

GRAPH REPRESENTATIONAL LEARNING: WHEN DOES MORE EXPRESSIVITY HURT GENERALIZATION?

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Graph Neural Networks (GNNs) are powerful tools for learning on structured data,
 012 yet the relationship between their expressivity and predictive performance remains
 013 unclear. We introduce a family of pseudometrics that capture different degrees of
 014 structural similarity between graphs and relate these similarities to generalization,
 015 and consequently, the performance of expressive GNNs. By considering a setting
 016 where graph labels are correlated with structural features, we derive generalization
 017 bounds that depend on the distance between training and test graphs, model com-
 018 plexity, and training set size. These bounds reveal that more expressive GNNs may
 019 generalize worse unless their increased complexity is balanced by a sufficiently
 020 large training set or reduced distance between training and test graphs. Our findings
 021 relate expressivity and generalization, offering theoretical insights supported by
 022 empirical results. Our code is available on anonymous GitHub.

1 INTRODUCTION

026 Graph Neural Networks (GNNs) (Scarselli et al., 2009; Bronstein et al., 2017) have become a central
 027 tool for learning representations of structured data. A major line of research has focused on improving
 028 their *expressivity*, that is, their capacity to distinguish non-isomorphic graphs, often evaluated with
 029 respect to the Weisfeiler-Lehman (WL) hierarchy of graph isomorphism tests (Weisfeiler & Lehman,
 030 1968; Xu et al., 2019; Morris et al., 2020b; 2023b).

031 The relationship between expressivity and performance of GNNs remains poorly understood. While
 032 more expressive models are theoretically capable of distinguishing a broader range of non-isomorphic
 033 graphs, their practical effectiveness in real-world tasks is not always apparent. On the one hand, more
 034 expressive models have been shown to outperform standard architectures (Maron et al., 2019a; Bodnar
 035 et al., 2021; Bouritsas et al., 2023), even when their additional expressive power does not result in
 036 separating more non-isomorphic graphs in the benchmarks at hand (Zopf, 2022). For instance, the
 037 1-WL test, and by extension simple message-passing neural networks (MPNNs) such as GIN (Xu
 038 et al., 2019), can separate all graphs in widely used datasets (Zopf, 2022; Kriege et al., 2020) and
 039 almost all random graphs (Babai et al., 1980), but performance is still far from saturated. On the
 040 other hand, less expressive models can outperform their more expressive counterparts. For example,
 041 Bechler-Speicher et al. (2024) show that models which completely discard the graph structure (hence,
 042 less-expressive than 1-WL) can outperform sophisticated GNNs in certain tasks.

043 These contrasting observations suggest a complex and nuanced relationship between expressivity and
 044 performance, raising two critical questions:

- 045 1. When does increased expressivity in GNNs help, and when does it hurt performance?
- 046 2. If a more expressive GNN performs better on a given task, is it due to its improved expres-
 047 sivity in terms of graph separability?

049 To explore these questions, we begin with a synthetic graph-classification task in which the labels are
 050 *designed* to depend on a known structural feature, namely the number of cycles. We train a sequence
 051 of models whose expressive power increases from a plain MPNN to an LF-GNN (Zhang et al.,
 052 2024). As Figure 1 (left) shows, *moderately* expressive models achieve the lowest test error, while
 053 the most expressive ones overfit, and performance deteriorates on unseen graphs. The result echoes
 a well-documented phenomenon in Euclidean deep learning: large neural networks can memorize

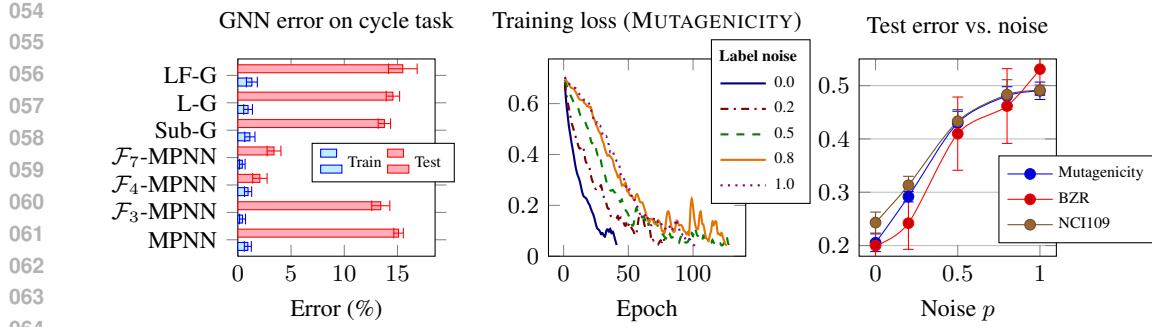


Figure 1: **Left:** Train–test errors for several GNN variants on a synthetic cycle-counting task; moderately expressive models such as \mathcal{F}_4 -MPNN (Barceló et al., 2021), i.e., MPNNs augmented with cycle counts, generalize best, while more expressive ones tend to overfit. **Center:** Training-loss curves of a MPNN on MUTAGENICITY under increasing label noise p . **Right:** Corresponding test errors on BZR, MUTAGENICITY, and NCI109 rises sharply as label-structure correlation is essential for generalization (mean \pm standard deviation across five seeds). See Appendix I.1 for more details.

arbitrary labels, yet they generalize only when there is genuine correlation between data and labels. Classical complexity measures such as the VC dimension or Rademacher complexity cannot account for this behavior in over-parametrized regimes (Zhang et al., 2017). A more plausible explanation is that generalization requires a balance between the model’s inductive bias (in our case, its expressivity) and the structure–label correlation present in the data.

We further test this hypothesis on three real-world graph datasets: BZR, MUTAGENICITY, and NCI109 (Morris et al., 2020a). We follow the setup from Zhang et al. (2017) by progressively resampling the labels uniformly at random, i.e., introducing label noise, while leaving the graphs untouched. Figure 1 (center and right) shows that training loss still converges to zero, confirming the network’s ability to memorize, yet the test error rises sharply as soon as the correlation between the graphs and labels is destroyed. Together, these experiments indicate that *expressivity by itself is neither strictly harmful nor helpful*; model performance ultimately is determined by the model’s ability to measure similarity in a way that reflects the task-relevant relation between graphs and labels. In this work, we set out to better understand this phenomenon.

1.1 OUR CONTRIBUTION

We formalize the empirical insight that generalization heavily depends on structure–label correlation as follows. We introduce a family of pseudometrics, called ζ -Tree Mover Distances (ζ -TMDs), each parameterized by a graph invariant (e.g., degree distributions or k -WL colors), which measure a specific level of expressivity. We then consider a graph classification setting where labels correlate with a fixed ζ -TMD: two graphs are likely to share the same label if they are similar under the chosen pseudometric. This captures structure–label alignment, a property we empirically validate across several real-world graph learning tasks, where generalization depends critically on such alignment.

Within this framework, we derive data-dependent generalization bounds for models with fixed encoders (e.g., random GNN features) and expressive, end-to-end trainable GNNs (e.g., GIN, GAT, k -GNNs). Our bound (Theorem 4.1, Equation (4)) decomposes the generalization gap into two terms: a capacity term, depending on model width, weight norms, and maximum node degree, and a structural similarity term, which measures the distance between training and test graphs under the chosen ζ -TMD. This decomposition highlights that generalization improves when the model maps structurally similar graphs (with respect to the ζ -TMD that correlates with the labels) to similar representations while keeping model capacity in check.

This perspective not only explains existing empirical observations but also guides model design. Deeper or more expressive GNNs can improve performance—but only if they enhance the structural similarity between train and test graphs. Otherwise, increased complexity may fail to improve label alignment, thereby degrading both generalization and computational efficiency. This trade-off is especially relevant since higher-order methods often introduce significant computational overhead. In

108 Section 5, we formalize this phenomenon and show that, in a concrete setting, the optimal GNN is
 109 precisely as expressive as required to capture the relevant structure-label correlation—no more, no
 110 less.

111

112 1.2 RELATED WORK

113

114 **Expressivity in GNNs.** A common benchmark for GNN expressivity is the Weisfeiler-Leman (k -WL)
 115 hierarchy, which measures the ability to distinguish non-isomorphic graphs. Standard MPNNs are
 116 provably limited by 1-WL expressivity (Xu et al., 2019; Morris et al., 2019), while higher-order
 117 k -GNNs (Morris et al., 2020b) and subgraph-based models (Frasca et al., 2022) extend this by
 118 incorporating higher-order structural interactions. Structural and positional encodings (Vignac et al.,
 119 2020; Barceló et al., 2021) enhance expressivity by injecting global features into node representations.
 120 Jogi et al. (2024) offer a unifying view by showing that many expressive architectures can be simulated
 121 via input transformations followed by standard message passing.

122

123 However, expressivity often comes at a computational cost: while MPNNs scale linearly with edges
 124 ($\mathcal{O}(|E|)$), subgraph-based and higher-order models scale super-linearly (e.g., $\mathcal{O}(|V||E|)$ or $\mathcal{O}(|V|^k)$),
 125 making them less viable for large-scale graphs.

126

127 **Generalization in GNNs.** Generalization theory for GNNs has traditionally relied on classical
 128 complexity measures such as VC-dimension (Scarselli et al., 2018), Rademacher complexity (Garg
 129 et al., 2020), and PAC-Bayes bounds (Liao et al., 2021). Graphon-based frameworks (Levie, 2024)
 130 establish bounds using covering numbers in continuous function spaces. Similarly, Maskey et al.
 131 (2022a; 2024) establish tighter bounds using graphon models, but under stronger assumptions on the
 132 data distribution and their analysis does not directly handle expressive GNNs.

133

134 Recent works increasingly focus on the interplay between expressivity and generalization. Morris
 135 et al. (2023a) relate 1-WL to VC-dimension in MPNNs. Li et al. (2024) analyze a trade-off between
 136 intra-class concentration and inter-class separation, but only for fixed graph encoders. Wang et al.
 137 (2024) study graphs sampled from manifolds, and Ma et al. (2021) model label–feature correlations
 138 in node classification, but neither framework extends to graph-level tasks or expressive GNNs.

139

140 Most recently, Vasileiou et al. (2024) derive tighter generalization bounds by combining covering
 141 number arguments with the robustness framework of Xu & Mannor (2012), using the fact that MPNNs
 142 are Lipschitz with respect to Tree and Forest distances. Their analysis does not model structure–label
 143 correlation and is limited to standard MPNNs. We refer to Appendix A for further discussion.

144

145 **Comparison with Prior Work.** While existing approaches have deepened our understanding of GNN
 146 generalization, many rely on idealized assumptions—such as known graphon distributions or fixed
 147 feature maps—that limit applicability to real-world graph learning. The work most closely related
 148 to ours is Ma et al. (2021), which models label–feature alignment but does not support graph-level
 149 tasks or trainable GNNs. In contrast, our framework explicitly models structure–label correlation
 150 using task-aligned pseudometrics and supports expressive, end-to-end trainable GNNs. This enables a
 151 fine-grained analysis of how architectural expressivity and task alignment interact. Our generalization
 152 bounds identify when increased expressivity may improve performance—and when it leads to
 153 overfitting—addressing a key open question posed by Morris et al. (2024).

154

155

156 2 PRELIMINARIES

157 Let \mathcal{G} denote the set of all simple, undirected graphs, and let $G = (V, E) \in \mathcal{G}$, where V , or $V(G)$, is
 158 the set of nodes and E is the set of edges. For any node $v \in V$, the *neighborhood* of v is defined as:
 159 $\mathcal{N}(v) := \{u \in V \mid \{v, u\} \in E\}$.

160

161 **Definition 2.1** (Graph Invariant and CRA). A *graph invariant* is a function $\zeta : \mathcal{G} \rightarrow \mathcal{C}$ that assigns a
 162 value to each graph such that for any isomorphic graphs G and H , it holds that $\zeta(G) = \zeta(H)$.

163

164 A *color refinement algorithm (CRA)* $\zeta_{(\cdot)}$ is a mapping that assigns to each graph G a function $\zeta_G :
 165 V(G) \rightarrow P$ such that for any graph H isomorphic to G , and any isomorphism $h : V(H) \rightarrow V(G)$,
 166 the CRA satisfies $\zeta_G(v) = \zeta_H(h(v))$ for all $v \in V(G)$.

167

168

169 We note that every CRA $\zeta_{(\cdot)}$ induces a graph invariant ζ by aggregating the vertex labels into a
 170 multiset. Specifically, the induced graph invariant is defined as $\zeta(G) := \{\{\zeta_G(v)\}\}_{v \in V(G)}$, where

162 $\{\{\cdot\}\}$ denotes a multiset. Throughout this work, we use the terms “graph invariant” and “CRA”
 163 interchangeably when the context allows.

164 Graph invariants vary in their ability to distinguish between graphs. We say that a graph invariant
 165 ζ is *more expressive* than another graph invariant θ if $\zeta(G) = \zeta(H)$ implies $\theta(G) = \theta(H)$ for all
 166 $G, H \in \mathcal{G}$.

167 **Definition 2.2** (Message Passing Neural Networks (MPNNs)). For a graph $G = (V, E)$ with node
 168 features $x \in \mathbb{R}^{|V| \times F}$, an *MPNN* updates node $v \in V$ at layer t as:

$$170 \quad x_v^{(t+1)} = f^{(t+1)} \left(x_v^{(t)}, \square_{u \in \mathcal{N}(v)} \left\{ \left\{ g^{(t+1)} \left(x_u^{(t)} \right) \right\} \right\} \right), \\ 171$$

172 where $f^{(t+1)}$ and $g^{(t+1)}$ are MLPs, and \square denotes a permutation-invariant aggregation function.

173 We focus on sum aggregation, but our framework naturally extends to mean or weighted sum
 174 aggregation. After the final message passing layer, node features are typically aggregated into a
 175 graph-level representation, followed by a final MLP.

176 Similar to MPNNs, the *1-Weisfeiler-Lehman (1-WL) Test* updates the node features of input graphs
 177 through local neighborhood aggregation. However, a key distinction is that in 1-WL, both the message
 178 and update functions are necessarily injective. 1-WL provides a tight upper bound on the expressivity
 179 of MPNNs (Xu et al., 2019; Morris et al., 2020b).

180 To quantify similarity between graphs, we use the notion of pseudometrics. In particular, every
 181 graph invariant naturally induces a pseudometric $d_\zeta(G, H)$ with $d_\zeta(G, H) = 0$ if $\zeta(G) = \zeta(H)$
 182 and $d_\zeta(G, H) = 1$ otherwise. However, such pseudometrics only indicate whether two graphs are
 183 distinguishable by ζ (distance 0 or 1). To capture finer structural similarities, general pseudometrics
 184 are often employed. Conversely, any pseudometric d can induce a graph invariant ζ_d by anchoring
 185 comparisons to a fixed graph $A \in \mathcal{G}$ with $\zeta_{d,A}(G) := d(G, A)$. Thus, pseudometrics can be seen as
 186 generalizations of graph invariants, offering richer measures of graph similarity.

187 The *Tree Mover’s Distance (TMD)* (Chuang & Jegelka, 2022) is a pseudometric that quantifies the
 188 dissimilarity between two graphs. Formally, for graphs G and H , and a depth t , the TMD is defined
 189 as the Wasserstein distance between their distributions of rooted trees up to depth t :

$$191 \quad \text{TMD}^t(G, H) = \text{Wasserstein} \left(\mathcal{T}^t(G), \mathcal{T}^t(H) \right),$$

192 where $\mathcal{T}^t(G)$ and $\mathcal{T}^t(H)$ are the multisets of rooted trees of depth t generated by the 1-WL test for
 193 G and H , respectively. For further details, we refer to Appendix C.

195 3 GENERALIZED TREE MOVER’S DISTANCE FOR STRONGLY SIMULATABLE 196 COLORINGS

197 We now extend the concept of the TMD to a broader class of CRAs that can be *strongly simulated* by
 198 the 1-WL test. For detailed proofs of the results presented in this section, refer to Appendix C.2.

199 A CRA ζ is said to be *strongly simulatable* if, for any graph G , running t iterations of the CRA on G
 200 can be simulated by running t iterations of the 1-WL test on a suitably transformed graph $R^\zeta(G)$.
 201 This transformation, called the *strong simulation under ζ* , ensures that the colorings at each 1-WL
 202 iteration on $R^\zeta(G)$ are at least as expressive as those of ζ (Jogl et al., 2024) on G . See Appendix B
 203 for more details and examples of CRAs and their corresponding transformed graphs.

204 For any strongly simulatable CRA ζ , we define a generalized pseudometric as the TMD between the
 205 strong simulations of the graphs under ζ .

206 **Definition 3.1.** Let ζ be a strongly simulatable CRA. For any depth $t > 0$, the ζ -TMD is defined as:

$$210 \quad \zeta\text{-TMD}^t(G, H) := \text{TMD}^t(R^\zeta(G), R^\zeta(H)), \quad (1)$$

211 where $R^\zeta(G)$ and $R^\zeta(H)$ are the strong simulations of G and H under ζ , respectively.

212 **Proposition 3.2.** Let ζ be a strongly simulatable CRA. For every $t > 0$, ζ -TMD t is a pseudometric.

213 Similar to the standard TMD, ζ -TMD $^t(G, H)$ can be zero even if $G \neq H$, as it is a pseudometric.
 214 Nonetheless, it can distinguish graphs that are differentiable by the color refinement algorithm ζ
 215 within T iterations.

216 **Proposition 3.3.** *Let ζ be a strongly simulatable CRA. If two graphs G and H are distinguished by ζ 217 after T iterations, then $\zeta\text{-TMD}^{T+1}(G, H) > 0$.*

219 Another immediate consequence is that MPNNs corresponding to the CRA ζ , referred to as $\zeta\text{-MPNNs}$, 220 are Lipschitz continuous with respect to the $\zeta\text{-TMD}$. Specifically, we have the following result:

221 **Theorem 3.4.** *Let ζ be a strongly simulatable CRA, and let $h : \mathcal{G} \rightarrow \mathbb{R}^K$ be a $\zeta\text{-MPNN}$ with T 222 layers, where the message and update functions are Lipschitz continuous with Lipschitz constants 223 bounded by $L_{g(t)}$ and $L_{f(t)}$, respectively. Suppose h includes a global sum pooling layer followed by 224 a Lipschitz continuous classifier c with Lipschitz constant L_c . Then, for any graphs G and H ,*

$$225 \quad \|h(G) - h(H)\| \leq L \cdot \zeta\text{-TMD}^{T+1}(G, H),$$

226 where $L = L_c 2^T \prod_{t=1}^T L_{f(t)} L_{g(t)}$ and $\|\cdot\|$ denotes the Euclidean vector norm.

228 The Lipschitz property established in Theorem 3.4 plays a key role in deriving the generalization 229 bounds for $\zeta\text{-MPNNs}$ presented in Section 4. Next, we illustrate the Lipschitz continuity using the 230 example of \mathcal{F} -MPNNs.

232 3.1 EXAMPLE: \mathcal{F} -MPNNs

234 The \mathcal{F} -Weisfeiler-Leman (\mathcal{F} -WL) test generalizes the 1-WL test by incorporating features derived 235 from a finite family of graphs, $\mathcal{F} \subset \mathcal{G}$. These features, often referred to as *motifs* or *patterns*, are 236 used to enhance node representations.

237 Specifically, for each node v in a graph G , the feature vector of v is augmented with counts of patterns 238 in \mathcal{F} that include v . Formally, the augmented feature vector is defined as:

$$239 \quad \tilde{x}_v = (x_v, \text{cnt}(P_1, G; v), \dots, \text{cnt}(P_{|\mathcal{F}|}, G; v)),$$

241 where $\text{cnt}(P, G; v)$ represents the number of occurrences of the pattern P in G such that v is part 242 of the pattern. These counts can for example be (injective) homomorphism counts (Bouritsas et al., 243 2023) or cycle basis counts (Yan et al., 2024).

244 If $\mathcal{F} \subset \tilde{\mathcal{F}}$, then $\tilde{\mathcal{F}}$ -WL is more expressive than \mathcal{F} -WL (Barceló et al., 2021; Bouritsas et al., 2023).

246 Correspondingly, \mathcal{F} -MPNNs incorporate these motif counts into their message-passing scheme. 247 Clearly, \mathcal{F} -WL can be strongly simulated via a transformed graph $R^{\mathcal{F}}(G)$ that includes the motif 248 counts as node features.

249 **Corollary 3.5.** *Let h be an \mathcal{F} -MPNN with T layers. Then, there exists a constant L such that for any 250 graphs G and H ,*

$$251 \quad \|h(G) - h(H)\| \leq L \cdot \mathcal{F}\text{-TMD}^{T+1}(G, H). \quad (2)$$

252 We emphasize that this is just one example; analogous definitions of $\zeta\text{-TMDs}$ and corresponding 253 versions of Corollary 3.5 can be derived for other GNN architectures, such as k -GNNs (Morris et al., 254 2019), see Appendix C.3.

256 4 GENERALIZATION BOUNDS WITH RESPECT TO TREE MOVER'S DISTANCE

258 In this section, we establish generalization bounds for GNNs using our generalized TMD framework.

260 4.1 PROBLEM SETUP AND ASSUMPTIONS

262 We consider a classification task where each data point is a graph equipped with node features. 263 Formally, let \mathcal{G}_{tr} and \mathcal{G}_{te} denote the fixed sets of training and test graphs, respectively. We assume 264 that there exists a constant $B > 0$ such that the norm of each node feature is bounded, i.e.,

$$265 \quad \|x(G)_i\|_2 \leq B \quad \forall G \in \mathcal{G}_{\text{tr}} \cup \mathcal{G}_{\text{te}}, \forall i \in V(G).$$

267 Each graph G is assigned a label $y_G \in \{1, \dots, K\}$. We assume that, for each class k , there exists a 268 Lipschitz continuous function $\eta_k : \mathcal{G} \rightarrow [0, 1]$ with respect to some pseudometric pm such that 269

$$270 \quad \Pr(y_G = k \mid G) = \eta_k(G),$$

270 and set $C := \max_{k \in \{1, \dots, K\}} \text{Lip}(\eta_k)$. If the labels are sampled according to such functions η_k , we
 271 say that the labels y are *strongly correlated* with pm and write $y \sim \text{pm}$.

272 Furthermore, we define ξ_{pm} as the distance between the training set and the test set:

$$274 \quad \xi_{\text{pm}} = \text{pm}(\mathcal{G}_{\text{te}}, \mathcal{G}_{\text{tr}}) := \max_{G \in \mathcal{G}_{\text{te}}} \min_{H \in \mathcal{G}_{\text{tr}}} \text{pm}(G, H). \quad (3)$$

276 Given the set of labeled graphs \mathcal{G}_{tr} the task of graph-level supervised learning is to learn a classifier
 277 $h : \mathcal{G} \rightarrow \mathbb{R}^K$ from a function family \mathcal{H} . Given a classifier $h \in \mathcal{H}$, the classification for a graph G is
 278 obtained by

$$279 \quad \tilde{y}_G = \operatorname{argmax}_{k \in \{1, \dots, K\}} h(G)[k],$$

281 where $h(G)[k]$ refers to the k -th entry of $h(G)$.

282 For the observed graph labels $(y_G)_{G \in \mathcal{G}_{\text{tr}}}$, the *empirical margin loss* of h on \mathcal{G}_{tr} for a margin $\gamma \geq 0$ is
 283 defined as

$$284 \quad \hat{\mathcal{L}}_{\text{tr}}^{\gamma}(h) := \frac{1}{N_{\text{tr}}} \sum_{G \in \mathcal{G}_{\text{tr}}} \mathbb{1}[h(G)[y_G] \leq (\gamma + \max_{k \neq y_G} h(G)[k])].$$

287 Here, $\mathbb{1}$ is the indicator function. The empirical margin loss of h on \mathcal{G}_{te} is defined equivalently. The
 288 expected margin loss is defined as follows, $\mathcal{L}_{\text{te}}^{\gamma}(h) := \mathbb{E}_{y_G \sim \Pr(y_G|G), G \in \mathcal{G}_{\text{te}}} [\hat{\mathcal{L}}_{\text{te}}^{\gamma}(h)]$.

290 4.2 MAIN RESULTS

292 In this section, we derive generalization bounds for GNNs, where we focus on the standard approach
 293 involving end-to-end trainable GNNs.

295 We consider the GNN to be the composition of two functions. Specifically, let $e : \mathcal{G} \rightarrow \mathbb{R}^b$ denote
 296 the graph embedding network, which maps a graph $G \in \mathcal{G}$ into a b -dimensional latent space, and
 297 let $c : \mathbb{R}^b \rightarrow \mathbb{R}^K$ denote the classifier, which maps embeddings to class scores. Consequently, the
 298 hypothesis space for these models can be written as:

$$299 \quad \mathcal{H} = \mathcal{C} \circ \mathcal{E},$$

300 where \mathcal{E} represents the space of graph embedding networks and \mathcal{C} represents the class of MLP
 301 classifiers. For end-to-end learnable GNNs, both \mathcal{E} and \mathcal{C} are trainable. In contrast, for models with
 302 fixed encoders, only \mathcal{C} is trainable, while \mathcal{E} remains fixed.

304 4.2.1 END-TO-END LEARNABLE GNNs

306 Let ζ represent a CRA that can be strongly simulated by 1-WL. In this context, we consider the
 307 hypothesis space $\mathcal{H}_{\zeta} = \mathcal{C} \circ \mathcal{E}_{\zeta}$, where \mathcal{E}_{ζ} is the set of all ζ -MPNNs of depth T , where each layer
 308 consists of a message function $g^{(t)}$ and an update function $f^{(t)}$. Both $g^{(t)}$ and $f^{(t)}$ are MLPs with a
 309 maximum hidden dimension of b and may contain an arbitrary number of layers. The weight matrices
 310 across all message and update functions are denoted by $\{W_i\}_{i=1}^P$.

311 Let \mathcal{C} denote the set of MLP classifiers with L layers and a maximum hidden dimension of b . The
 312 weight matrices in the MLP classifier are denoted by $\{\tilde{W}_l\}_{l=1}^L$.

313 We now present the generalization bound for end-to-end learnable GNNs.

315 **Theorem 4.1.** *Suppose that $y \sim \zeta\text{-TMD}^{T+1}$. Under mild assumptions (see Appendix D), for any
 316 $\gamma > 0$ and $0 < \alpha < \frac{1}{4}$, with probability at least $1 - \delta$ over the sample of training labels y_{tr} , we have
 317 for any $\tilde{h} \in \mathcal{H}_{\zeta}$*

$$319 \quad \mathcal{L}_{\text{te}}^0(\tilde{h}) \leq \hat{\mathcal{L}}_{\text{tr}}^{\gamma}(\tilde{h}) + \mathcal{O}\left(\frac{b \left(\sum_i \|W_i\|_2^2 + \sum_l \|\tilde{W}_l\|_2^2\right)}{N_{\text{tr}}^{2\alpha} (\gamma/8)^{2/D}} \xi_{\zeta}^{2/D} + \frac{b^2 \ln(2bDC(2dB)^{1/D})}{N_{\text{tr}}^{2\alpha} \gamma^{1/D} \delta} + CK \xi_{\zeta}\right),$$

322 where $\xi_{\zeta} := \zeta\text{-TMD}^{T+1}(\mathcal{G}_{\text{te}}, \mathcal{G}_{\text{tr}})$ is defined in Equation (3), D represents the total number of
 323 learnable weight matrices, b denotes the maximum hidden dimension, d is the maximum degree of the
 graphs, and C serves as an upper bound on the spectral norm of all weight matrices.

Theorem 4.1 highlights key factors influencing generalization in learnable graph classifiers, which are the structural similarity ξ_ζ under ζ -TMD, model complexity $(D, b, \{\|W_i\|_2\}_i, \{\|\tilde{W}_l\|_2\}_l)$, graph properties such as maximum degree d , and training set size N_{tr} . The structural similarity term ξ_ζ emphasizes the importance of diverse training data. This agrees with empirical observations by Southern et al. (2025), who demonstrated that augmenting graph representation to maximize TMD dissimilarity improves predictive performance and generalization. These findings underscore the significance of diverse training data (via task-specific augmentations) and balancing model complexity to achieve robust graph-based learning.

The proof of Theorem 4.1, given in Appendix E, follows a standard PAC-Bayesian approach (Neyshabur et al., 2018) and extends it to the correlated setting, following the approach of (Ma et al., 2021). It leverages the Lipschitz continuity of ζ -MPNNs, established in Theorem 3.4, to derive the generalization bound. Throughout the remainder of this paper, we use the following simplified version of the bound from Theorem 4.1:

$$\mathcal{L}_{\text{te}}^0(\tilde{h}) \leq \hat{\mathcal{L}}_{\text{tr}}^\gamma(\tilde{h}) + \mathcal{O}\left(\underbrace{\frac{\text{MC}(\mathcal{C} \circ \mathcal{E}_\zeta)}{N_{\text{tr}}^{2\alpha} \gamma^{1/D} \delta}}_{\text{complexity term}} + \underbrace{C \xi_\zeta}_{\text{structural similarity term}}\right). \quad (4)$$

Here, $\text{MC}(\mathcal{C} \circ \mathcal{E}_\zeta)$ captures the model complexity, i.e., spectral norms of all learnable weight matrices, hidden dimensions, and maximal graph degree. Notably, the model complexity may increase if the graph transformation R^ζ enlarges the size, maximum degree, or node feature dimension of the original input graphs.

The structural similarity term, ξ_ζ , depends on the alignment between training and test graphs under ζ -TMD. Whether ξ_ζ increases or decreases with more expressive networks depends on the task.

The same PAC-Bayes machinery yields analogous bounds when the graph encoder is frozen and only the MLP head is trained. We relegate the formal statement and proof to Appendix F to keep the main exposition focused on the end-to-end learnable case.

5 WHEN DOES MORE EXPRESSIVITY HURT?

In this section, we explore two scenarios within our framework: first, we identify conditions under which augmenting expressivity beyond task-specific requirements can negatively impact generalization. Second, we highlight conditions where increasing expressivity to accurately capture task-specific features does not degrade the bound in Theorem 4.1. This gives a possible explanation of why such graph classifiers achieve an optimal balance between expressivity and generalization, resulting in superior performance.

To formalize this, consider a classification task where the labels y_G are strongly correlated with the pseudometric \mathcal{F} -TMD $^{T+1}$ for a specific set of substructures $\mathcal{F} \subset \mathcal{G}$. Assume that all MPNNs considered in this section have T layers. Let $\mathcal{F}' \subsetneq \mathcal{F} \subsetneq \tilde{\mathcal{F}} \subset \mathcal{G}$ be finite sets of graphs, where \mathcal{F}' -MPNNs are less expressive than \mathcal{F} -MPNNs, which in turn are less expressive than $\tilde{\mathcal{F}}$ -MPNNs. Denote the corresponding hypothesis spaces as $\mathcal{H}_{\mathcal{F}'}, \mathcal{H}_{\mathcal{F}}$, and $\mathcal{H}_{\tilde{\mathcal{F}}}$.

Our analysis shows that increasing expressivity to the level required to capture task-relevant features (e.g., transitioning from \mathcal{F}' -MPNNs to \mathcal{F} -MPNNs) generally preserves generalization. However, further increasing expressivity beyond this necessary level (e.g., to $\tilde{\mathcal{F}}$ -MPNNs) can degrade generalization significantly.

Theorem 5.1. *Consider the setting above. Then, for any $\gamma > 0$ and $\alpha < \frac{1}{4}$, with probability at least $1 - \delta$ over the sample of training labels y_{tr} ,*

i) the test loss of any \mathcal{F}' -MPNN classifier h' , satisfies

$$\mathcal{L}_{\text{te}}^0(h') \leq \mathcal{L}_{\text{tr}}^\gamma(h') + \mathcal{O}\left(\frac{\text{MC}(\mathcal{H}_{\mathcal{F}'}) \xi_{\mathcal{F}'}^{1/D}}{N_{\text{tr}}^{2\alpha} \gamma^{1/D} \delta} + C \xi_{\mathcal{F}}\right).$$

where C is described in Theorem 4.1 and $\xi_{\mathcal{F}} = \mathcal{F}$ -TMD $^{T+1}(\mathcal{G}_{\text{tr}}, \mathcal{G}_{\text{te}})$.

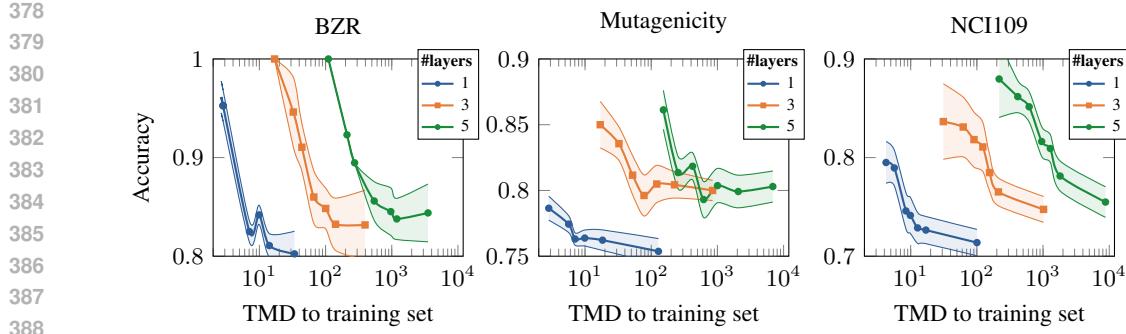


Figure 2: Accuracy of a GIN with 1, 3, and 5 layers versus TMD (log scale) to the training dataset.

ii) the test loss of any \mathcal{F} -MPNN classifier h , satisfies

$$\mathcal{L}_{\text{te}}^0(h) \leq \mathcal{L}_{\text{tr}}^\gamma(h) + \mathcal{O}\left(\frac{\text{MC}(\mathcal{H}_{\mathcal{F}})\xi_{\mathcal{F}}^{1/D}}{N_{\text{tr}}^{2\alpha}\gamma^{1/D}\delta} + C\xi_{\mathcal{F}}\right).$$

iii) the test loss of any $\tilde{\mathcal{F}}$ -MPNN classifier \tilde{h} , satisfies

$$\mathcal{L}_{\text{te}}^0(\tilde{h}) \leq \mathcal{L}_{\text{tr}}^\gamma(\tilde{h}) + \mathcal{O}\left(\frac{\text{MC}(\mathcal{H}_{\tilde{\mathcal{F}}})\xi_{\tilde{\mathcal{F}}}^{1/D}}{N_{\text{tr}}^{2\alpha}\gamma^{1/D}\delta} + C\xi_{\tilde{\mathcal{F}}}\right).$$

where $\xi_{\tilde{\mathcal{F}}} = \tilde{\mathcal{F}}\text{-TMD}^{T+1}(\mathcal{G}_{\text{tr}}, \mathcal{G}_{\text{te}})$.

Theorem 5.1 highlights the critical role of structural alignment between training and test graphs in determining generalization performance. In cases i) and ii), the same \mathcal{F} -TMD governs the similarity between training and test graphs, ensuring that the bound remains controlled. However, in case iii), introducing a more expressive GNN that captures features beyond those captured by \mathcal{F} -TMD (with which the labels are strongly correlated) leads to a higher structural discrepancy $\xi_{\tilde{\mathcal{F}}} \geq \xi_{\mathcal{F}}$, see Lemma G.1. These findings underscore the importance of aligning model expressivity with the structural requirements of the task, as excessive expressivity can increase our generalization bound in Theorem 4.1.

6 EXPERIMENTS

In this section, we evaluate GNNs on both synthetic and real-world graph datasets. We introduce two tasks to evaluate how structural similarity between training and test graphs, as well as task-relevant expressivity, impact classification performance and generalization. All experiments use 10-fold cross-validation, and we report the mean accuracy or error. Additional experiments and tasks, details and extended results are provided in Appendix I.

Task 1: Median-Based Labeling with Cycle Counts.

We generate 3,000 random graphs from Erdős–Rényi, Barabási–Albert, and Stochastic Block Model distributions. The sum of 3-cycle and 4-cycle counts is computed for each graph, and graphs with counts below the dataset’s median receive label 0, while those above receive label 1. We evaluate multiple GNN variants, including standard MPNNs, \mathcal{F}_l -MPNNs where \mathcal{F}_l contains cycles up to length l , Subgraph GNNs (Sub-G), Local 2-GNNs (L-G), and Local Folklore 2-GNNs (LF-G). Model expressivity increases strictly in this order. We report training and test accuracies at both the final and the epoch with the best validation performance. Results can be found in Table 1, and more details and experiments in Appendix I.

Table 1: Test accuracy on Erdős–Rényi graphs for Task 1. All GNNs achieve a train accuracy greater than 0.99. More results in Table 4 in Appendix I.

Model	Test Accuracy
LF-G	0.8450 ± 0.0135
L-G	0.8543 ± 0.0063
Sub-G	0.8623 ± 0.0058
\mathcal{F}_7 -MPNN	0.9660 ± 0.0065
\mathcal{F}_4 -MPNN	0.9793 ± 0.0068
\mathcal{F}_3 -MPNN	0.8657 ± 0.0085
MPNN	0.8490 ± 0.0045

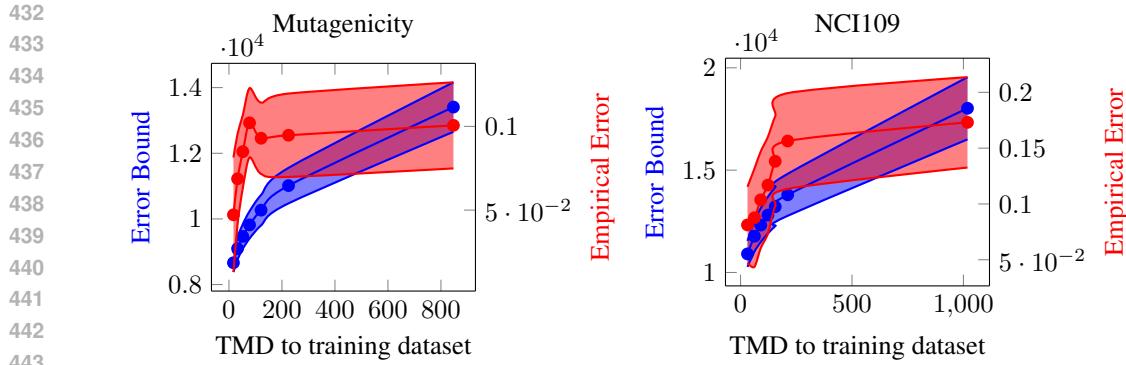


Figure 3: Error-bound curves for Mutagenicity, and NCI109. Each plot shows our theoretical bound (blue, left axis) and the empirical generalization error (red, right axis) as a function of TMD to the training set. Shaded areas indicate ± 1 standard deviation across 10 random splits.

Task 2: Real-World Datasets We evaluate our framework on six graph classification datasets from the TUDataset (Morris et al., 2020a). Results on BZR, MUTAGENICITY, and NCI109 include: Figure 2, which plots test accuracy versus ζ -TMD distance, and Figure 3, which compares our bound to the observed generalization gap. Additional results on PROTEINS, AIDS, COX2, and experiments on fixed encoders via molecular fingerprints (Gainza et al., 2019) appear in Appendix I.

Results and Discussion. In Task 1, GNNs that explicitly incorporate task-relevant cycle information, in particular \mathcal{F}_4 -MPNNs, outperform MPNNs and expressive GNNs like Local Folklore 2-GNNs. Since the labels in Task 1 strongly correlated with \mathcal{F}_4 -TMD, these results align with our theoretical findings in Section 5: GNNs that effectively leverage features strongly correlated with the task generalize better than more expressive models. On real-world datasets, we observe that classification accuracy declines as test graphs become more distant from the training set, in line with our theoretical insights in Theorem 4.1. Importantly, our bound closely aligns with the observed generalization gap across these datasets. By explicitly capturing structure–label correlation, our framework yields significantly tighter generalization bounds compared to standard PAC-Bayes bounds (Liao et al., 2021), which are often orders of magnitude larger (e.g., on the order of 10^{16} compared to our 10^4).

7 CONCLUSION

We introduced a framework for analyzing GNN generalization in settings where graph labels correlate with different pseudometrics. Our analysis provided generalization bounds that emphasize the role of structural similarity between training and test data. We show that increasing expressivity does not necessarily degrade generalization if it aligns with the task. However, both theoretical and empirical results show that excessive expressivity can worsen generalization and predictive performance.

Empirical results confirm that GNNs whose embeddings align with task-relevant structures, i.e., those that are proven to be Lipschitz continuous with respect to pseudometrics strongly correlated with the labels, achieve better generalization. We show that performance degrades for test graphs that are structurally distant from the training set, supporting our theoretical findings. Additionally, we identify cases where increased expressivity can either improve or hinder generalization, depending on task alignment, providing insights for GNN design.

Limitations. While our framework enables comparisons between \mathcal{F} -MPNNs, in general the dependence of our bound in Theorem 4.1 on different TMDs makes direct model comparisons challenging. These bounds serve as qualitative guidelines rather than precise estimates, as they are not tight and may not reflect practical performance. Moreover, the relevant pseudometric is often unknown and possibly expensive to compute, limiting direct applicability and leaving the identification of suitable metrics an open problem.

Future Work. Our generalization bounds improve with increased structural similarity between test and train graphs. Future work could explore augmentation techniques that generate synthetic graphs to improve this similarity, thereby boosting generalization.

486 ETHICS STATEMENT
487488 This work focuses on theoretical analysis of GNNs and does not involve experiments on human
489 subjects, sensitive personal data, or applications with direct societal risks. The datasets referenced
490 are publicly available benchmark graphs, and no private or restricted data was used. Potential ethical
491 concerns related to misuse are minimal, as the contributions are mainly theoretical and methodological.
492 We explicitly acknowledge that LLMs were used only for polishing sentence clarity and grammar,
493 not for generating research ideas, proofs, or results.
494495 REPRODUCIBILITY STATEMENT
496497 We have taken multiple steps to ensure reproducibility of our results. All theoretical claims are
498 accompanied by rigorous proofs, presented in detail in the appendix. Assumptions underlying the
499 theorems are explicitly stated, and definitions are given in full to allow independent verification. In
500 addition, we provide open-source code to reproduce illustrative experiments and examples, which is
501 available anonymously at anonymous GitHub.
502503 REFERENCES
504505 Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The Surprising Power
506 of Graph Neural Networks with Random Node Initialization. In *International Joint Conference on*
507 *Artificial Intelligence (IJCAI)*, pp. 2112–2118, 2021. doi: 10.24963/ijcai.2021/291.508 Ralph Abboud, Radoslav Dimitrov, and Ismail Ilkan Ceylan. Shortest Path Networks for Graph
509 Property Prediction. In *Learning on Graphs Conference (LoG)*, pp. 5:1–5:25, 2022.511 László Babai, Paul Erdős, and Stanley M. Selkow. Random graph isomorphism. *SIAM J. Comput.*, 9:
512 628–635, 1980. URL <https://api.semanticscholar.org/CorpusID:9371805>.
513514 Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. Graph neural networks with
515 local graph parameters. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp.
516 25280–25293, 2021.517 Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. Graph neural networks with
518 local graph parameters. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
519 Vaughan (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 25280–25293.
520 Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/d4d8d1ac7e00e9105775a6b660dd3cbb-Paper.pdf.
521523 Franka Bause, Fabian Jogl, Patrick Indri, Tamara Drucks, David Penz, Nils Kriege, Thomas Gärtner,
524 Pascal Welke, and Maximilian Thiessen. Maximally expressive gnns for outerplanar graphs. In
525 *NeurIPS 2023 Workshop: New Frontiers in Graph Learning*, 2023.526 Maya Bechler-Speicher, Ido Amos, Ran Gilad-Bachrach, and Amir Globerson. Graph neural networks
527 use graphs when they shouldn't, 2024. URL <https://arxiv.org/abs/2309.04332>.
528529 Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
530 Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant Subgraph Aggregation
531 Networks. In *International Conference on Learning Representations (ICLR)*, 2021.532 Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Liò, Guido Montufar, and
533 Michael M. Bronstein. Weisfeiler and lehman go cellular: CW networks. In A. Beygelzimer,
534 Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing*
535 *Systems*, 2021. URL <https://openreview.net/forum?id=uVPZCMVtssG>.
536537 Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph
538 neural network expressivity via subgraph isomorphism counting. *IEEE Transactions on Pattern*
539 *Analysis and Machine Intelligence*, 45(1):657–668, January 2023. ISSN 1939-3539. doi: 10.1109/
tpami.2022.3154319. URL <http://dx.doi.org/10.1109/TPAMI.2022.3154319>.

540 Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
 541 Deep Learning: Going beyond Euclidean data. *IEEE Signal Processing Magazine*, 34(4):18–42,
 542 2017. ISSN 1558-0792. doi: 10.1109/MSP.2017.2693418.

543

544 Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel,
 545 Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake
 546 VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine learning
 547 software: experiences from the scikit-learn project. In *ECML PKDD Workshop: Languages for
 548 Data Mining and Machine Learning*, pp. 108–122, 2013.

549 Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
 550 isomorphism testing and function approximation with gnns. In *Advances in Neural Information
 551 Processing Systems (NeurIPS)*, pp. 15868–15876, 2019.

552

553 Ching-Yao Chuang and Stefanie Jegelka. Tree mover’s distance: Bridging graph metrics and
 554 stability of graph neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
 555 Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=Qh89hwiP5ZR>.

556

557 George Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of control,
 558 signals and systems*, 2(4):303–314, 1989.

559

560 George Dasoulas, Ludovic Dos Santos, Kevin Scaman, and Aladin Virmaux. Coloring graph neural
 561 networks for node disambiguation. In *International Joint Conference on Artificial Intelligence
 562 (IJCAI)*, pp. 2126–2132, 2020. ISBN 978-0-9992411-6-5.

563

564 Yair Davidson and Nadav Dym. On the hölder stability of multiset and graph neural networks, 2024.
 URL <https://arxiv.org/abs/2406.06984>.

565

566 Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász meets Weisfeiler and Leman. In *International
 567 Colloquium on Automata, Languages, and Programming (ICALP)*, volume 107 of *LIPICS*, pp. 40:1–
 568 40:14, 2018. doi: 10.4230/LIPICS.ICALP.2018.40. URL <https://doi.org/10.4230/LIPICS.ICALP.2018.40>.

569

570 Radoslav Dimitrov, Zeyang Zhao, Ralph Abboud, and Ismail Ilkan Ceylan. Plane: Representation
 571 learning over planar graphs. In *Advances in Neural Information Processing Systems (NeurIPS)*,
 572 2023. URL <https://openreview.net/forum?id=u2RJ0I3o3j>.

573

574 Simon S. Du, Kangcheng Hou, Barnabás Póczos, Ruslan Salakhutdinov, Ruosong Wang, and Keyulu
 575 Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels, 2019. URL
 576 <https://arxiv.org/abs/1905.13192>.

577

578 Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
 579 *ICLR Workshop on Representation Learning on Graphs and Manifolds*, 2019.

580

581 Billy Joe Franks, Christopher Morris, Ameya Velingker, and Floris Geerts. Weisfeiler-leman at the
 582 margin: When more expressivity matters. In *Forty-first International Conference on Machine
 Learning*, 2024.

583

584 Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding and
 585 Extending Subgraph GNNs by Rethinking Their Symmetries. In *Advances in Neural Information
 586 Processing Systems (NeurIPS)*, pp. 31376–31390, 2022.

587

588 Pablo Gainza, Freyr Sverrisson, F. Monti, Emanuele Rodolà, Davide Boscaini, Michael M. Bronstein,
 589 and Bruno E. Correia. Deciphering interaction fingerprints from protein molecular surfaces
 590 using geometric deep learning. *Nature Methods*, 17:184 – 192, 2019. URL <https://api.semanticscholar.org/CorpusID:209167696>.

591

592 Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
 593 graph neural networks. *Proceedings of the 37th International Conference on Machine Learning*,
 119:3419–3430, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/garg20c.html>.

594 Floris Geerts and Juan L Reutter. Expressiveness and approximation properties of graph neural
 595 networks. In *International Conference on Learning Representations (ICLR)*, 2022. URL <https://openreview.net/forum?id=wIzUeM3TAU>.

596

597

598 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
 599 message passing for quantum chemistry. In *International conference on machine learning*, pp.
 600 1263–1272. PMLR, 2017.

601

602 Caterina Graziani, Tamara Drucks, Fabian Jogl, Monica Bianchini, franco scarselli, and Thomas
 603 Gärtner. The expressive power of path-based graph neural networks. In *Forty-first International
 604 Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=io1XSRTc08>.

605

606 Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function
 607 using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United
 608 States), 2008.

609

610 Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
 611 universal approximators. *Neural networks*, 2(5):359–366, 1989.

612

613 Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting power of
 614 graph neural networks with I^2 -GNNs. In *International Conference on Learning Representations
 (ICLR)*, 2022.

615

616 Emily Jin, Michael Bronstein, Ismail Ilkan Ceylan, and Matthias Lanzinger. Homomorphism counts
 617 for graph neural networks: All about that basis. In *International Conference on Machine Learning
 (ICML)*, 2024.

618

619 Fabian Jogl, Maximilian Thiessen, and Thomas Gärtner. Expressivity-preserving gnn simulation.
 620 *Advances in Neural Information Processing Systems*, 36, 2024.

621

622 Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks. In
 623 *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 7090–7099, 2019.

624

625 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 626 2014.

627

628 Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris. A survey on graph kernels. *Applied
 629 Network Science*, 5:1–42, 2020.

630

631 J. B. Kruskal. Nonmetric multidimensional scaling: A numerical method. *Psychometrika*, 29(2):
 115–129, 1964.

632

633 Ron Levie. A graphon-signal analysis of graph neural networks. *Advances in Neural Information
 634 Processing Systems*, 36, 2024.

635

636 Shouheng Li, Floris Geerts, Dongwoo Kim, and Qing Wang. Towards bridging generalization
 637 and expressivity of graph neural networks, 2024. URL <https://arxiv.org/abs/2410.10051>.

638

639 Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization bounds
 640 for graph neural networks. In *International Conference on Learning Representations*, 2021. URL
 641 <https://openreview.net/forum?id=TR-Nj6nFx42>.

642

643 Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
 644 Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning. In
 645 *International Conference on Learning Representations (ICLR)*, 2022.

646

647 László Miklós Lovász. Operations with structures. *Acta Mathematica Academiae Scientiarum
 648 Hungarica*, 18:321–328, 1967. URL <https://api.semanticscholar.org/CorpusID:121512807>.

648 Jiaqi Ma, Junwei Deng, and Qiaozhu Mei. Subgroup generalization and fairness of graph neural
 649 networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in
 650 Neural Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=68B1ezcffDc>.

651

652 Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
 653 networks. In *International Conference on Learning Representations (ICLR)*, 2018.

654

655 Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably Powerful Graph
 656 Networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 2153–2164,
 657 2019a.

658

659 Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
 660 networks. In *International Conference on Machine Learning (ICML)*, pp. 4363–4371, 2019b. URL
 661 <https://proceedings.mlr.press/v97/maron19a.html>.

662 Sohir Maskey, Ron Levie, Yunseok Lee, and Gitta Kutyniok. Generalization analysis of message
 663 passing neural networks on large random graphs. *Advances in Neural Information Processing
 664 Systems*, 35, 2022a.

665

666 Sohir Maskey, Ali Parviz, Maximilian Thiessen, Hannes Stärk, Ylli Sadikaj, and Haggai Maron.
 667 Generalized laplacian positional encoding for graph representation learning. In *NeurIPS 2022
 668 Workshop on Symmetry and Geometry in Neural Representations*, 2022b.

669 Sohir Maskey, Gitta Kutyniok, and Ron Levie. Generalization bounds for message passing networks
 670 on mixture of graphons. *arXiv preprint arXiv:2404.03473*, 2024.

671

672 Gaspard Michel, Giannis Nikolentzos, Johannes F. Lutzeyer, and Michalis Vazirgiannis. Path Neural
 673 Networks: Expressive and Accurate Graph Neural Networks. In *International Conference on
 674 Machine Learning (ICML)*, pp. 24737–24755, 2023.

675 Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
 676 Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks.
 677 In *AAAI Conference on Artificial Intelligence (AAAI)*, pp. 4602–4609, 2019. doi: 10.1609/aaai.
 678 v33i01.33014602.

679

680 Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
 681 Neumann. Tudataset: A collection of benchmark datasets for learning with graphs, 2020a. URL
 682 <https://arxiv.org/abs/2007.08663>.

683 Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
 684 scalable higher-order graph embeddings. In *Advances in Neural Information Processing Systems
 685 (NeurIPS)*, pp. 21824–21840, 2020b.

686

687 Christopher Morris, Gaurav Rattan, Sandra Kiefer, and Siamak Ravanbakhsh. Speqnets: Sparsity-
 688 aware permutation-equivariant graph networks. In *International Conference on Machine Learning
 689 (ICML)*, pp. 16017–16042. PMLR, 2022.

690 Christopher Morris, Floris Geerts, Jan Tönshoff, and Martin Grohe. WL meet VC. In Andreas
 691 Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
 692 Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume
 693 202 of *Proceedings of Machine Learning Research*, pp. 25275–25302. PMLR, 23–29 Jul 2023a.
 694 URL <https://proceedings.mlr.press/v202/morris23a.html>.

695 Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M. Kriege, Martin Grohe,
 696 Matthias Fey, and Karsten Borgwardt. Weisfeiler and Leman go Machine Learning: The Story
 697 so far. *Journal of Machine Learning Research*, 24:333:1–333:59, 2023b. URL <http://jmlr.org/papers/v24/22-0240.html>.

698

699 Christopher Morris, Fabrizio Frasca, Nadav Dym, Haggai Maron, İsmail İlkan Ceylan, Ron Levie,
 700 Derek Lim, Michael Bronstein, Martin Grohe, and Stefanie Jegelka. Future directions in the theory
 701 of graph machine learning. In *International Conference on Machine Learning (ICML)*, 2024.

702 Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian approach to
 703 spectrally-normalized margin bounds for neural networks. In *International Conference on Learning*
 704 *Representations*, 2018. URL https://openreview.net/forum?id=Skz_WfbCZ.

705

706 Hoang Nguyen and Takanori Maehara. Graph homomorphism convolution. In *International Con-*
 707 *ference on Machine Learning (ICML)*, pp. 7306–7316, 2020. URL <https://proceedings.mlr.press/v119/nguyen20c.html>.

708

709 Raffaele Paolino, Sohir Maskey, Pascal Welke, and Gitta Kutyniok. Weisfeiler and leman go loopy:
 710 A new hierarchy for graph representational learning. In *The Thirty-eighth Annual Conference on*
 711 *Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=902sVnEHor>.

712

713 Pál András Papp and Roger Wattenhofer. A theoretical comparison of graph neural network extensions.
 714 In *International Conference on Machine Learning*, pp. 17323–17345. PMLR, 2022.

715

716 Chendi Qian, Gaurav Rattan, Floris Geerts, Mathias Niepert, and Christopher Morris. Ordered
 717 subgraph aggregation networks. *Advances in Neural Information Processing Systems (NeurIPS)*,
 718 pp. 21030–21045, 2022.

719

720 Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural networks
 721 for combinatorial problems. *Advances in Neural Information Processing Systems*, 32, 2019.

722

723 Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
 724 networks. In *SIAM International Conference on Data Mining (SDM)*, pp. 333–341, 2021. doi: 10.
 725 1137/1.9781611976700.38. URL <https://doi.org/10.1137/1.9781611976700.38>.

726

727 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
 728 Graph Neural Network Model. *IEEE Transactions on Neural Networks*, 20(1):61–80, 2009. doi:
 10.1109/TNN.2008.2005605.

729

730 Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik–chervonenkis dimension
 731 of graph and recursive neural networks. *Neural Networks*, 108:248–259, 2018.

732

733 Joshua Southern, Yam Eitan, Guy Bar-Shalom, Michael Bronstein, Haggai Maron, and Fabrizio
 734 Frasca. Balancing efficiency and expressiveness: Subgraph gnns with walk-based centrality, 2025.
 URL <https://arxiv.org/abs/2501.03113>.

735

736 Gottfried Tinhofer. Graph isomorphism and theorems of birkhoff type. *Computing*, 36:285–300,
 737 1986. URL <https://api.semanticscholar.org/CorpusID:23977711>.

738

739 Gottfried Tinhofer. A note on compact graphs. *Discrete Applied Mathematics*, 30:253–264, 1991.
 URL <https://api.semanticscholar.org/CorpusID:7530138>.

740

741 Joel A. Tropp. An introduction to matrix concentration inequalities. *Found. Trends Mach. Learn.*,
 8(1–2):1–230, may 2015. ISSN 1935-8237. doi: 10.1561/2200000048. URL <https://doi.org/10.1561/2200000048>.

742

743 Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Walking out of the weisfeiler leman
 744 hierarchy: Graph learning beyond message passing, 2023. URL <https://arxiv.org/abs/2102.08786>.

745

746 Antonis Vasileiou, Ben Finkelshtein, Floris Geerts, Ron Levie, and Christopher Morris. Covered
 747 forest: Fine-grained generalization analysis of graph neural networks, 2024. URL <https://arxiv.org/abs/2412.07106>.

748

749 Clément Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant graph
 750 neural networks with structural message-passing. In *Advances in Neural Information Processing*
 751 *Systems (NeurIPS)*, pp. 14143–14155, 2020.

752

753 Zhiyang Wang, Juan Cervino, and Alejandro Ribeiro. A manifold perspective on the statistical
 754 generalization of graph neural networks. *arXiv preprint arXiv:2406.05225*, 2024.

756 Boris Weisfeiler and A. A. Lehman. A Reduction of a Graph to a Canonical Form and an Algebra
 757 Arising During This Reduction. *Nauchno-Technicheskaya Informatsia*, Ser. 2(N9):12–16, 1968.
 758

759 Pascal Welke, Maximilian Thiessen, Fabian Jogl, and Thomas Gärtner. Expectation-complete graph
 760 representations with homomorphisms. In *International Conference on Machine Learning (ICML)*,
 761 pp. 36910–36925, 2023. URL <https://proceedings.mlr.press/v202/welke23a.html>.
 762

763 Asiri Wijesinghe and Qing Wang. A new perspective on "how graph neural networks go beyond
 764 weisfeiler-lehman?". In *International Conference on Learning Representations*, 2022. URL
 765 https://openreview.net/forum?id=uxgg9o7bI_3.
 766

767 Huan Xu and Shie Mannor. Robustness and generalization. *Machine Learning*, 86(3):391–423, 2012.
 768 doi: 10.1007/s10994-011-5268-1.
 769

770 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 771 networks? In *International Conference on Learning Representations (ICLR)*, 2019.
 772

773 Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, Chao Chen, and Yusu Wang. Cycle invariant
 774 positional encoding for graph representation learning. In *Learning on Graphs Conference*, pp. 4–1.
 775 PMLR, 2024.
 776

777 Jiaxuan You, Jonathan M. Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware Graph
 778 Neural Networks. *AAAI Conference on Artificial Intelligence (AAAI)*, pp. 10737–10745, 2021.
 779 ISSN 2374-3468. doi: 10.1609/aaai.v35i12.17283.
 780

781 Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of GNNs
 782 via graph biconnectivity. In *The Eleventh International Conference on Learning Representations*,
 783 2023. URL <https://openreview.net/forum?id=r9hNv76KoT3>.
 784

785 Bohang Zhang, Jingchu Gai, Yiheng Du, Qiwei Ye, Di He, and Liwei Wang. Beyond Weisfeiler-
 786 Lehman: A quantitative framework for GNN expressiveness. In *International Conference on*
 787 *Learning Representations (ICLR)*, 2024.
 788

789 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 790 deep learning requires rethinking generalization. In *International Conference on Learning*
 791 *Representations*, 2017. URL <https://openreview.net/forum?id=Sy8gdB9xx>.
 792

793 Markus Zopf. 1-wl expressiveness is (almost) all you need, 2022. URL <https://arxiv.org/abs/2202.10156>.
 794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

NOTATION

813

814

815

c	(MLP) classifier
G	A graph $G = (V, E)$
\mathcal{G}	The set of all graphs
$\mathcal{N}(v)$	Neighborhood of vertex v in graph G
x_v	Feature of node v
$\ \cdot\ _2$	Frobenius norm
$\ \cdot\ $	Spectral norm
TD_w	Tree Distance weighted by function w
TMD_w^T	Tree Mover's Distance at depth T with weight w
\mathcal{T}_G^T	Multiset of depth- T computation trees for graph G
P	Prior distribution in PAC-Bayes framework
Q	Posterior distribution in PAC-Bayes framework
\mathcal{L}^γ	Expected margin loss with margin γ
$\hat{\mathcal{L}}^\gamma$	Empirical margin loss with margin γ
h	Classifier function (e.g., a MPNN + MLP)
\mathcal{H}	Hypothesis space
\mathcal{E}	Graph embedding networks (e.g., a MPNN)
\mathcal{C}	Final classifier (e.g., a MLP)
$\Pr(\cdot)$	Probability function
\mathcal{G}_{tr}	Training graphs
\mathcal{G}_{te}	Test graphs
$\text{TMD}_w^L(\mathcal{G}_{\text{tr}}, \mathcal{G}_{\text{te}})$	Distance between \mathcal{G}_{tr} and \mathcal{G}_{te}
N_{tr}	Number of training graphs
N_{te}	Number of test graphs
b	Maximal hidden dimension of classifier function
B	Maximum L^2 -norm of input node features
d	Maximum degree of all graphs in training or test set
$d(f)$	Depth of MLP f
T	Number of MPNN layers
C	Maximum Frobenius norm of any learnable weight matrix
D	Number of learnable weight matrices in hypothesis space
$g^{(t)}$	Message function in layer t
$f^{(t)}$	Update function in layer t

852

853

854

855

856

857

858

859

860

861

862

863

864

A DETAILED RELATED WORK

865

A.1 EXPRESSIVITY OF GNNs

866 Expressivity in standard neural networks is often associated with their ability to approximate functions
 867 within a specific function class. For example, early works showed that MLPs can approximate
 868 any continuous function (Cybenko, 1989; Hornik et al., 1989). In the context of GNNs, however,
 869 expressivity is more commonly measured by the ability to distinguish between non-isomorphic graphs.
 870 This focus stems from computational challenges associated with achieving universality in GNNs
 871 and is further supported by the Stone-Weierstrass theorem: a GNN that can distinguish all graphs is
 872 also capable of approximating any continuous function on graphs (Chen et al., 2019; Dasoulas et al.,
 873 2020). Consequently, practical research often centers on characterizing the distinguishing power of
 874 specific GNN architectures (Xu et al., 2019; Morris et al., 2023b).

875 Xu et al. (2019); Morris et al. (2019) established that the expressive power of standard MPNNs is
 876 limited by the 1-WL test. To overcome this limitation, later works introduced higher-order GNNs
 877 based on k -WL and its local variants (Maron et al., 2018; Morris et al., 2020b; Geerts & Reutter,
 878 2022). These models are theoretically universal (Maron et al., 2019b; Keriven & Peyré, 2019),
 879 meaning they can distinguish any non-isomorphic graphs and approximate continuous functions on
 880 graphs. However, their expressivity comes at the cost of exponential time and space complexity
 881 with respect to k , making them impractical for large-scale applications. To reduce this complexity,
 882 Morris et al. (2020b); Zhang et al. (2024) proposed local k -WL variants, while Abboud et al. (2022)
 883 introduced k -hop GNNs, which expand the receptive field to k -hop neighborhoods. Despite these
 884 improvements, the computational complexity of these approaches remains exponential in k .
 885

886 Subgraph-based models further enhance expressivity by decomposing graphs into subgraphs and
 887 aggregating their information (Papp & Wattenhofer, 2022; Bevilacqua et al., 2021; You et al., 2021;
 888 Frasca et al., 2022; Huang et al., 2022). Although these models are more expressive than 1-WL, their
 889 power is bounded by 3-WL (Frasca et al., 2022). Moreover, subgraph GNNs increase computational
 890 complexity significantly, often scaling quadratically or cubically with the number of nodes N , which
 891 worsens the computational complexity of standard MPNNs by a factor of N .
 892

893 Most subgraph-based GNNs associate a family of subgraphs with specific nodes or edges by either
 894 deleting or marking nodes. However, other strategies for subgraph representation have also been
 895 explored. For instance, Michel et al. (2023); Graziani et al. (2024); Paolino et al. (2024) focus
 896 on paths to enhance expressivity, while Tönshoff et al. (2023) leverage random walks for similar
 897 purposes.
 898

899 Positional encodings (PEs) and structural encodings (SEs) have emerged as effective strategies to
 900 enhance the expressivity of MPNNs. PEs augment node representations with additional information,
 901 such as unique node identifiers (Vignac et al., 2020), random features (Abboud et al., 2021; Sato et al.,
 902 2021), or spectral features like eigenvectors (Lim et al., 2022; Maskey et al., 2022b). In contrast,
 903 SEs enrich MPNNs by embedding structural information about the graph. Examples of SEs include
 904 subgraph counts (Bouritsas et al., 2023) and homomorphism counts (Nguyen & Maehara, 2020;
 905 Barceló et al., 2021; Welke et al., 2023; Jin et al., 2024).
 906

907 While PEs and SEs enhance the expressivity of MPNNs by modifying the initial node features,
 908 another line of research focuses on using computational graphs that differ from the input graph. For
 909 instance, Dimitrov et al. (2023) and Bause et al. (2023) propose graph transformations that enable
 910 MPNNs to achieve universality for specific classes of graphs, such as (outer-)planar graphs. More
 911 broadly, Jögl et al. (2024) demonstrate that many expressive GNN variants, including k -GNNs and
 912 subgraph GNNs, can be *simulated* by applying suitable graph transformations followed by standard
 913 message passing.
 914

915 While incorporating SEs does not increase the forward-pass complexity of MPNNs, it introduces
 916 significant preprocessing overhead. For instance, computing homomorphism counts for graphs with
 917 treewidth k requires $\mathcal{O}(N^k)$ operations, where N is the number of nodes. This preprocessing com-
 918 plexity becomes exponential in k , making it computationally prohibitive for achieving expressivity
 919 beyond k -WL.
 920

921 Most prior work evaluates GNN expressivity using the k -WL hierarchy, which provides a qualitative
 922 measure of distinguishing power but does not quantify the specific substructures a GNN can encode.
 923

To address this gap, Zhang et al. (2024) proposed homomorphism counts as a quantitative measure of expressivity. Building on the work of Lovász (1967), they demonstrated that homomorphism counts are a complete graph invariant, meaning that two graphs are isomorphic if and only if their homomorphism counts are identical. Tinhofer (1986; 1991) showed that 1-WL is equivalent to counting homomorphisms from graphs with treewidth one, while Dell et al. (2018) extended this to prove that k -WL corresponds to counting homomorphisms from graphs with treewidth k .

Recent studies have further explored the relationship between homomorphism counts and GNN expressivity. For example, Barceló et al. (2021) showed that MPNNs augmented with homomorphism counts as initial node features can count homomorphisms of trees augmented with the included patterns. Similarly, Paolino et al. (2024) demonstrated that MPNNs enriched with specific path information can count homomorphisms of cactus graphs.

A.2 GENERALIZATION BOUNDS FOR GNNs

The generalization capabilities of Graph Neural Networks (GNNs) have been studied from various theoretical perspectives. Scarselli et al. (2018) provided an early understanding of GNN capacity by deriving generalization bounds for implicitly defined GNNs based on their VC-dimension. Building on this, Du et al. (2019) analyzed the generalization behavior of GNNs in the infinite-width limit using the Graph Neural Tangent Kernel (GNTK), offering insights into their asymptotic performance as network width grows unbounded.

Focusing on data-dependent approaches, Garg et al. (2020) and Liao et al. (2021) investigated the generalization properties of specific MPNNs with sum aggregation. By employing Rademacher complexity and PAC-Bayes methods, they established bounds that depend on the observed training data, shedding light on how factors like data distribution and architectural choices influence generalization.

Levie (2024) introduced the graphon-signal cut distance, a metric for measuring similarity between graph-signal distributions, and demonstrated that MPNNs are Lipschitz-continuous with respect to this distance. This insight enabled the derivation of generalization bounds for MPNNs in the context of arbitrary graph-signal distributions. However, these bounds exhibit a slow convergence rate of $O(1/\log \log(\sqrt{m}))$, where m is the number of training graphs. This slow rate arises from the generality of their assumptions, which accommodate highly flexible graph-signal distributions.

The connection between GNN expressivity and generalization was further explored by Morris et al. (2023a), who showed that the number of graphs distinguishable by the 1-WL test is directly linked to the VC-dimension of GNNs. This result highlights the role of the Weisfeiler-Lehman hierarchy in understanding both the combinatorial expressivity and theoretical capacity of GNNs. In the restricted setting of linear separability, margin-based bounds have been proposed to partially bridge theory and practice (Franks et al., 2024), yet our broader understanding of how expressivity influences generalization remains incomplete.

Li et al. (2024) provide a novel perspective on the generalization behavior of graph neural networks by decoupling the representation learning component from the classification step. Their framework considers fixed graph encoders—such as MPNNs, k -WL, or homomorphism-based models—which map graphs into an embedding space. A separate, typically parametric, classifier (e.g., a softmax-based MLP) is then applied to these embeddings. This setting allows for a focused study of the generalization ability of classifiers conditioned on precomputed graph representations, shifting attention away from the learning dynamics of the GNN and toward the geometry and concentration properties of the induced embedding distributions.

Their analysis formalizes how generalization depends on two key factors: intra-class concentration, i.e., how tightly embeddings from the same class cluster, and inter-class separation, i.e., how well embeddings of different classes are separated. These are quantified using the 1-Wasserstein distance between class-conditional embedding distributions. The main theoretical result establishes a generalization bound on the classifier’s margin loss, showing it can be upper-bounded in terms of these geometric quantities. Importantly, the bound incorporates the expressivity of the graph encoder through a Lipschitz constant that quantifies how much the embedding distribution of a more expressive encoder (bounding in distinguishing power) can distort the geometry of a less expressive one (that is used for calculating the graph embeddings). This captures how changes in expressivity influence intra-class concentration and inter-class separation, and thus directly affect generalization.

972 Although the results elegantly characterize the trade-off between expressivity and generalization,
 973 a central limitation is that the graph encoders are *fixed*. They are fixed feature extractors, often
 974 derived from CRAs or fixed GNN architectures. As such, the framework does not directly reflect the
 975 behavior of trainable GNNs in practical deep learning pipelines, where representation learning and
 976 classifier fitting are tightly coupled. Additionally, in contrast to our correlation-based analysis, the
 977 generalization bounds in Li et al. (2024) require the existence of a fixed positive margin, which is
 978 a strong assumption that may not hold in practice. Our framework is more general, as it does not
 979 rely on margin separability and can quantify generalization even in the presence of label noise or
 980 overlapping classes. Nonetheless, the insights are valuable: they reveal conditions under which more
 981 expressive encoders can improve generalization—specifically, when expressivity increases intra-class
 982 concentration without excessively harming inter-class separation. In this way, the paper offers a
 983 principled theoretical basis for interpreting empirical phenomena observed in GNN performance
 984 across datasets and model classes.

985 Related to our work, Maskey et al. (2022a; 2024) analyzed scenarios where graph labels are correlated
 986 with random graph models, based on graphons. They demonstrated that MPNNs generalize better as
 987 the size of the sampled graphs increases, since the statistical properties of larger graphs more closely
 988 approximate those of the underlying random graph models.

989 The approach by Maskey et al. (2022a; 2024) is limited because it assumes labels are linked to
 990 random graph models, where many specific assumptions are made about the underlying graphon
 991 governing the data. These assumptions may not hold in practical scenarios, making their results less
 992 general and potentially less applicable to real-world tasks. In contrast, our framework accommodates
 993 arbitrary correlations between graph labels and structural features, as long as they can be described
 994 by a Lipschitz-continuous distribution. This broader scope makes our method suitable for analyzing
 995 a wide variety of graph datasets, including those where the graph generation process is not well
 996 understood or where random graph model assumptions are too restrictive.

997 The work most closely related to ours is (Ma et al., 2021), which studies generalization in a semi-
 998 supervised node classification setting. Their analysis considers a scenario where node labels are
 999 correlated with features derived from the node’s local neighborhood and its attributes. Using a
 1000 PAC-Bayes approach that heavily inspired our work, they show that generalization improves when
 1001 the extracted features are similar between the training and test sets. However, their framework is
 1002 limited by the assumption of a fixed, non-learnable graph encoder, and their results do not generalize
 1003 to multi-graph settings or models with learnable parameters.

1004 In contrast, our approach provides a general framework to analyze GNN generalization in settings
 1005 where graph labels are correlated with structural features. This is achieved by introducing a pseu-
 1006 dometric, such as the Tree Mover’s Distance, which captures structural differences between graphs.
 1007 Unlike prior works, our framework does not rely on restrictive assumptions about the underlying
 1008 graph distribution. Instead, we assume only that the labels are generated by a Lipschitz-continuous
 1009 probability distribution with respect to the pseudometric. This allows us to analyze a broad range of
 1010 tasks where the graph structure plays a critical role in determining labels. By explicitly connecting
 1011 generalization bounds to structural alignment between training and test graphs, our framework offers
 1012 a flexible and robust method to study GNN performance in diverse applications.

1013 Our framework overcomes these limitations by supporting learnable GNN architectures and extending
 1014 naturally to multi-graph settings. This allows for a broader analysis of generalization, including
 1015 GNNs beyond 1-WL expressivity. Moreover, our approach bridges the gap between theory and
 1016 practice by providing insights into how the interplay between model capacity, structural similarity,
 1017 and feature alignment affects performance.

1018 B SIMULATABLE COLOR REFINE ALGORITHMS

1021 It is possible to represent many different GNNs as MPNNs without loss in expressivity. For this,
 1022 Jogl et al. (2024) developed the concept of *simulation*. Intuitively, a GNN with $t > 0$ layers can
 1023 be simulated if we can map its input domain to the set of graphs and achieve the same expressivity
 1024 with a t -layer MPNN on this adapted set of graphs. To generalize to different types of GNNs, one
 1025 represents GNNs ϕ as color refinement functions that iteratively refine a coloring on some relational
 structure X .

1026 **Definition B.1.** Let ϕ be a color update function. Let R be a mapping from the domain of ϕ to the set
 1027 of graphs.¹ We consider two arbitrary relational structures from the domain of ϕ , say X and X' . We
 1028 say ϕ can be *strongly simulated* under R if for every $t \geq 0$ it holds that $\text{WL}^t(R(X)) = \text{WL}^t(R(X'))$
 1029 implies that $\phi^t(X) = \phi^t(X')$.
 1030

1031 As an example, consider 3-WL from Section C.3. It can be seen as a color update function c
 1032 that operates on a set of labeled 3-tuples, i.e. in iteration $t > 0$ it refines the coloring of tuple
 1033 $(v_1, v_2, v_3) \in V^3$ by utilizing the coloring $c^{(t-1)}$:

1034

$$1035 \quad c_{(v_1, v_2, v_3)}^t = \text{HASH} \left(c_{(v_1, v_2, v_3)}^{t-1}, (C_1^t((v_1, v_2, v_3)), \dots, C_3^t((v_1, v_2, v_3))) \right)$$

1037 where

$$\begin{aligned} 1038 \quad C_1^t((v_1, v_2, v_3)) &= \text{HASH} \left(\{c_{(w, v_2, v_3)}^{t-1} \mid w \in V\} \right), \\ 1039 \quad C_2^t((v_1, v_2, v_3)) &= \text{HASH} \left(\{c_{(v_1, w, v_3)}^{t-1} \mid w \in V\} \right), \\ 1040 \quad C_3^t((v_1, v_2, v_3)) &= \text{HASH} \left(\{c_{(v_1, v_2, w)}^{t-1} \mid w \in V\} \right). \end{aligned}$$

1043 Instead of using 3-WL, we can create the graph $G^{\otimes 3}$ with vertices $(v_1, v_2, v_3) \in V^3$ and three types
 1044 of edges

1045

$$\begin{aligned} 1046 \quad E_1 &= \bigcup_{v_1, v_2, v_3 \in V} \{(v_1, v_2, v_3), (w, v_2, v_3) \mid w \in V\}, \\ 1047 \quad E_2 &= \bigcup_{v_1, v_2, v_3 \in V} \{(v_1, v_2, v_3), (v_1, w, v_3) \mid w \in V\}, \\ 1048 \quad E_3 &= \bigcup_{v_1, v_2, v_3 \in V} \{(v_1, v_2, v_3), (v_1, v_2, w) \mid w \in V\}. \end{aligned}$$

1050 Observe, that for a tuple (v_1, v_2, v_3) the neighborhood E_j contains exactly those tuples as aggregated
 1051 in the definition of C_j . We can merge these three edge sets E_1, E_2, E_3 into a single edge set E by
 1052 using edge features that encode from which of the three sets the edge originates. Such a transformation
 1053 R it allows for the strong simulation of 3-WL.

1054

1055 B.1 OTHER STRONGLY-SIMULATABLE ARCHITECTURES

1056

1057 A GNN/WL variant is *strongly simulated* when there exists a structure-to-graph encoding R such
 1058 that applying R to the input and running a depth- t MPNN reproduces—*layer by layer*—the colours
 1059 (or hidden states) produced by the original depth- t model (Definition B.1). Table 3 summarises some
 1060 architectures that admit such a simulation and sketches the key transformation behind R ; full proofs
 1061 are in (Jogl et al., 2024).

1062

1063 C TREE MOVER’S DISTANCE

1064

1065 We summarize some important results from Chuang & Jegelka (2022) and Davidson & Dym (2024).
 1066 We first start with the definition of the tree mover’s distance which provides us with a tool to compare
 1067 two graphs based on their computational trees quantitatively.

1068

1069 C.1 TREE MOVER’S DISTANCE

1070

The definition and notations in this section largely follow (Chuang & Jegelka, 2022).

1071

1072 **Definition C.1.** Let $G = (V, E)$ be a graph. We define the *depth- T computational tree* T_v^T of node v
 1073 recursively by connecting the neighbors of the leaf nodes of T_v^{T-1} to the tree. We set $T_v^1 := v$ as
 1074 the single node tree without any edges. The multiset of depth- T computation trees defined by G is
 1075 denoted by $\mathcal{T}_G^T := \{T_v^T\}_{v \in V}$. Additionally, for a tree T with root r , we denote by T_r the multiset
 1076 of subtrees that root at the descendants of r .

1077

In other words, the depth- T computational tree T_v^T of node v is the 1-WL computational tree of node
 1078 v after $T - 1$ iterations. To compare two multisets of computational tree we need to *augments trees*.
 1079

¹Jogl et al. (2024) introduces some additional restrictions on R that we omit for the sake of simplicity.

1080	Model / Algorithm	Graph transformation $R(G)$
1081	VVC-GNN (Sato et al., 2019)	For a given port ordering, write on each edge direction the port of the source and target node.
1082	k -WL / k -GNN (Morris et al., 2019)	Compute all k -tuples of nodes. Create a node for each k -tuple and encode the isomorphism class of each tuple as a node feature. Connect tuples differing in one position encoding this position as an edge feature.
1083	δ - k -(L)WL / GNN (Morris et al., 2020b)	Similar as the k -tuple graph above: when connecting tuples add a local/global flag encoding whether the nodes that differ in the tuple form an edge in the original graph. For δ - k -LWL, only connect tuples when these nodes do form an edge.
1084	(k, s) -LWL / SpeqNet (Morris et al., 2022)	Similar as δ - k -WL above: keep only tuple-vertices whose induced subgraph has $\leq s$ components.
1085	GSN-e / GSN-v (Bouritsas et al., 2023)	For pre-computed subgraph pattern counts, augment original node and edge features with these counts.
1086	DS-WL / DS-GNN (Bevilacqua et al., 2021)	For a given policy π to generate subgraphs, create a graph by taking the disjoint union of all extracted subgraphs $\pi(G)$.
1087	k -OSWL / OSAN (Qian et al., 2022)	For each k tuple of vertices in the graph (“ k -ordered subgraphs”), create a copy of all vertices in the original graph and use node features to encode the atomic type of that node in this ordered subgraph. In each subgraph, either link all vertices or only neighbors in the original graph.
1088	Mk-GNN (Papp & Wattenhofer, 2022)	For a given set of marked nodes, on each edge encode whether the target node is marked or unmarked.
1089	GMP (Wijesinghe & Wang, 2022)	Attach structural coefficients as node or edge features.
1090	Shortest-Path Nets (Abboud et al., 2022)	For $i \in 1, \dots, k$ add an edge between every pair of nodes with shortest path distance i and encode i as a feature on that edge.
1091	Generalised-Distance WL (Zhang et al., 2023)	For a given distance metric d and graph G , add an edge between every pair of nodes u, v and encode the metric $d_G(u, v)$ as a feature on this edge.

1100 Table 3: GNN families whose per-layer updates can be *exactly* reproduced by a 1-WL-equivalent
1101 MPNN on the transformed graph $R(G)$.

1103 **Definition C.2.** A *blank tree* T_\emptyset is defined as a tree graph that contains a single node and no edge, where the node feature is the zero vector $\mathbf{0}_p \in \mathbb{R}^p$. We define T_\emptyset^n as the multiset of n blank trees.

1104 **Definition C.3.** Let $\mathcal{T}_v, \mathcal{T}_u$ be two multisets of trees. We define ρ as function that augments a pair of
1105 trees with blank trees as follows:

$$1106 \rho : (\mathcal{T}_v, \mathcal{T}_u) \mapsto \left(\mathcal{T}_v \cup T_\emptyset^{\max(|\mathcal{T}_u| - |\mathcal{T}_v|, 0)}, \mathcal{T}_u \cup T_\emptyset^{\max(|\mathcal{T}_v| - |\mathcal{T}_u|, 0)} \right). \quad (5)$$

1107 **Definition C.4.** Let $w : \mathbb{N} \rightarrow \mathbb{R}^+$ be a depth-dependent weighting function. For two trees T_a, T_b , we
1108 define the tree distance $\text{TD}_w(T_a, T_b)$ between T_a and T_b recursively as

$$1109 \text{TD}_w(T_a, T_b) := \begin{cases} \|x_a - x_b\| + w(T) \cdot \text{OT}_{\text{TD}_w}(\rho(\mathcal{T}_a, \mathcal{T}_b)) & \text{if } T > 1 \\ \|x_a - x_b\| & \text{otherwise,} \end{cases} \quad (6)$$

1110 where $T = \max(\text{Depth}(T_a), \text{Depth}(T_b))$ and

1111 We note that the optimal transport OT with respect to some metric d between two multisets $\mathbf{x} =$
1112 $\{\{x_1, \dots, x_n\}\}$ and $\mathbf{y} = \{\{y_1, \dots, y_n\}\}$ of the same size n is defined via

$$1113 \text{OT}_d(\mathbf{x}, \mathbf{y}) = \min_{\sigma} \sum_i d(x_i, y_{\sigma(i)}). \quad (7)$$

1114 **Definition C.5.** Let $G, H \in \mathcal{G}$, $w : \mathbb{N} \rightarrow \mathbb{R}^+$, and $T \geq 0$. The *tree mover’s distance* between G and
1115 H is defined as

$$1116 \text{TMD}_w^T(G, H) = \text{OT}_{\text{TD}_w}(\rho(\mathcal{T}_G^T, \mathcal{T}_H^T)), \quad (8)$$

1117 where \mathcal{T}_G^T and \mathcal{T}_H^T are multisets of the depth- T computation trees of graphs G and H , respectively.

1118 We note that, for simplicity, we omit the weighting function w the corresponding subscript in the
1119 definition of TMD_w^T and simply write TMD_w^T in the main part of this manuscript.

1120 C.2 PROOFS IN SECTION 3

1121 **Proof of Proposition 3.2.** By (Chuang & Jegelka, 2022, Theorem 6), TMD_w^t is a pseudometric. It is
1122 easy to see that ζ - TMD_w^t is also a pseudometric. For example, given $G, H \in \mathcal{G}$, we have

$$1123 \begin{aligned} \zeta\text{-TMD}(G, H) &= \text{TMD}(R^\zeta(G), R^\zeta(H)) \\ 1124 &= \text{TMD}(R^\zeta(H), R^\zeta(G)) \\ 1125 &= \zeta\text{-TMD}(H, G), \end{aligned} \quad (9)$$

1134 showing the symmetry of ζ -TMD $_w^t$. □
 1135

1136 *Proof of Proposition 3.3.* By (Chuang & Jegelka, 2022, Theorem 7), if two graphs G' and H' are
 1137 determined to be non-isomorphic in WL iteration T and $w(t) > 0$ for all $0 < t \leq T + 1$, then
 1138 $\text{TMD}_w^{T+1}(G', H') > 0$.
 1139

1140 If ζ distinguishes G and H after T iterations, then WL determines $R^\zeta(G)$ and $R^\zeta(H)$ to be non-
 1141 isomorphic, i.e., $\text{TMD}_w^{T+1}(R^\zeta(G), R^\zeta(H)) > 0$. Then,
 1142

$$\zeta\text{-TMD}_w^{T+1}(G, H) > 0.$$

1143 □
 1144

1145 We reformulate and prove a more general version of Theorem 3.4, where we consider general message
 1146 functions on multisets that are Lipschitz continuous on the multiset domain, and update function that
 1147 are Lipschitz on the standard Euclidean latent space. This follows the approach in (Davidson & Dym,
 1148 2024), where a similar version was proved in Theorem F.2. in their manuscript. However, in contrast,
 1149 we calculate the explicit constant of the Lipschitz constant which we will need for later proofs.

1150 Theorem 3.4 then follows as a corollary as permutations-invariant aggregation functions composed of
 1151 a MLP followed by sum aggregation are Lipschitz continuous on multisets.
 1152

1153 **Lemma C.6.** *Consider a MPNN of the form*

$$x_v^{(t)} = f^{(t)} \left(x_v^{(t-1)}, g^{(t)} \left(\{\{x_u^{(t-1)}, \cdot\}_{u \in \mathcal{N}(v)} \right) \right) \quad (10)$$

1154 with message and update functions $(g^{(t)}, f^{(t)})_{t=1}^T$. Consider also a global readout function e of the
 1155 form
 1156

$$h(G) = c \left(\{\{x_v^{(T)}\}_{v \in V(G)} \right).$$

1157 Suppose that for all $t = 1, \dots, T$, the message and update functions are Lipschitz continuous with
 1158 Lipschitz constants bounded by $L_{g^{(t)}}$ and $L_{f^{(t)}}$, respectively. Suppose that the readout function is
 1159 Lipschitz continuous with Lipschitz constants bounded by L_c . Then, for all layers $t = 0, 1, \dots, T$
 1160 and for all pairs of graphs $G, H \in \mathcal{G}$ and all pairs of nodes $u \in V(G)$ and $v \in V(H)$, we have
 1161

$$\left\| x_u^{(t)} - x_v^{(t)} \right\| \leq \left(\prod_{t'=1}^t L_{g^{(t')}} L_{f^{(t')}} \right) 2^t \text{TD} \left(T_u^{(t+1)}, T_v^{(t+1)} \right). \quad (11)$$

1162 For the global output, we have
 1163

$$\|h(G) - h(H)\| \leq L_c \left(\prod_{t=1}^T L_{g^{(t)}} L_{f^{(t)}} \right) 2^T \text{TMD}^{T+1}(G, H). \quad (12)$$

1164 *Proof.* Without loss of generality, suppose that $L_{f^{(t)}}, L_{g^{(t)}} \geq 1$. We show Equation (11) by induction.
 1165 For $t = 0$ Equation (11) holds trivially.
 1166

1167 **Step 1: Bound the difference between message function outputs.**
 1168

$$\begin{aligned} & \left\| g^{(t)} \left(\{\{x_s^{(t-1)}\}_{s \in \mathcal{N}(u)} \right) - g^{(t)} \left(\{\{x_{s'}^{(t-1)}\}_{s' \in \mathcal{N}(u)} \right) \right\| \\ & \leq L_{g^{(t)}} \text{WD}_{\|\cdot\|} \left(\{\{x_s^{(t-1)}\}_{s \in \mathcal{N}(v)}, \{\{x_{s'}^{(t-1)}\}_{s' \in \mathcal{N}(u)} \right) \\ & = L_{g^{(t)}} \min_{\tau \in S_n} \sum_u \left\| x_s^{(t-1)} - x_{\tau(s)}^{(t-1)} \right\| \\ & \leq L_{g^{(t)}} \sum_s \left\| x_s^{(t-1)} - x_{\tau^*(s)}^{(t-1)} \right\| \\ & = L_{g^{(t)}} \left(\prod_{t'=1}^{t-1} L_{g^{(t')}} L_{f^{(t')}} \right) 2^{t-1} \sum_s \text{TD} \left(T_s^{(t)}, T_{\tau^*(s)}^{(t)} \right) \\ & = L_{g^{(t)}} \left(\prod_{t'=1}^{t-1} L_{g^{(t')}} L_{f^{(t')}} \right) 2^{t-1} \text{WD}_{\text{TD}} \left(\{\{T_s^{(t)}\}_{s \in \mathcal{N}(v)}, \{\{T_{s'}^{(t)}\}_{s' \in \mathcal{N}(u)} \right), \end{aligned} \quad (13)$$

1188 where τ^* is the optimal permutation in the definition of $\text{WD}_{\text{TD}}\left(\{\{T_s^{(t)}\}_{s \in \mathcal{N}(v)}, \{\{T_{s'}^{(t)}\}_{s' \in \mathcal{N}(u)}\}\right)$.
 1189

1190 **Step 2: Bound the difference between update function outputs.**

$$\begin{aligned}
 & \|x_u^{(t)} - x_v^{(t)}\| \\
 &= \|f^{(t)}\left(x_s^{(t-1)}, g^{(t)}\left(\{\{x_s^{(t-1)}\}_{s \in \mathcal{N}(u)}\}\right)\right) - f^{(t)}\left(x_v^{(t-1)}, g^{(t)}\left(\{\{x_{s'}^{(t-1)}\}_{s' \in \mathcal{N}(v)}\}\right)\right)\| \\
 &\leq L_{f^{(t)}}\left(\|x_u^{(t-1)} - x_v^{(t-1)}\| + \|g^{(t)}\left(\{\{x_s^{(t-1)}\}_{s \in \mathcal{N}(u)}\}\right) - g^{(t)}\left(\{\{x_{s'}^{(t-1)}\}_{s' \in \mathcal{N}(v)}\}\right)\|\right) \\
 &\leq L_{f^{(t)}}\left(\|x_u^{(t-1)} - x_v^{(t-1)}\| + L_{g^{(t)}}\left(\prod_{t'=1}^{t-1} L_{g^{(t')}} L_{f^{(t')}}\right) 2^{t-1} \text{WD}_{\text{TD}}\left(\{\{T_s^{(t)}\}_{s \in \mathcal{N}(v)}, \{\{T_{s'}^{(t)}\}_{s' \in \mathcal{N}(u)}\}\right)\right) \\
 &\leq L_{f^{(t)}}\left(\left(\prod_{t'=1}^{t-1} L_{g^{(t')}} L_{f^{(t')}}\right) 2^{t-1} \text{TD}\left(T_u^{(t)}, T_v^{(t)}\right) \right. \\
 &\quad \left. + L_{g^{(t)}}\left(\prod_{t'=1}^{t-1} L_{g^{(t')}} L_{f^{(t')}}\right) 2^{t-1} \text{WD}_{\text{TD}}\left(\{\{T_s^{(t)}\}_{s \in \mathcal{N}(v)}, \{\{T_{s'}^{(t)}\}_{s' \in \mathcal{N}(u)}\}\right)\right) \\
 &\leq \left(\prod_{t'=1}^t L_{g^{(t')}} L_{f^{(t')}}\right) 2^t \text{TD}\left(T_v^{(t+1)}, T_u^{(t+1)}\right).
 \end{aligned} \tag{14}$$

1210 This finishes the proof of the first claim.
 1211

1212 **Step 3: Bound the difference between global outputs.** The second claim follows by calculating,
 1213

$$\begin{aligned}
 \|h(G) - h(H)\| &= \left\|c\left(\{\{x_u^{(T)}\}_{u \in V(G)}\}\right) - c\left(\{\{x_v^{(T)}\}_{v \in V(G)}\}\right)\right\| \\
 &\leq L_c \text{WD}_{\|\cdot\|}\left(\{\{x_u^{(T)}\}_{u \in V(G)}, \{\{x_v^{(T)}\}_{v \in V(G)}\}\right) \\
 &= L_c \min_{\tau} \sum_s \|x_s^{(T)} - x_{\tau(s)}^{(T)}\| \\
 &\leq L_c \left(\prod_{t'=1}^T L_{g^{(t')}} L_{f^{(t')}}\right) 2^T \sum_s \text{TD}\left(T_s^{(T+1)}, T_{\tau^*(s)}^{(T+1)}\right) \\
 &= L_c \left(\prod_{t'=1}^T L_{g^{(t')}} L_{f^{(t')}}\right) 2^T \text{TMD}^{T+1}(G, H),
 \end{aligned} \tag{15}$$

1226 where τ^* is the optimal permutation in the definition of $\text{TMD}^{T+1}(G, H)$. \square
 1227

1228 We now consider the case where Lipschitz continuous functions on multisets are implemented via
 1229 sum aggregation, followed by Lipschitz continuous functions on the Euclidean domain. This includes
 1230 scenarios where the message, update, and readout functions are MLPs with Lipschitz continuous
 1231 activation functions, such as ReLU.

1232 **Corollary C.7.** Consider a MPNN of the form
 1233

$$x_v^{(t+1)} = f^{(t+1)}\left(x_v^{(t)}, \sum_{u \in \mathcal{N}(v)} g^{(t+1)}\left(x_u^{(t)}\right)\right),$$

1238 with message and update functions $(g^{(t)}, f^{(t)})_{t=1}^T$. Consider also a global readout function e of the
 1239 form

$$h(G) = e\left(\sum_{v \in V(G)} x_v^{(T)}\right).$$

Suppose that for all $t = 1, \dots, T$, the message and update functions are Lipschitz continuous with Lipschitz constants bounded by $L_{g^{(t)}}$ and $L_{f^{(t)}}$, respectively. Suppose that the readout function is Lipschitz continuous with Lipschitz constants bounded by L_c . Then, for all layers $t = 0, 1, \dots, T$ and for all pairs of graphs $G, H \in \mathcal{G}$ and all pairs of nodes $u \in V(G)$ and $v \in V(H)$, we have

$$\left\| x_u^{(t)} - x_v^{(t)} \right\| \leq \left(\prod_{t'=1}^t L_{g^{(t')}} L_{f^{(t')}} \right) 2^t TMD \left(T_u^{(t+1)}, T_v^{(t+1)} \right). \quad (16)$$

For the global output, we have

$$\|h(G) - h(H)\| \leq L_c \left(\prod_{t=1}^T L_{g^{(t)}} L_{f^{(t)}} \right) 2^T TMD^{T+1} (G, H).$$

Proof. This follows directly from Lemma C.6, since for any Lipschitz continuous function f with Lipschitz constant L_f , the induced multiset function $\tilde{f} : X \mapsto \sum_{x \in X} f(x)$ remains Lipschitz continuous with a Lipschitz constant bounded by L_f . \square

Theorem C.8. Let ζ be a strongly simulatable CRA, and let $h : \mathcal{G} \rightarrow \mathbb{R}^K$ be a ζ -MPNN with T layers, where the message and update functions are Lipschitz continuous with Lipschitz constants bounded by $L_{g^{(t)}}$ and $L_{f^{(t)}}$, respectively. Suppose h includes a global sum pooling layer followed by a Lipschitz continuous classifier c with Lipschitz constant L_c . Then, for any graphs G and H ,

$$\|h(G) - h(H)\| \leq L \cdot \zeta\text{-TMD}^{T+1}(G, H),$$

where $L = L_c 2^T \prod_{t=1}^T L_{f^{(t)}} L_{g^{(t)}}$.

Proof. Let h' be the underlying MPNN of h . The proof of theorem follows from Corollary C.7 by

$$\begin{aligned} \|h(G) - h(H)\| &= \|h' (R^\zeta(G)) - h' (R^\zeta(H))\| \\ &\leq L_c \left(\prod_{t=1}^T L_{g^{(t)}} L_{f^{(t)}} \right) 2^T \text{TMD}^{T+1} (R^\zeta(G), R^\zeta(H)) \\ &= L_c \left(\prod_{t=1}^T L_{g^{(t)}} L_{f^{(t)}} \right) 2^T \zeta\text{-TMD}^{T+1} (G, H). \end{aligned}$$

\square

C.3 EXAMPLE II: k -GNNs

The k -Weisfeiler-Leman (k -WL) test enhances the expressive power of the 1-WL test by considering interactions between k -tuples of nodes. To strongly simulate k -WL, a *product graph* $G^{\otimes k}$ is constructed, where each node represents a k -tuple of nodes from the original graph G , and edges are defined based on the adjacency relationships in G .

Similarly, k -MPNNs operate directly on the product graph $G^{\otimes k}$, achieving the same level of expressivity as the k -WL.

Corollary C.9. Let h be an k -MPNN with T layers. Then, there exists a constant L such that for any graphs G and H ,

$$\|h(G) - h(H)\| \leq L \cdot k\text{-TMD}^{T+1}(G, H). \quad (17)$$

D GRAPH CLASSIFICATION SETTING

We consider a classification problem with K classes over a fixed set of training graphs \mathcal{G}_{tr} and test graphs \mathcal{G}_{te} . Each graph G is equipped with node features x , and we assume there exists a constant $D > 0$ such that $\|x_i\| \leq D$ for every node $i \in V(G)$ and every $G \in \mathcal{G}_{\text{tr}} \cup \mathcal{G}_{\text{te}}$. Let $N_{\text{tr}} = |\mathcal{G}_{\text{tr}}|$ and $N_{\text{te}} = |\mathcal{G}_{\text{te}}|$. Each graph G has a label y sampled from an unknown distribution p . Moreover, we assume that graphs closer in a given pseudometric pm are more likely to share the same label.

1296 Concretely, for each class $k \in \{1, \dots, K\}$, there is a Lipschitz continuous function η_k (with respect
 1297 to some pseudometric pm) such that

$$1299 \quad \Pr(y = k \mid G) = \eta_k(G),$$

1300 and we denote by $C := \max_k \text{Lip}(\eta_k)$ the maximum Lipschitz constant among all $\{\eta_k\}$. Let ξ be
 1301 an upper bound on the distance (with respect to pm) between any training graph in \mathcal{G}_{tr} and any test
 1302 graph in \mathcal{G}_{te} .

1303 We now introduce a PAC-Bayes framework to derive a generalization bound for classifiers under this
 1304 setting. We consider two different setups for learning on graphs:

- 1306 1. **ζ -MPNNs:** Let ζ be a strongly simulatable color-refinement algorithm (see Definition B.1).
 1307 A ζ -MPNN has a fixed depth T and a final MLP e as the classifier. Each layer $t \in$
 1308 $\{1, \dots, T\}$ has message and update functions denoted by $g^{(t)}$ and $f^{(t)}$, each with fixed
 1309 depths $d(g^{(t)})$ and $d(f^{(t)})$, respectively. The corresponding weight matrices are written
 1310 as $\{w(g^{(t)}, s)\}_{s=1}^{d(g^{(t)})}$ and $\{w(f^{(t)}, s)\}_{s=1}^{d(f^{(t)})}$. The final MLP classifier e has parameters
 1311 $\{w(e, s)\}_{s=1}^{d(e)}$. Define b to be the maximum hidden dimension across these modules, and let
 1312 \mathcal{H}_ζ be the class of all such ζ -MPNN classifiers.
- 1314 2. **MLPs on non-learnable graph embeddings:** Here, the final MLP classifier c has the same
 1315 notations for its parameters as above, and we denote the hypothesis set by $\mathcal{H}_{\text{latent}}$.

1316 We assume that every non-linearities in the MLPs are Lipschitz continuous and homogeneous.

1317 Finally, we adapt the following assumption from Ma et al. (2021).

1319 **Assumption D.1** (Assumption on Concentrated Expected Loss Difference.). Let P be a distribution
 1320 over \mathcal{H} obtained by sampling the (vectorized) trainable weight matrices from $\mathcal{N}(0, \sigma^2 I)$, with

$$1322 \quad \sigma^2 \leq \frac{(\gamma/(8\xi))^2/D}{2b(\lambda N_{\text{tr}}^{-\alpha} + \ln(2bD))}.$$

1324 For any classifier $h \in \mathcal{H}$ with model parameters $\{w_j\}_j$, define $T_h := \max_j \|w_j\|_2$. Assume there
 1325 exists an $0 < \alpha < \frac{1}{4}$ such that

$$1327 \quad \Pr_{h \sim P} \left(\mathcal{L}_{\text{te}}^{\gamma/4}(h) - \mathcal{L}_{\text{tr}}^{\gamma/2}(h) > N_{\text{tr}}^{-\alpha} + cK\xi \mid T_h^D \xi > \frac{\gamma}{8} \right) \leq e^{-N_{\text{tr}}^{2\alpha}}.$$

1329 This assumption posits that when the model parameters h sampled from P do not exceed a certain
 1330 norm threshold (i.e., $T_h^D \xi \leq \frac{\gamma}{8}$) and the number of training samples N_{tr} is sufficiently large, then the
 1331 expected margin loss on the test set will not exceed that on the training set by more than $N_{\text{tr}}^{-\alpha} + cK\xi$.
 1332 Informally, once the training set grows large enough (and model weights are not too large), the test
 1333 performance cannot deviate significantly from the training performance. This property becomes
 1334 trivially true if all samples in \mathcal{G}_{tr} and \mathcal{G}_{te} are i.i.d. since $\mathcal{L}_{\text{te}}^{\gamma/2} - \mathcal{L}_{\text{tr}}^{\gamma/2} \leq 0$ in that case.

1336 E PROOFS OF THE RESULTS SECTION 4

1339 In this section, we provide detailed proofs of the theoretical results presented in the Section 4.

1340 We note that the proof of Theorem 4.1 follows the proof of Theorem 3 in (Ma et al., 2021), carefully
 1341 adapted for graph classification tasks and learnable graph encoders.

1343 Specifically, the proof leverages the PAC-Bayes framework, properties of the chosen pseudometric,
 1344 and structural constraints on the hypothesis space. For clarity, we decompose it into a series of steps,
 1345 each contributing to the final result.

1346 In Appendix E.1, we present intermediate results that are independent of the choice of pseudometric
 1347 and hypothesis space. To emphasize this generality, we denote the pseudometric by pm and the
 1348 hypothesis space by \mathcal{H} . This ensures that the results in Appendix E.1 apply regardless of whether the
 1349 pseudometric is defined in the graph space or latent space, and whether the classifier is an end-to-
 end learnable GNN or a deterministic graph encoder followed by a learnable MLP classifier. This

approach allows us to establish in Appendix E.2 the generalization bound for end-to-end learnable GNNs, and in the following subsection, the bound for graph classifiers with fixed encoders—both derived from the results in Appendix E.1.

We note that if pm is defined on \mathcal{G} , the corresponding classifier $h : \mathcal{G} \rightarrow \{1, \dots, K\}$ is assumed to be Lipschitz with respect to pm . If instead pm is defined on \mathbb{R}^b , the classifier $h : \mathbb{R}^b \rightarrow \{1, \dots, K\}$, typically an MLP, is assumed to be Lipschitz with respect to pm . In the latter case, classification is performed via $h \circ e(G)$, where $e : \mathcal{G} \rightarrow \mathbb{R}^b$ is a deterministic graph embedding network.

E.1 PRELIMINARIES FOR THE PROOFS IN SECTION 4

Step 1: Deterministic Bound via PAC-Bayes We begin by establishing a deterministic bound on the test loss in terms of the training loss and the Kullback-Leibler (KL) divergence between the posterior and prior distributions over the hypothesis space \mathcal{H} .

Lemma E.1. *Let $\tilde{h} \in \mathcal{H}$ be any classifier and let P be a prior distribution on \mathcal{H} independent of the training data. For any $\lambda > 0$ and $\gamma \geq 0$, with probability at least $1 - \delta$ over the training sample y_{tr} , for any posterior distribution Q on \mathcal{H} satisfying*

$$\mathbb{P}_{h \sim Q} \left(\max_{G \in \mathcal{G}_{\text{tr}} \cup \mathcal{G}_{\text{te}}} \|h(G) - \tilde{h}(G)\|_{\infty} < \frac{\gamma}{8} \right) \geq \frac{1}{2},$$

the following bound holds:

$$\mathcal{L}_{\text{te}}^0(\tilde{h}) \leq \mathcal{L}_{\text{tr}}^{\gamma}(\tilde{h}) + \frac{1}{\lambda} \left(2(D_{\text{KL}}(Q \| P) + 1) + \ln \frac{1}{\delta} + \frac{\lambda^2}{4N_{\text{tr}}} + D_{\text{te,tr}}^{\gamma/2}(P; \lambda) \right), \quad (18)$$

where $D_{\text{te,tr}}^{\gamma/2}(P; \lambda) = \ln \mathbb{E}_{h \sim P} \exp \left(\lambda \left(\mathcal{L}_{\text{te}}^{\gamma/2}(h) - \mathcal{L}_{\text{tr}}^{\gamma}(h) \right) \right)$.

Proof of Lemma E.1. The proof adapts Theorem 2 from Ma et al. (2021) from the node to the graph classification setting. We present the proof for completeness.

First, define a subset $\mathcal{H}_{\tilde{h}} \subset \mathcal{H}$ as:

$$\mathcal{H}_{\tilde{h}} = \left\{ h \in \mathcal{H} \mid \max_{G \in \mathcal{G}_{\text{tr}} \cup \mathcal{G}_{\text{te}}} \|h(G) - \tilde{h}(G)\|_{\infty} \leq \frac{\gamma}{8} \right\}. \quad (19)$$

Using this subset $\mathcal{H}_{\tilde{h}}$, define the modified distribution Q' over $\mathcal{H}_{\tilde{h}}$ as:

$$Q'(h) = \begin{cases} \frac{1}{\mathbb{P}_{h \sim Q}(h \in \mathcal{H}_{\tilde{h}})} Q(h), & \text{if } h \in \mathcal{H}_{\tilde{h}}, \\ 0, & \text{otherwise} \end{cases} \quad (20)$$

We aim to show

$$\mathcal{L}_{\text{te}}^0(\tilde{h}) \leq \mathcal{L}_{\text{te}}^{\gamma/4}(h) \quad \text{and} \quad \hat{\mathcal{L}}_{\text{tr}}^{\gamma/2}(h) \leq \hat{\mathcal{L}}_{\text{tr}}^{\gamma}(\tilde{h}). \quad (21)$$

The first inequality holds since

$$\begin{aligned} & \mathcal{L}_{\text{te}}^0(\tilde{h}) - \mathcal{L}_{\text{te}}^{\gamma/4}(h) \\ &= \mathbb{E}_{y_i \sim \text{Pr}(y|G_i), G_i \in \mathcal{G}_{\text{te}}} \left[\hat{\mathcal{L}}_{\text{te}}^{\gamma}(\tilde{h}) \right] - \mathbb{E}_{y_i \sim \text{Pr}(y|G_i), G_i \in \mathcal{G}_{\text{te}}} \left[\hat{\mathcal{L}}_{\text{tr}}^{\gamma/4}(h) \right] \\ &= \mathbb{E}_{y_i \sim \text{Pr}(y|G_i), G_i \in \mathcal{G}_{\text{te}}} \left[\frac{1}{N_{\text{te}}} \sum_{G_i \in \mathcal{G}_{\text{te}}} \mathbb{1} \left[\tilde{h}(G_i)[y_i] \leq \left(0 + \max_{k \neq y_{G_i}} h(G_i)[k] \right) \right] \right] \\ &\quad - \mathbb{E}_{y_i \sim \text{Pr}(y|G_i), G_i \in \mathcal{G}_{\text{te}}} \left[\frac{1}{N_{\text{te}}} \sum_{G_i \in \mathcal{G}_{\text{te}}} \mathbb{1} \left[h(G_i)[y_i] \leq \left(\gamma/4 + \max_{k \neq y_{G_i}} h(G_i)[k] \right) \right] \right] \\ &= \mathbb{E}_{y_i \sim \text{Pr}(y|G_i), G_i \in \mathcal{G}_{\text{te}}} \left[\frac{1}{N_{\text{te}}} \sum_{G_i \in \mathcal{G}_{\text{te}}} \mathbb{1} \left[\tilde{h}(G_i)[y_i] \leq \left(0 + \max_{k \neq y_{G_i}} \tilde{h}(G_i)[k] \right) \right] \right] \end{aligned}$$

$$- \mathbb{1} \left[h(G_i)[y_i] \leq \left(\gamma/4 + \max_{k \neq y_{G_i}} h(G_i)[k] \right) \right],$$

i.e., it remains to show that if $\hat{h}(G_i)[y_i] \leq (0 + \max_{k \neq y_{G_i}} h(G_i)[k])$ holds, then also $h(G_i)[y_i] \leq (\gamma/4 + \max_{k \neq y_{G_i}} h(G_i)[k])$. This is clear by Equation (19),

$$\begin{aligned} h(G_i)[y_i] &\leq \gamma/8 + \tilde{h}(G_i)[y_i] \\ &\leq \gamma/8 + \max_{k \neq y_{G_i}} \tilde{h}(G_i)[k] \\ &\leq \gamma/4 + \max_{k \neq y_{G_i}} h(G_i)[k]. \end{aligned}$$

Similarly, one can prove the second inequality in Equation (21).

Therefore, with probability at least $1 - \delta$ over the samples y_{tr} , we get

$$\begin{aligned}\mathcal{L}_0^{\text{te}} &\leq \mathbb{E}_{h \sim Q'} \mathcal{L}_{\text{te}}^{\gamma/4}(h) \\ &\leq \mathbb{E}_{h \sim Q'} \hat{\mathcal{L}}_{\text{tr}}^{\gamma/2}(h) + \frac{1}{\lambda} \left(D_{\text{KL}}(Q' \parallel P) + \ln \frac{1}{\delta} + \frac{\lambda^2}{4N_{\text{tr}}} + D_{\text{te,tr}}^{\gamma/2}(P; \lambda) \right) \\ &\leq \hat{\mathcal{L}}_{\text{tr}}^{\gamma}(\tilde{h}) + \frac{1}{\lambda} \left(D_{\text{KL}}(Q' \parallel P) + \ln \frac{1}{\delta} + \frac{\lambda^2}{4N_{\text{tr}}} + D_{\text{te,tr}}^{\gamma/2}(P; \lambda) \right).\end{aligned}$$

The second inequality applies Theorem 1 from Ma et al. (2021), while the first and last inequalities follow directly from (21) and the definitions of $\mathcal{H}_{\tilde{h}}$ and Q' . The remaining steps align with the proof of Theorem 2 from Ma et al. (2021). \square

Step 2: Bounding the Discrepancy Term Next, we bound the term $D_{\text{te},\text{tr}}^{\gamma/2}(P; \lambda)$ from Equation (18) in Lemma E.1, which captures the difference in expected losses between the test and training distributions under the prior P . We begin by bounding $\mathcal{L}_{\text{te}}^{\gamma/2}(h) - \mathcal{L}_{\text{tr}}^{\gamma}(h)$ in this step.

Lemma E.2. Let $h \in \mathcal{H}$ be any classifier with Lipschitz constant L with respect to the pseudometric pm . For any $\gamma \geq 0$, if $L\xi \leq \frac{\gamma}{4}$, then

$$\mathcal{L}_{\text{te}}^{\gamma/2}(h) - \mathcal{L}_{\text{tr}}^{\gamma}(h) < CK\xi,$$

where K is the number of classes and C is the maximum Lipschitz constant of the functions η_k .

Proof of Lemma E.2. We set

$$\mathcal{L}^\gamma(G, y) \coloneqq \mathbb{1} \left[h(G)[y] \leq \gamma + \max_{k \neq y} h(G)[k] \right],$$

where $h(G)[k]$ denotes the output score for class k .

1458 Then, we can write
 1459 $\mathcal{L}_{\text{te}}^{\gamma/2}(h) - \mathcal{L}_{\text{tr}}^{\gamma}(h)$
 1460
 1461 $= \mathbb{E}_{y^{\text{te}}} \left[\sum_{G_j \in \mathcal{G}_{\text{te}}} \frac{1}{N_{\text{te}}} \mathcal{L}^{\gamma/2}(G_j, y_j) \right] - \mathbb{E}_{y^{\text{tr}}} \left[\sum_{G_i \in \mathcal{G}_{\text{tr}}} \frac{1}{N_{\text{tr}}} \mathcal{L}^{\gamma}(G_i, y_i) \right]$
 1462
 1463 $= \frac{1}{N_{\text{te}}} \sum_{G_j \in \mathcal{G}_{\text{te}}} \sum_{k=1}^K \eta_k(G_j) \mathcal{L}^{\gamma/2}(G_j, k) - \frac{1}{N_{\text{tr}}} \sum_{G_i \in \mathcal{G}_{\text{tr}}} \sum_{k=1}^K \eta_k(G_i) \mathcal{L}^{\gamma}(G_i, k)$
 1464
 1465 $= \frac{1}{N_{\text{te}}} \frac{1}{N_{\text{tr}}} \sum_{G_i \in \mathcal{G}_{\text{tr}}} \sum_{G_j \in \mathcal{G}_{\text{te}}} \sum_{k=1}^K \eta_k(G_j) \mathcal{L}^{\gamma/2}(G_j, k) - \frac{1}{N_{\text{tr}}} \frac{1}{N_{\text{te}}} \sum_{G_j \in \mathcal{G}_{\text{te}}} \sum_{G_i \in \mathcal{G}_{\text{tr}}} \sum_{k=1}^K \eta_k(G_i) \mathcal{L}^{\gamma}(G_i, k)$
 1466
 1467 $= \frac{1}{N_{\text{te}} N_{\text{tr}}} \sum_{G_i \in \mathcal{G}_{\text{tr}}} \sum_{G_j \in \mathcal{G}_{\text{te}}} \sum_{k=1}^K \left(\eta_k(G_j) \mathcal{L}^{\gamma/2}(G_j, k) - \eta_k(G_i) \mathcal{L}^{\gamma}(G_i, k) \right)$
 1468
 1469 $= \frac{1}{N_{\text{te}} N_{\text{tr}}} \sum_{G_i \in \mathcal{G}_{\text{tr}}} \sum_{G_j \in \mathcal{G}_{\text{te}}} \sum_{k=1}^K \left(\eta_k(G_j) \mathcal{L}^{\gamma/2}(G_j, k) - \eta_k(G_j) \mathcal{L}^{\gamma}(G_i, k) \right)$
 1470
 1471 $+ (\eta_k(G_j) \mathcal{L}^{\gamma}(G_i, k) - \eta_k(G_i) \mathcal{L}^{\gamma}(G_i, k))$
 1472
 1473 $= \frac{1}{N_{\text{te}} N_{\text{tr}}} \sum_{G_i \in \mathcal{G}_{\text{tr}}} \sum_{G_j \in \mathcal{G}_{\text{te}}} \sum_{k=1}^K \eta_k(G_j) \left(\mathcal{L}^{\gamma/2}(G_j, k) - \mathcal{L}^{\gamma}(G_i, k) \right) + \mathcal{L}^{\gamma}(G_i, k) (\eta_k(G_j) - \eta_k(G_i))$
 1474
 1475 $\leq \frac{1}{N_{\text{te}} N_{\text{tr}}} \sum_{G_i \in \mathcal{G}_{\text{tr}}} \sum_{G_j \in \mathcal{G}_{\text{te}}} \sum_{k=1}^K \left(\mathcal{L}^{\gamma/2}(G_j, k) - \mathcal{L}^{\gamma}(G_i, k) \right) + (\eta_k(G_j) - \eta_k(G_i)).$
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

The last inequality holds since L^{γ} and η_k are bounded by 1. We have, by assumption on the probability distribution,

$$\eta_k(G_j) - \eta_k(G_i) \leq C \cdot \text{pm}(G_j, G_i) \leq C\xi. \quad (23)$$

Furthermore, by assumption,

$$\|h(G_i) - h(G_j)\|_{\infty} \leq L \cdot \text{pm}(G_j, G_i) \leq L\xi \leq \frac{\gamma}{4}. \quad (24)$$

Then, for any $k = 1, \dots, K$,

$$L^{\gamma/2}(h(G_j), k) \leq L^{\gamma}(h(G_i), k). \quad (25)$$

This is true since both $L^{\gamma/2}(h(G_j), k)$ and $L^{\gamma}(h(G_i), k)$ are 0-1-valued. If $L^{\gamma/2}(h(G_j), k) = 1$, we have by Equation (24),

$$\begin{aligned} h(G_i)[k] &\leq \gamma/4 + h(G_i)[k] \\ &\leq \gamma/4 + \gamma/2 + \max_{l=1, \dots, K} h(G_j)[l] \\ &\leq \gamma/4 + \gamma/2 + \gamma/4 + \max_{l=1, \dots, K} h(G_i)[l] \\ &= \gamma + \max_{l=1, \dots, K} h(G_i)[l], \end{aligned}$$

i.e., $L^{\gamma}(h(G_i), k) = 1$ as well.

Finally, we continue with the calculation in Equation (22),

$$\begin{aligned} \mathcal{L}_{\text{te}}^{\gamma/2}(h) - \mathcal{L}_{\text{tr}}^{\gamma}(h) &\leq \frac{1}{N_{\text{te}} N_{\text{tr}}} \sum_{G_i \in \mathcal{G}_{\text{tr}}} \sum_{G_j \in \mathcal{G}_{\text{te}}} \sum_{k=1}^K \left(\mathcal{L}^{\gamma/2}(G_j, k) - \mathcal{L}^{\gamma}(G_i, k) \right) + (\eta_k(G_j) - \eta_k(G_i)) \\ &\leq \frac{1}{N_{\text{tr}}} \sum_{G_i \in \mathcal{G}_{\text{tr}}} \frac{1}{N_{\text{te}}} \sum_{G_j \in \mathcal{G}_{\text{te}}} \sum_{k=1}^K (0 + C\xi) \\ &= CK\xi, \end{aligned} \quad (26)$$

1512 where the second inequality holds by Equation (23) and Equation (25). \square
 1513
 1514

1515 **Step 3: Bounding the Discrepancy Term $D_{\text{tr,te}}^{\gamma/2}(P; \lambda)$.**
 1516

1517 **Lemma E.3.** *Let $\alpha > 0$. For any $0 < \lambda \leq N^{2\alpha}$ and $\gamma \geq 0$, assume the “prior” P on \mathcal{H} is defined by
 1518 sampling the vectorized trainable weight matrices from $\mathcal{N}(0, \sigma^2 I)$ for some $\sigma^2 \leq \frac{(\gamma/8m)^{2/D}}{2b(\lambda N_{\text{tr}}^{-\alpha} + \ln 2bD)}$.
 1519 We have*

$$1520 \quad D_{\text{tr,te}}^{\gamma/2}(P; \lambda) \leq \ln 3 + \lambda CK\xi, \quad (27)$$

1522 where $D_{\text{te,tr}}^{\gamma/2}(P; \lambda) = \ln \mathbb{E}_{h \sim P} e^{\lambda(\mathcal{L}_{\text{te}}^{\gamma/2}(h) - \mathcal{L}_{\text{tr}}^{\gamma}(h))}$.
 1523

1525 *Proof.* First, set $T_h := \max_{j=1, \dots, D} \|w_j\|_2$. We prove this lemma by partitioning \mathcal{H} into two events:
 1526 one with high probability, where the spectral norms of the model parameters satisfy the conditions in
 1527 Lemma E.2, and its complement. For the latter event, we use Assumption D.1.

1528 For any $j = 1, \dots, D$, we have, by (Tropp, 2015), for any $t > 0$,

$$1530 \quad \Pr(\|w_j\|_2 \geq t) \leq 2be^{-\frac{t^2}{2b\sigma^2}},$$

1532 where b is the maximum width of all hidden layers of the considered classifier. We set $t = \left(\frac{\gamma}{8\xi}\right)^{1/D}$.
 1533 Applying a union bound leads to

$$1536 \quad \Pr\left(T_h^D \xi > \frac{\gamma}{8}\right) = \Pr\left(T_h > \left(\frac{\gamma}{8\xi}\right)^{1/D}\right) \leq 2bDe^{-\frac{(\gamma/8\xi)^{2/D}}{2b\sigma^2}} \leq e^{-\lambda N_{\text{tr}}^{-\alpha}}, \quad (28)$$

1539 where the last inequality uses the condition $\sigma^2 \leq \frac{(\gamma/8m)^{2/D}}{2b(\lambda N_{\text{tr}}^{-\alpha} + \ln 2bD)}$.
 1540

1541 For any h satisfying $T_h^D \xi \leq \frac{\gamma}{8}$, by Lemma E.2, we have $e^{\lambda(\mathcal{L}_{\text{te}}^{\gamma/4}(h) - \mathcal{L}_{\text{tr}}^{\gamma/2}(h))} \leq e^{\lambda CK\xi}$.
 1542

1543 The complement event, i.e., $T_h^D \xi > \frac{\gamma}{8}$ occurs with probability at most $e^{-\lambda N_{\text{tr}}^{-\alpha}}$. We decompose
 1544 $D_{\text{tr,te}}^{\gamma/2}(P; \lambda)$ as follows,
 1545

$$1547 \quad D_{\text{tr,te}}^{\gamma/2}(P; \lambda) = \ln \mathbb{E}_{h \sim P} e^{\lambda(\mathcal{L}_{\text{te}}^{\gamma/4}(h) - \mathcal{L}_{\text{tr}}^{\gamma/2}(h))}$$

$$1548 \quad \leq \ln \left(\Pr\left(T_h^D \xi \leq \frac{\gamma}{8}\right) e^{\lambda CK\xi} + \Pr\left(T_h^D \xi > \frac{\gamma}{8}\right) \mathbb{E}_{h \sim P \mid T_h^D \xi > \frac{\gamma}{8}} e^{\lambda(\mathcal{L}_{\text{te}}^{\gamma/4}(h) - \mathcal{L}_{\text{tr}}^{\gamma/2}(h))} \right)$$

$$1549 \quad \leq \ln \left(e^{\lambda CK\xi} + e^{-\lambda N_{\text{tr}}^{-\alpha}} \mathbb{E}_{h \sim P \mid T_h^D \xi > \frac{\gamma}{8}} e^{\lambda(\mathcal{L}_{\text{te}}^{\gamma/4}(h) - \mathcal{L}_{\text{tr}}^{\gamma/2}(h))} \right)$$

$$1550 \quad \leq \ln \left(e^{\lambda CK\xi} + e^{-\lambda N_{\text{tr}}^{-\alpha}} \left(e^{-N_{\text{tr}}^{2\alpha}} \cdot e^{\lambda} + \left(1 - e^{-N_{\text{tr}}^{2\alpha}}\right) \cdot e^{\lambda N_{\text{tr}}^{-\alpha} + \lambda CK\xi} \right) \right)$$

$$1551 \quad = \ln \left(e^{\lambda CK\xi} + e^{\lambda - N_{\text{tr}}^{2\alpha}} + e^{-\lambda N_{\text{tr}}^{-\alpha}} \left(\left(1 - e^{-N_{\text{tr}}^{2\alpha}}\right) \cdot e^{\lambda N_{\text{tr}}^{-\alpha} + \lambda CK\xi} \right) \right)$$

$$1552 \quad = \ln \left(e^{\lambda CK\xi} + e^{\lambda - N_{\text{tr}}^{2\alpha}} + \left(\left(1 - e^{-N_{\text{tr}}^{2\alpha}}\right) \cdot e^{\lambda CK\xi} \right) \right)$$

$$1553 \quad \leq \ln (2e^{\lambda CK\xi} + 1)$$

$$1554 \quad \leq \ln 3 + \lambda CK\xi. \quad (29)$$

1562 The first inequality holds by decomposing the domain over the expectation/integral into the event
 1563 in which $T_h^D \xi \leq \frac{\gamma}{8}$ holds and its complement. The second inequality holds by $\Pr(T_h^D \xi \leq \frac{\gamma}{8}) \leq 1$
 1564 and Equation (28). The third inequality holds by Assumption D.1. The second-to-last inequality
 1565 holds by the assumption $0 < \lambda \leq N^{2\alpha}$. The remaining equations and inequalities are algebraic
 1566 reformulations. \square

1566 E.2 PROOF OF THEOREM 4.1
1567

1568 We first present auxiliary results for the proof of Theorem 4.1, focusing on MPNNs, which may be
1569 end-to-end learnable. At the end of this chapter, we provide the full proof of Theorem 4.1, building
1570 on the results from this and the previous section. For simplicity, we derive the results for MPNNs;
1571 the corresponding results for ζ -MPNNs applied to a graph G follow by applying the derived results
1572 for standard MPNNs to the strong simulation ζ . Let us denote the hypothesis space of MPNNs by
1573 $\mathcal{H}_{\text{mpnn}}$, where the parameters follow the assumptions in Theorem 4.1.

1574 **Step 4: MPNNs are stable under weight perturbations.** We proceed by proving the following
1575 result that shows that MPNNs are stable under small perturbations of their weights.

1577 **Lemma E.4.** *Let \tilde{h} be any classifier in $\mathcal{H}_{\text{mpnn}}$ with learnable weight matrices $\mathbf{w} =$
1578 $\left\{ \{w(f^{(t)}, s)\}_{s=1}^{d(f^{(t)})}, \{w(g^{(t)}, s)\}_{s=1}^{d(g^{(t)})}, \{w(c, s)\}_{s=1}^{d(c)} \right\}$ and $\tilde{\beta} > 0$. Let $\mathcal{G}_{B,d}$ be the set of graphs
1579 with maximum degree d and input node features in a ball of radius B . Then,*

$$1581 \max_{G \in \mathcal{G}_{B,d}} |\tilde{h}_{\mathbf{w}+\mathbf{u}}(G) - \tilde{h}_{\mathbf{w}}(G)| \\ 1582 \leq e \left(\prod_{s=1}^{d(c)} \|w(c, s)\|_2 \right) \left(\prod_{k=0}^{T-1} \left(\prod_s^{d(f^{(k+1)})} \|w(f^{(k+1)}, s)\| \right) \cdot \left(1 + d \left(\prod_s^{d(g^{(k+1)})} \|w(g^{(k+1)}, s)\| \right) \right) \right) B \\ 1583 \cdot \sum_{t=0}^{T-1} \left(\sum_s \frac{\|w(g^{(t+1)}, s)\|}{\|w(g^{(t+1)}, s)\|} + \sum_s \frac{\|w(f^{(t+1)}, s)\|}{\|w(f^{(t+1)}, s)\|} \right) \quad (30) \\ 1584 \\ 1585 \\ 1586 \\ 1587 \\ 1588 \\ 1589$$

1591 *Proof.* We denote by $x_v^{(t)}$ the representation of node v after t layers of the MPNN $\tilde{h}_{\mathbf{w}}$ with standard
1592 weights \mathbf{w} and $\tilde{x}_v^{(t)}$ is the representation of node v after $t+1$ layers of the MPNN $\tilde{h}_{\mathbf{w}+\mathbf{u}}$ with
1593 perturbed weights $\mathbf{w} + \mathbf{u}$. We similarly define the message terms $m_v^{(t)}$ and $\tilde{m}_v^{(t)}$. We further define
1594

$$1595 \delta_{t+1} := \max_v \left\| \tilde{x}_v^{(t+1)} - x_v^{(t+1)} \right\|.$$

1598 We calculate

$$1599 \delta_{t+1} = \max_v \left\| \tilde{x}_v^{(t+1)} - x_v^{(t+1)} \right\| \\ 1600 = \max_v \left\| f_{w+u}^{(t+1)}(\tilde{x}_v^{(t)}, \tilde{m}_v^{(t+1)}) - f_w^{(t+1)}(x_v^{(t)}, m_v^{(t+1)}) \right\| \\ 1601 \leq \left\| f_{w+u}^{(t+1)}(\tilde{x}_{v^*}^{(t)}, \tilde{m}_{v^*}^{(t+1)}) - f_{w+u}^{(t+1)}(x_{v^*}^{(t)}, m_{v^*}^{(t+1)}) \right\| \\ 1602 + \left\| f_{w+u}^{(t+1)}(x_{v^*}^{(t)}, m_{v^*}^{(t+1)}) - f_w^{(t+1)}(x_{v^*}^{(t)}, m_{v^*}^{(t+1)}) \right\| \\ 1603 = (A) + (B), \\ 1604 \\ 1605 \\ 1606 \\ 1607$$

1608 where v^* is the node where the maximum is taken.

1609 **Bound (A).** We begin by bounding the first term (A). It holds

$$1611 (A) \leq L(f_{w+u}^{(t+1)}) \left(\left\| \tilde{x}_v^{(t)} - x_v^{(t)} \right\| + \left\| \tilde{m}_v^{(t)} - m_v^{(t)} \right\| \right) \\ 1612 \leq L(f_{w+u}^{(t+1)}) \left(\delta_t + \left\| \sum_{\tilde{u} \in \mathcal{N}(v)} g_{w+u}^{(t+1)}(\tilde{x}_{\tilde{u}}^{(t)}) - g_w^{(t+1)}(x_{\tilde{u}}^{(t)}) \right\| \right) \\ 1613 \leq L(f_{w+u}^{(t+1)}) \left(\delta_t + d \max_{u^* \in \mathcal{N}(v)} \left\| g_{w+u}^{(t+1)}(\tilde{x}_{u^*}^{(t)}) - g_w^{(t+1)}(x_{u^*}^{(t)}) \right\| \right) \\ 1614 \leq L(f_{w+u}^{(t+1)}) \left(\delta_t + d \max_{u^* \in \mathcal{N}(v)} \left\| g_{w+u}^{(t+1)}(\tilde{x}_{u^*}^{(t)}) - g_w^{(t+1)}(x_{u^*}^{(t)}) \right\| \right) \\ 1615 \\ 1616 \\ 1617 \\ 1618 \\ 1619 \quad (31)$$

1620 We calculate,

$$\begin{aligned}
 & \|g_{w+u}^{(t+1)}(\tilde{x}_{u^*}^{(t)}) - g_w^{(t+1)}(x_{u^*}^{(t)})\| \\
 & \leq \|g_{w+u}^{(t+1)}(\tilde{x}_{u^*}^{(t)}) - g_{w+u}^{(t+1)}(x_{u^*}^{(t)})\| + \|g_{w+u}^{(t+1)}(x_{u^*}^{(t)}) - g_w^{(t+1)}(x_{u^*}^{(t)})\| \\
 & \leq \left(1 + \frac{1}{D}\right)^{d(g^{(t+1)})} \left(\prod_s \|w(g^{(t+1)}, s)\|\right) \max_{u^* \in \mathcal{N}(v)} \|x_{u^*}^{(t)}\| \sum_s \frac{\|u(g^{(t+1)}, s)\|}{\|w(g^{(t+1)}, s)\|} \\
 & + L(g_{w+u}^{(t+1)}) \max_{u^* \in \mathcal{N}(v)} \|\tilde{x}_{u^*}^{(t)} - x_{u^*}^{(t)}\|
 \end{aligned} \tag{32}$$

1631 Hence,

$$\begin{aligned}
 (A) & \leq L(f_{w+u}^{(t+1)}) \left(\delta_t + d \left(1 + \frac{1}{D}\right)^{d(g^{(t+1)})} \left(\prod_s \|w(g^{(t+1)}, s)\|\right) \|x^{(t)}\| \sum_s \frac{\|u(g^{(t+1)}, s)\|}{\|w(g^{(t+1)}, s)\|} \right. \\
 & \quad \left. + L(g_{w+u}^{(t+1)}) \delta_t \right)
 \end{aligned} \tag{33}$$

1640 **Bound (B).** We continue by bounding the first term (B). It holds

$$(B) \leq \left(1 + \frac{1}{D}\right)^{d(f^{(t+1)})} \left(\prod_s \|w(f^{(t+1)}, s)\|\right) \left(\|x_{v^*}^{(t)}\| + \|m_{v^*}^{(t+1)}\|\right) \sum_s \frac{\|u(f^{(t+1)}, s)\|}{\|w(f^{(t+1)}, s)\|}. \tag{34}$$

1647 Together, we have

$$\begin{aligned}
 \delta_{t+1} & \leq L(f_{w+u}^{(t+1)}) \left(\delta_t + d \left(1 + \frac{1}{D}\right)^{d(g^{(t+1)})} \left(\prod_s \|w(g^{(t+1)}, s)\|\right) \|x^{(t)}\| \sum_s \frac{\|u(g^{(t+1)}, s)\|}{\|w(g^{(t+1)}, s)\|} + L(g_{w+u}^{(t+1)}) \delta_t \right) \\
 & \quad + \left(1 + \frac{1}{D}\right)^{d(f^{(t+1)})} \left(\prod_s \|w(f^{(t+1)}, s)\|\right) \left(\|x_{v^*}^{(t)}\| + \|m_{v^*}^{(t+1)}\|\right) \sum_s \frac{\|u(f^{(t+1)}, s)\|}{\|w(f^{(t+1)}, s)\|} \\
 & = L(f_{w+u}^{(t+1)}) \left((1 + L(g_{w+u}^{(t+1)})) \delta_t \right. \\
 & \quad \left. + L(f_{w+u}^{(t+1)}) \left(d \left(1 + \frac{1}{D}\right)^{d(g^{(t+1)})} \left(\prod_s \|w(g^{(t+1)}, s)\|\right) \|x^{(t)}\| \sum_s \frac{\|u(g^{(t+1)}, s)\|}{\|w(g^{(t+1)}, s)\|} \right) \right. \\
 & \quad \left. + \left(1 + \frac{1}{D}\right)^{d(f^{(t+1)})} \left(\prod_s \|w(f^{(t+1)}, s)\|\right) \left(\|x_{v^*}^{(t)}\| + \|m_{v^*}^{(t+1)}\|\right) \sum_s \frac{\|u(f^{(t+1)}, s)\|}{\|w(f^{(t+1)}, s)\|} \right).
 \end{aligned} \tag{35}$$

1665 We solve this recurrence relation to get

$$\delta_T \leq \sum_{t=0}^{T-1} \left(\prod_{k=t+1}^{T-1} A_k \right) B_t,$$

1671 where

$$A_t = L(f_{w+u}^{(t+1)}) \left(1 + L(g_{w+u}^{(t+1)}) \right), \tag{36}$$

$$\begin{aligned}
1674 \quad B_t &= L(f_{w+u}^{(t+1)}) \left(d \left(1 + \frac{1}{D} \right)^{d(g^{(t+1)})} \left(\prod_s^{d(g^{(t+1)})} \|w(g^{(t+1)}, s)\| \right) \right. \\
1675 \quad &\cdot \left(\prod_{k=1}^t L(f_w^{(k)}) \left(1 + dL(g_w^{(k)}) \right) \right) B \sum_s \frac{\|u(g^{(t+1)}, s)\|}{\|w(g^{(t+1)}, s)\|} \\
1676 \quad &+ \left(1 + \frac{1}{D} \right)^{d(f^{(t+1)})} \left(\prod_s^{d(f^{(t+1)})} \|w(f^{(t+1)}, s)\| \right) \\
1677 \quad &\cdot \left((1 + dL(g_w^{(t+1)})) \left(\prod_{k=1}^t L(f_w^{(k)}) \left(1 + dL(g_w^{(k)}) \right) \right) B \right) \sum_s \frac{\|u(f^{(t+1)}, s)\|}{\|w(f^{(t+1)}, s)\|}, \\
1678 \quad &\dots \\
1679 \quad &\dots \\
1680 \quad &\dots \\
1681 \quad &\dots \\
1682 \quad &\dots \\
1683 \quad &\dots \\
1684 \quad &\dots \\
1685 \quad &\dots \\
1686 \quad &\dots \\
1687 \quad &\dots \\
1688 \quad \text{where} \\
1689 \quad &\dots \\
1690 \quad L(f_{w+u}^{(t+1)}) &= \left(\prod_{s=1}^{d(f^{(t+1)})} \|w(f^{(t)}, s) + u(f^{(t)}, s)\| \right), \quad (38) \\
1691 \quad &\dots \\
1692 \quad &\dots \\
1693 \quad &\dots \\
1694 \quad &\dots \\
1695 \quad &\dots \\
1696 \quad &\dots \\
1697 \quad L(g_{w+u}^{(t+1)}) &= \left(\prod_{s=1}^{d(g^{(t+1)})} \|w(g^{(t)}, s) + u(g^{(t)}, s)\| \right), \quad (39) \\
1698 \quad &\dots \\
1699 \quad &\dots \\
1700 \quad &\dots \\
1701 \quad &\dots \\
1702 \quad \text{and the product } \prod_{k=t+1}^{T-1} A_k \text{ is taken to be 1 when } t = T \text{ (empty product).} \\
1703 \quad &\dots \\
1704 \quad \textbf{Final Step} \text{ As a final step we need to incorporate the MLP classifier after the } T \text{ message passing} \\
1705 \quad \text{layers. For this we calculate,} \\
1706 \quad &\dots \\
1707 \quad \delta_{T+1} &= \left\| f_{w+u} \left(\frac{1}{N} \sum_{v=1}^N \tilde{x}_v^{(T)} \right) - f_w \left(\frac{1}{N} \sum_{v=1}^N x_v^{(T)} \right) \right\| \\
1708 \quad &\leq \left\| f_{w+u} \left(\frac{1}{N} \sum_{v=1}^N \tilde{x}_v^{(T)} \right) - f_{w+u} \left(\frac{1}{N} \sum_{v=1}^N x_v^{(T)} \right) \right\| \\
1709 \quad &+ \left\| f_{w+u} \left(\frac{1}{N} \sum_{v=1}^N x_v^{(T)} \right) - f_w \left(\frac{1}{N} \sum_{v=1}^N x_v^{(T)} \right) \right\| \\
1710 \quad &\leq \left(1 + \frac{1}{D} \right)^{d(f)} \left(\prod_{s=1}^{d(f)} \|w(c, s)\|_2 \right) \delta_T + \left(1 + \frac{1}{D} \right)^{d(f)} \left(\prod_{s=1}^{d(f)} \|w(c, s)\|_2 \right) \|x^{(T)}\|_2 \sum_{i=1}^{d(f)} \frac{\|u(f, s)\|_2}{\|w(c, s)\|_2} \\
1711 \quad &\leq \left(1 + \frac{1}{D} \right)^{d(f)} \left(\prod_{s=1}^{d(f)} \|w(c, s)\|_2 \right) \sum_{t=0}^{T-1} \left(\prod_{k=t+1}^{T-1} A_k \right) B_t \\
1712 \quad &+ \left(1 + \frac{1}{D} \right)^{d(f)} \left(\prod_{s=1}^{d(f)} \|w(c, s)\|_2 \right) \left(\prod_{t=1}^T L(f_w^{(t)}) \left(1 + dL(g_w^{(t)}) \right) \right) B \sum_{i=1}^{d(f)} \frac{\|u(f, s)\|_2}{\|w(c, s)\|_2} \\
1713 \quad &= (C) + (D) \\
1714 \quad &\dots \\
1715 \quad &\dots \\
1716 \quad &\dots \\
1717 \quad &\dots \\
1718 \quad &\dots \\
1719 \quad &\dots \\
1720 \quad &\dots \\
1721 \quad &\dots \\
1722 \quad &\dots \\
1723 \quad &\dots \\
1724 \quad &\dots \\
1725 \quad &\dots \\
1726 \quad &\dots \\
1727 \quad &\dots
\end{aligned} \tag{37}$$

$$\delta_{T+1} = (C) + (D) \tag{40}$$

1728 For the term (C) , we calculate
 1729

$$\begin{aligned}
 & \left(1 + \frac{1}{D}\right)^{d(c)} \left(\prod_{s=1}^{d(c)} \|w(c, s)\|_2 \right) \sum_{t=0}^{T-1} \left(\prod_{k=t+1}^{T-1} A_k \right) B_t \\
 & \leq \left(1 + \frac{1}{D}\right)^{d(c)} \left(\prod_{s=1}^{d(c)} \|w(c, s)\|_2 \right) \sum_{t=0}^{T-1} \left(\prod_{k=t+1}^{T-1} L(f_{w+u}^{(k+1)}) (1 + L(g_{w+u}^{(k+1)})) \right) B_t \\
 & = \left(1 + \frac{1}{D}\right)^{d(c)} \left(\prod_{s=1}^{d(c)} \|w(c, s)\|_2 \right) \sum_{t=0}^{T-1} \left(\prod_{k=t+1}^{T-1} \left(1 + \frac{1}{D}\right)^{d(f^{(k+1)})} \left(\prod_s^{d(f^{(k+1)})} \|w(f^{(k+1)}, s)\| \right) \right. \\
 & \quad \cdot \left. \left(1 + \left(1 + \frac{1}{D}\right)^{d(g^{(k+1)})} \left(\prod_s^{d(g^{(k+1)})} \|w(g^{(k+1)}, s)\| \right)\right) \right) \cdot B_t
 \end{aligned} \tag{41}$$

1744 For B_t , we calculate
 1745

$$\begin{aligned}
 B_t &= L(f_{w+u}^{(t+1)}) \left(d \left(1 + \frac{1}{D}\right)^{d(g^{(t+1)})} \left(\prod_s^{d(g^{(t+1)})} \|w(g^{(t+1)}, s)\| \right) \right. \\
 &\quad \cdot \left(\prod_{k=1}^t L(f_w^{(k)}) (1 + dL(g_w^{(k)})) \right) D \sum_s \frac{\|u(g^{(t+1)}, s)\|}{\|w(g^{(t+1)}, s)\|} \\
 &\quad + \left(1 + \frac{1}{D}\right)^{d(f^{(t+1)})} \left(\prod_s^{d(f^{(t+1)})} \|w(f^{(t+1)}, s)\| \right) \\
 &\quad \cdot \left((1 + dL(g_w^{(t+1)})) \left(\prod_{k=1}^t L(f_w^{(k)}) (1 + dL(g_w^{(k)})) \right) D \right) \sum_s \frac{\|u(f^{(t+1)}, s)\|}{\|w(f^{(t+1)}, s)\|} \\
 &= \left(1 + \frac{1}{D}\right)^{d(f^{(t+1)})} \left(\prod_s^{d(f^{(t+1)})} \|w(f^{(t+1)}, s)\| \right) \left(\prod_{k=1}^t L(f_w^{(k)}) (1 + dL(g_w^{(k)})) \right) B \\
 &\quad \cdot \left(d \left(1 + \frac{1}{D}\right)^{d(g^{(t+1)})} \left(\prod_s^{d(g^{(t+1)})} \|w(g^{(t+1)}, s)\| \right) \sum_s \frac{\|u(g^{(t+1)}, s)\|}{\|w(g^{(t+1)}, s)\|} \right. \\
 &\quad \left. + \left(1 + d \left(\prod_s^{d(f^{(t+1)})} \|w(f^{(t+1)}, s)\| \right) \right) \sum_s \frac{\|u(f^{(t+1)}, s)\|}{\|w(f^{(t+1)}, s)\|} \right) \\
 &\leq \left(1 + \frac{1}{D}\right)^{d(f^{(t+1)})} \left(\prod_s^{d(f^{(t+1)})} \|w(f^{(t+1)}, s)\| \right) \left(\prod_{k=1}^t L(f_w^{(k)}) (1 + dL(g_w^{(k)})) \right) \\
 &\quad \cdot B \left(1 + d \left(1 + \frac{1}{D}\right)^{d(g^{(t+1)})} \left(\prod_s^{d(g^{(t+1)})} \|w(g^{(t+1)}, s)\| \right) \right) \cdot \left(\sum_s \frac{\|u(g^{(t+1)}, s)\|}{\|w(g^{(t+1)}, s)\|} + \sum_s \frac{\|u(f^{(t+1)}, s)\|}{\|w(f^{(t+1)}, s)\|} \right) \\
 &\leq \left(1 + \frac{1}{D}\right)^{d(f^{(t+1)}) + d(g^{(t+1)})} \left(\prod_{k=1}^{t+1} L(f_w^{(k)}) (1 + dL(g_w^{(k)})) \right) B \cdot \left(\sum_s \frac{\|u(g^{(t+1)}, s)\|}{\|w(g^{(t+1)}, s)\|} + \sum_s \frac{\|u(f^{(t+1)}, s)\|}{\|w(f^{(t+1)}, s)\|} \right),
 \end{aligned} \tag{42}$$

1777 since $L(g_w^{(t+1)}) = \prod_s^{d(g^{(t+1)})} \|w(g^{(t+1)}, s)\|$ and $L(f_w^{(t+1)}) = \prod_s^{d(f^{(t+1)})} \|w(f^{(t+1)}, s)\|$, respectively.
 1778

Together, we get

1783
 1784 $(C) \leq \left(1 + \frac{1}{D}\right)^D \left(\prod_{s=1}^{d(c)} \|w(c, s)\|_2\right) \sum_{t=0}^{T-1} \left(\prod_{k=t+1}^{T-1} \left(\prod_s^{d(f^{(k+1)})} \|w(f^{(k+1)}, s)\| \right) \cdot \left(1 + \left(\prod_s^{d(g^{(k+1)})} \|w(g^{(k+1)}, s)\|\right)\right) \right)$
 1785
 1786
 1787
 1788 $\cdot \left(1 + \frac{1}{D}\right)^{d(f^{(t+1)}) + d(g^{(t+1)})} \left(\prod_{k=1}^{t+1} L(f_w^{(k)}) \left(1 + dL(g_w^{(k)})\right)\right) B \cdot \left(\sum_s \frac{\|u(g^{(t+1)}, s)\|}{\|w(g^{(t+1)}, s)\|} + \sum_s \frac{\|u(f^{(t+1)}, s)\|}{\|w(f^{(t+1)}, s)\|}\right)$
 1789
 1790
 1791 $\leq \left(1 + \frac{1}{D}\right)^D \left(\prod_{s=1}^{d(c)} \|w(c, s)\|_2\right) \left(\prod_{k=0}^{T-1} \left(\prod_s^{d(f^{(k+1)})} \|w(f^{(k+1)}, s)\|\right) \cdot \left(1 + d\left(\prod_s^{d(g^{(k+1)})} \|w(g^{(k+1)}, s)\|\right)\right)\right) B$
 1792
 1793
 1794 $\cdot \sum_{t=0}^{T-1} \left(\sum_s \frac{\|u(g^{(t+1)}, s)\|}{\|w(g^{(t+1)}, s)\|} + \sum_s \frac{\|u(f^{(t+1)}, s)\|}{\|w(f^{(t+1)}, s)\|}\right)$
 1795
 1796
 1797 $\leq e \left(\prod_{s=1}^{d(c)} \|w(c, s)\|_2\right) \left(\prod_{k=0}^{T-1} \left(\prod_s^{d(f^{(k+1)})} \|w(f^{(k+1)}, s)\|\right) \cdot \left(1 + d\left(\prod_s^{d(g^{(k+1)})} \|w(g^{(k+1)}, s)\|\right)\right)\right) B$
 1798
 1799
 1800 $\cdot \sum_{t=0}^{T-1} \left(\sum_s \frac{\|u(g^{(t+1)}, s)\|}{\|w(g^{(t+1)}, s)\|} + \sum_s \frac{\|u(f^{(t+1)}, s)\|}{\|w(f^{(t+1)}, s)\|}\right)$
 1801
 1802

where $D = d(f) + \sum_{k=1}^T (d(f^{(k)}) + d(g^{(k)}))$. Hence,

$$\begin{aligned}
& \delta_{T+1} \leq (C) + (D) \\
& e \left(\prod_{s=1}^{d(c)} \|w(c, s)\|_2 \right) \left(\prod_{k=0}^{T-1} \left(\prod_s^{d(f^{(k+1)})} \|w(f^{(k+1)}, s)\| \right) \cdot \left(1 + d \left(\prod_s^{d(g^{(k+1)})} \|w(g^{(k+1)}, s)\| \right) \right) \right) B \\
& \cdot \sum_{t=0}^{T-1} \left(\sum_s \frac{\|u(g^{(t+1)}, s)\|}{\|w(g^{(t+1)}, s)\|} + \sum_s \frac{\|u(f^{(t+1)}, s)\|}{\|w(f^{(t+1)}, s)\|} \right) \\
& + \left(1 + \frac{1}{D} \right)^{d(f)} \left(\prod_{s=1}^{d(f)} \|w(c, s)\|_2 \right) \left(\prod_{t=1}^T L(f_w^{(t)}) \left(1 + dL(g_w^{(t)}) \right) \right) B \sum_{i=1}^{d(f)} \frac{\|u(f, s)\|_2}{\|w(c, s)\|_2} \\
& \leq e \left(\prod_{s=1}^{d(c)} \|w(c, s)\|_2 \right) \left(\prod_{k=0}^{T-1} \left(\prod_s^{d(f^{(k+1)})} \|w(f^{(k+1)}, s)\| \right) \cdot \left(1 + d \left(\prod_s^{d(g^{(k+1)})} \|w(g^{(k+1)}, s)\| \right) \right) \right) B \\
& \cdot \left(\sum_{t=0}^{T-1} \left(\sum_s \frac{\|u(g^{(t+1)}, s)\|}{\|w(g^{(t+1)}, s)\|} + \sum_s \frac{\|u(f^{(t+1)}, s)\|}{\|w(f^{(t+1)}, s)\|} \right) + \sum_{i=1}^{d(f)} \frac{\|u(f, s)\|_2}{\|w(c, s)\|_2} \right). \tag{44}
\end{aligned}$$

Step 5: Derive sufficient conditions for Lemma E.1 We proceed with the following lemma that gives sufficient conditions under which the conditions of Lemma E.1 are satisfied. The following lemma is the first result that is specific to the hypothesis space $\mathcal{H}_{\text{mpnn}}$.

Lemma E.5. Let \tilde{h} be any classifier in \mathcal{H}_{mpnn} with learnable weight matrices $\mathbf{w} = \left\{ \{w(f^{(t)}, s)\}_{s=1}^{d(f^{(t)})}, \{w(g^{(t)}, s)\}_{s=1}^{d(g^{(t)})}, \{w(c, s)\}_{s=1}^{d(c)} \right\}$ and $\tilde{\beta} > 0$. Consider random perturbations to \mathbf{w} given by $\mathbf{u} = \left\{ \{u(f^{(t)}, s)\}_{s=1}^{d(f^{(t)})}, \{u(g^{(t)}, s)\}_{s=1}^{d(g^{(t)})}, \{u(c, s)\}_{s=1}^{d(c)} \right\}$, where each perturbation follows an independent Gaussian distribution $\mathcal{N}(0, \sigma^2 I)$. Suppose the following conditions hold:

- The variance of the perturbation satisfies

$$\sigma \leq \frac{\gamma}{e^2 B \left(\tilde{\beta}^{D - (\sum_{k=1}^T d(g^{(k)})) - 1} + d^{T-1} \tilde{\beta}^{D-1} \right) \sqrt{2h \ln(4Dh)}}. \quad (45)$$

1836 • All weights $w \in \mathbf{w}$ satisfy $\|w\|_2 = \beta$, with $|\tilde{\beta} - \beta| \leq \frac{\tilde{\beta}}{D}$.

1837

1838

1839

1840 Then, with respect to the random draw of \mathbf{u} ,

1841

1842

1843

1844

1845

1846 $\Pr \left(\max_{G \in \mathcal{G}_{\text{tr}} \cup \mathcal{G}_{\text{te}}} \|\tilde{h}_{\mathbf{w}}(G) - \tilde{h}_{\mathbf{w}+\mathbf{u}}(G)\|_{\infty} < \frac{\gamma}{8} \right) \geq \frac{1}{2}.$

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

Proof. By $|\beta - \tilde{\beta}| \leq \frac{1}{D}\tilde{\beta}$, we get

1861

1862

1863

1864

1865

1866

$$\frac{1}{e}\beta^{D-1} \leq \tilde{\beta}^{D-1} \leq e\beta^{D-1}.$$

1867

1868

1869

1870

1871

1872

We can bound the spectral norm of each perturbation matrix $u \in \mathbf{u}$, by Tropp (2015), as follows:

1873

1874

1875

1876

1877

1878

$$\Pr (\|u\|_2 > t) \leq 2b \exp \left(-\frac{t^2}{2b\sigma^2} \right),$$

1879

1880

1881

1882

1883

1884

1885

where b represents the hidden dimension. Applying a union bound over all layers, we obtain that with probability at least $1/2$, the spectral norm of each perturbation $u \in \mathbf{u}$ is bounded by

1886

1887

1888

1889

$$\sigma\sqrt{2b\ln(4Db)}.$$

1890

Substituting this spectral norm bound into Lemma E.4, we have with probability at least $1/2$,

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

$$\begin{aligned}
& \max_{G \in \mathcal{G}_{\text{tr}} \cup \mathcal{G}_{\text{te}}} |\tilde{h}_{\mathbf{w}+\mathbf{u}}(G) - \tilde{h}_{\mathbf{w}}(G)| \\
& \leq e \left(\prod_{s=1}^{d(c)} \|w(c, s)\|_2 \right) \prod_{k=0}^{T-1} \left(\prod_s^{d(f^{(k+1)})} \|w(f^{(k+1)}, s)\| \right) \cdot \left(1 + d \prod_s^{d(g^{(k+1)})} \|w(g^{(k+1)}, s)\| \right) B \\
& \cdot \left(\sum_{t=0}^{T-1} \left(\sum_s \frac{\|u(g^{(t+1)}, s)\|}{\|w(g^{(t+1)}, s)\|} + \sum_s \frac{\|u(f^{(t+1)}, s)\|}{\|w(f^{(t+1)}, s)\|} \right) + \sum_{i=1}^{d(f)} \frac{\|u(f, s)\|_2}{\|w(c, s)\|_2} \right) \\
& \leq e \left(\prod_{s=1}^{d(c)} \|w(c, s)\|_2 \right) \prod_{k=0}^{T-1} \left(\prod_s^{d(f^{(k+1)})} \|w(f^{(k+1)}, s)\| \right) \cdot d \prod_s^{d(g^{(k+1)})} \|w(g^{(k+1)}, s)\| B \\
& \cdot \left(\sum_{t=0}^{T-1} \left(\sum_s \frac{\|u(g^{(t+1)}, s)\|}{\|w(g^{(t+1)}, s)\|} + \sum_s \frac{\|u(f^{(t+1)}, s)\|}{\|w(f^{(t+1)}, s)\|} \right) + \sum_{i=1}^{d(f)} \frac{\|u(f, s)\|_2}{\|w(c, s)\|_2} \right) \\
& + e \left(\prod_{s=1}^{d(c)} \|w(c, s)\|_2 \right) \prod_{k=0}^{T-1} \left(\prod_s^{d(f^{(k+1)})} \|w(f^{(k+1)}, s)\| \right) B \\
& \cdot \left(\sum_{t=0}^{T-1} \left(\sum_s \frac{\|u(g^{(t+1)}, s)\|}{\|w(g^{(t+1)}, s)\|} + \sum_s \frac{\|u(f^{(t+1)}, s)\|}{\|w(f^{(t+1)}, s)\|} \right) + \sum_{i=1}^{d(f)} \frac{\|u(f, s)\|_2}{\|w(c, s)\|_2} \right) \\
& = e\beta^{D-1}d^{T-1}B \cdot \left(\sum_{t=0}^{T-1} \left(\sum_s \|u(g^{(t+1)}, s)\| + \sum_s \|u(f^{(t+1)}, s)\| \right) + \sum_{s=1}^{d(f)} \|u(f, s)\| \right) \\
& + e\beta^{D-(\sum_{k=1}^T d(g^{(k)}))-1}B \cdot \left(\sum_{t=0}^{T-1} \left(\sum_s \|u(g^{(t+1)}, s)\| + \sum_s \|u(f^{(t+1)}, s)\| \right) + \sum_{s=1}^{d(f)} \|u(f, s)\| \right) \\
& \leq e^2 \tilde{\beta}^{D-1}d^{T-1}B \cdot \left(\sum_{t=0}^{T-1} \left(\sum_s \|u(g^{(t+1)}, s)\| + \sum_s \|u(f^{(t+1)}, s)\| \right) + \sum_{s=1}^{d(f)} \|u(f, s)\| \right) \\
& + e^2 \tilde{\beta}^{D-(\sum_{k=1}^T d(g^{(k)}))-1}B \cdot \left(\sum_{t=0}^{T-1} \left(\sum_s \|u(g^{(t+1)}, s)\| + \sum_s \|u(f^{(t+1)}, s)\| \right) + \sum_{s=1}^{d(f)} \|u(f, s)\| \right) \\
& = e^2 \left(\tilde{\beta}^{D-(\sum_{k=1}^T d(g^{(k)}))-1} + d^{T-1} \tilde{\beta}^{D-1} \right) B \cdot \left(\sum_{t=0}^{T-1} \left(\sum_s \|u(g^{(t+1)}, s)\| + \sum_s \|u(f^{(t+1)}, s)\| \right) + \sum_{s=1}^{d(f)} \|u(f, s)\| \right) \\
& \leq e^2 \left(\tilde{\beta}^{D-(\sum_{k=1}^T d(g^{(k)}))-1} + d^{T-1} \tilde{\beta}^{D-1} \right) B \sigma \sqrt{2b \ln(4Db)} \\
& \leq \frac{\gamma}{4},
\end{aligned}$$

where for the last inequality we used Equation (45). \square

Step 6: Putting everything together We finish this section by reformulating and proving Theorem 4.1.

Theorem E.6. Let \tilde{h} be any classifier in $\mathcal{H}_{\text{mpnn}}$ with parameters $\{w_i\}_{i=1}^D$. For any $\gamma \geq 0$, $\alpha \geq 1/4$ and large enough N_{tr} , with probability at least $1 - \delta$ over the sample of y_{tr} , we have

$$\mathcal{L}_{\text{te}}^0(\tilde{h}) - \hat{\mathcal{L}}_{\text{tr}}^\gamma(\tilde{h}) \leq \mathcal{O} \left(\frac{b \sum_i \|w_i\|_F^2 \xi^{2/D}}{N_{\text{tr}}^{2\alpha} (\gamma/8)^{2/D}} + \frac{1}{N_{\text{tr}}^{2\alpha}} h^2 \ln 2h \frac{DC(2dB)^{1/D}}{\gamma^{1/D} \delta} + \frac{1}{N_{\text{tr}}^{1-2\alpha}} + CK\xi \right). \quad (46)$$

1944 *Proof.* The proof follows the proof of Theorem 1 in (Neyshabur et al., 2018) Theorem 6 in (Ma et al.,
 1945 2021).

1946 There are two main steps in the proof. In the first step, for a given constant $\beta > 0$, we first define the
 1947 "prior" P and the "posterior" Q on \mathcal{H} in a way complying with conditions in Lemma E.1, Lemma E.3,
 1948 and Lemma E.5. Without loss of generality (due to the homogeneity of the activation function), we
 1949 can assume that $\|w_i^{(j)}\|_2 = \beta$ for some $\beta \geq 0$. Then, for all classifiers with parameters satisfying
 1950 $|\beta - \tilde{\beta}| \leq \frac{\tilde{\beta}}{D}$ and $\tilde{\beta}$ being some value on a predefined grid in the parameters space, we can derive a
 1951 generalization bound by applying Lemma E.1, Lemma E.3, and Lemma E.5.

1952
 1953 In the second step, we investigate the number of $\tilde{\beta}$ we need to cover all possible relevant classifier
 1954 parameters and apply a union bound to get the final bound. The two steps are essentially the same as
 1955 Neyshabur et al. (2018) with the first step differing by the need for incorporating Lemma E.1.

1956 **Step 1.** We first show the first step. Given a choice of $\tilde{\beta}$ independent of the training data, let

$$1958 \sigma = \min \left(\frac{(\gamma/8\xi)^{1/D}}{\sqrt{2b(\lambda N_{\text{tr}}^{-\alpha} + \ln 2bD)}}, \frac{\gamma}{e^2 B (\tilde{\beta}^{D-(\sum_{k=1}^T d(g^{(k)}))}-1 + d^{T-1} \tilde{\beta}^{D-1}) \sqrt{2h \ln(4Dh)}} \right). \quad (47)$$

1962 Assume the "prior" P on \mathcal{H} is defined by sampling the vectorized MLP parameters from $\mathcal{N}(0, \sigma^2 I)$.
 1963 The "posterior" Q on \mathcal{H} is defined by first sampling a set of random perturbations $\{u_i\}_{i=1}^D$ and then
 1964 adding them to $\{w_i\}_{i=1}^D$. By Lemma E.5, we have

$$1965 \Pr \left(\max_{G \in \mathcal{G}_{\text{tr}} \cup \mathcal{G}_{\text{te}}} \|\tilde{h}_{\mathbf{w}}(G) - \tilde{h}_{\mathbf{w}+u}(G)\|_{\infty} < \frac{\gamma}{8} \right) \geq \frac{1}{2}. \quad (48)$$

1967 Therefore, by applying Lemma E.1, we get with probability at least $1 - \delta$,

$$1969 \hat{\mathcal{L}}_{\text{te}}^0(\tilde{h}) - \hat{\mathcal{L}}_{\text{tr}}^{\gamma}(\tilde{h}) \leq \frac{1}{\lambda} \left(2(D_{\text{KL}}(Q||P) + 1) + \ln \frac{1}{\delta} + \frac{\lambda^2}{4N_{\text{tr}}} + D_{\text{te},\text{tr}}^{\gamma/2}(P; \lambda) \right) \\ 1970 \leq \frac{1}{\lambda} \left(2(D_{\text{KL}}(Q||P) + 1) + \ln \frac{1}{\delta} + \frac{\lambda^2}{4N_{\text{tr}}} + (\ln 3 + \lambda C K \xi) \right) \\ 1971 \leq \frac{2}{N_{\text{tr}}^{2\alpha}} D_{\text{KL}}(Q||P) + \frac{1}{N_{\text{tr}}^{2\alpha}} \ln \frac{1}{\delta} + \frac{1}{4N_{\text{tr}}^{1-2\alpha}} + \frac{2 + \ln 3}{N_{\text{tr}}^{2\alpha}} + C K \xi. \quad (49)$$

1976 where we chose $\lambda = N_{\text{tr}}^{2\alpha}$.

1977 Moreover, since both P and Q are normal distributions, we know that

$$1979 D_{\text{KL}}(Q||P) \leq \sum_i \frac{\|w_i\|_2^2}{2\sigma^2}. \quad (50)$$

1981 Per assumption, both B and D are constant with respect to N_{tr} . Hence, for large enough N_{tr} ,

$$1983 \frac{(\gamma/8\xi)^{1/D}}{\sqrt{2b(\lambda N_{\text{tr}}^{-\alpha} + \ln 2bD)}} < \frac{\gamma}{4(e^2 + 1)e^2 d^J B \beta^{D-1} \sqrt{2h \ln(4Dh)}}, \quad (51)$$

1986 which implies,

$$1987 \sigma = \frac{(\gamma/8\xi)^{1/D}}{\sqrt{2b(\lambda N_{\text{tr}}^{-\alpha} + \ln 2bD)}} \quad (52)$$

1989 and hence

$$1991 D_{\text{KL}}(Q||P) \leq \frac{b(N_{\text{tr}}^{\alpha} + \ln 2bD) \sum_i \|w_i\|_2^2 \xi^{2/D}}{(\gamma/8)^{2/D}}. \quad (53)$$

1993 Therefore, with probability at least $1 - \delta$,

$$1994 \hat{\mathcal{L}}_{\text{te}}^0(\tilde{h}) - \hat{\mathcal{L}}_{\text{tr}}^{\gamma}(\tilde{h}) \leq \frac{2}{N_{\text{tr}}^{2\alpha}} D_{\text{KL}}(Q||P) + \frac{1}{N_{\text{tr}}^{2\alpha}} \ln \frac{1}{\delta} + \frac{1}{4N_{\text{tr}}^{1-2\alpha}} + \frac{2 + \ln 3}{N_{\text{tr}}^{2\alpha}} + C K \xi \\ 1995 \leq \mathcal{O} \left(\frac{b \sum_i \|w_i\|_2^2 \xi^{2/D}}{N_{\text{tr}}^{\alpha} (\gamma/8)^{2/D}} + \frac{1}{N_{\text{tr}}^{2\alpha}} \ln \frac{1}{\delta} + \frac{1}{N_{\text{tr}}^{1-2\alpha}} + C K \xi \right). \quad (54)$$

Step 2. Then we show the second step, i.e., finding out the number of $\tilde{\beta}$ we need to cover all possible relevant classifier parameters. Similarly as Neyshabur et al. (2018), we will show that we only need to consider $(\frac{\gamma}{2B})^{1/D} \leq \beta \leq C$ (recall that the spectral norm of all weight matrices is bounded by C). If $\beta < (\frac{\gamma}{2B})^{1/D}$, then for any graph $G \in \mathcal{G}_{\text{tr}} \cup \mathcal{G}_{\text{te}}$, we get $\|\tilde{h}(G)\|_\infty \leq \frac{\gamma}{2}$, which implies that the bound trivially holds. Since we only consider β in the above range, a sufficient condition to make $|\beta - \tilde{\beta}| \leq \frac{\beta}{D}$ hold would be $|\beta - \tilde{\beta}| \leq \frac{1}{D} (\frac{\gamma}{2B})^{1/D}$. Therefore, it suffices to find a covering for all possible weight matrices with radius $\frac{1}{D} (\frac{\gamma}{2B})^{1/D}$ for a ball in $\mathbb{R}^{b \times b}$ of radius C . This can be satisfied by $\left(2 \frac{DCb(2B)^{1/D}}{\gamma^{1/D}}\right)^{b^2}$ balls. Taking a union bound, we get, with probability at least $1 - \delta$,

$$\mathcal{L}_{\text{te}}^0(\tilde{h}) - \mathcal{L}_{\text{tr}}^\gamma(\tilde{h}) \leq \mathcal{O} \left(\frac{b \sum_j \sum_i \|w_i\|_2^2 \xi^{2/D}}{N_{\text{tr}}^{2\alpha} (\gamma/8)^{2/D}} + \frac{1}{N_{\text{tr}}^{2\alpha}} b^2 \ln 2b \frac{DC(2B)^{1/D}}{\gamma^{1/D} \delta} + \frac{1}{N_{\text{tr}}^{1-2\alpha}} + CK\xi \right). \quad (55)$$

□

F FIXED GRAPH ENCODERS

Next, we apply our analysis to GNNs with fixed encoders. Here, the embedding function $e : \mathcal{G} \rightarrow \mathbb{R}^b$ is fixed, and only the classifier $c : \mathbb{R}^b \rightarrow \mathbb{R}^K$ is trainable. Let $\mathcal{H} = \mathcal{C} \circ \mathcal{E}$, where \mathcal{E} now represents a fixed graph embedding network. The generalization bound in this setting simplifies to the following.

Corollary F.1. *Let lat be any pseudometric in the latent space \mathbb{R}^d . Under mild assumptions (see Appendix D), for any $\gamma > 0$ and $0 < \alpha < \frac{1}{4}$, with probability at least $1 - \delta$ over the sample of training labels y_{tr} , the test loss of any classifier $\tilde{h} \in \mathcal{H}$*

$$\mathcal{L}_{\text{te}}^0(\tilde{h}) \leq \hat{\mathcal{L}}_{\text{tr}}^\gamma(\tilde{h}) + \mathcal{O} \left(\underbrace{\frac{\text{MC}(\mathcal{C})}{N_{\text{tr}}^{2\alpha} \gamma^{1/D} \delta}}_{\text{complexity term}} + \underbrace{C \xi_{\text{lat}}}_{\text{structural similarity term}} \right), \quad (56)$$

where $\xi_{\text{lat}} = \max_{G \in \mathcal{G}_{\text{te}}} \min_{H \in \mathcal{G}_{\text{tr}}} \text{lat}(g(G), g(H))$ and the other constants are defined in Theorem 4.1.

Proof. The proof follows the same steps as in the proof of Theorem E.6. For example, Lemma E.4 can be shown for MLPs by simply assuming that there are no MPNN layers in Lemma E.4. Theorem E.6 can then be proved for the hypothesis space \mathcal{H} by defining the variance as

$$\sigma = \min \left(\frac{(\gamma/8\xi)^{1/D}}{\sqrt{2b(\lambda N_{\text{tr}}^{-\alpha} + \ln 2bD)}}, \frac{\gamma}{e^2 B \tilde{\beta}^{D-1} \sqrt{2b \ln(4Db)}} \right).$$

□

In this case, the complexity of the graph embedding model no longer contributes to the bound, and only the complexity of the MLP classifier affects generalization. This reduced complexity underscores promise of fixed graph encoders.

G PROOF OF LEMMA ON COMPARISON OF TMD AND \mathcal{F} -TMD

Lemma G.1. *For any $G, H \in \mathcal{G}$ and any non-empty family of features $\mathcal{F}' \subset \mathcal{F} \subset \mathcal{G}$, we have*

$$\mathcal{F}'\text{-TMD}(G, H) \leq \mathcal{F}\text{-TMD}(G, H).$$

Proof. Starting from the definitions, we have:

$$\mathcal{F}'\text{-TMD}(G, H) = \min_{\sigma \in S_n} \sum_{j=1}^n \text{TD} \left(T_j^{G^{\mathcal{F}'}} , T_{\sigma(j)}^{H^{\mathcal{F}'}} \right),$$

$$\mathcal{F}\text{-TMD}(G, H) = \min_{\sigma \in S_n} \sum_{j=1}^n \text{TD} \left(T_j^{G^{\mathcal{F}}}, T_{\sigma(j)}^{H^{\mathcal{F}}} \right),$$

where S_n is the set of all permutations of the node set $\{1, 2, \dots, n\}$, and $T_j^{G^{\mathcal{F}}}$ denotes the subtree of $G^{\mathcal{F}}$ (the graph G augmented with additional features \mathcal{F}) at node j .

Let σ' be the optimal assignment for $\mathcal{F}\text{-TMD}(G, H)$, i.e.,

$$\mathcal{F}\text{-TMD}(G, H) = \sum_{j=1}^n \text{TD} \left(T_j^{G^{\mathcal{F}}}, T_{\sigma'(j)}^{H^{\mathcal{F}}} \right).$$

Since $\mathcal{F}'\text{-TMD}(G, H)$ optimizes over all assignments, it follows that

$$\mathcal{F}'\text{-TMD}(G, H) \leq \sum_{j=1}^n \text{TD} \left(T_j^{G^{\mathcal{F}'}} , T_{\sigma'(j)}^{H^{\mathcal{F}'}} \right). \quad (57)$$

Our goal is to show that for every j :

$$\text{TD} \left(T_j^{G^{\mathcal{F}'}} , T_{\sigma'(j)}^{H^{\mathcal{F}'}} \right) \leq \text{TD} \left(T_j^{G^{\mathcal{F}}}, T_{\sigma'(j)}^{H^{\mathcal{F}}} \right). \quad (58)$$

Together, Equation (57) and Equation (58), lead to

$$\begin{aligned} \mathcal{F}'\text{-TMD}(G, H) &\leq \sum_{j=1}^n \text{TD} \left(T_j^{G^{\mathcal{F}'}} , T_{\sigma'(j)}^{H^{\mathcal{F}'}} \right) \\ &\leq \sum_{j=1}^n \text{TD} \left(T_j^{G^{\mathcal{F}}}, T_{\sigma'(j)}^{H^{\mathcal{F}}} \right) \\ &= \mathcal{F}\text{-TMD}(G, H). \end{aligned}$$

We proceed to prove Equation (58) via induction. In fact, we show a more general version: for every assignment ρ between nodes of G and H and any node j , we have

$$\text{TD} \left(T_j^{G^{\mathcal{F}'}} , T_{\rho(j)}^{H^{\mathcal{F}'}} \right) \leq \text{TD} \left(T_j^{G^{\mathcal{F}}}, T_{\rho(j)}^{H^{\mathcal{F}}} \right).$$

Base Case ($t = 0$)

At depth 0, the trees consist only of root nodes. The tree distance is the difference between node features, i.e.,

$$\begin{aligned} \text{TD} \left(T_j^{G^{\mathcal{F}'}} , T_{\rho(j)}^{H^{\mathcal{F}'}} \right) &= \|x'_j - x'_{\rho(j)}\| \\ &\leq \|\tilde{x}_j - \tilde{x}_{\rho(j)}\| \\ &= \text{TD} \left(T_j^{G^{\mathcal{F}}}, T_{\rho(j)}^{H^{\mathcal{F}}} \right), \end{aligned}$$

where $x'_j = (x_j, c_j(F_1), \dots, c_j(F_{|\mathcal{F}'|}))$ and $\tilde{x}_j = (x_j, c_j(F_1), \dots, c_j(F_{|\mathcal{F}|}))$ include the additional features.

Induction Step ($t - 1 \mapsto t$)

Assume that for every tree of depth $t - 1$, we have, for every assignment ρ and every $j = 1, \dots, n$,

$$\text{TD} \left(T_j^{G^{\mathcal{F}'}} , T_{\rho(j)}^{H^{\mathcal{F}'}} \right) \leq \text{TD} \left(T_j^{G^{\mathcal{F}}}, T_{\rho(j)}^{H^{\mathcal{F}}} \right).$$

Let σ' be any assignment of trees and let τ be the optimal assignment in $W_{\text{TD}} \left(\mathcal{T}_j^{\mathcal{F}}, \mathcal{T}_{\sigma'(j)}^{\mathcal{F}} \right)$.

2106 Then, for any $j = 1, \dots, n$

$$\begin{aligned}
 \text{TD} \left(T_j^{G^{\mathcal{F}'}} , T_{\sigma'(j)}^{H^{\mathcal{F}'}} \right) &= \|x'_j - x'_{\sigma'(j)}\| + \min_{\tau' \in S_n} \sum_{j=1}^n \text{TD} \left(T_j^{G^{\mathcal{F}'}} , T_{\tau'(j)}^{H^{\mathcal{F}'}} \right) \\
 &\leq \|x'_j - x'_{\sigma'(j)}\| + \sum_{j=1}^n \text{TD} \left(T_j^{G^{\mathcal{F}'}} , T_{\tau(j)}^{H^{\mathcal{F}'}} \right) \\
 &\leq \|x'_j - x'_{\sigma'(j)}\| + \sum_{j=1}^n \text{TD} \left(T_j^{G^{\mathcal{F}}} , T_{\tau(j)}^{H^{\mathcal{F}}} \right) \\
 &= \|x'_j - x'_{\sigma'(j)}\| + W_{\text{TD}} \left(\rho \left(\mathcal{T}_j^{\mathcal{F}}, \mathcal{T}_{\sigma'(j)}^{\mathcal{F}} \right) \right) \\
 &\leq \|\tilde{x}_j - \tilde{x}_{\sigma'(j)}\| + W_{\text{TD}} \left(\rho \left(\mathcal{T}_j^{\mathcal{F}}, \mathcal{T}_{\sigma'(j)}^{\mathcal{F}} \right) \right) \\
 &= \text{TD} \left(T_j^{G^{\mathcal{F}}}, T_{\sigma'(j)}^{H^{\mathcal{F}}} \right).
 \end{aligned} \tag{59}$$

2122 The second inequality follows by the induction hypothesis as the considered trees are of depth $t - 1$.
2123 Hence, by induction, the inequality $\text{TD} \left(T_j^{G^{\mathcal{F}'}} , T_{\sigma'(j)}^{H^{\mathcal{F}'}} \right) \leq \text{TD} \left(T_j^{G^{\mathcal{F}}} , T_{\rho(j)}^{H^{\mathcal{F}}} \right)$ holds, completing the
2124 proof. \square

2126 *Proof of Theorem 6.1.* Assume that $y \sim \mathcal{F}\text{-TMD}$.

2128 1. Since any \mathcal{F} -GIN classifier h is Lipschitz continuous with respect to \mathcal{F} -TMD and h is stable
2129 with respect to weight perturbations, by Theorem 4.1, we have

$$\mathcal{L}_{\text{te}}^0(\tilde{h}) \leq \mathcal{L}_{\text{tr}}^{\gamma}(\tilde{h}) + \mathcal{O} \left(\frac{b \sum_j \sum_i \|W_i^{(j)}\|_F^2}{N_{\text{tr}}^{2\alpha} (\gamma/8)^{2/D}} \xi^{2/D} + \frac{h^2 \ln(2h) DC(2dB)^{1/D}}{N_{\text{tr}}^{2\alpha} \gamma^{1/D} \delta} + \frac{1}{N_{\text{tr}}^{1-2\alpha}} + CK\xi \right),$$

2133 with $\xi := \max_{G_{\text{tr}} \in \mathcal{G}_{\text{tr}}, G_{\text{te}} \in \mathcal{G}_{\text{te}}} \mathcal{F}\text{-TMD}_w^{L+1}(G_{\text{tr}}, G_{\text{te}})$ and $B = \max_G \|X(R^{\mathcal{F}}(G))[i, :]\|_2$.

2135 2. By Lemma G.1, every \mathcal{F}' -GIN classifier h' is Lipschitz continuous with respect to \mathcal{F} -TMD,
2136 as

$$\|h'(G) - h'(H)\| \leq L' \mathcal{F}'\text{-TMD}(G, H) \leq L' \mathcal{F}\text{-TMD}(G, H). \tag{60}$$

2138 Hence, applying Theorem 4.1, we have

$$\mathcal{L}_{\text{te}}^0(\tilde{h}) \leq \mathcal{L}_{\text{tr}}^{\gamma}(\tilde{h}) + \mathcal{O} \left(\frac{b \sum_j \sum_i \|W_i^{(j)}\|_F^2}{N_{\text{tr}}^{2\alpha} (\gamma/8)^{2/D}} \xi^{2/D} + \frac{h^2 \ln(2h) DC(2dB')^{1/D}}{N_{\text{tr}}^{2\alpha} \gamma^{1/D} \delta} + \frac{1}{N_{\text{tr}}^{1-2\alpha}} + CK\xi \right),$$

2142 where $B' = \max_G \|X(R^{\mathcal{F}'}(G))[i, :]\|_2$. Note that B' is the only difference compared to
2143 the previous bound.

2145 3. Assume $y \sim \mathcal{F}\text{-TMD}$, but apply a $\tilde{\mathcal{F}}$ -GIN classifier \tilde{h} . Since \tilde{h} is not necessarily Lipschitz
2146 continuous with respect to \mathcal{F} -TMD, we cannot directly apply Theorem 4.1.

2148 However, if $y \sim \mathcal{F}\text{-TMD}$, then $y \sim \tilde{\mathcal{F}}\text{-TMD}$ as well. Specifically, if $y \sim \mathcal{F}\text{-TMD}$, there
2149 exists for every class k some η_k such that $\eta_k(G) = \Pr(y_G = k \mid G)$, and η_k is Lipschitz
2150 continuous with constant L_{η_k} . Then, by Lemma G.1,

$$|\eta_k(G) - \eta_k(H)| \leq L_{\eta_k} \cdot \mathcal{F}\text{-TMD}(G, H) \leq L_{\eta_k} \cdot \tilde{\mathcal{F}}\text{-TMD}(G, H). \tag{61}$$

2152 Consequently, we can now apply Theorem 4.1 to obtain

$$\mathcal{L}_{\text{te}}^0(\tilde{h}) \leq \mathcal{L}_{\text{tr}}^{\gamma}(\tilde{h}) + \mathcal{O} \left(\frac{b \sum_j \sum_i \|W_i^{(j)}\|_F^2}{N_{\text{tr}}^{2\alpha} (\gamma/8)^{2/D}} \tilde{\xi}^{2/D} + \frac{h^2 \ln(2h) DC(2d\tilde{B})^{1/D}}{N_{\text{tr}}^{2\alpha} \gamma^{1/D} \delta} + \frac{1}{N_{\text{tr}}^{1-2\alpha}} + CK\tilde{\xi} \right),$$

2157 where $\tilde{\xi} := \max_{G_{\text{tr}} \in \mathcal{G}_{\text{tr}}, G_{\text{te}} \in \mathcal{G}_{\text{te}}} \tilde{\mathcal{F}}\text{-TMD}_w^{L+1}(G_{\text{tr}}, G_{\text{te}})$ and $\tilde{B} = \max_G \|X(R^{\tilde{\mathcal{F}}}(G))[i, :]\|_2$. Note that \tilde{B} and $\tilde{\xi}$ are now different compared to the previous bounds in Item 1 and 2.

2159 \square

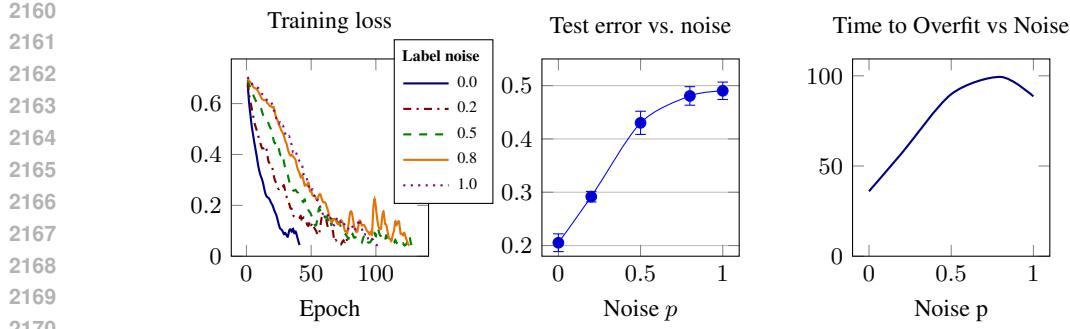


Figure 4: **Left:** Training-loss trajectories of a GIN on MUTAGENICITY under increasing label noise p . **Center:** Corresponding test errors on MUTAGENICITY rises sharply as label-structure correlation is essential for generalization (mean \pm standard deviation across five seeds). **Right:** Number of epochs to overfit, i.e., reach 99% training accuracy under increasing label noise p .

H OTHER RESULTS

The following lemmata are easy to prove.

Lemma H.1. *Given a MPNN with t layers such that the message and update functions $g^{(k)}$ and $f^{(k)}$ are Lipschitz continuos with Lipschitz constant $L(f^{(k)})$ and $L(g^{(k)})$, respectively. Then for any graph G with maximum node degree v , we have*

$$\max_{v \in V(G)} \|x_v^{(t)}\| \leq \left(\prod_{k=1}^t L(f^{(k)}) (1 + dL(g^{(k)})) \right) B, \quad (62)$$

where $x_v^{(t)}$ denotes the output of the MPNN after t layers at node v .

Lemma H.2. *Given a MPNN with $t + 1$ layers such that the message and update functions $g^{(k)}$ and $f^{(k)}$ are Lipschitz continuos with Lipschitz constant $L(f^{(k)})$ and $L(g^{(k)})$, respectively. Then for any graph G with maximum node degree v , we have*

$$\max_v \|m_v^{(t+1)}\| \leq dL_{g^{(t+1)}} \left(\prod_{k=1}^t L(f_w^{(k)}) (1 + dL(g_w^{(k)})) \right) B, \quad (63)$$

where $m_v^{(t)}$ denotes the message of the MPNN at the $(t + 1)$ 'th layer at node v .

Lemma H.3 (Lemma 2 in (Neyshabur et al., 2018)). *let $f_{\mathbf{w}} : \mathbb{R}^n \rightarrow \mathbb{R}^k$ be a neural network with Lipschitz continuous and homogenous activations and $d(f)$ layers. For any D , Then for any \mathbf{w} , $\mathbf{x} \in \mathcal{X}_{B,n}$, and any perturbation $\mathbf{u} = \text{vec}(\{\mathbf{U}_i\}_{i=1}^d)$ such that $\|\mathbf{U}_i\|_2 \leq \frac{1}{d} \|\mathbf{W}_i\|_2$, the change in the output of the network can be bounded as follows:*

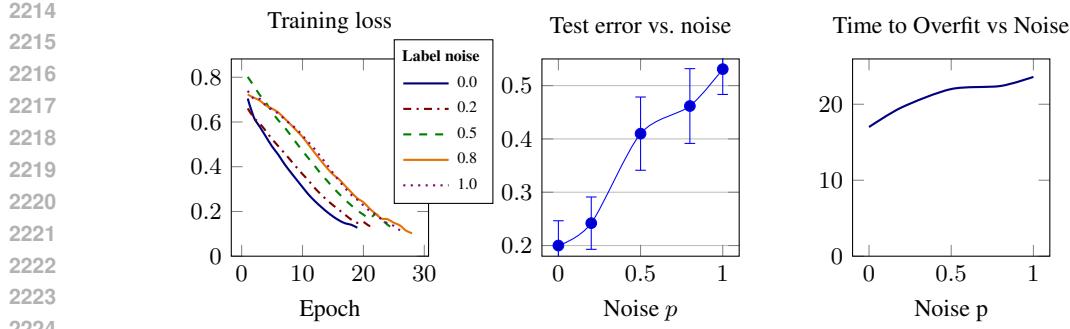
$$\|f_{\mathbf{w}+\mathbf{u}}(\mathbf{x}) - f_{\mathbf{w}}(\mathbf{x})\|_2 \leq eB \left(\prod_{i=1}^d \|\mathbf{W}_i\|_2 \right) \sum_{i=1}^d \frac{\|\mathbf{U}_i\|_2}{\|\mathbf{W}_i\|_2}.$$

I ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS

This appendix provides a comprehensive overview of our experimental setup, including dataset generation, model architectures, training procedures, evaluation metrics, and additional analyses. All experiments were run on an internal cluster with Intel Xeon CPUs (28 cores, 192GB RAM) and GeForce RTX 3090 Ti GPUs (4 units, 24GB memory each), as well as Intel Xeon CPUs (32 cores, 192GB RAM) and NVIDIA RTX A6000 GPUs (3 units, 48GB memory each). Each subsection corresponds to one of the three experimental tasks.

I.1 LABEL NOISE EXPERIMENTS

To investigate how MPNNs behave under noisy supervision, we conducted controlled label corruption experiments on three benchmark molecular graph classification datasets from the TUDataset collection



2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240

Figure 5: **Left:** Training-loss trajectories of a GIN on BZR under increasing label noise p . **Center:** Corresponding test errors on BZR rises sharply as label-structure correlation is essential for generalization (mean \pm standard deviation across five seeds). **Right:** Number of epochs to overfit, i.e., reach 99% training accuracy under increasing label noise p .

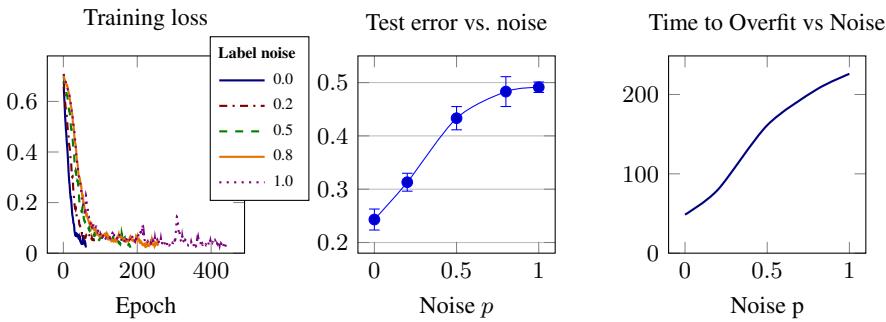


Figure 6: **Left:** Training-loss trajectories of a GIN on NCI109 under increasing label noise p . **Center:** Corresponding test errors on NCI109 rises sharply as label-structure correlation is essential for generalization (mean \pm standard deviation across five seeds). **Right:** Number of epochs to overfit, i.e., reach 99% training accuracy under increasing label noise p .

(Morris et al., 2020a): MUTAGENICITY, NCI109, and BZR. For each dataset, we randomly corrupted a fixed proportion of the training labels by replacing them with uniformly sampled class labels.

We employed a MPNN with four layers, ReLU activations, GraphNorm, and a two-layer MLP head. Each message and update function in the MPNN is given by a MLP with two layers. The models were trained for up to 5000 epochs with early stopping once 99% training accuracy was achieved. Label noise levels were varied in 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, and results were averaged over five random seeds per setting.

We track the per-epoch training and test accuracy/loss, the number of epochs until memorization, and total training time. This setup closely follows the protocol of Zhang et al. (2017), adapted to the graph setting, and enables us to study not only final generalization but also how memorization unfolds over time under increasing label noise.

Figure 4, 5, and 6 visualize the results on MUTAGENICITY, BZR, and NCI109, respectively. Each figure presents from left to right: (left) the full training curves, (middle) final test accuracy versus noise level, and (right) the number of epochs required to reach 99% training accuracy. These plots collectively illustrate the sharp transition from generalization to memorization and the dataset-specific sensitivity of MPNNs to label corruption.

As the label noise increases, the time required to reach 99% training accuracy increases moderately—suggesting that fitting corrupted labels is harder, but still feasible. However, all models eventually reach near-perfect training accuracy across all noise levels, even for fully randomized labels ($p = 1.0$), underscoring the high memorization capacity of GNNs. In stark contrast, the test accuracy consistently deteriorates with increasing noise and converges to chance level at $p = 1.0$,

2268 where labels are entirely uninformative. This gap between training and test performance confirms
 2269 that GNNs can overfit to pure noise and emphasizes the need for principled regularization and early
 2270 stopping to preserve generalization.
 2271

2272 I.2 TASK 1: MEDIAN-BASED LABELING WITH CYCLE COUNTS

2274 To investigate the role of local structural patterns in graph classification, we generate 3,000 random
 2275 graphs using three common models: Erdős–Rényi (ER), Barabási–Albert (BA), and Stochastic Block
 2276 Model (SBM). Each graph’s label is related to the sum of its 3-cycle and 4-cycle counts, which are
 2277 computed using NetworkX (Hagberg et al., 2008). The total cycle count is then used to assign labels:
 2278 graphs with counts below the dataset median are labeled 0, while those above receive label 1.
 2279

2280 For all synthetic graphs, we sample the number of nodes randomly between 35 and 55. For each
 2281 random graph model, we chose the following parameters.
 2282

- Erdős–Rényi (ER) Graphs: We generate an ER graph with edge probability $p = 0.1$.
- Barabási–Albert (BA) Graphs: Each new node is connected to $m = 2$ existing nodes following the BA preferential attachment process.
- Stochastic Block Model (SBM) Graphs: We randomly select between 3 and 6 blocks, ensuring each block has at least 3 nodes. The probability of an edge within the same block is sampled uniformly between $[0.1, 0.3]$, while inter-block connections have a probability in the range $[0.001, 0.02]$.

2283 We evaluate multiple GNN variants to assess the impact of different levels of expressivity:
 2284

- MPNN: A standard Message Passing Neural Network (Gilmer et al., 2017).
- \mathcal{F}_l -MPNN: MPNNs enriched with cycle counts of cycles up to length l (Bouritsas et al., 2023; Barceló et al., 2021).
- Subgraph GNN: Incorporates subgraph structures (Frasca et al., 2022).
- Local 2-GNN: A local variant of 2-GNN (Morris et al., 2019).
- Local Folklore 2-GNN: A local variant of 2-Folklore-GNN (Zhang et al., 2024).

2285 Each model is implemented in PyTorch Geometric (Fey & Lenssen, 2019), using the implementation
 2286 details of Zhang et al. (2024). We trained the models using the Adam optimizer (Kingma, 2014) with
 2287 a learning rate of 10^{-3} for 100 epochs and cosine scheduler. We fix the test set, and we perform
 2288 10-fold cross-validation, reporting mean accuracy (ACC) and standard deviation. Performance is
 2289 measured at both the final epoch and the best validation epoch.
 2290

2291 We present additional experimental results in Table 4–6 in this appendix. To further illustrate the
 2292 strong correlation between labels and \mathcal{F}_4 -TMD, we provide a qualitative visualization of the dataset
 2293 structure (see Figure 7). Specifically, we select 50 graphs of the ER dataset and project them into a
 2294 two-dimensional space using Multidimensional Scaling (MDS), with distances computed based on
 2295 standard TMD, \mathcal{F}_3 -TMD, \mathcal{F}_4 -TMD, and \mathcal{F}_{12} -TMD. Among these, the projection using \mathcal{F}_4 -TMD
 2296 exhibits the clearest class separation, visually reinforcing its alignment with the classification task.
 2297

2298 I.3 TASK 2: REAL-WORLD DATASETS

2299 We evaluate our generalization framework on six real-world datasets from the TU Dataset collection
 2300 (Morris et al., 2020a), spanning both biological and chemical graph classification tasks:
 2301

- **Mutagenicity:** 4,337 molecular graphs labeled as mutagenic or non-mutagenic.
- **PROTEINS:** 1,113 protein graphs classified by their enzymatic function.
- **BZR:** 405 graphs representing benzodiazepine receptor ligands labeled for activity.
- **COX2:** 467 graphs labeled based on activity against the COX2 enzyme.
- **NCI109:** 4,127 graphs representing chemical compounds screened for anti-cancer activity.
- **AIDS:** 2,000 graphs with binary activity labels relevant to AIDS antiviral screening.

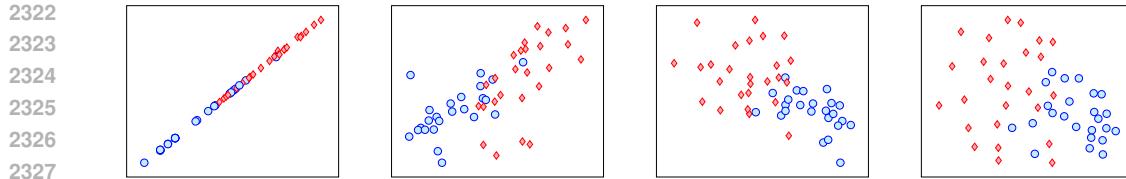


Figure 7: Low-dimensional embeddings via MDS for Task 1 in Section 6. MDS projects the graphs into \mathbb{R}^2 while preserving the pairwise \mathcal{F}_l -TMDs between graphs in the dataset. From left to right: TMD, \mathcal{F}_3 -TMD, \mathcal{F}_4 -TMD, and \mathcal{F}_{12} -TMD. Visually, \mathcal{F}_4 -TMD achieves the best class separation, highlighting that the labels strongly correlate with \mathcal{F}_4 -TMD. As a result, \mathcal{F}_4 -MPNNs provide the best generalization and predictive performance.

To assess whether generalization in MPNNs and MLPs with fixed feature extractors depends on the structural similarity between test and training graphs, as predicted by our generalization bound in Theorem 4.1, we conduct two complementary evaluations:

- (i) **GIN with TMD:** We train GINs (Xu et al., 2019) and measure distances between graphs using the TMD.
- (ii) **Fixed encoder with Hamming distance:** We compute molecular fingerprints (Gainza et al., 2019) for each graph, apply an MLP classifier, and measure distances in the resulting feature space via Hamming distance.

We analyze two key properties:

Error vs. TMD Distance To quantify the relationship between structural proximity and model performance, we report cumulative accuracy. Test graphs are ordered by increasing distance to the training set, and we compute the cumulative average accuracy. Specifically, given the ordered test set $G_1, \dots, G_{N_{te}}$, we define

$$\tilde{y}_i = \frac{1}{i} \sum_{j=1}^i \mathbb{1} \left[h(G_i)[y_{G_i}] \leq \max_{k \neq y_{G_i}} h(G)[k] \right],$$

where \tilde{y}_i represents the average accuracy over the first i graphs. For end-to-end trained GIN models, Figure 2 and Figure 8 illustrate that test accuracy consistently decreases as the structural distance from the training distribution increases. A similar trend is observed for MLP+fingerprint models in Figure 9. These empirical results align with our theoretical insights presented in Theorem 4.1, which predict this performance degradation.

Theoretical vs. Empirical Generalization Bound We further examine how well our bound from Theorem 4.1 predicts the actual generalization behavior. For each dataset and model, we compute the theoretical bound using the empirical training loss and the graph distances to the training set as prescribed by Theorem 4.1. We compare this bound to the observed test error across all datasets. Results are presented in Figure 3 and in the appendix (Figure 10). While our bound is not tight, it does track the empirical error trends well across datasets, substantiating our claim that structural similarity with respect to the right pseudometric governs generalization in graph learning.

I.4 TASK 3: MDS-BASED LABELING VIA \mathcal{F}_5 -TMD DISTANCES

For the second synthetic task, we construct 500 random graphs and compute pairwise distances using the \mathcal{F}_5 -TMD pseudometric, where \mathcal{F}_5 includes cycles up to length 5. Labels are assigned using a clustering algorithm, ensuring that graphs closer in \mathcal{F}_5 -TMD likely share the same label. We test different GNNs and summarize the results in Figure 11.

Details For the second synthetic task, we generate 500 random graphs between 15 and 35 nodes using ER graphs with edge probability $p = 0.1$. We use the \mathcal{F}_5 -TMD pseudometric, where \mathcal{F}_5 consists of cycles up to length 5. We compute pairwise graph distances with respect to \mathcal{F}_5 -TMD

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

Table 4: Train and test accuracy, Erdős–Rényi graphs. The task is to predict if the count of cycles of length at most 4 in the cycle basis of each graph is above or below the median of the whole dataset. The node features are augmented with (hom_N) homomorphism-counts of cycles up to length N , (sub_N) subgraph-counts of cycles up to length N , and (bas_N) number of cycle graphs up to length N in the cycle basis.

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

(a) w/ early stopping.

(b) w/o early stopping.

Model	Num. layers			Num. layers		
	1	3	5	1	3	5
L-G	0.9180 \pm 0.0179	0.9216 \pm 0.0379	0.9226 \pm 0.0318	0.9904 \pm 0.0041	0.9998 \pm 0.0004	1.0000 \pm 0.0001
	0.8707 \pm 0.0105	0.8707 \pm 0.0110	0.8637 \pm 0.0106	0.8543 \pm 0.0063	0.8520 \pm 0.0073	0.8553 \pm 0.0102
LF-G	0.9162 \pm 0.0165	0.9148 \pm 0.0409	0.9226 \pm 0.0391	0.9868 \pm 0.0051	0.9999 \pm 0.0003	1.0000 \pm 0.0001
	0.8647 \pm 0.0095	0.8683 \pm 0.0086	0.8623 \pm 0.0112	0.8450 \pm 0.0135	0.8540 \pm 0.0121	0.8543 \pm 0.0116
MP	0.9050 \pm 0.0094	0.9135 \pm 0.0256	0.9255 \pm 0.0403	0.9906 \pm 0.0033	1.0000 \pm 0.0001	0.9998 \pm 0.0005
	0.8737 \pm 0.0091	0.8694 \pm 0.0165	0.8597 \pm 0.0126	0.8490 \pm 0.0045	0.8567 \pm 0.0087	0.8637 \pm 0.0138
MP+hom ₃	0.8993 \pm 0.0122	0.9115 \pm 0.0316	0.9335 \pm 0.0462	0.9886 \pm 0.0039	0.9999 \pm 0.0002	1.0000 \pm 0.0000
	0.8783 \pm 0.0105	0.8710 \pm 0.0116	0.8750 \pm 0.0098	0.8480 \pm 0.0108	0.8537 \pm 0.0107	0.8673 \pm 0.0141
MP+hom ₄	0.8993 \pm 0.0121	0.8998 \pm 0.0120	0.9185 \pm 0.0408	0.9302 \pm 0.0039	0.9978 \pm 0.0018	0.9990 \pm 0.0011
	0.8783 \pm 0.0089	0.8767 \pm 0.0063	0.8710 \pm 0.0125	0.8720 \pm 0.0088	0.8520 \pm 0.0138	0.8540 \pm 0.0102
MP+hom ₇	0.8913 \pm 0.0117	0.9002 \pm 0.0198	0.8915 \pm 0.0286	0.9091 \pm 0.0081	0.9795 \pm 0.0040	0.9897 \pm 0.0058
	0.8740 \pm 0.0065	0.8693 \pm 0.0178	0.8700 \pm 0.0097	0.8693 \pm 0.0099	0.8450 \pm 0.0123	0.8390 \pm 0.0145
MP+bas ₃	0.9210 \pm 0.0201	0.9465 \pm 0.0376	0.9436 \pm 0.0393	0.9956 \pm 0.0028	0.9999 \pm 0.0002	1.0000 \pm 0.0000
	0.8717 \pm 0.0173	0.8773 \pm 0.0168	0.8783 \pm 0.0096	0.8657 \pm 0.0085	0.8670 \pm 0.0097	0.8723 \pm 0.0049
MP+bas ₄	0.9754 \pm 0.0061	0.9761 \pm 0.0066	0.9841 \pm 0.0081	0.9904 \pm 0.0034	0.9985 \pm 0.0021	0.9997 \pm 0.0004
	0.9870 \pm 0.0046	0.9700 \pm 0.0154	0.9603 \pm 0.0048	0.9793 \pm 0.0068	0.9587 \pm 0.0072	0.9523 \pm 0.0102
MP+bas ₇	0.9782 \pm 0.0087	0.9804 \pm 0.0051	0.9850 \pm 0.0155	0.9958 \pm 0.0026	0.9999 \pm 0.0003	0.9998 \pm 0.0005
	0.9720 \pm 0.0111	0.9573 \pm 0.0077	0.9490 \pm 0.0093	0.9660 \pm 0.0065	0.9550 \pm 0.0062	0.9537 \pm 0.0072
MP+sub ₃	0.8979 \pm 0.0174	0.9340 \pm 0.0473	0.9166 \pm 0.0320	0.9933 \pm 0.0029	1.0000 \pm 0.0001	1.0000 \pm 0.0000
	0.8827 \pm 0.0123	0.8697 \pm 0.0135	0.8747 \pm 0.0144	0.8510 \pm 0.0078	0.8547 \pm 0.0075	0.8683 \pm 0.0080
MP+sub ₄	0.8976 \pm 0.0111	0.9090 \pm 0.0270	0.9233 \pm 0.0287	0.9853 \pm 0.0034	0.9995 \pm 0.0009	0.9998 \pm 0.0004
	0.8780 \pm 0.0031	0.8717 \pm 0.0098	0.8733 \pm 0.0109	0.8487 \pm 0.0155	0.8613 \pm 0.0127	0.8623 \pm 0.0130
MP+sub ₇	0.8963 \pm 0.0059	0.9140 \pm 0.0174	0.9312 \pm 0.0304	0.9018 \pm 0.0035	0.9670 \pm 0.0070	0.9815 \pm 0.0090
	0.8790 \pm 0.0067	0.8760 \pm 0.0092	0.8657 \pm 0.0075	0.8803 \pm 0.0070	0.8680 \pm 0.0121	0.8553 \pm 0.0135
Sub-G	0.9194 \pm 0.0238	0.9060 \pm 0.0338	0.9561 \pm 0.0411	0.9887 \pm 0.0048	1.0000 \pm 0.0001	1.0000 \pm 0.0000
	0.8710 \pm 0.0088	0.8663 \pm 0.0074	0.8640 \pm 0.0099	0.8623 \pm 0.0058	0.8533 \pm 0.0088	0.8680 \pm 0.0100

Table 5: Train and test accuracy, Barabasi-Albert graphs. The task is to predict if the count of cycles of length at most 4 in the cycle basis of each graph is above or below the median of the whole dataset. The node features are augmented with (hom_N) homomorphism-counts of cycles up to length N, (sub_N) subgraph-counts of cycles up to length N, and (bas_N) number of cycle graphs up to length N in the cycle basis.

(a) w/ early stopping. (b) w/o early stopping.

Model	Num. layers		
	1	2	5
L-G	0.819 ± 0.013 0.767 ± 0.014	0.794 ± 0.017 0.751 ± 0.013	0.793 ± 0.019 0.747 ± 0.010
LF-G	0.818 ± 0.018 0.775 ± 0.008	0.807 ± 0.021 0.770 ± 0.012	0.822 ± 0.051 0.747 ± 0.015
MP	0.811 ± 0.015 0.771 ± 0.015	0.802 ± 0.013 0.767 ± 0.011	0.798 ± 0.022 0.757 ± 0.009
MP+hom ₄	0.777 ± 0.010 0.774 ± 0.019	0.750 ± 0.010 0.749 ± 0.021	0.789 ± 0.019 0.772 ± 0.01
MP+bas ₃	0.840 ± 0.010 0.809 ± 0.020	0.847 ± 0.017 0.804 ± 0.021	0.863 ± 0.039 0.798 ± 0.016
MP+bas ₄	0.963 ± 0.012 0.995 ± 0.003	0.970 ± 0.005 0.994 ± 0.005	0.963 ± 0.008 0.980 ± 0.008
MP+bas ₈	0.978 ± 0.008 0.989 ± 0.005	0.978 ± 0.014 0.977 ± 0.007	0.981 ± 0.016 0.953 ± 0.006
Sub-G	0.795 ± 0.013 0.760 ± 0.015	0.814 ± 0.030 0.730 ± 0.015	0.821 ± 0.060 0.733 ± 0.016

Table 6: Train and test accuracy, Stochastic Block Model graphs. The task is to predict if the count of cycles of length at most 4 in the cycle basis of each graph is above or below the median of the whole dataset. The node features are augmented with (hom_N) homomorphism-counts of cycles up to length N, (sub_N) subgraph-counts of cycles up to length N, and (bas_N) number of cycle graphs up to length N in the cycle basis.

(a) w/ early stopping. (b) w/o early stopping.

Model	Num. layers		
	1	2	5
L-G	0.961 ± 0.007 0.961 ± 0.003	0.972 ± 0.009 0.949 ± 0.003	0.960 ± 0.011 0.943 ± 0.010
LF-G	0.965 ± 0.005 0.948 ± 0.005	0.959 ± 0.020 0.942 ± 0.004	0.962 ± 0.020 0.953 ± 0.011
MP	0.967 ± 0.006 0.955 ± 0.006	0.973 ± 0.004 0.962 ± 0.007	0.967 ± 0.004 0.955 ± 0.006
MP+hom ₄	0.947 ± 0.005 0.953 ± 0.006	0.950 ± 0.007 0.946 ± 0.006	0.963 ± 0.013 0.953 ± 0.004
MP+bas ₃	0.966 ± 0.007 0.958 ± 0.012	0.958 ± 0.007 0.960 ± 0.005	0.973 ± 0.012 0.959 ± 0.007
MP+bas ₄	0.957 ± 0.011 0.981 ± 0.005	0.959 ± 0.007 0.977 ± 0.011	0.979 ± 0.012 0.975 ± 0.005
MP+bas ₈	0.964 ± 0.006 0.982 ± 0.007	0.959 ± 0.010 0.973 ± 0.004	0.955 ± 0.005 0.975 ± 0.008
Sub-G	0.957 ± 0.006 0.951 ± 0.012	0.959 ± 0.010 0.943 ± 0.006	0.977 ± 0.006 0.934 ± 0.008

and embed the graphs into a two-dimensional space via Multidimensional Scaling (MDS) (Kruskal, 1964). MDS embeds the graphs into a two-dimensional space while preserving the initial \mathcal{F}_5 -Tree Mover’s Distances from the raw graph space, i.e., one can formulate it as the optimization problem given by

$$\arg \min_{x_1, \dots, x_n \in \mathbb{R}^2} \sum_{i < j} (\|x_i - x_j\| - \zeta \text{-TMD}(G_i, G_j))^2.$$

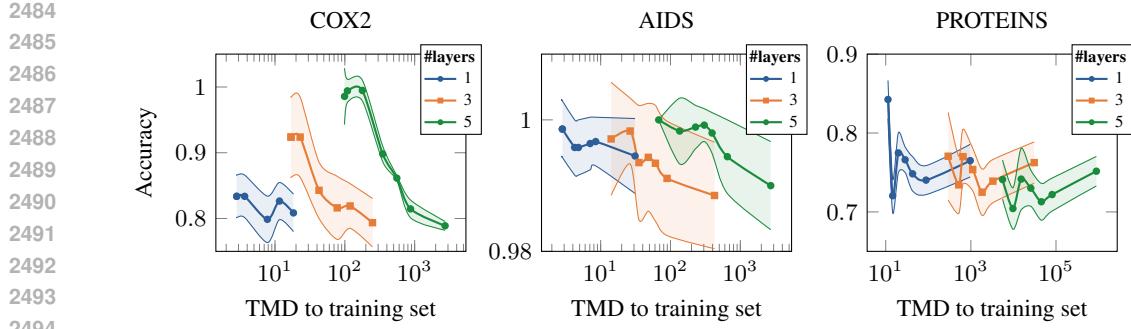


Figure 8: Accuracy of a GIN with 1, 3, and 5 layers versus Tree Mover’s Distance (log scale) to the training dataset.

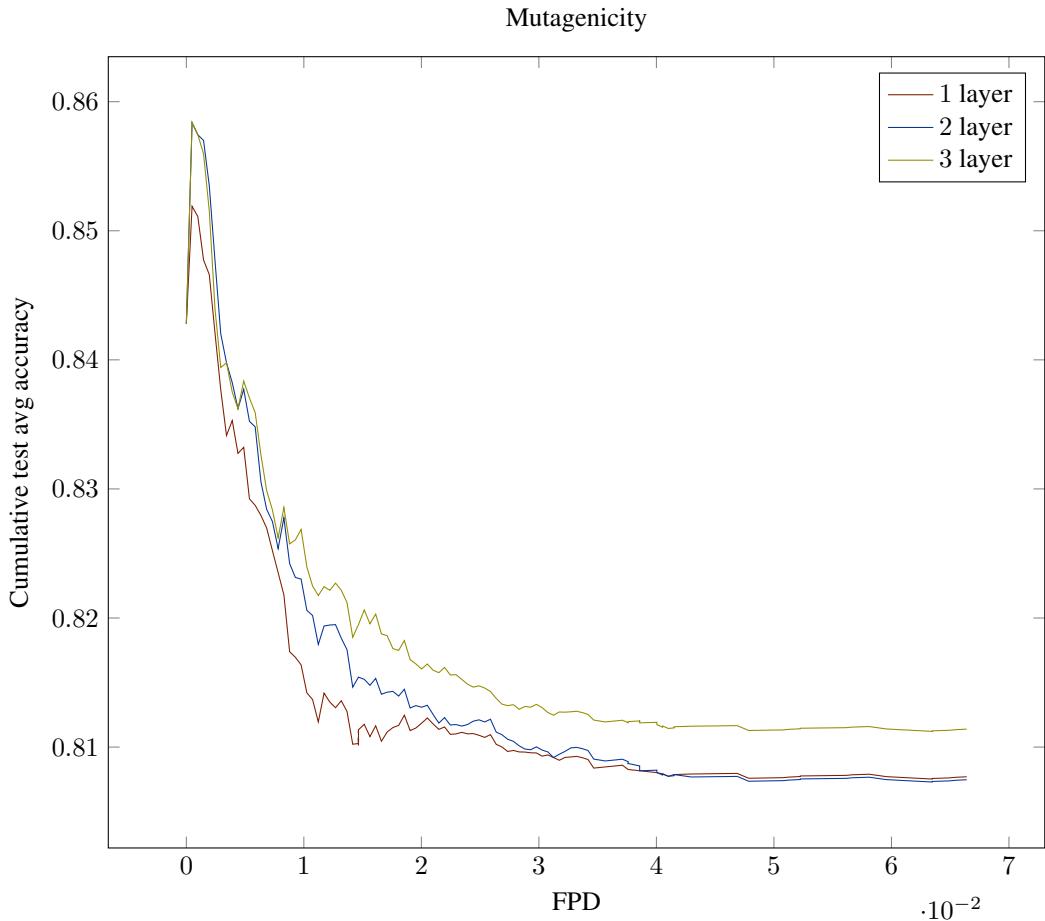


Figure 9: Cumulative test accuracy of MLP vs. Fingerprint Distance (FPD).

Labels are assigned using 2-means clustering, ensuring that structurally similar graphs remain in the same class. MDS and 2-means clustering are implemented via scikit-learn (Buitinck et al., 2013).

The experimental setup is identical to Task 1, with models trained and evaluated under the same protocol: We perform 10-fold cross validation with a training/validation/test set with 80/10/10 splits. We report the test accuracy at the epoch with the highest validation accuracy. This task tests the ability of different GNN architectures to generalize. The task is generated such that labels strongly correlate with \mathcal{F}_5 -TMD. We present classification performance, showing that \mathcal{F}_5 -MPNNs perform better than MPNNs and more expressive GNN variants.

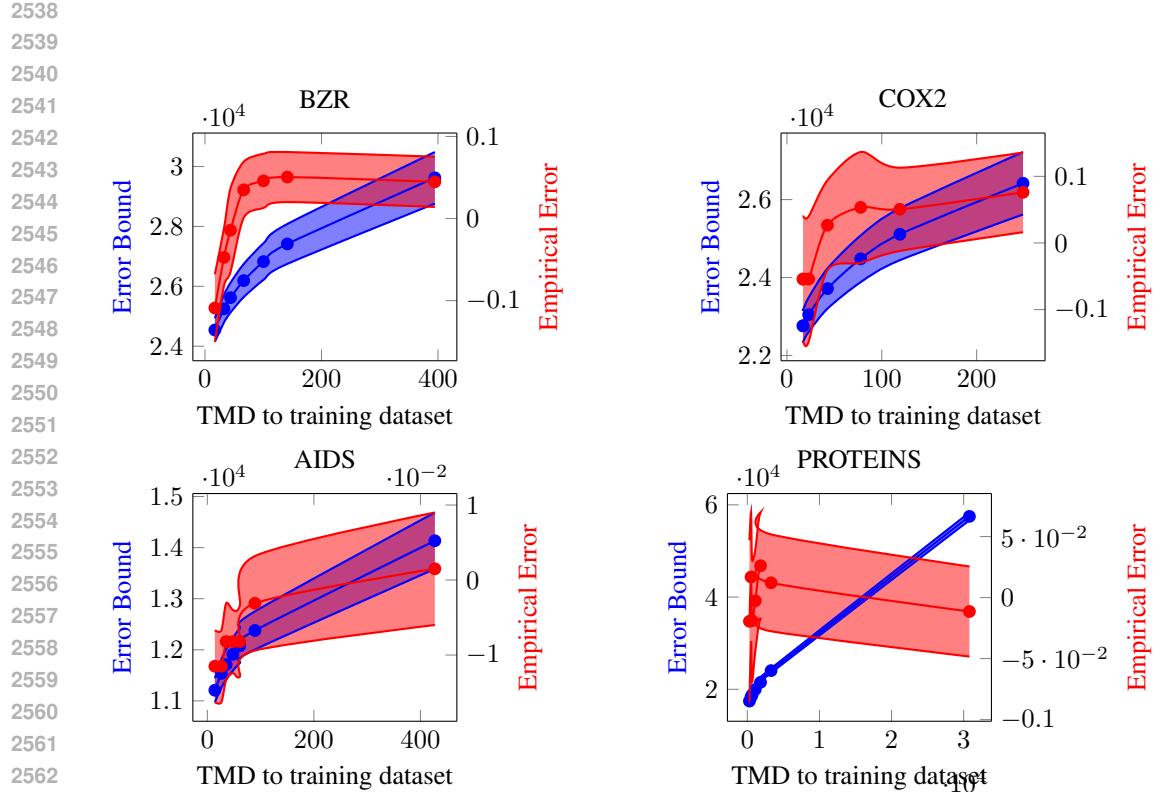


Figure 10: Caption

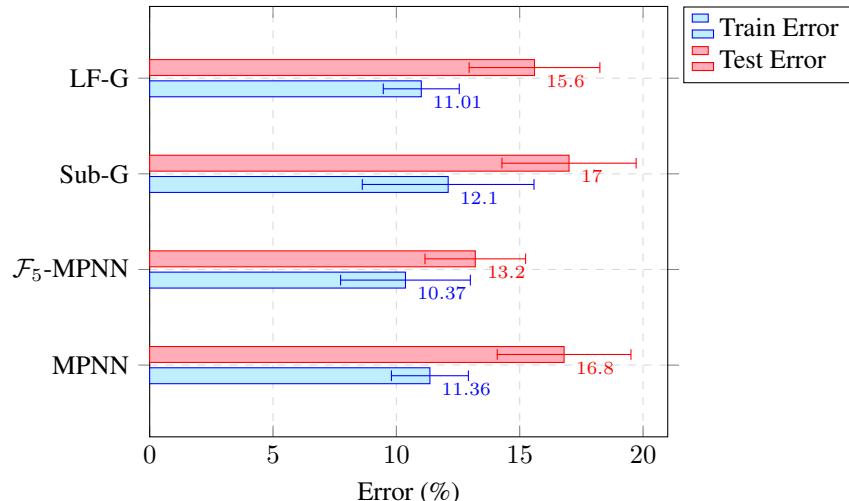


Figure 11: Performance of different GNNs for $y \sim \mathcal{F}_5\text{-TMD}^3$, where \mathcal{F}_5 includes cycles up to length 5. \mathcal{F}_5 -MPNN achieves the best performance, supporting our claim that incorporating task-relevant features outperforms excessive expressivity.