
Moûsai: Efficient Text-to-Music Diffusion Models

Anonymous ACL submission

Abstract
Recent years have seen the rapid development001
of large generative models for text; however,002
much less research has explored the connection003
between text and another “language” of com-004
munication – music. Music, much like text, can005
convey emotions, stories, and ideas, and has its006
own unique structure and syntax. In our work,007
we bridge text and music via a text-to-music008
generation model that is highly efficient, ex-009
pressive, and can handle long-term structure.010
Specifically, we develop a cascading latent dif-011
fusion approach that can generate multiple min-012
utes of high-quality stereo music at 48kHz from013
textual descriptions. Moreover, our model fea-014
tures high efficiency, which enables real-time015
inference on a single consumer GPU with a016
reasonable speed. Through experiments and017
property analyses, we show our model’s com-018
petence over a variety of criteria compared with019
existing music generation models. Lastly, to020
promote the open-source culture, we provide021
a collection of open-source libraries with the022
hope of facilitating future work in the field.1023

1 Introduction024

In recent years, natural language processing (NLP)025

has made significant strides in understanding and026

generating human language, due to the advance-027

ments in deep learning and large-scale pre-trained028

models (Radford et al., 2018; Devlin et al., 2019;029

Brown et al., 2020). While the majority of NLP030

research has focused on textual data, there exists031

another rich and expressive “language” of commu-032

nication – music. Music, much like text, can convey033

emotions (Germer, 2011), stories (Chung, 2006),034

and ideas (Bicknell, 2002), and has its own unique035

structure and syntax (Swain, 1995).036

In this paper, we further bridge the gap between037

text and music by leveraging the power of NLP038

1Our code and data are uploaded to the system, and will
be released upon acceptance. Our anonymized music samples
are available at https://bit.ly/anonymous-mousai.
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Figure 1: We propose a two-stage cascading diffusion
method, where the first stage (the diffusion generator)
compresses the music using a novel diffusion autoen-
coder, and the second stage (the diffusion decoder)
generates music from the reduced representation condi-
tioned on the encoding of a textual description.

techniques to generate music conditioned on tex- 039

tual input. Through our work, we not only aim 040

to expand the scope of NLP applications, but also 041

contribute to the interdisciplinary research at the 042

intersection of language, music, and machine learn- 043

ing techniques. 044

However, like text, music generation has long been 045

a challenging task, as it requires multiple aspects 046

at different levels of abstraction (van den Oord 047

et al., 2016; Dieleman et al., 2018). Existing au- 048

dio generation models explore the use of recursive 049

neural networks (Mehri et al., 2017), adversarial 050

generative networks (Kumar et al., 2019; Kim et al., 051

2021; Engel et al., 2019; Morrison et al., 2022), au- 052

toencoders (Deng et al., 2021), and transformers 053

(Yu et al., 2022). With the recent advancement 054

in diffusion-based generative models in computer 055

vision (Ramesh et al., 2022; Saharia et al., 2022), 056

researchers in speech have also started to explore 057

the use of diffusion models in tasks such as speech 058
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synthesis (Kong et al., 2021; Lam et al., 2022; Leng059

et al., 2022), although only a few these models can060

apply well to the task of music generation.061

Additionally, there are several long-standing chal-062

lenges in the area of music generation: (1) music063

generation at length, as most text-to-audio systems064

(Forsgren and Martiros, 2022; Kreuk et al., 2022)065

can only generate a few seconds of audio; (2) model066

efficiency, as many need to run on GPUs for hours067

to generate just one minute of audio (Dhariwal068

et al., 2020; Kreuk et al., 2022); (3) lack of diver-069

sity of the generated music, as many are limited by070

their training methods taking in a single modality071

(resulting in the ability to handle only single-genre072

music, but not diverse genres) (Caillon and Esling,073

2021; Pasini and Schlüter, 2022); and (4) easy con-074

trollability by text prompts, as most are only con-075

trolled by latent states (Caillon and Esling, 2021;076

Pasini and Schlüter, 2022), the starting snippet of077

the music (Borsos et al., 2022), or text but are lyrics078

(Dhariwal et al., 2020) or descriptions of a daily079

sound like dog barking (Kreuk et al., 2022).080

A single model mastering all these aspects would081

make a strong contribution to the music industry,082

as it can enable the broader public to be part of083

the creative process by allowing them to compose084

music using an accessible text-based interface, as-085

sist creators in finding inspiration, and provide an086

unlimited supply of novel audio samples.087

To address these challenges, we propose Moûsai,2088

a novel text-conditional cascading diffusion model089

illustrated in Figure 1. To ensure model efficiency,090

our diffusion magnitude autoencoder can achieve091

an audio signal compression rate of 64x. Together092

with our design of a lightweight and specialized093

1D U-Net architecture, our model enables a fast094

inference speed on a single consumer GPU in min-095

utes, and a training time of approximately one week096

per stage on one A100 GPU, making it possible097

to train and run the overall system using resources098

available in most universities.099

Remarkably, our diffusion-based model improves100

significantly on previous models, as it can train on101

a variety of music genres, generate long-context102

music for several minutes with a high quality of103

48kHz stereo music, runs real-time inference effi-104

ciently within minutes, and can be easily controlled105

2Moûsai is romanized ancient Greek for Muses, the sources
of artistic inspiration (https://en.wikipedia.org/wiki/
Muses), and also evokes a blend of music and AI.

by text. Our extensive evaluations on 11 criteria 106

also validate the quality of the generated music by 107

our model from multiple perspectives. 108

2 Related Work 109

Connecting Text and Music The connection be- 110

tween text and music lies in the intersection of NLP 111

and computational musicology. Previous work 112

looks into aspects such as the similarity of mu- 113

sic and linguistic structures (Papadimitriou and Ju- 114

rafsky, 2020), music and dialog (Berlingerio and 115

Bonin, 2018), and jointly modeling music and text 116

for emotion detection (Mihalcea and Strapparava, 117

2012). Apart from several work that generates mu- 118

sic from text (Dhariwal et al., 2020; Forsgren and 119

Martiros, 2022), we are the first to explore diffusion 120

models to interact text with music representations. 121

Generative Models Generative models aim to 122

learn a lower-dimension representation space, and 123

then reconstruct to the high-dimension space con- 124

ditioning on the given information (Rombach et al., 125

2022; Yang et al., 2022; Kreuk et al., 2022; Ho 126

et al., 2022). Some effective methods earlier in- 127

clude auto-encoding (Hinton and Salakhutdinov, 128

2006; Kingma and Welling, 2014), or quantized 129

auto-encoding (van den Oord et al., 2017; Esser 130

et al., 2021; Lee et al., 2022). Recent proposals 131

focus on the quantized representation followed by 132

masked or autoregressive learning on tokens (Ville- 133

gas et al., 2022; Dhariwal et al., 2020; Kreuk et al., 134

2022), and diffusion models (Ramesh et al., 2022; 135

Rombach et al., 2022; Saharia et al., 2022), which 136

leads to impressive performance. To the best of our 137

knowledge, we are the first to adapt the cascading 138

diffusion approach for audio generation. 139

Concurrent Work Upon the completion of our 140

work in Jan 2023, there came several powerful 141

generative music models, all led by large industry 142

labs (Agostinelli et al., 2023; Huang et al., 2023; 143

Copet et al., 2023). We do not include them in the 144

paper, as they count as concurrent work in the same 145

time or several months after our work, and also our 146

work is done in a university setting which cannot 147

compare with the performance of these large-scale 148

models supported by industry-level resources. 149

3 Moûsai: Efficient Long-Context Music 150

Generation from Text 151

Our model Moûsai contains a two-stage training 152

process. In Stage 1, we use diffusion magnitude- 153

2

https://en.wikipedia.org/wiki/Muses
https://en.wikipedia.org/wiki/Muses


autoencoding (DMAE), which compresses the au-154

dio waveform 64x using a diffusion autoencoder.155

In Stage 2, we use a latent text-to-audio diffusion156

model, to generate a novel latent space by diffusion157

while conditioning on text embeddings obtained158

from a frozen transformer language model.159

In the following, we first introduce the basic mod-160

ules of our models, and details of the two stages.161

3.1 Modules162

3.1.1 Latent Diffusion for Audio163

vvv-Objective Diffusion Process We use the vvv-164

objective diffusion process as proposed by Sali-165

mans and Ho (2022). Suppose we have a sample166

xxx0 from a distribution p(xxx0), some noise sched-167

ule σt ∈ [0, 1], and some noisy data point xxxσt =168

ασtxxx0 + βσtϵϵϵ. The vvv-objective diffusion tries to169

estimate a model v̂vvσt = f(xxxσt , σt) by minimizing170

the following objective:171

Et∼[0,1],σt,xσt

[
∥fθ(xσt , σt)− vσt∥22

]
, (1)172

where vvvσt =
∂xxxσt
σt

= ασtϵϵϵ − βσtxxx0, for which173

we define ϕt :=
π
2σt, and obtain its trigonometric174

values ασt := cos(ϕt), and βσt := sin(ϕt).175

DDIM Sampler for Denoising The denoising step176

uses ODE samplers to turn noise into a new data177

point by estimating the rate of change. In this work,178

we adopt the DDIM sampler (Song et al., 2021),179

which we find to work well and have a reasonable180

tradeoff between the number of steps and audio181

quality. The DDIM sampler denoises the signal by182

repeated application of the following:183

v̂vvσt = fθ(xxxσt , σt) (2)184

x̂xx0 = ασtxxxσt − βσtv̂vvσt (3)185

ϵ̂ϵϵσt = βσtxxxσt + ασtv̂vvσt (4)186

x̂xxσt−1 = ασt−1x̂xx0 + βσt−1ϵ̂ϵϵt, (5)187

which estimates both the initial data point and the188

noise at the step σt, for some T -step noise schedule189

σT , . . . , σ0 as a sequence evenly spaced between 1190

and 0.191

Diffusion Autoencoder for Audio Input We pro-192

pose a new diffusion autoencoder that first encodes193

a magnitude spectrogram into a compressed rep-194

resentation, and later injects the latent into inter-195

mediate channels of the decoding modules. The196

standard method to do diffusion, such as the image197
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Figure 2: Our proposed 1D U-Net architecture. Each
UNetBlock (top) consists of several U-Net items (bot-
tom). In each U-Net item (bottom), we use a 1D convo-
lutional ResNet (R), a modulation unit (M) to provide
the diffusion noise level as a feature vector conditioning
( ), an inject item (I) to inject external channels as con-
ditioning ( ), an attention item (A) to share time-wise
information, and a cross-attention item (C) to condition
on an external (text) embedding ( ). Moreover, for the
UNetBlocks, we can recursively nest them, which we
indicate by the inner dashed region on the top.

diffusion model (Rombach et al., 2022), is to com- 198

press the input into a lower-dimensional represen- 199

tation space and apply the diffusion process on the 200

reduced latent space. We further compress and en- 201

hance the representation space by diffusion-based 202

autoencoding (Preechakul et al., 2022), which is 203

first introduced in computer vision, as a way to con- 204

dition the diffusion process on a compressed latent 205

vector of the input itself. Since diffusion serves as 206

a more powerful generative decoder, and hence the 207

input can be reduced to latent representations with 208

higher compression ratios. 209

3.1.2 Efficient and Enriched 1D U-Net 210

Another crucial module in our model is the effi- 211

cient 1D U-Net that we design. We identify that 212

the vanilla U-Net architecture Ronneberger et al. 213

(2015), originally introduced for medial image seg- 214

mentation, has relatively limited efficiency and 215

speed, as it uses an hourglass convolutional-only 216

2D architecture with skip connections. 217

Hence, we propose a novel U-Net with only 1D 218

convolutional kernels, which is more efficient than 219

the original 2D architecture in terms of speed, and 220

can be successfully used both on waveforms or on 221

spectrograms if each frequency is considered as a 222

different channel. 223

Moreover, we infuse our 1D U-Net with multi- 224

ple new components, as illustrated in Figure 2: a 225

ResNet residual 1D convolutional unit, a modula- 226
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tion unit to alter the channels given features from227

the diffusion noise level, an inject item to concate-228

nate external channels to the ones at the current229

depth, an attention item to share long-context struc-230

tural information, and a cross-attention item to con-231

dition on the text embeddings. Note that inject232

items are applied only at a specific depth in the233

decoder in the first stage to condition on the latent234

representation of the music. Additionally, since235

attention and cross-attention items are for learning236

the structure and conditioning on text, we only use237

them for the second stage, text-conditioned music238

generation.239

In summary, our novel 1D U-Net features more240

modern convolutional blocks, a variety of attention241

blocks, conditioning blocks, and improved skip242

connections, maintaining an efficient skeleton of243

the hourglass architecture.244

3.2 Stage 1: Music Encoder by Diffusion245

Magnitude-Autoencoding (DMAE)246

We design the first step of Moûsai to be learning247

a good music encoder to capture the latent repre-248

sentation space for music. Representation learn-249

ing is crucial for generative models, as it can be250

drastically more efficient than handling the high-251

dimensional raw input data (Rombach et al., 2022;252

Yang et al., 2022; Kreuk et al., 2022; Ho et al.,253

2022; Villegas et al., 2022).254

Overview To learn the representation space for mu-255

sic, we deploy a diffusion magnitude autoencoder256

(DMAE) shown in Figure 3. Specifically, we adopt257

our diffusion-based audio autoencoder, introduced258

in Section 3.1.1, to compress audio into a smaller259

latent space by 64x from the original waveform. To260

train the model, we first convert the waveform to a261

magnitude spectrogram, which is a better represen-262

tation for audio models, and then we auto-encode263

it into a latent representation.264

At the same time, we corrupt the original audio with265

a random amount of noise, and train our 1D U-Net266

(introduced in Section 3.1.2) to remove that noise.267

During the noise removal process, we condition the268

U-Net on the noise level and the compressed latent,269

which can have access to a reduced version of the270

non-noisy audio.271

Model Architecture Our DMAE works as follows.272

Let www be a waveform of shape [c, t] for c chan-273

nels and t timesteps, and (mmmwww, pppwww) = stft(www;n =274

UNet ||·||Noise

Encoder

STFTMag

Latent

Audio

Figure 3: The training scheme of our diffusion magni-
tude autoencoder (DMAE). When denoising (bottom
right), we condition the U-Net on the noise level ( ) and
compressed latent representation ( ) from a reduced ver-
sion of the non-noisy audio (the pink matrix).

1024, h = 256) be the magnitude and phase ob- 275

tained from a short-time furier tranform of the 276

waveform with a window size of 1024 and hop- 277

length of 256. Then the resulting spectrograms will 278

have shape [c · n, t
h ]. We discard phase and encode 279

the magnitude into a latent zzz = Eθθθe(mmmwww) using a 280

1D convolutional encoder. The original waveform 281

is then reconstructed by decoding the latent using a 282

diffusion model ŵww = Dθθθd(zzz, ϵϵϵ, s), where Dθθθd is the 283

diffusion sampling process with starting noise ϵϵϵ and 284

s is the number of decoding (sampling) steps. The 285

decoder is trained with vvv-objective diffusion while 286

conditioning on the latent fθθθd(wwwσt ;σt, zzz), where 287

fθθθd is the proposed 1D U-Net, called repeatedly 288

during decoding. 289

Since only the magnitude is used and phase is 290

discarded, this diffusion autoencoder is simulta- 291

neously a compressing autoencoder and vocoder. 292

By using the magnitude spectrograms, higher com- 293

pression ratios can be obtained than autoencoding 294

directly the waveform. We found that waveforms 295

are less compressible and efficient to work with. 296

Similarly, discarding phase is benificial to obtain 297

higher compression ratios for the same level of 298

quality. The diffusion model can easily learn to 299

generate a waveform with realistic phase even if 300

conditioned only on the encoded magnitude. 301

In this way, the latent space for music can serve 302

as the starting point for our text-to-music genera- 303

tor, which will be introduced next. To ensure this 304

representation space fits the next stage, we apply a 305

tanh function on the bottleneck, keeping the val- 306

ues in the range [−1, 1]. Note that we do not use 307
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a more disentangled bottleneck, such as the one308

in VAEs (Kingma and Welling, 2014), as its addi-309

tional regularization reduces the amount of allowed310

compressibility.311

3.3 Stage 2: Text-to-Music Generator by312

Text-Conditioned Latent Diffusion313

(TCLD)314

UNet ||·||Noise

Text

Embedding Embedding

Transformer


Latent

Figure 4: The training scheme of our text-conditioned
latent diffusion (TCLD) generator. During the denoising
process, we provide the U-Net a feature vector ( ) and
a text embedding ( ).
Based on the learned music representation space,315

in this stage, we guide the music generation with316

text descriptions.317

Overview We first encode the music source into318

the latent space using the DMAE encoder, and319

then we propose a text-conditioned latent diffu-320

sion (TCLD) which corrupt the latent space with a321

random amount of noise, and then train a series of322

U-Nets to remove the noise.323

We illustrate the detailed process in Figure 4. Con-324

sistent with the previous stage, we use vvv-objective325

diffusion and the 1D U-Net architecture. To condi-326

tion on the text text embedding eee, we use the U-Net327

configuration fθθθg(zzzσt ;σt, eee) to generate the com-328

pressed latent zzz = Eθθθe(mmmwww). Then, the generator329

Gθθθg(eee, ϵϵϵ, s) applies DDIM sampling and calls the330

U-Net s times to generate an approximate latent ẑzz331

from the text embedding eee and starting noise ϵϵϵ. The332

final generation stack during inference to obtain a333

waveform is334

ŵww = Dθθθd(Gθθθg(eee, ϵϵϵg, sg), ϵϵϵd, sd) . (6)335

Text Conditioning To obtain the text embeddings,336

prior work on text-conditioning suggests either337

learning a joint data-text representation (Li et al.,338

2022; Elizalde et al., 2022; Ramesh et al., 2022),339

or using embeddings from pre-trained language340

model as direct conditioning (Saharia et al., 2022;341

Ho et al., 2022) of the latent model.342

In our TCLD model, we follow the practice in Sa- 343

haria et al. (2022) to use a pre-trained and frozen 344

T5 language model (Raffel et al., 2020) to generate 345

text embeddings from the given description. We 346

use the classifier-free guidance (CFG) (Ho and Sal- 347

imans, 2022) with a learned mask applied on batch 348

elements with a probability of 0.1 to improve the 349

strength of the text-embedding during inference. 350

Adapting the U-Net for Text Conditioning To en- 351

able the U-Net to condition on the text embedding 352

eee, we use the U-Net with the cross-attention blocks, 353

which provide the conditioning text embedding, 354

and multiple attention blocks, to ensure informa- 355

tion sharing over the entire latent space, whcih is 356

crucial to learn long-range audio structure. Given 357

the compressed size of the latent space, we also in- 358

crease the size of this inner U-Net to be larger than 359

the first stage. And due to our efficiency design, 360

it maintains a reasonable training and inference 361

speed, even with large parameter counts. 362

4 Experimental Setup 363

4.1 Collection of the TEXT2MUSIC Dataset 364

To provide a fertile ground to train our text- 365

to-music model on, we collect a new dataset, 366

TEXT2MUSIC, which consists of 50K text-music 367

pairs totaling 2,500 hours. We ensure a high qual- 368

ity of stereo music sampled at 48kHz and cover 369

a wide variety of music spanning multiple genres, 370

artists, instruments, and provenience. Many exist- 371

ing open-source music datasets, such as (Gillick 372

et al., 2019; Hawthorne et al., 2019a), have limita- 373

tions in terms of the specific musical instruments 374

they encompass. While some datasets, like (Engel 375

et al., 2017; Boulanger-Lewandowski et al., 2012), 376

cover a broader array of instruments, they fall short 377

in representing a wide variety of genres. This in- 378

adequacy underscores the need for a more compre- 379

hensive dataset that encompasses a rich tapestry of 380

musical genres and diverse instrumentation. 381

As for the procedure to collect the music, we first 382

check with the copyright regulations, which grants 383

an exemption for using copyright infringing copies 384

if the purpose is scientific research (Geiger et al., 385

2018; Delacroix, 2023), according to the EU regu- 386

lation in Article 3 of the EU Directive on Copyright 387

in the Digital Single Market (European Commis- 388

sion, 2016). Then, we follow Spotify’s top rec- 389

ommendations to collect seven very large playlists, 390

each containing on average 7K pieces of music. 391
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Genre # Pieces Percentage (%) in Dataset
Pop 5,498 27.29
Electronic 3,875 19.38
Rock 3,584 17.79
Metal 1,796 8.92
Hip Hop 818 4.06
Others 4492 22.56

Table 1: Our TEXT2MUSIC dataset covers a variety of
music, including pop, electronic, rock, metal, hip pop,
and others.

We iterate through every music sample in these392

playlists, for which we use the name of the music393

to search and download the music from YouTube,394

and we use the metadata to compose its correspond-395

ing text description, which contains the music title,396

author, album name, genre, and year of release.397

In line with our spirit to open-source the model,398

we also open-source the data collection pipeline399

on GitHub,3 so future researchers can use it to400

facilitate new data collection.401

We show the statistics about the diverse set of gen-402

res in our TEXT2MUSIC dataset in Table 1.403

4.2 Implementation Details404

Our diffusion autoencoder has 185M parame-405

ters, and text-conditional generator has 857M pa-406

rameters, with more architecture details in Ap-407

pendix A.3. We train the music autoencoder on408

random crops of length 218 (∼5.5s at 48kHz), and409

the text-conditional diffusion generation model on410

fixed crops of length 221 (∼44s at 48kHz) encoded411

in the 32-channels, 64x compressed latent represen-412

tation. We use the AdamW optimizer (Loshchilov413

and Hutter, 2019) with a learning rate of 10−4, β1414

of 0.95, β2 of 0.999, ϵ of 10−6, and weight de-415

cay of 10−3. And we use an exponential moving416

average (EMA) with β = 0.995 and power of 0.7.417

5 Evaluation418

5.1 Assessment Criteria Overview419

Evaluating music is a highly challenging task. We420

survey a large number of papers, and find that pre-421

vious work adopts a variety of objective and subjec-422

tive metrics,4 and the gist is that no single metric is423

3Anonymous link. We will release it upon acceptance.
4The common metrics we surveyed include quality (Goel

et al., 2022), fidelity (Goel et al., 2022; Hawthorne et al.,
2019b; Hyun et al., 2022), musicality (Goel et al., 2022; Yu
et al., 2022; Dhariwal et al., 2020), diversity (Goel et al., 2022;
Dhariwal et al., 2020), and structure (Yu et al., 2022; Leng
et al., 2022; Dhariwal et al., 2020).

perfect. After careful thinking, we design a com- 424

prehensive set of evaluation metrics covering three 425

categories with a total of 11 metrics, including both 426

automatic and human evaluations. In the follow- 427

ing, we will introduce the overall property analysis 428

(Section 5.2), such as sample rate, efficiency and 429

music type; text-music relevance (Section 5.3); mu- 430

sic quality (Section 5.4); and long-termstructure of 431

the music (Section 5.5). 432

5.2 Property Analysis 433

Comparing the overall properties of various models 434

in Table 2, we see a set of impressive properties of 435

the Moûsai model: (1) We are among the very few 436

that can control music generation easily by text 437

descriptions of the type of music we want, as most 438

other models do not take text as input (van den 439

Oord et al., 2016; Caillon and Esling, 2021; Borsos 440

et al., 2022), or take only lyrics or descriptions of 441

daily sounds (e.g., “a dog barking”) (Kreuk et al., 442

2022; Dhariwal et al., 2020). The only other text- 443

to-music model is the Riffusion model (Forsgren 444

and Martiros, 2022), which only works with very 445

short length of 5 seconds. 446

(2) Our model is also among the very few that 447

enables long-context music generation for sev- 448

eral minutes, among all others that can only gen- 449

erate seconds (van den Oord et al., 2016; Fors- 450

gren and Martiros, 2022; Kreuk et al., 2022; Pasini 451

and Schlüter, 2022), except for Jukebox (Dhariwal 452

et al., 2020) which generates songs given lyrics and 453

takes very long to run inference. 454

(3) Efficiency is another highlight of our model, 455

where we only need an inference time similar to 456

the audio length on a consumer GPU, which is sev- 457

eral minutes, while many other text-to-audio mod- 458

els take many GPU hours (Dhariwal et al., 2020; 459

Kreuk et al., 2022). Our model is very friendly for 460

research at university labs, as each model can be 461

trained on a single A100 GPU in 1 week of training 462

using a batch size of 32. 463

(4) Moreover, we also highlight the diversity of 464

music we generate, as our model design enables 465

multi-genre music training, instead of single-genre 466

ones in previous models (Caillon and Esling, 2021; 467

Pasini and Schlüter, 2022), and we can find rhythm, 468

loops, riffs, and occasionally even entire choruses 469

in our generated music. 470
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Model Sample Rate↑ Len.↑ Input (Text ✓) Music (Diverse↑) Example Infer. Time↓ Data
WaveNet (2016) 16kHz@1 Secs None Piano or speech Piano = Audio len.⋆ 260
Jukebox (2020) 44.1kHz@1 Mins⋆ Lyrics, author, etc. Song with the lyrics Song Hours 70K
RAVE (2021) 48kHz@2 Secs⋆ Latent Single-genre Music Strings = Audio len.⋆ 100
AudioLM (2022) 16kHz@1 Secs⋆ Beginning of the music Piano or speech Piano Mins 40K
Musika (2022) 22.5kHz@2 Secs Context vector Single-genre Music Piano = Audio len.⋆ 1K
Riffusion (2022) 44.1kHz@1 5s Text (genre, author, etc.) Music of any genre Jazzy clarinet Mins –
AudioGen (2022) 16kHz@1 Secs⋆ Text (a phrase/sentence) Daily sounds Dog barks Hours 4K
Moûsai (Ours) 48kHz@2 Mins⋆ Text (genre, author, etc.) Music of any genre African drums = Audio len. 2.5K

Table 2: Comparison of our Moûsai model with previous music/audio generation models. We compare the followings
aspects: (1) audio sample rate@the number of channels (Sample Rate↑, where the higher the better), (2) context
length of the generated music (Len.↑, where the higher the more capable the model is to generate structural music; ⋆

indicates variable length, where we assume that autoregressive methods are variable by default, with an upper-bound
imposed by attention), (3) input type (Input, where we feature using Text ✓ as the condition for the generation),
(4) type of the generate music (Music, where the more Diverse↑ genre, the better), (5) an example of the generated
music type (Example), (6) inference time (Infer. Time↓, where the shorter the better, and since the music length is
seconds or minutes, the inference time equivalent to the audio length is the shortest, and we use ⋆ to show models
that can run inference fast on CPU), and (7) total length of the music in the training data in hours (Data).

Model CLAP (↑) Inf. Time (s) (↓) Inf. Mem. (G) (↓)
Riffusion 0.06 218.0 8.85
Moûsai 0.13 49.2 5.04

Table 3: Performance of our Moûsai and the Riffusion
model in terms of the CLAP score, as well as the in-
ference time (Inf. Time), and inference memory (Inf.
Mem.) for a single 43-second music clip.
5.3 Evaluating the Text-Music Relevance471

To assess how much the generated music corre-472

sponds to the given text prompt, we deploy both473

human and automatic evaluations.474

Relevance & Distinctiveness by Human Evalua-475

tion We design a listener test where the annotators476

need to infer some coarse information of the text477

prompt behind a given piece of generated music.478

Since it is too challenging to infer the exact text479

prompt, we only ask annotators to infer the music480

genre indicated in the prompt.481

To prepare the ground-truth prompts, we compose482

a list of 40 text prompts spanning across several483

common music genres: electronic, hip hop, metal,484

and pop. See Appendix C.1 for the entire list485

of prompts.Inspired by the two-alternative forced486

choice (2AFC) experiment design, we design a487

four-alternative forced choice (4AFC) paradigm,488

where the annotators need to categorize each mu-489

sic sample into exactly one of the four provided490

categories. See annotation details in Appendix C.1.491

In Figure 5, we can see that our Moûsai model has492

the most mass on the diagonal (i.e., correctly iden-493

tified), while the Riffusion model tends to generate494

generic samples that are mostly identified as pop495
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(a) Confusion matrix for the
music pieces generated by
Moûsai. (y-axis: true genre;
x-axis: inferred genre.)
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(b) Confusion matrix for the
music pieces generated by
the Riffusion model.

Figure 5: Results of the text-music relevance check,
where the annotators are asked to infer the generated
music by (a) our model and (b) the Riffusion model to
their ground-truth genres: electronic, hip hop, metal,
and pop. Perfect results are when the diagonal is dark.

for all ground-truth genres. This shows that the 496

music generated by our model is both relevant to 497

the test and distinct enough with the given genre 498

against others. 499

Relevance by CLAP For automatic evaluation, we 500

adopt the commonly used CLAP score (Wu et al., 501

2023) to quantify the alignment between the gen- 502

erated audio and the corresponding text. From 503

Table 3, we can see that our model is two times 504

better than Riffusion in terms of CLAP score, and 505

also much faster in inference time. 506

5.4 Evaluating the Music Quality 507

We first introduce the four evaluation metrics, and 508

then describe the evaluation results. 509

5.4.1 Metrics for Music Quality 510

To evaluate the quality of the generated music, we 511

adopt four metrics: the automatic score by FAD, a 512
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music Turing test, and human evaluation on musi-513

cality and audio clarity.514

For automatic evaluation, we deploy the widely515

adopted Fréchet Audio Distance (FAD) (Kilgour516

et al., 2019) to assess the fidelity of the generated517

music distribution in comparison to the real music518

distribution (i.e., how similar the generated music519

is to the authentic music). To facilitate the com-520

putation of FAD, we employ the commonly used521

PANN model (Kong et al., 2020) as a means to522

effectively encode the music.523

Then, we also set up three human evaluations, all on524

a scale of 1 (worst) to 5 (best). First, we let human525

annotators to assess the authenticity/fidelity of the526

generated music via a music Turing test, or fidelity527

(Goel et al., 2022; Hawthorne et al., 2019b; Hyun528

et al., 2022). Each time, we give the annotator529

two music samples, and ask them which one is530

real and which is generated. To provide a more531

fine-grained score, we also ask them how close the532

generated music they identified sounds like real533

music, on a scale of 1 (almost not similar at all) to534

5 (highly similar). We keep their annotation score535

if they identify the generated music correctly, and536

otherwise we rate the music as 5, which means that537

the music perfectly passes the Turing test. Due to538

the space limit, we report the evaluation details in539

Appendix C.2.540

The other two metrics we deploy are musicality541

and audio clarity. For musicality, we let human542

annotators rate the melodiousness and harmonious-543

ness (Seitz, 2005) of the given music. And for544

audio clarity, or quality (Goel et al., 2022), we545

let them judge how close the quality is to a walkie-546

talkie (worst) or a high-quality studio sound system547

(best). The detailed setup of all our human evalua-548

tions are in Appendix C.2 and Appendix C.3.549

5.4.2 Results550

We show the evaluation results on all five metrics551

in Table 4. We can see that, on the automatic evalu-552

ation of FAD, our model has the best score, which553

is one magnitude smaller than previous models.554

Moreover, it also shows strong performance across555

the human evaluation metrics, outperforming the556

other two models on the music Turing test, har-557

moniousness, and sound clarity, as well as being558

comparable on the melodiousness metric.559

Model FAD (↓) Fidelity Melody Harmony Clarity
Riffusion 0.0018 2.8 2.66 2.48 2.37
Musika 0.0020 3.04 3.21 3.04 2.88
Moûsai 0.00015 3.17 3.15 3.08 2.92

Table 4: Music quality scores for the three models.

5.5 Long-Term Structure of the Music 560

In music composition, the arrangement of a piece 561

typically follows a gradual introduction, a main 562

body with the core content, and a gradual conclu- 563

sion, also called the sonata form (Webster, 2001). 564

Accordingly, we look into whether our generated 565

music also shows such long-term structure. Using 566

the same text prompt, we can generate different 567

segments/intervals of it by attaching the expression 568

“1/2/3/4 out of 4” at the end of the text prompt, 569

such as “Italian Hip Hop 2022, 3 of 4.” Specif- 570

ically, we randomly generate 1000 music pieces, 571

where the prompts have an even distribution of the 572

four segment tags. 573
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Figure 6: The average amplitude and variation across
different segments of the generated music files.

We visualize the results in Figure 6, where we see 574

the first segment shows a gradual increase in both 575

the average amplitude and variance, followed by 576

continuously high average amplitude and variance 577

throughout Segments 2 and 3, and finally conclud- 578

ing with a gradual decline in the last segment. 579

6 Conclusion 580

In this work, we presented Moûsai, a novel text- 581

to-music generation model using latent diffusion. 582

We show that, in contrast to earlier approaches, 583

our model can generate minutes of high-quality 584

music in real-time on a consumer GPU, with good 585

music quality and text-audio binding. In addition, 586

we provide a collection of open-source libraries to 587

facilitate future work in the field. We expect that 588

the work will help pave the way towards higher- 589

quality, longer-context text-to-music generation for 590

future applications. 591
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Limitations and Future Work592

Limited computational resources in an aca-593

demic setting. We notice that there are some594

concurrent work that are highly competitive595

(Agostinelli et al., 2023), most of which are led596

by industry labs. However, by the time we finished597

this project in January 2023, our model is by far598

the most performant given the limited resources in599

the academic setting. The asymmetric distribution600

of computational resources is making it almost im-601

possible for academic labs to train state-of-the-art602

generative models these days. We cannot compete603

further with scaling up the model.604

Limited data. Enhancing the scale of both data605

and the model holds promising potential for yield-606

ing significant improvements in quality. Following607

(Dhariwal et al., 2020; Borsos et al., 2022), we sug-608

gest training with 50k-100k hours instead of 2.5k.609

Computer Vision studies like (Saharia et al., 2022)610

show that utilizing larger pretrained language mod-611

els for text embeddings plays an important role612

in achieving superior quality outcomes. Drawing613

upon this, we hypothesize that the application of614

a larger pretrained language model to our second-615

stage model can similarly contribute to enhanced616

quality outcomes.617

Ethical Considerations618

Our work aims to bridge the gap between text and619

music generation, enabling the creation of expres-620

sive and high-quality music from textual descrip-621

tions. While this research has the potential to ben-622

efit various applications, such as music therapy,623

entertainment, and education, we recognize that624

it may also raise concerns in terms of copyright,625

cultural appropriation, and the potential misuse of626

generated content.627

Copyright and Intellectual Property: Our model628

may generate music that resembles existing copy-629

righted works, which could lead to potential legal630

disputes. First of all, for research-only use, it is631

exempted from copyright infringement. For other632

purposes, we suggest incorporating mechanisms633

to detect and avoid generating music that closely634

resembles copyrighted material.635

Economic Impact on Musicians and Composers:636

The widespread adoption of text-to-music genera-637

tion models may have economic implications for638

musicians and composers, potentially affecting639

their livelihoods. We believe that our model should 640

be used as a tool to augment and inspire human 641

creativity, rather than replace it. We encourage col- 642

laboration between AI researchers, musicians, and 643

composers to explore new ways of integrating AI- 644

generated music into the creative process, ensuring 645

that the technology benefits all stakeholders. 646

In conclusion, we are committed to conducting 647

our research responsibly and ethically. We encour- 648

age the research community to engage in open dis- 649

cussions about the ethical implications of text-to- 650

music generation models and to develop guidelines 651

and best practices for their responsible use. By 652

addressing these concerns, we hope to contribute 653

to the development of AI technologies that benefit 654

society and promote creativity, while respecting the 655

rights and values of all stakeholders. 656
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A More Data Details 999

A.1 Data Collection Rationale 1000

We have several desiderata when collecting the 1001

dataset: the data (1) must have text data paired 1002

with the music piece, and (2) must consistitute a 1003

large size, which means that our data crawling 1004

procedure needs to be scalable, without tedious 1005

manual efforts to curate. Note that it is crucial to 1006

get a large-sized dataset in order to unleash the 1007

performance of audio generation diffusion models. 1008

A.2 Training setup for the text-music pairs 1009

For the textual description, we use metadata such 1010

as the title, author, album, genre, and year of re- 1011

lease. Given that a song could span longer than 1012

44s, we append a string indicating which chunk is 1013

currently being trained on, together with the total 1014

chunks the song is made of (e.g., 1 of 4). This 1015

allows to select the region of interest during infer- 1016

ence. Hence, an example prompt is like “Egyptian 1017

Darbuka, Drums, Rythm, (Deluxe Edition), 2 of 4.” 1018

To make the conditioning more robust, we shuffle 1019

the list of metadata and drop each element with a 1020

probability of 0.1. Furthermore, for 50% of the 1021

times we concatenate the list with spaces and the 1022

other 50% of the times we use commas to make 1023
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the interface more robust during inference. Some1024

example prompts in our dataset can be seen in Ta-1025

ble 5.1026

Example Text Prompts in Our Dataset
Nr. 415 (Premium Edition), german hip hop, 2 of 7, 2012,
XATAR, Konnekt
30 Años de Exitos, Mundanzas, 2 of 6, latin pop, Lupita
D’Alessio, 2011
emo rap 2018 Runaway Lil Peep 4 of 5
Alone, Pt. II (Remixes) 2020 electro house Alone, Pt. II -
Da Tweekaz Remix Alan Walker

Table 5: Example text prompts in our dataset.

A.3 Model Architecture and Parameters1027

Our diffusion autoencoder has 185M parameters,1028

with 7 nested U-Net blocks of increasing channel1029

count ([256, 512, 512, 512, 1024, 1024, 1024]), for1030

which we downsample each time by 2, except for1031

the first block ([1, 2, 2, 2, 2, 2, 2]). This makes the1032

compression factor for our autoencoder to be 64x.1033

Depending on the desired speed/quality tradeoff,1034

more or less compression can be applied in this1035

first stage. Following our single GPU constraint,1036

we find that 64x compression factor is a good bal-1037

ance to make sure the second stage can work on1038

a reduced representation. We discuss more about1039

this tradeoff in Appendix E.4. The diffusion au-1040

toencoder only uses ResNet and modulation items1041

with the repetitions [1, 2, 2, 2, 2, 2, 2]. We do not1042

use attention, to allow decoding of variable and1043

possibly very long latent representations. Channel1044

injection only happens at depth 4, which matches1045

the output of the magnitude encoder latent, after1046

applying the tanh function.1047

Our text-conditional generator has 857M parame-1048

ters (including the parameters of the frozen T5-base1049

model) with 6 nested U-Net blocks of increasing1050

channel counts ([128, 256, 512, 512, 1024, 1024]),1051

and again downsampling each time by 2, except for1052

the first block ([1, 2, 2, 2, 2, 2]). We use attention1053

blocks at the depths [0, 0, 1, 1, 1, 1], skipping the1054

first two blocks to allow for further downsampling1055

before sharing information over the entire latent,1056

instead use cross-attention blocks at all resolutions1057

([1, 1, 1, 1, 1, 1]). For both attention and cross-1058

attention, we use 64 head features and 12 heads per1059

layer. We repeat items with an increasing count1060

towards the inner U-Net low-resolution and large-1061

context blocks ([2, 2, 2, 4, 8, 8]), this allows good1062

structural learning over minutes of audio.1063

B More experiments 1064

B.1 Hardware Requirements 1065

We use limited computational resources as avail- 1066

able in a university lab. (3) Efficiency is another 1067

highlight of our model, where we only needs an 1068

inference time equivalent to the audio length on a 1069

consumer GPU, which is several minutes, while 1070

many other text-to-audio models take many GPU 1071

hours (Dhariwal et al., 2020; Kreuk et al., 2022). 1072

Our model is very friendly for research at univer- 1073

sity labs, as each of our models can be trained on 1074

a single A100 GPU in 1 week of training using a 1075

batch size of 32; this is equivalent to around 1M 1076

steps for both the diffusion autoencoder and latent 1077

generator. For inference, as an example, a novel au- 1078

dio source of ∼43s can be synthesized in less than 1079

50s using a consumer GPU with a DDIM sampler 1080

and a high step count (100 generation steps and 1081

100 decoding steps). 1082

C More analysis 1083

C.1 Annotation Details for the Genre 1084

Identification Test 1085

Prompts We list all the text prompts composed for 1086

the four common music genres in Table 6. 1087

Using these prompts, we generate music with both 1088

Moûsai and the Riffusion model (Forsgren and Mar- 1089

tiros, 2022), with a total of 80 pieces of music, two 1090

for each prompt. 1091

To validate this quantitatively, we conducted a lis- 1092

tener test with three perceivers (annotators) with di- 1093

verse demographic backgrounds (both female and 1094

male, all with at least a Master’s degree of edu- 1095

cation). Each annotator listens to all 80 music 1096

samples we provide, and is instructed to categorize 1097

each sample into exactly one of the four provided 1098

genres. 1099

Annotation We record how many times the per- 1100

ceiver correctly identifies the genre which the re- 1101

spective model was generating from. A large num- 1102

ber (or score) means that the model often generated 1103

music that, according to the human perceiver, plau- 1104

sibly belonged to the correct category (when com- 1105

pared to the other three categories). To achieve a 1106

good score, the model needs to generate diverse and 1107

genre-specific music. We take the score as a qual- 1108

ity score of the model when it comes to correctly 1109

performing text-conditional music generation. 1110
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In Figure 5, we display the confusion matrix of this1111

genre identification test for both our model (left)1112

and the Riffusion model (right). For our model,1113

the annotators identify the right genres most of the1114

time, whereas for the Riffusion model, the anno-1115

tators often perceive the music as more generic,1116

categorizing it as Pop.1117

C.2 Annotation Details for Turing Test1118

As for the details, we create 90 music samples, in-1119

cluding 15 generated samples paired with 15 real1120

music samples for each of the three models (Riffu-1121

sion, Musika, and Moûsai). We recruit two annota-1122

tors, pursuing Bachelor of Technology degree from1123

the Indian Institute of Technology, Kharagpur, In-1124

dia. Additionally, the two annotators have pursued1125

playing music as a hobby for the past 10 years.1126

We conducted a rigorous evaluation employing an1127

experiment with a similar spirit to the Turing test1128

(TURING, 1950) for natural language, but com-1129

monly called as the fidelity test in audio evaluation1130

(Hyun et al., 2022) or speaker test (Greshler et al.,1131

2021; Hawthorne et al., 2019b) in audio evaluation.1132

Our methodology involved presenting a group of1133

expert annotators with a total of 60 distinct fold-1134

ers, 15 corresponding to each of Mousai, Mou-1135

sai (classical-only), Riffusion, and Musika models.1136

Each folder containing two music files, one being1137

the original and the other generated using a given1138

model prompted with its corresponding metadata.1139

The annotators were provided with the task of de-1140

termining the fidelity and providing a rating on a1141

scale of 1 to 5, reflecting the perceived degree of1142

authenticity of the generated audio. In cases where1143

the annotators incorrectly identified the generated1144

audio, the respective model was awarded 5 points.1145

Conversely, if the annotators correctly identified1146

the generated audio, the model’s rating was deter-1147

mined based on the score provided by the annotator.1148

The annotators were compensated with 500 rupees1149

(∼6.5 dollars) for this 3 hour task (which is well1150

above daily minimum wage in India).1151

Following are the exact instructions provided to the1152

annotators1153

1. You will be presented with batches of two au-1154

dio samples in subfolders of this folder named1155

from 1 to 60. Each subfolder contains two1156

audios named a.wav and b.wav.1157

2. Listen to each sample carefully.1158

3. It’s best to use headphones in a quiet environ- 1159

ment if you can. 1160

4. Some files may be loud, so it’s recommended 1161

to keep the volume moderate. 1162

5. One of the audio samples in each pair is a 1163

real recording, while the other is a generated 1164

(synthetic) audio. 1165

6. Listen to each pair of audio samples carefully. 1166

7. Pay attention to the quality, characteristics, 1167

and nuances of each audio sample. 1168

8. This folder contains a spreadsheet file called 1169

‘Response_Task_2.xlsx’. Compare the sam- 1170

ples to each other and provide a relative rating 1171

to the fake audio only out of 5, where 1 being 1172

the most fake and 5 being most real. 1173

C.3 Annotation Details for Musicality 1174

In order to ascertain the quality and artistic merit 1175

of the generated musical output, a rigorous human 1176

evaluation methodology was implemented. A to- 1177

tal of 50 carefully curated folders, each containing 1178

three distinct audio files, were presented to human 1179

evaluators. These audio files were generated uti- 1180

lizing various models, all prompted by a specific 1181

prompt. We recruit two annotators, pursuing Bach- 1182

elor of Technology degree from the Indian Institute 1183

of Technology, Kharagpur, India. Additionally, the 1184

two annotators have pursued playing music as a 1185

hobby for the past 10 years. The annotators were 1186

compensated with 500 rupees (∼6.5 dollars) for 1187

this 3 hour task (which is well above daily mini- 1188

mum wage in India). 1189

Following are the exact instructions provided to the 1190

annotators 1191

1. Listen to the music and rate it based on three 1192

aspects: Quality, Melody, and Harmony. 1193

2. It’s best to use headphones in a quiet environ- 1194

ment if you can. 1195

3. Some files may be loud, so it’s recommended 1196

to keep the volume moderate. 1197

4. This folder contains folders subfolders 1198

through 1-50. Each subfolders contains three 1199

audio files named A.wav, B.wav, and C.wav 1200

. You need to listen to each of them and rate 1201

them (relative to each other) based on quality, 1202

melody, and harmony. 1203

5. For Quality, consider how clear the audio 1204

sounds. Does it resemble a walkie-talkie (bad 1205

quality) or a high-quality studio sound system 1206
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(good quality)?1207

6. Melodiousness refers to the main pitch or note1208

in the music. Pay attention to the rhythm and1209

repetitiveness of the melody. A more rhyth-1210

mic and repetitive melody is considered better,1211

while the opposite is true for a less rhythmic1212

melody.1213

7. Harmoniousness involves multiple notes1214

played together to support the melody. Evalu-1215

ate if these notes are in sync and enhance the1216

effect of the melody. Higher scores should be1217

given for good harmony and lower for poor1218

harmony.1219

8. It is recommended view youtube videos: this1220

or this short video explaining melody and har-1221

mony1222

9. This folder also contains a spreadsheet by the1223

name “Response_Task_1.xlsx”. Remember1224

to provide ratings (out of 5) for each aspect1225

of your evaluation in the file against appropri-1226

ate folder number. Feel free to listen to each1227

sample as many times before rating them.1228

D More Related Work1229

Audio Generation Audio generation is a challeng-1230

ing task. At the lowest level, we have digital wave-1231

forms that control air movement from speakers.1232

Waveforms can be represented in different resolu-1233

tions, or sample rates. Higher sample rates (e.g.,1234

48kHz) allow for more temporal resolution and can1235

represent higher frequencies, but at the same time1236

it is computationally more demanding to generate.1237

At higher levels of abstraction, we find qualitative1238

properties such as texture (timbre) or pitch. Zoom-1239

ing out, we observe structure such as rhythm and1240

melody that can span multiple seconds, or even1241

structurally be composed into choruses that form1242

minutes of interconnected patterns.1243

Audio can be represented with a single waveform1244

(mono), two waveforms (stereo), or even more1245

waveforms in the case of surround sound. Au-1246

dio with two or more channels can give a sense1247

of movement and spatialisation. From a modelling1248

perspective, there are (1) unconditional models that1249

generate novel samples from the training distri-1250

bution without any additional information, or (2)1251

conditional models that use a form of guidance,1252

such as text, to control the generation. Models1253

can be trained on a single modality (e.g., drums or1254

piano) or on multiple modalities, which usually re-1255

Figure 7: Mel spectrogram comparison between the true
samples (top) and the auto-encoded samples (bottom);
cf. text.

quire more parameters for an increased modelling 1256

capacity and decrease in speed. 1257

E (Informal) Intuitions for Model 1258

Architecture and Training Setup 1259

Sound types that our model is good at 1260

Apart from the diversity and relevance, we also 1261

evaluate the sound quality of the music we gener- 1262

ate. From the mel spectrograms we visualize in 1263

Figure 7, we can see that low-frequency sounds are 1264

handled rather well by our model. From the music 1265

samples we provide, it is apparent that our model 1266

performs well with drum-like sounds as frequently 1267

found in electronic, house, dubstep, techno, EDM, 1268

and metal music. This is likely a consequence of 1269

the lower amount of information required to repre- 1270

sent low-frequency sounds. 1271

E.1 Improving the Structure 1272

We find that increasing the number of attention 1273

blocks (e.g., from a total of 4 – 8 to a total of 1274

32+) in the latent diffusion model can improve 1275

the general structure of the songs, thanks to the 1276

long-context view. If the model is trained without 1277

attention blocks, the context provided by the U- 1278

Net is not large enough to learn any meaningful 1279

long-term structure. 1280

E.2 Text-Audio Binding 1281

We find that the text-audio binding works well with 1282

CFG higher than 3.0. Since the model is trained 1283

with metadata such as title, album, artist, genre, 1284

year, and chunk, the best keywords to control the 1285

generation appear to be frequent descriptive names, 1286

such as the genre of the music, or descriptions com- 1287

monly found in titles, such as “remix”, “(Deluxe 1288
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Edition)”, and possibly many more. A similar be-1289

havior has been observed and exploited in text-to-1290

image models to generate better looking results.1291

E.3 Trade-Off between Speed and Quality1292

We find that 10 sampling steps in both stages can1293

be enough to generate reasonable audio. We can1294

achieve improved quality and reduced noise for1295

high-frequency sounds by trading off the speed,1296

i.e., increasing the number of sampling steps in the1297

diffusion decoder, e.g., 50 – 100 steps). Increasing1298

the number of sampling steps in the latent diffusion1299

model (again in the order of 50 – 100 steps) will1300

similarly improve the quality, likely due to the more1301

detailed generated latents, and at the same time1302

result in an overall better structured music. To1303

make sure the results are comparable when varying1304

the number of sampling steps, we use the same1305

starting noise in both stages. In both cases, this1306

suggests that using more advanced samplers could1307

be helpful to improve on the speed-quality trade-1308

off.1309

E.4 Trade-Off between Compression Ratio1310

and Quality1311

We find that decreasing the compression ratio of1312

the first stage (e.g., to 32x) can improve the qual-1313

ity of low-frequency sounds, but in turn will slow1314

down the model, as the second stage has to work1315

on higher dimensional data. As proposed later in1316

Section 6, we hypothesize that using perceptually1317

weighted loss functions instead of L2 loss during1318

diffusion could help this trade-off, giving a more1319

balanced importance to high frequency sounds even1320

at high compression ratios.1321

Genre = Electronic
– Drops, Kanine Remix, Darkzy, Drops Remixes, bass house,
(Deluxe) (Remix) 3 of 4
– Electronic, Dance, EDM (Deluxe) (Remix) 3 of 4
– Electro House (Remix), 2023, 3 of 4
– Electro Swing Remix 2030 (Deluxe Edition) 3 of 4
– Future Bass, EDM (Remix) 3 of 4, Remix
– EDM (Deluxe) (Remix) 3 of 4
– EDM, Vocal, Relax, Remix, 2023, 8D Audio
– Hardstyle, Drop, 8D, Remix, High Quality, 2 of 4
– Dubstep Insane Drop Remix (Deluxe Edition), 2 of 4
– Drop, French 79, BPM Artist, Vol. 4, Electronica, 2016
Genre = Hip Hop
– Real Hip Hop, 2012, Lil B, Gods Father, escape room, 3 of 4
– C’est toujours pour ceux qui savent, French Hip Hop, 2018
(Deluxe), 3 of 4
– Dejando Claro, Latin Hip Hop 2022 (Deluxe Edition) 3 of 4
– Latin Hip Hop 2022 (Deluxe Edition) 3 of 4
– Alternative Hip Hop Oh-My, 2016, (Deluxe), 3 of 4
– Es Geht Mir Gut, German Hip Hop, 2016, (Deluxe), 3 of 4
– Italian Hip Hop 2022 (Deluxe Edition) 3 of 4
– RUN, Alternative Hip Hop, 2016, (Deluxe), 3 of 4
– Hip Hop, Rap Battle, 2018 (High Quality) (Deluxe Edition) 3
of 4
– Hip Hop Tech, Bandlez, Hot Pursuit, brostep, 3 of 4
Genre = Metal
– Death Metal, 2012, 3 of 4
– Heavy Death Metal (Deluxe Edition), 3 of 4
– Black Alternative Metal, The Pick of Death (Deluxe), 2006, 3
of 4
– Kill For Metal, Iron Fire, To The Grave, melodic metal, 3 of 4
– Melodic Metal, Iron Dust (Deluxe), 2006, 3 of 4
– Possessed Death Metal Stones (Deluxe), 2006, 3 of 4
– Black Metal Venom, 2006, 3 of 4
– The Heavy Death Metal War (Deluxe), 2006, 3 of 4
– Heavy metal (Deluxe Edition), 3 of 4
– Viking Heavy Death Metal (Deluxe), 2006, 3 of 4
Genre = Pop
– (Everything I Do), I Do It For You, Bryan Adams, The Best
Of Me, canadian pop, 3 of 4
– Payphone, Maroon 5, Overexposed, Pop, 2021, 3 of 4
– 24K Magic, Bruno Mars, 24K Magic, dance pop, 3 of 4
– Who Is It, Michael Jackson, Dangerous, Pop (Deluxe), 3 of 4
– Forget Me, Lewis Capaldi, Forget Me, Pop Pop, 2022, 3 of 4
– Pop, Speak Now, Taylor Swift, 2014, (Deluxe), 3 of 4
– Pop Pop, Maroon 5, Overexposed, 2016, 3 of 4
– Pointless, Lewis Capaldi, Pointless, Pop, 2022, 3 of 4
– Saved, Khalid, American Teen, Pop, 2022, 3 of 4
– Deja vu, Fearless, Pop, 2020, (Deluxe), 3 of 4

Table 6: Text prompts composed for the four common
music genres: electronic, hip hop, metal, and pop.
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