as a visual prompt sent to the GPT-4V model. By applying
set-of-marks prompting, GPT-4V is able to ground the action into a specific bounding box which has
ground truth location instead of a specific xy coordinate value, which greatly improves the robustness
of the action grounding (ZGK+24). However, the current solutions using SoM relies on parsed
HTML information to extract bounding boxes for actionable elements such as buttons, which limits
its usage to web browsing tasks. We aim to build a general approach that works on a variety of
platforms and applications.

In this work, we argue that previous pure vision-based screen parsing techniques are not satisfactory,
which lead to significant underestimation of GPT-4V model’s understanding capabilities. And a

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

reliable vision-based screen parsing method that works well on general user interface is a key to
improve the robustness of the agentic workflow on various operating systems and applications. We
present OMNIPARSER, a general screen parsing tool to extract information from UI screenshot into
structured bounding box and labels which enhances GPT-4V’s performance in action prediction in a
variety of user tasks.

We summarize our contributions as follows:

• We curate a interactable region detection dataset using bounding boxes extracted from DOM
tree of popular webpages.

• We propose OmniParser, a pure vision-based user interface screen parsing method that
combines multiple finetuned models for better screen understanding and easier grounded
action generation.

• We evaluate OmniParser on the ScreenSpot, Mind2Web, and AITW benchmarks, demon-
strating significant improvement over the GPT-4V baseline, using only screenshots as input.

• We show that OMNIPARSER operates seamlessly and serves as an easy-to-integrate tool for
a variety of state-of-the-art public vision language models. And we open-source both our
code and model to facilitate further development and integration of OMNIPARSER to other
vision language models. 1

2 RELATED WORKS

2.1 UI SCREEN UNDERSTANDING

There has been a line of modeling works focusing on detailed understanding of UI screens,
such as Screen2Words (WLZ+21), UI-BERT (BZX+21), WidgetCaptioning (LLH+20), Action-
BERT (HSZ+21). These works demonstrated effective usage of multimodal models for extracting
semantics of user screen. But these models rely on additional information such as view hierarchy, or
are trained for visual question answering tasks or screen summary tasks.

There are also a couple publicly available datasets on UI screen understanding. Most notably the
Rico dataset (DHF+17), which contains more than 66k unique UI screens and its view hierarchies.
Later (SWL+22) auguments Rico by providing 500k human annotations on the original 66k RICO
screens identifying various icons based on their shapes and semantics, and associations between
selected general UI elements (like icons, form fields, radio buttons, text inputs) and their text labels.
Same on mobile platform, PixelHelp (LHZ+20) provides a dataset that contains UI elements of
screen spanning across 88 common tasks. In the same paper they also released RicoSCA which
is a cleaned version of Rico. For the web and general OS domain, there are several works such
Mind2Web (DGZ+23), MiniWob++(LGP+18), Visual-WebArena (KLJ+24; ZXZ+24), and OS-
World (XZC+24) that provide simulated environment, but does not provide dataset explicitly for
general screen understanding tasks such as interactable icon detection on real world websites.

To address the absence of a large-scale, general web UI understanding dataset, and to keep pace with
the rapid evolution of UI design, we curated an icon detection dataset using the DOM information
from popular URLs avaialbe on the Web. This dataset features the up-to-date design of icons and
buttons, with their bounding boxes retrieved from the DOM tree, providing ground truth locations.

2.2 AUTONOMOUS GUI AGENT

Recently there has been a lot of works on designing autonomous GUI agent to perform tasks in
place of human users. One line of work is to train an end-to-end model to directly predict the next
action, representative works include: Pixel2Act (SJC+23), WebGUM(FLN+24) in web domain,
Ferret (YZS+24), CogAgent (HWL+23), and Fuyu (BEH+23) in Mobile domain. Another line
of works involve leveraging existing multimodal models such as GPT-4V to perform user tasks.
Representative works include MindAct agent (DGZ+23), SeeAct agent (ZGK+24) in web domain
and agents in (YYZ+23; WXY+24; RLR+23) for mobile domain. These work often leverages
the DOM information in web browser, or the view hierarchies in mobile apps to get the ground

1Github repository and Huggingface model links will be made available after the review.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

truth position of interactable elements of the screen, and use Set-Of-Marks(YZL+23) to overlay the
bounding boxes on top of the screenshot then feed into the vision-language models. However, ground
truth information of interactable elements may not always be available when the goal is to build a
general agent for cross-platforms and cross-applications tasks. Therefore, we focus on providing a
systematic approach for getting structured elements from general user screens.

3 METHODS

To complete a complex task, T on graphical user interface, the process can usually be broken down
into several steps of state-action pairs (S0, A0), ..., (Sn, An), where n is the number of steps. Each
step requires the model’s (e.g. GPT-4V) ability to: 1) understand the state of the UI screen information
Si in the current step, i.e. analyzing what is the screen content overall, what are the functions of
detected icons that are labeled with numeric ID, and 2) predict what is the next action Ai on the
current screen that is likely to help completing the whole task. Normally this can be formulated as:

ai+1 = π(T, Si, [(S0, A0), ..., (Si−1, Ai−1)]

Si = {hi, Imgi}
(1)

Here Si encapsules the current information of the screen, which varies according to the model
π’s input types and the operating environment. For example, in the web tasks (ZGK+24), Si =
{hi, Imgi}, where hi is the HTML information at step i, and Imgi is the screenshot of the GUI at step
i. In Android tasks (RLR+23), hi is the view hierarchy information. In these cases, the model π is
required to extract information directly from Imgi and at the same time generate an action prediction.
Instead of trying to accomplish the two goals in one call, we found it beneficial to extract some of the
information such as semantics in the screen parsing stage, to alleviate the burden of GPT-4V so that it
can leverages more information from the parsed screen and focus more on the action prediction.

Hence we propose OMNIPARSER, which integrates the outputs from a finetuned interactable icon
detection model, a finetuned icon description model, and an OCR module. This combination produces
a structured state informaton Si, which includes a DOM-like representation of the UI and a screenshot
overlaid with bounding boxes for potential interactable elements

ai+1 = π(T, Si, [(S0, A0), ..., (Si−1, Ai−1)]

Si = {Imgsom
i ,LSi,OCRtxt

i }
Imgsomi ,LSi,OCRtxt

i = OMNIPARSER(Imgi)

(2)

Here Imgsom
i is the set-of-mark image labeled by the finetuned interactable icon detection model, LSi

is the local semantics output by the finetuned icon description model. We discuss each component of
the OMNIPARSER in more details for the rest of the section.

3.1 INTERACTABLE REGION DETECTION

Identifying interactable regions from the UI screen is a crucial step to reason about what actions
should be performed given a user tasks. Instead of directly prompting GPT-4V to predict the
xy coordinate value of the screen that it should operate on, we follow previous works to use the
Set-of-Marks approach (YZL+23) to overlay bounding boxes of interactable icons on top of UI
screenshot, and ask GPT-4V to generate the bounding box ID to perform action on. However,
different from (ZGK+24; KLJ+24) which uses the ground truth button location retrieved from
DOM tree in web browswer, and (YYZ+23) which uses labeled bounding boxes in the AITW
dataset (RLR+23), we finetune a detection model to extract interactable icons/buttons.

Specifically, we curate a dataset of interactable icon detection dataset, containing 67k unique screen-
shot images, each labeled with bounding boxes of interactable icons derived from DOM tree. We
first took a 100k uniform sample of popular publicly availabe urls on the web (OXL+22), and collect
bounding boxes of interactable regions of the webpage from the DOM tree of each urls. Some
examples of the webpage and the interactable regions are shown in 2.

Apart from interactable region detection, we also have a OCR module to extract bounding boxes of
texts. Then we merge the bounding boxes from OCR detection module and icon detection module

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

while removing the boxes that have high overlap (we use 90% as a threshold). For every bounding
box, we label it with a unique ID next to it using a simple algorithm to minimizing the overlap
between numeric labels and other bounding boxes.

3.2 INCORPORATING LOCAL SEMANTICS OF FUNCTIONALITY

We found in a lot of cases where only inputting the UI screenshot overlayed with bounding boxes
and associated IDs can be misleading to GPT-4V. We argue the limitation stems from GPT-4V’s
constrained ability to simultaneously perform the composite tasks of identifying each icon’s semantic
information and predicting the next action on a specific icon box. This has also been observed by
several other works (YYZ+23; ZGK+24). To address this issue, we incorporate the local semantics
of functionality into the prompt, i.e. for each icons detected by the interactable region detection
model, we use a finetuned model to generate description of functionality to the icons, and for each
text boxes, we use the detected texts and its label.

We perform more detailed analysis for this topic in section 4.1. To the best of our knowledge, there is
no public model that is specifically trained for up-to-date UI icon description, and is suitable for our
purpose to provide fast and accurate local semantics for the UI screenshot. Therefore we curate a
dataset of 7k icon-description pairs using GPT-4o, and finetune a BLIP-v2 model (LLSH23) on this
dataset. Details of dataset and training can be found in Appendix 8.1. After finetuning, we found the
model is much more reliable in its description to common app icons. Examples can be seen in figure
5. And in figure 3, we show it is helpful to incorporate the semantics of local bounding boxes in the
form of text prompt along with the UI screenshot visual prompt.

4 EXPERIMENTS AND RESULTS

We conduct experiments on several benchmarks to demonstrate the effectiveness of OMNIPARSER.
We start by a motivating experiments showing that current GPT-4V model with set of mark prompting
(YZL+23) is prone to incorrectly assigning label ID to the referred bounding boxes. Then we evaluate
on Seeclick benchmark and Mind2Web to further showcase OMNIPARSER with local semantics can
improve the GPT-4V’s performance on real user tasks on different platforms and applications.

4.1 EVALUATION ON SEEASSIGN TASK

To test the ability of correctly predicting the label ID given the description of the bounding boxes for
GPT-4v models, We handcrafted a dataset SeeAssign that contains 112 tasks consisting of samples
from 3 different platforms: Mobile, Desktop and Web Browser. Each task includes a concise task
description and a screenshot image. The task descriptions are manually created and we make sure
each task refers to one of the detected bounding boxes, e.g. ’click on ’settings”, ’click on the
minimize button’. During evaluation, GPT-4V is prompted to predict the bounding box ID associated
to it. Detailed prompt are specified in Appendix. The task screenshot images are sampled from the
ScreenSpot (CSC+24) benchmark, where they are labeled with set of marks using OMNIPARSER.
The tasks are further divided into 3 sub-categories by difficulty: easy (less than 10 bounding boxes),
medium (10-40 bounding boxes) and hard (more than 40 bounding boxes).

From table 1, we see that GPT-4V often mistakenly assign the numeric ID to the table especially
when there are a lot of bounding boxes over the screen. And by adding local semantics including
texts within the boxes and short descriptions of the detected icons, GPT-4V’s ability of correctly
assigning the icon improves from 0.705 to 0.938.

From figure 3, we see that without the description of the referred icon in the task, GPT-4V often
fails to link the icon required in the task and the ground truth icon ID in the SoM labeled screenshot,
which leads to hallucination in the response. With fine-grain local semantics added in the text prompt,
it makes it much easier for GPT-4V to find the correct icon ID for the referred icon.

4.2 EVALUATION ON SCREENSPOT

ScreenSpot dataset (CSC+24) is a benchmark dataset that includes over 600 interface screenshots
from mobile (iOS, Android), desktop (macOS, Windows), and web platforms. The task instructions

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: Examples of parsed screenshot image and local semantics by OMNIPARSER. The inputs
to OmniParse are user task and UI screenshot, from which it will produce: 1) parsed screenshot
image with bounding boxes and numeric IDs overlayed, and 2) local semantics containing both text
extracted and icon description.

are manually created so that each instruction corresponds to an actionable elements on the UI screen.
We first evaluate the performance of OMNIPARSER using the this benchmark. In table 2, we can see
across the 3 different platforms: Mobile, Desktop and Web, OMNIPARSER significantly improves the
GPT-4V baseline from 16.2% to 73.0%. Noticeably, OMNIPARSER’s performance even surpasses
models that are specifically finetuned on GUI dataset including SeeClick, CogAgent and Fuyu by
a large margin. We also note that incorporating the local semantics (OMNIPARSER w. LS in the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: Examples from the Interactable Region Detection dataset. The bounding boxes are based
on the interactable region extracted from the DOM tree of the webpage.

Figure 3: Examples from the SeeAssign evaluation. We can see that fine-grain local semantics
improves the GPT-4V’s ability to assign correct labels to the referred icon.

table) further improves the overall performance. This corroborates with the finds in section 4.1
that incorporating local semantics of the UI screenshot in text format, i.e. adding OCR text and
descriptions of the icon bounding boxes further helps GPT-4V to accurately identify the correct
element to operate on. Furthermore, our findings indicate that the interactable region detection
(ID) model we finetuned improves overall accuracy by an additional 4.3% compared to using the
raw Grounding DINO model. This underscores the importance of accurately detecting interactable
elements for the success of UI tasks. Overall, the results demonstrate that the UI screen understanding
capability of GPT-4V is significantly underestimated and can be greatly enhanced with more accurate
interactable elements detection and the incorporation of functional local semantics. More ablations
across other open-source vision language models can be found in section 5.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Easy Medium Hard Overall
GPT-4V w.o. local semantics 0.913 0.692 0.620 0.705
GPT-4V w. local semantics 1.00 0.949 0.900 0.938

Table 1: Comparison of GPT-4V with and without local semantics

Methods Model Size Mobile Desktop Web Average
Text Icon/Widget Text Icon/Widget Text Icon/Widget

Fuyu 8B 41.0% 1.3% 33.0% 3.6% 33.9% 4.4% 19.5%
CogAgent 18B 67.0% 24.0% 74.2% 20.0% 70.4% 28.6% 47.4%
SeeClick 9.6B 78.0% 52.0% 72.2% 30.0% 55.7% 32.5% 53.4%
MiniGPT-v2 7B 8.4% 6.6% 6.2% 2.9% 6.5% 3.4% 5.7%
Qwen-VL 9.6B 9.5% 4.8% 5.7% 5.0% 3.5% 2.4% 5.2%
GPT-4V - 22.6% 24.5% 20.2% 11.8% 9.2% 8.8% 16.2%
OmniParser (GPT-4V) - 93.9% 57.0% 91.3% 63.6% 81.3 51.0% 73.0%

- w.o. ID - 94.8% 53.7% 89.3% 44.9% 83.0% 45.1% 68.7%
- w.o. ID and w.o. LS - 92.7% 49.4% 64.9% 26.3% 77.3% 39.7% 58.38%

Table 2: Comparison of different approaches on ScreenSpot Benchmark. LS is short for local
semantics of functionality and ID is short for the interactable region detection model we finetune. The
setting w.o. ID means we replace the ID model with original Grounding DINO model not finetuned
on our data, and with local semantics. The setting w.o. ID and w.o LS means we use Grounding
DINO model, and further without using the icon description in the text prompt.

4.3 EVALUATION ON MIND2WEB

In order to test how OMNIPARSER is helpful to the web navigation secnario, We evaluate on
(DGZ+23) benchmark. There are 3 different categories of task in the test set: Cross-Domain, Cross-
Website, and Cross-Tasks. We used a cleaned version of Mind2Web tests set processed from the raw
HTML dump which eliminates a small number of samples that has incorrect bounding boxes. In
total we have 867, 167, 242 tasks in the test set from Cross-Domain, Cross-Website, and Cross-Tasks
category respectively. During evaluation, we feed both the parsed screen results and the action
history as text prompt, and SOM labeled screenshot to GPT-4V similar to the prompting strategy
in (YYZ+23; ZGK+24). Following the original paper, we perform offline evaluation focusing on the
element accuracy, Operation F1 and step success rate averaged across the task.

In the first section of the table (row 1-3), We report numbers from a set of open source VL models as it
appears in (ZGK+24; CSC+24). Here CogAgent and Qwen-VL are not finetuned on the Mind2Web
training set. More detailed information about model settings can be found in the Appendix8.4.

In the second section of the table (row 4-9) we report numbers from Mind2web paper (DGZ+23) and
SeeAct (ZGK+24) paper. In this section, all of the approaches use the HTML elements selected by a
finetuned element proposal model on Mind2Web training set which produces top 50 relevant elements
on the HTML page based on the user task. Additionally, GPT-4V+SOM and GPT-4V+textual choices
corresponds to the SeeAct with image annotation, and textual choices grounding methods respectively.
In GPT-4V+SOM, the set of mark (SOM) boxes are selected from the element proposal model, and
are labeled with the ground truth location extracted from HTML. In contrast, GPT-4V+textual uses
DOM information of the selected relevant elements directly in the text prompt, rather than overlaying
bounding boxes on top of screenshot. The better performance of textual choice corroborates with the
experiment results in 4.1.

In the last section (row 10), we report numbers of OMNIPARSER using GPT-4V as the action
prediction model. We observe OMNIPARSER achieves comparable performance to model that uses
additional HTML information and additionally finetuned element proposal model.

In summary, without using parsed HTML information, OMNIPARSER is able to outperform GPT-4’s
performance that uses HTML in every sub-category by a significant margin, suggesting the substan-
tial benefit of the screen parsing results provided by OMNIPARSER. Additionally, OMNIPARSER
outperforms the GPT-4V+SOM approach by a large margin where the set of marks coordinates are
extracted from the html. This suggests that OMNIPARSER’s interactable detection model and the icon
description model provides useful information to perform the task. Compared to GPT-4V+textual
choices, OMNIPARSER significantly outperforms in Cross-Website and Cross-Domain category

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(+4.1% and +5.2%), while underperforming (-0.8%) slightly in the Cross-Task category, which
indicates that OMNIPARSER provides higher quality information compared to ground truth element
information from DOM and top-k relevant elemnt proposal used by the GPT-4V+textual choices
set-up, and make the GPT-4V easier to make a accurate action prediction. Lastly, OMNIPARSER
with GPT-4V significantly outperform all the other trained models using only UI screenshot such as
SeeClick and Qwen-VL.

Methods Input Types Cross-Website Cross-Domain Cross-Task
HTML free image Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR

CogAgent ✓ ✓ 18.4 42.2 13.4 20.6 42.0 15.5 22.4 53.0 17.6
Qwen-VL ✓ ✓ 13.2 83.5 9.2 14.1 84.3 12.0 14.1 84.3 12.0
SeeClick ✓ ✓ 21.4 80.6 16.4 23.2 84.8 20.8 28.3 87.0 25.5
MindAct (gen) × × 13.9 44.7 11.0 14.2 44.7 11.9 14.2 44.7 11.9
MindAct × × 42.0 65.2 38.9 42.1 66.5 39.6 42.1 66.5 39.6
GPT-3.5-Turbo × × 19.3 48.8 16.2 21.6 52.8 18.6 21.6 52.8 18.6
GPT-4 × × 35.8 51.1 30.1 37.1 46.5 26.4 41.6 60.6 36.2
GPT-4V+som × ✓ - - 32.7 - - 23.7 - - 20.3
GPT-4V+textual choice × ✓ 38.0 67.8 32.4 42.4 69.3 36.8 46.4 73.4 40.2
OmniParser (GPT-4V) ✓ ✓ 41.0 84.8 36.5 45.5 85.7 42.0 42.4 87.6 39.4

Table 3: Comparison of different methods across various categories on Mind2Web benchmark.

4.4 EVALUATION ON ANDROID-IN-THE-WILD

In additional to evaluation on multi-step web browsing tasks, we assess OMNIPARSER on the mobile
navigating benchmark AITW (RLR+23), which contains 30k instructions and 715k trajectories. We
use the same train/test split as in (CSC+24) based on instructions, which retain only one trajectory
for each instructions and no intersection between train and test. For a fair comparison, we only use
their test split for evaluation and discard the train set as our method does not require finetuing.

In table 4, we report the GPT-4V baseline in (YYZ+23) paper, which corresponds to the best
performing set up (GPT-4V ZS+history) that uses UI elements detected by IconNet (SWL+22)
through set-of-marks prompting (YZL+23) for each screenshot at every step of the evaluation. The
detected UI elements consist of either OCR-detected text or an icon class label, which is one of the
96 possible icon types identified by IconNet. Additionally, action history is also incorporated at
each step’s prompt as well. We used the exact same prompt format in (YYZ+23) except the results
from the IconNet model is replaced with the output of the finetuned interactable region detection
(ID) model. Interestingly, we found that the ID model can generalize well to mobile screen. By
replacing the IconNet with the interactable region detection (ID) model we finetuned on the collected
webpages, and incorporating local semantics of icon functionality (LS), we find OMNIPARSER
delivers significantly improved performance across most sub-categories, and a 4.7% increase in the
overall score compared to the best performing GPT-4V + history baseline.

Methods Modality General Install GoogleApps Single WebShopping Overall
ChatGPT-CoT Text 5.9 4.4 10.5 9.4 8.4 7.7
PaLM2-CoT Text - - - - - 39.6
GPT-4V image-only Image 41.7 42.6 49.8 72.8 45.7 50.5
GPT-4V + history Image 43.0 46.1 49.2 78.3 48.2 53.0
OmniParser (GPT-4V) Image 48.3 57.8 51.6 77.4 52.9 57.7

Table 4: Comparison of different methods across various tasks and overall performance in AITW
benchmark.

4.5 EVALUATION ON WINDOWSAGENTARENA

In this section, we report numbers in the concurrent work Windows Agent Arena (BZB+24) paper in
table 5. Windows Agent Arena is a general environment for Windows operating system (OS) where
the models are evaluated on 150+ user tasks in a real Windows OS and use a wide range of applications,
tools, and web browsers. For cleaner comparison, we consider the cases that do not use additional
UIA tree information from the windows environment. The baseline Pytesseract+DOM+Grounding
DINO approach uses Pytesseract python package for OCR, Grounding DINO for icon detection
and additionally incorporating DOM tree information. We observe that OmniParser achieves better
performance than the baseline by only using screenshot consistently across different models.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Methods Models Office Web Browser Windows System Coding Media & Video Windows Utils Total

Pytesseract + DOM +
Grounding DINO

Phi3-V 0% 0% 4.2% 4.3% 0.0% 0.0% 1.3%
GPT-4o 0.0% 0.0% 29.2% 0.0% 5.0% 0.0% 5.2%

GPT-4V-1106 0.0% 10.3% 21.3% 12.5% 9.8% 0.0% 8.6%

Omniparser

Phi3-V 0.0% 0.0% 8.6% 0.0% 5.0% 0.0% 2.0%
GPT-4o 0.0% 6.7% 30.3% 4.3% 15.3% 8.3% 9.4%

GPT-4V-1106 2.3% 23.6% 20.8% 8.3% 20.0% 0.0% 12.5%
Human performance - 75.8% 76.7% 83.3% 68.4% 42.8% 91.7% 74.5%

Table 5: Comparison of different methods’ performance on Windows Agent Arena benchmark.

5 ABLATIONS

To further demonstrate OMNIPARSER is a plugin choice for off-the-shelf vision langauge models, we
show the performance of OMNIPARSER combined with recently announced vision language models:
Phi-3.5-V (AAA+24) and Llama-3.2-V (DJP+24). As seen in table 6, our finetuned interactable
region detection (ID) model significantly improves the task performance compared to grounding dino
model (GD) with local semantics across all subcategories for GPT-4V, Phi-3.5-V and Llama-3.2-V. In
addition, the local semantics of icon functionality helps significantly with the performance for every
vision language model.

Methods Models Model Size Mobile Desktop Web Average
OmniParser GPT-4V - 75.5% 77.5% 66.2% 73.0%

- w.o. ID GPT-4V - 74.3% 67.1% 64.1% 68.7%
- w.o. ID and w.o LS GPT-4V - 71.1% 45.6% 58.5% 58.4%

OmniParser Phi-3.5-V 4.2B 39.4% 39.2% 24.0% 34.2%
- w.o. ID Phi-3.5-V 4.2B 38.1% 32.5% 22.2% 30.9%
- w.o. ID and w.o LS Phi-3.5-V 4.2B 32.9% 31.0% 18.5% 27.5%

OmniParser Llama-3.2-V 11B 47.6% 48.1% 37.4% 44.4%
- w.o. ID Llama-3.2-V 11B 45.7% 44.6% 37.5% 42.6%
- w.o. ID and w.o LS Llama-3.2-V 11B 38.5% 37.3% 31.2% 35.6%

Table 6: Ablation study of OMNIPARSER performance using different vision language models on
ScreenSpot Benchmark. LS is short for local semantics of icon functionality, ID is short for the
interactable region detection model we finetune. The setting w.o. ID means we replace the ID model
with original Grounding DINO model not finetuned on our data, and with local semantics. The
setting w.o. ID and w.o LS means we use Grounding DINO model, and further without using the
icon description in the text prompt.

6 DISCUSSIONS

In this section, we discuss a couple of common failure cases of OMNIPARSER with examples and
potential approach to improve.

Repeated Icons/Texts From analysis of the the GPT-4V’s response log, we found that GPT-4V
often fails to make the correct prediction when the results of the OMNIPARSER contains multiple
repeated icons/texts, which will lead to failure if the user task requires clicking on one of the buttons.
This is illustrated by the figure 8 (Left) in the Appendix. A potential solution to this is to add finer
grain descriptions to the repeated elements in the UI screenshot, so that the GPT-4V is aware of the
existence of repeated elements and take it into account when predicting next action.

Corase Prediction of Bounding Boxes One common failure case of OMNIPARSER is that it fails
to detect the bounding boxes with correct granularity. In figure 8 (Right), the task is to click on the
text ’MORE’. The OCR module of OMNIPARSER detects text bounding box 8 which encompass
the desired text. But since it uses center of the box as predicted click point, it falls outside of the
ground truth bounding box. This is essentially due to the fact that the OCR module we use does
not have a notion of which text region are hyperlink and clickable. Hence we plan to train a model
that combines OCR and interactable region detection into one module so that it can better detect the
clickable text/hyperlinks.

Icon Misinterpretation We found that in some cases the icon with similar shape can have different
meanings depending on the UI screenshot. For example, in figure 9, the task is to find button related

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

to ’More information’, where the ground truth is to click the three dots icon in the upper right part
of the screenshot. OMNIPARSER successfully detects all the relevant bounding boxes, but the icon
description model interpret it as: "a loading or buffering indicator". We think this is due to the fact
that the icon description model is only able to see each icon cropped from image, while not able to
see the whole picture during both training and inference. So without knowing the full context of the
image, a symbol of three dots can indeed mean loading buffer in other scenarios. A potential fix to
this is to train an icon description model that is aware of the full context of the image.

7 CONCLUSION

In this paper, We propose OMNIPARSER, a general vision only approach that parse UI screenshots
into structured elements. OMNIPARSER encompasses two finetuned models: an icon detection model
and a functional description models. To train them, we curated an interactable region detection
dataset using popular webpages, and an icon functional description dataset. We demonstrate that with
the parsed results, the performance of GPT-4V is greatly improved on ScreenSpot benchmarks. It
achieves better performance compared to GPT-4V agent that uses HTML extracted information on
Mind2Web, and outperforms GPT-4V augmented with specialized Android icon detection model on
AITW benchmark. We hope OMNIPARSER can serve as a general and easy-to-use tool that has the
capability to parse general user screen across both PC and mobile platforms without any dependency
on extra information such as HTML and view hierarchy in Android.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

[AAA+24] Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Ben-
haim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav
Chaudhary, Dong Chen, Dongdong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen,
Hao Cheng, Parul Chopra, Xiyang Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso,
Jianfeng Gao, Mei Gao, Min Gao, Amit Garg, Allie Del Giorno, Abhishek Goswami,
Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J. Hewett, Wenxiang Hu,
Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin Jin, Nikos Karam-
patziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim, Lev
Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Li-
den, Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong
Liu, Chong Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola,
Caio César Teodoro Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon
Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin,
Marko Radmilac, Liliang Ren, Gustavo de Rosa, Corby Rosset, Sambudha Roy, Olatunji
Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning
Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song, Masahiro Tanaka,
Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan Wang,
Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping
Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Jilong
Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu,
Lu Yuan, Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang,
Yue Zhang, Yunan Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable
language model locally on your phone, 2024.

[BEH+23] Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi
Somani, and Sağnak Taşırlar. Introducing our multimodal models, 2023.

[BZB+24] Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng
Li, Yadong Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and
Zack Hui. Windows agent arena: Evaluating multi-modal os agents at scale, 2024.

[BZX+21] Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas Sunkara, Abhinav Rastogi, Jindong
Chen, and Blaise Aguera y Arcas. Uibert: Learning generic multimodal representations
for ui understanding, 2021.

[CSC+24] Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and
Zhiyong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents, 2024.

[DGZ+23] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan
Sun, and Yu Su. Mind2web: Towards a generalist agent for the web, 2023.

[DHF+17] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang
Li, Jeffrey Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for building
data-driven design applications. In Proceedings of the 30th Annual ACM Symposium
on User Interface Software and Technology, UIST ’17, page 845–854, New York, NY,
USA, 2017. Association for Computing Machinery.

[DJP+24] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson,
Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte
Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Niko-
laidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu,
Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hup-
kes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Anderson, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel
Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana
Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Bil-
lock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu,
Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua
Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der Maaten,
Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti,
Mannat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya
Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Has-
san, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri
Chatterji, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Peng-
wei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu,
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly,
Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabas-
appa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun
Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane
Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov,
Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu,
Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiao-
qing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh
Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya
Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi,
Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex
Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus,
Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poul-
ton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu
Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan,
Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti,
Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu,
Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon Civin,
Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang,
Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora
Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar,
Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni,
Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman,
Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou,
Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry
Aspegren, Hunter Goldman, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena
Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-
Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein,
Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon
Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu,
Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun Zand,
Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang,
Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A,

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich,
Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli,
Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev,
Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko,
Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike
Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Mun-
ish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong, Ning
Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager,
Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj,
Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang,
Rohan Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji
Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Sheng-
hao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong
Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen,
Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar
Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vítor Albiero, Vlad
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen
Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang,
Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu,
Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang,
Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo
Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.

[FLN+24] Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust,
Shixiang Shane Gu, and Izzeddin Gur. Multimodal web navigation with instruction-
finetuned foundation models, 2024.

[GFH+24] Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Dou-
glas Eck, and Aleksandra Faust. A real-world webagent with planning, long context
understanding, and program synthesis, 2024.

[HSZ+21] Zecheng He, Srinivas Sunkara, Xiaoxue Zang, Ying Xu, Lijuan Liu, Nevan Wichers,
Gabriel Schubiner, Ruby Lee, Jindong Chen, and Blaise Agüera y Arcas. Actionbert:
Leveraging user actions for semantic understanding of user interfaces, 2021.

[HWL+23] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan
Wang, Zihan Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming Ding, and
Jie Tang. Cogagent: A visual language model for gui agents, 2023.

[KLJ+24] Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-
Yu Huang, Graham Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried.
Visualwebarena: Evaluating multimodal agents on realistic visual web tasks. arXiv
preprint arXiv:2401.13649, 2024.

[LGP+18] Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Rein-
forcement learning on web interfaces using workflow-guided exploration. In Interna-
tional Conference on Learning Representations (ICLR), 2018.

[LHZ+20] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural
language instructions to mobile UI action sequences. In Dan Jurafsky, Joyce Chai,
Natalie Schluter, and Joel Tetreault, editors, Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 8198–8210, Online, July 2020.
Association for Computational Linguistics.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

[LLH+20] Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. Widget
captioning: Generating natural language description for mobile user interface elements,
2020.

[LLSH23] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language models, 2023.

[OXL+22] Arnold Overwijk, Chenyan Xiong, Xiao Liu, Cameron VandenBerg, and Jamie Callan.
Clueweb22: 10 billion web documents with visual and semantic information, 2022.

[RLR+23] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap.
Android in the wild: A large-scale dataset for android device control, 2023.

[SJC+23] Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang
Hu, Urvashi Khandelwal, Kenton Lee, and Kristina Toutanova. From pixels to ui actions:
Learning to follow instructions via graphical user interfaces, 2023.

[SWL+22] Srinivas Sunkara, Maria Wang, Lijuan Liu, Gilles Baechler, Yu-Chung Hsiao, Jindong
Chen, Abhanshu Sharma, and James Stout. Towards better semantic understanding of
mobile interfaces. CoRR, abs/2210.02663, 2022.

[WLZ+21] Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi Grossman, and Yang Li.
Screen2words: Automatic mobile ui summarization with multimodal learning, 2021.

[WXJ+24] Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang,
Fei Huang, and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with
effective navigation via multi-agent collaboration, 2024.

[WXY+24] Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang,
and Jitao Sang. Mobile-agent: Autonomous multi-modal mobile device agent with
visual perception, 2024.

[XZC+24] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao,
Toh Jing Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu,
Shuyan Zhou, Silvio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld:
Benchmarking multimodal agents for open-ended tasks in real computer environments,
2024.

[YYZ+23] An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei
Yang, Yiwu Zhong, Julian McAuley, Jianfeng Gao, Zicheng Liu, and Lijuan Wang. Gpt-
4v in wonderland: Large multimodal models for zero-shot smartphone gui navigation,
2023.

[YZL+23] Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao.
Set-of-mark prompting unleashes extraordinary visual grounding in gpt-4v, 2023.

[YZS+24] Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey
Nichols, Yinfei Yang, and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with
multimodal llms, 2024.

[ZGK+24] Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a
generalist web agent, if grounded, 2024.

[ZXZ+24] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xi-
anyi Cheng, Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web
environment for building autonomous agents. ICLR, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

8 APPENDIX

8.1 DETAILS OF ICON-DESCRIPTION DATASET

In figure 5, we see that the original BLIP-2 model tend to focus on describing shapes and colors
of app icons, while struggling to recognize the semantics of the icon. This motivates us to finetune
this model on an icon description dataset. For the dataset, we use the result of parsed icon bounding
boxes inferenced by the interactable icon detection model on the ScreenSpot dataset since it contains
screenshots on both mobile and PC. For the description, we ask GPT-4o whether the object presented
in the parsed bounding box is an app icon. If GPT-4o decides the image is an icon, it outputs one-
sentence description of the icon about the potential functionality. And if not, GPT-4o will output ’this
is not an icon’, while still including this in the dataset. In the end, we collected 7185 icon-description
pairs for finetuning.

We manually inspected the dataset to include icon-description pairs across a wide range of functions.
These icons include system icons and popular software/app icons. After deduplication, we have 174
app icons in the pc platform, and 170 app icons in mobile platform. Further, we leveraged GPT-4o
and conducted an analysis of the distribution of the icons. We first summarize the icons into the
following types:

1. Functional Icons. These icons represent actions or functionalities users can perform.
Subcategory:

• Navigation Icons: Back, forward, home, refresh, menu.
• Action Icons: Add (+), delete (trash), edit (pencil), search (magnifying glass), share,

upload, download.
• System Actions: Lock, log out, power off, settings (gear icon).

2. Informational Icons. These icons convey information or statuses. Examples include:
Subcategory:

• Notification Icons: Alerts, messages, updates.
• Status Icons: Battery level, network signal, Wi-Fi, Bluetooth, processing/loading

(spinner).
• Error or Warning Icons: Exclamation marks, red crosses, or triangles.

3. App-Specific Icons. These icons are unique to a specific app or service.
4. Media Control Icons. These icons control media playback. Examples include play, pause,

stop, fast forward, rewind, volume up, volume down.

The detail distribution of each sub-category is presented in figure 4. With this dataset, the resulting
model demonstrates strong generalization on varied benchmarks and real-world applications.

We finetune BLIP-2 model for 1 epoch on the generated dataset with constant learning rate of 1e−5,
no weight decay and Adam optimizer. We show a few of the qualitative examples of finetuned model
vs the original model in figure 5.

8.2 TRAINING DETAILS OF INTERACTABLE ICON REGION DETECTION MODEL

As introduced in 3.1, we train a YOLOv8 model on the interactable icon region detection dataset.
We collect in total of 66990 samples where we split 95% (63641) for training, and 5% (3349) for
validation. We train for 20 epochs with batch size of 256, learning rate of 1e−3, and the Adam
optimizer on 4 GPUs. We show the training curve in figure 6.

8.3 DETAILS OF SEEASSIGN EVALUATION

8.3.1 PROMPT USED FOR GPT-4V

GPT-4V without local semantics:
Here is a UI screenshot image with bounding boxes and corresponding

labeled ID overlayed on top of it, your task is {task}. Which icon
box label you should operate on? Give a brief analysis, then put your
answer in the format of \n‘‘‘Box with label ID: [xx]‘‘‘\n

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Media Control

4.0%

App-Specific

29.1%

Informational - Status Icons

12.8%

Informational - Notification Icons

4.0%

Informational - Error or Warning Icons

0.7% Functional - System Actions

8.2%

Functional - Navigation Icons
11.0%

Functional - Action Icons

30.2%

Figure 4: Distribution of the collected icons in the icon description dataset

Figure 5: Example comparisons of icon description model using BLIP-2 (Left) and its finetuned
version (Right). Original BLIP-2 model tend to focus on describing shapes and colors of app icons.
After finetuning on the functionality semantics dataset, the model is able to show understanding of
semantics of some common app icons.

GPT-4V with local semantics:

Here is a UI screenshot image with bounding boxes and corresponding
labeled ID overlayed on top of it, and here is a list of icon/text
box description: {parsed_local_semantics}. Your task is {task}. Which
bounding box label you should operate on? Give a brief analysis,

then put your answer in the format of \n‘‘‘Box with label ID: [xx]‘‘‘\
n

8.4 DETAILS OF MIND2WEB EVALUATION

Here we list more details of each baseline in table 3.
SeeClick, QWen-VL SeeClick is a finetuned version of Qwen-VL on the Mind2Web training set

and we report both of their numbers in their paper.
CogAgent CogAgent number is taken from the SEEAct paper (ZGK+24), where they report cogagent-
chat-hf checkpoint that is not fine-tuned on Mind2Web for experiments.
MindAct(Gen), MindAct, GPT-3.5-Turbo, GPT-4 The numbers for these baseline are taken from

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 6: Training curves of interactable icon region detection model.

the Mind2Web (DGZ+23) paper, where they use HTML information to augument the corresponding
web agent.
GPT-4V+som This model corresponds to the image annotation grounding method in SeeAct paper,
where the som boxes extracted from the selelcted HTML elements are provided to GPT-4V to make
action prediction.
GPT-4V+textual choice This corresponds to the best performing scenario in SeeAct paper (except
the Oracle), that uses the selected HTML elments information in a multi-choice question format as
input to the GPT-4V agent.

8.4.1 QUALITATIVE EXAMPLES

We list a few more examples to demonstrate local semantics of icon function description helps
GPT-4V make better action prediction in figure 7.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 7: More examples of local semantics of icon functionality help with GPT-4V in grounding
actions

Figure 8: Analysis of failure cases. All the bounding boxes are labeled by which relies only on the
screenshot. Left: There are in total 7 similar enable button for 7 different alarm times in the parsed
screenshot. And the correct Icon ID corresponding to alarm 7:30 is 27. GPT-4V fails to make the
correct prediction. Right: The ground truth region to click is the text ’MORE’ inside bounding box 8.
We can see that the OCR fails to detect the text ’MORE’ in bold, and only detects the bounding box
8, which encompasses ’MORE’. Since the predicts the click point as the center of the box, so it the
predicted click point falls outside of the ground truth region, which leads to failure in this task.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 9: Analysis of failure cases. The task is to find button related to ’More information’, and the
ground truth is to click the three dots icon in the upper right part of the screenshot. The the icon
functional description model does not take into account the context of this page and interpret it as: "a
loading or buffering indicator" which causes the failure.

19


	Introduction
	Related Works
	UI Screen Understanding
	Autonomous GUI Agent

	Methods
	Interactable Region Detection
	Incorporating Local Semantics of Functionality

	Experiments and Results
	Evaluation on SeeAssign Task
	Evaluation on ScreenSpot
	Evaluation on Mind2Web
	Evaluation on Android-in-the-wild
	Evaluation on WindowsAgentArena

	Ablations
	Discussions
	Conclusion
	Appendix
	Details of Icon-Description Dataset
	Training details of Interactable Icon Region Detection Model
	Details of SeeAssign Evaluation
	Prompt Used for GPT-4V

	Details of Mind2Web Evaluation
	Qualitative Examples



