
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRAPH REPRESENTATIONAL LEARNING: WHEN DOES
MORE EXPRESSIVITY HURT GENERALIZATION?

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) are powerful tools for learning on structured data,
yet the relationship between their expressivity and predictive performance remains
unclear. We introduce a family of pseudometrics that capture different degrees of
structural similarity between graphs and relate these similarities to generalization,
and consequently, the performance of expressive GNNs. By considering a setting
where graph labels are correlated with structural features, we derive generalization
bounds that depend on the distance between training and test graphs, model com-
plexity, and training set size. These bounds reveal that more expressive GNNs may
generalize worse unless their increased complexity is balanced by a sufficiently
large training set or reduced distance between training and test graphs. Our findings
relate expressivity and generalization, offering theoretical insights supported by
empirical results. Our code is available on anonymous GitHub.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Scarselli et al., 2009; Bronstein et al., 2017) have become a central
tool for learning representations of structured data. A major line of research has focused on improving
their expressivity, that is, their capacity to distinguish non-isomorphic graphs, often evaluated with
respect to the Weisfeiler-Lehman (WL) hierarchy of graph isomorphism tests (Weisfeiler & Lehman,
1968; Xu et al., 2019; Morris et al., 2020b; 2023b).

The relationship between expressivity and performance of GNNs remains poorly understood. While
more expressive models are theoretically capable of distinguishing a broader range of non-isomorphic
graphs, their practical effectiveness in real-world tasks is not always apparent. On the one hand, more
expressive models have been shown to outperform standard architectures (Maron et al., 2019a; Bodnar
et al., 2021; Bouritsas et al., 2023), even when their additional expressive power does not result in
separating more non-isomorphic graphs in the benchmarks at hand (Zopf, 2022). For instance, the
1-WL test, and by extension simple message-passing neural networks (MPNNs) such as GIN (Xu
et al., 2019), can separate all graphs in widely used datasets (Zopf, 2022; Kriege et al., 2020) and
almost all random graphs (Babai et al., 1980), but performance is still far from saturated. On the
other hand, less expressive models can outperform their more expressive counterparts. For example,
Bechler-Speicher et al. (2024) show that models which completely discard the graph structure (hence,
less-expressive than 1-WL) can outperform sophisticated GNNs in certain tasks.

These contrasting observations suggest a complex and nuanced relationship between expressivity and
performance, raising two critical questions:

1. When does increased expressivity in GNNs help, and when does it hurt performance?
2. If a more expressive GNN performs better on a given task, is it due to its improved expres-

sivity in terms of graph separability?

To explore these questions, we begin with a synthetic graph-classification task in which the labels are
designed to depend on a known structural feature, namely the number of cycles. We train a sequence
of models whose expressive power increases from a plain MPNN to an LF-GNN (Zhang et al.,
2024). As Figure 1 (left) shows, moderately expressive models achieve the lowest test error, while
the most expressive ones overfit, and performance deteriorates on unseen graphs. The result echoes
a well-documented phenomenon in Euclidean deep learning: large neural networks can memorize

1

https://anonymous.4open.science/r/GenVsExp-D688/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 5 10 15

MPNN
F3-MPNN
F4-MPNN
F7-MPNN

Sub-G
L-G

LF-G

Error (%)

GNN error on cycle task

Train Test

0 50 100
0

0.2

0.4

0.6

Epoch

Training loss (MUTAGENICITY)
Label noise

0.0

0.2

0.5

0.8

1.0

0 0.5 1
0.2

0.3

0.4

0.5

Noise p

Test error vs. noise

Mutagenicity

BZR

NCI109

Figure 1: Left: Train–test errors for several GNN variants on a synthetic cycle-counting task;
moderately expressive models such as F4-MPNN (Barceló et al., 2021), i.e., MPNNs augmented
with cycle counts, generalize best, while more expressive ones tend to overfit. Center: Training-loss
curves of a MPNN on MUTAGENICITY under increasing label noise p. Right: Corresponding test
errors on BZR, MUTAGENICITY, and NCI109 rises sharply as label-structure correlation is essential
for generalization (mean ± standard deviation across five seeds). See Appendix I.1 for more details.

arbitrary labels, yet they generalize only when there is genuine correlation between data and labels.
Classical complexity measures such as the VC dimension or Rademacher complexity cannot account
for this behavior in over-parametrized regimes (Zhang et al., 2017). A more plausible explanation is
that generalization requires a balance between the model’s inductive bias (in our case, its expressivity)
and the structure–label correlation present in the data.

We further test this hypothesis on three real-world graph datasets: BZR, MUTAGENICITY, and
NCI109 (Morris et al., 2020a). We follow the setup from Zhang et al. (2017) by progressively
resampling the labels uniformly at random, i.e., introducing label noise, while leaving the graphs
untouched. Figure 1 (center and right) shows that training loss still converges to zero, confirming
the network’s ability to memorize, yet the test error rises sharply as soon as the correlation between
the graphs and labels is destroyed. Together, these experiments indicate that expressivity by itself
is neither strictly harmful nor helpful; model performance ultimately is determined by the model’s
ability to measure similarity in a way that reflects the task-relevant relation between graphs and labels.
In this work, we set out to better understand this phenomenon.

1.1 OUR CONTRIBUTION

We formalize the empirical insight that generalization heavily depends on structure–label correlation
as follows. We introduce a family of pseudometrics, called ζ-Tree Mover Distances (ζ-TMDs), each
parameterized by a graph invariant (e.g., degree distributions or k-WL colors), which measure a
specific level of expressivity. We then consider a graph classification setting where labels correlate
with a fixed ζ-TMD: two graphs are likely to share the same label if they are similar under the chosen
pseudometric. This captures structure–label alignment, a property we empirically validate across
several real-world graph learning tasks, where generalization depends critically on such alignment.

Within this framework, we derive data-dependent generalization bounds for models with fixed
encoders (e.g., random GNN features) and expressive, end-to-end trainable GNNs (e.g., GIN, GAT,
k-GNNs). Our bound (Theorem 4.1, Equation (4)) decomposes the generalization gap into two
terms: a capacity term, depending on model width, weight norms, and maximum node degree, and
a structural similarity term, which measures the distance between training and test graphs under
the chosen ζ-TMD. This decomposition highlights that generalization improves when the model
maps structurally similar graphs (with respect to the ζ-TMD that correlates with the labels) to similar
representations while keeping model capacity in check.

This perspective not only explains existing empirical observations but also guides model design.
Deeper or more expressive GNNs can improve performance—but only if they enhance the structural
similarity between train and test graphs. Otherwise, increased complexity may fail to improve label
alignment, thereby degrading both generalization and computational efficiency. This trade-off is
especially relevant since higher-order methods often introduce significant computational overhead. In

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Section 5, we formalize this phenomenon and show that, in a concrete setting, the optimal GNN is
precisely as expressive as required to capture the relevant structure-label correlation—no more, no
less.

1.2 RELATED WORK

Expressivity in GNNs. A common benchmark for GNN expressivity is the Weisfeiler-Leman (k-WL)
hierarchy, which measures the ability to distinguish non-isomorphic graphs. Standard MPNNs are
provably limited by 1-WL expressivity (Xu et al., 2019; Morris et al., 2019), while higher-order
k-GNNs (Morris et al., 2020b) and subgraph-based models (Frasca et al., 2022) extend this by
incorporating higher-order structural interactions. Structural and positional encodings (Vignac et al.,
2020; Barceló et al., 2021) enhance expressivity by injecting global features into node representations.
Jogl et al. (2024) offer a unifying view by showing that many expressive architectures can be simulated
via input transformations followed by standard message passing.

However, expressivity often comes at a computational cost: while MPNNs scale linearly with edges
(O(|E|)), subgraph-based and higher-order models scale super-linearly (e.g., O(|V ||E|) or O(|V |k)),
making them less viable for large-scale graphs.

Generalization in GNNs. Generalization theory for GNNs has traditionally relied on classical
complexity measures such as VC-dimension (Scarselli et al., 2018), Rademacher complexity (Garg
et al., 2020), and PAC-Bayes bounds (Liao et al., 2021). Graphon-based frameworks (Levie, 2024)
establish bounds using covering numbers in continuous function spaces. Similarly, Maskey et al.
(2022a; 2024) establish tighter bounds using graphon models, but under stronger assumptions on the
data distribution and their analysis does not directly handle expressive GNNs.

Recent works increasingly focus on the interplay between expressivity and generalization. Morris
et al. (2023a) relate 1-WL to VC-dimension in MPNNs. Li et al. (2024) analyze a trade-off between
intra-class concentration and inter-class separation, but only for fixed graph encoders. Wang et al.
(2024) study graphs sampled from manifolds, and Ma et al. (2021) model label–feature correlations
in node classification, but neither framework extends to graph-level tasks or expressive GNNs.

Most recently, Vasileiou et al. (2024) derive tighter generalization bounds by combining covering
number arguments with the robustness framework of Xu & Mannor (2012), using the fact that MPNNs
are Lipschitz with respect to Tree and Forest distances. Their analysis does not model structure–label
correlation and is limited to standard MPNNs. We refer to Appendix A for further discussion.

Comparison with Prior Work. While existing approaches have deepened our understanding of GNN
generalization, many rely on idealized assumptions—such as known graphon distributions or fixed
feature maps—that limit applicability to real-world graph learning. The work most closely related
to ours is Ma et al. (2021), which models label-feature alignment but does not support graph-level
tasks or trainable GNNs. In contrast, our framework explicitly models structure-label correlation
using task-aligned pseudometrics and supports expressive, end-to-end trainable GNNs.This enables a
fine-grained analysis of how architectural expressivity and task alignment interact. Our generalization
bounds identify when increased expressivity may improve performance—and when it leads to
overfitting—addressing a key open question posed by Morris et al. (2024).

2 PRELIMINARIES

Let G denote the set of all simple, undirected graphs, and let G = (V,E) ∈ G, where V, or V (G), is
the set of nodes and E is the set of edges. For any node v ∈ V , the neighborhood of v is defined as:
N (v) := {u ∈ V | {v, u} ∈ E}.
Definition 2.1 (Graph Invariant and CRA). A graph invariant is a function ζ : G → C that assigns a
value to each graph such that for any isomorphic graphs G and H , it holds that ζ(G) = ζ(H).

A color refinement algorithm (CRA) ζ(·) is a mapping that assigns to each graph G a function ζG :
V (G) → P such that for any graph H isomorphic to G, and any isomorphism h : V (H) → V (G),
the CRA satisfies ζG(v) = ζH(h(v)) for all v ∈ V (G).

We note that every CRA ζ(·) induces a graph invariant ζ by aggregating the vertex labels into a
multiset. Specifically, the induced graph invariant is defined as ζ(G) := {{ζG(v)}}v∈V (G), where

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

{{·}} denotes a multiset. Throughout this work, we use the terms “graph invariant” and “CRA”
interchangeably when the context allows.

Graph invariants vary in their ability to distinguish between graphs. We say that a graph invariant
ζ is more expressive than another graph invariant θ if ζ(G) = ζ(H) implies θ(G) = θ(H) for all
G,H ∈ G.
Definition 2.2 (Message Passing Neural Networks (MPNNs)). For a graph G = (V,E) with node
features x ∈ R|V |×F , an MPNN updates node v ∈ V at layer t as:

x(t+1)
v = f (t+1)

(
x(t)
v ,□u∈N (v)

{{
g(t+1)

(
x(t)
u

)}})
,

where f (t+1) and g(t+1) are MLPs, and □ denotes a permutation-invariant aggregation function.

We focus on sum aggregation, but our framework naturally extends to mean or weighted sum
aggregation. After the final message passing layer, node features are typically aggregated into a
graph-level representation, followed by a final MLP.

Similar to MPNNs, the 1-Weisfeiler-Lehman (1-WL) Test updates the node features of input graphs
through local neighborhood aggregation. However, a key distinction is that in 1-WL, both the message
and update functions are necessarily injective. 1-WL provides a tight upper bound on the expressivity
of MPNNs (Xu et al., 2019; Morris et al., 2020b).

To quantify similarity between graphs, we use the notion of pseudometrics. In particular, every
graph invariant naturally induces a pseudometric dζ(G,H) with dζ(G,H) = 0 if ζ(G) = ζ(H)
and dζ(G,H) = 1 otherwise. However, such pseudometrics only indicate whether two graphs are
distinguishable by ζ (distance 0 or 1). To capture finer structural similarities, general pseudometrics
are often employed. Conversely, any pseudometric d can induce a graph invariant ζd by anchoring
comparisons to a fixed graph A ∈ G with ζd,A(G) := d(G,A). Thus, pseudometrics can be seen as
generalizations of graph invariants, offering richer measures of graph similarity.

The Tree Mover’s Distance (TMD) (Chuang & Jegelka, 2022) is a pseudometric that quantifies the
dissimilarity between two graphs. Formally, for graphs G and H , and a depth t, the TMD is defined
as the Wasserstein distance between their distributions of rooted trees up to depth t:

TMDt(G,H) = Wasserstein
(
T t(G), T t(H)

)
,

where T t(G) and T t(H) are the multisets of rooted trees of depth t generated by the 1-WL test for
G and H , respectively. For further details, we refer to Appendix C.

3 GENERALIZED TREE MOVER’S DISTANCE FOR STRONGLY SIMULATABLE
COLORINGS

We now extend the concept of the TMD to a broader class of CRAs that can be strongly simulated by
the 1-WL test. For detailed proofs of the results presented in this section, refer to Appendix C.2.

A CRA ζ is said to be strongly simulatable if, for any graph G, running t iterations of the CRA on G
can be simulated by running t iterations of the 1-WL test on a suitably transformed graph Rζ(G).
This transformation, called the strong simulation under ζ, ensures that the colorings at each 1-WL
iteration on Rζ(G) are at least as expressive as those of ζ (Jogl et al., 2024) on G. See Appendix B
for more details and examples of CRAs and their corresponding transformed graphs.

For any strongly simulatable CRA ζ, we define a generalized pseudometric as the TMD between the
strong simulations of the graphs under ζ.
Definition 3.1. Let ζ be a strongly simulatable CRA. For any depth t > 0, the ζ-TMD is defined as:

ζ-TMDt(G,H) := TMDt(Rζ(G), Rζ(H)), (1)

where Rζ(G) and Rζ(H) are the strong simulations of G and H under ζ, respectively.
Proposition 3.2. Let ζ be a strongly simulatable CRA. For every t > 0, ζ-TMDt is a pseudometric.

Similar to the standard TMD, ζ-TMDt(G,H) can be zero even if G ̸= H , as it is a pseudometric.
Nonetheless, it can distinguish graphs that are differentiable by the color refinement algorithm ζ
within T iterations.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Proposition 3.3. Let ζ be a strongly simulatable CRA. If two graphs G and H are distinguished by ζ
after T iterations, then ζ-TMDT+1(G,H) > 0.

Another immediate consequence is that MPNNs corresponding to the CRA ζ , referred to as ζ-MPNNs,
are Lipschitz continuous with respect to the ζ-TMD. Specifically, we have the following result:
Theorem 3.4. Let ζ be a strongly simulatable CRA, and let h : G → RK be a ζ-MPNN with T
layers, where the message and update functions are Lipschitz continuous with Lipschitz constants
bounded by Lg(t) and Lf(t) , respectively. Suppose h includes a global sum pooling layer followed by
a Lipschitz continuous classifier c with Lipschitz constant Lc. Then, for any graphs G and H ,

∥h(G)− h(H)∥ ≤ L · ζ-TMDT+1(G,H),

where L = Lc2
T
∏T

t=1 Lf(t)Lg(t) and ∥ · ∥ denotes the Euclidean vector norm.

The Lipschitz property established in Theorem 3.4 plays a key role in deriving the generalization
bounds for ζ-MPNNs presented in Section 4. Next, we illustrate the Lipschitz continuity using the
example of F-MPNNs.

3.1 EXAMPLE: F -MPNNS

The F-Weisfeiler-Leman (F-WL) test generalizes the 1-WL test by incorporating features derived
from a finite family of graphs, F ⊂ G. These features, often referred to as motifs or patterns, are
used to enhance node representations.

Specifically, for each node v in a graph G, the feature vector of v is augmented with counts of patterns
in F that include v. Formally, the augmented feature vector is defined as:

x̃v =
(
xv , cnt(P1, G; v) , . . . , cnt(P|F|, G; v)

)
,

where cnt(P,G; v) represents the number of occurrences of the pattern P in G such that v is part
of the pattern. These counts can for example be (injective) homomorphism counts (Bouritsas et al.,
2023) or cycle basis counts (Yan et al., 2024).

If F ⊂ F̃ , then F̃-WL is more expressive than F-WL (Barceló et al., 2021; Bouritsas et al., 2023).

Correspondingly, F-MPNNs incorporate these motif counts into their message-passing scheme.
Clearly, F-WL can be strongly simulated via a transformed graph RF (G) that includes the motif
counts as node features.
Corollary 3.5. Let h be an F -MPNN with T layers. Then, there exists a constant L such that for any
graphs G and H ,

∥h(G)− h(H)∥ ≤ L · F-TMDT+1(G,H). (2)

We emphasize that this is just one example; analogous definitions of ζ-TMDs and corresponding
versions of Corollary 3.5 can be derived for other GNN architectures, such as k-GNNs (Morris et al.,
2019), see Appendix C.3.

4 GENERALIZATION BOUNDS WITH RESPECT TO TREE MOVER’S DISTANCE

In this section, we establish generalization bounds for GNNs using our generalized TMD framework.

4.1 PROBLEM SETUP AND ASSUMPTIONS

We consider a classification task where each data point is a graph equipped with node features.
Formally, let Gtr and Gte denote the fixed sets of training and test graphs, respectively. We assume
that there exists a constant B > 0 such that the norm of each node feature is bounded, i.e.,

∥x(G)i∥2 ≤ B ∀G ∈ Gtr ∪ Gte,∀i ∈ V (G).

Each graph G is assigned a label yG ∈ {1, . . . ,K}. We assume that, for each class k, there exists a
Lipschitz continuous function ηk : G → [0, 1] with respect to some pseudometric pm such that

Pr(yG = k | G) = ηk(G),

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

and set C := maxk∈{1,...,K} Lip(ηk). If the labels are sampled according to such functions ηk, we
say that the labels y are strongly correlated with pm and write y ∼ pm.

Furthermore, we define ξpm as the distance between the training set and the test set:

ξpm = pm(Gte,Gtr) := max
G∈Gte

min
H∈Gtr

pm(G,H). (3)

Given the set of labeled graphs Gtr the task of graph-level supervised learning is to learn a classifier
h : G → RK from a function family H. Given a classifier h ∈ H, the classification for a graph G is
obtained by

ỹG = argmax
k∈{1,...,K}

h(G)[k],

where h(G)[k] refers to the k-th entry of h(G).

For the observed graph labels (yG)G∈Gtr
, the empirical margin loss of h on Gtr for a margin γ ≥ 0 is

defined as
L̂γ
tr(h) :=

1

Ntr

∑
G∈Gtr

1[h(G)[yG] ≤ (γ + max
k ̸=yG

h(G)[k])].

Here, 1 is the indicator function. The empirical margin loss of h on Gte is defined equivalently. The
expected margin loss is defined as follows, Lγ

te(h) := EyG∼Pr(yG|G),G∈Gte

[
L̂γ
te(h)

]
.

4.2 MAIN RESULTS

In this section, we derive generalization bounds for GNNs, where we focus on the standard approach
involving end-to-end trainable GNNs.

We consider the GNN to be the composition of two functions. Specifically, let e : G → Rb denote
the graph embedding network, which maps a graph G ∈ G into a b-dimensional latent space, and
let c : Rb → RK denote the classifier, which maps embeddings to class scores. Consequently, the
hypothesis space for these models can be written as:

H = C ◦ E ,
where E represents the space of graph embedding networks and C represents the class of MLP
classifiers. For end-to-end learnable GNNs, both E and C are trainable. In contrast, for models with
fixed encoders, only C is trainable, while E remains fixed.

4.2.1 END-TO-END LEARNABLE GNNS

Let ζ represent a CRA that can be strongly simulated by 1-WL. In this context, we consider the
hypothesis space Hζ = C ◦ Eζ , where Eζ is the set of all ζ-MPNNs of depth T , where each layer
consists of a message function g(t) and an update function f (t). Both g(t) and f (t) are MLPs with a
maximum hidden dimension of b and may contain an arbitrary number of layers. The weight matrices
across all message and update functions are denoted by {Wi}Pi=1.

Let C denote the set of MLP classifiers with L layers and a maximum hidden dimension of b. The
weight matrices in the MLP classifier are denoted by {W̃l}Ll=1.

We now present the generalization bound for end-to-end learnable GNNs.

Theorem 4.1. Suppose that y ∼ ζ-TMDT+1. Under mild assumptions (see Appendix D), for any
γ > 0 and 0 < α < 1

4 , with probability at least 1− δ over the sample of training labels ytr, we have
for any h̃ ∈ Hζ

L0
te(h̃) ≤ L̂γ

tr(h̃) +O

(
b
(∑

i ∥Wi∥22 +
∑

l ∥W̃l∥22
)

N2α
tr (γ/8)2/D

ξ
2/D
ζ +

b2 ln
(
2bDC(2dB)1/D

)
N2α

tr γ1/Dδ
+ CKξζ

)
,

where ξζ := ζ-TMDT+1 (Gte,Gtr) is defined in Equation (3), D represents the total number of
learnable weight matrices, b denotes the maximum hidden dimension, d is the maximum degree of the
graphs, and C serves as an upper bound on the spectral norm of all weight matrices.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 4.1 highlights key factors influencing generalization in learnable graph classifiers, which are
the structural similarity ξζ under ζ-TMD, model complexity

(
D, b, {∥Wi∥2}i, {∥W̃l∥2}l

)
, graph

properties such as maximum degree d, and training set size Ntr. The structural similarity term ξζ
emphasizes the importance of diverse training data. This agrees with empirical observations by
Southern et al. (2025), who demonstrated that augmenting graph representation to maximize TMD
dissimilarity improves predictive performance and generalization. These findings underscore the
significance of diverse training data (via task-specific augmentations) and balancing model complexity
to achieve robust graph-based learning.

The proof of Theorem 4.1, given in Appendix E, follows a standard PAC-Bayesian approach
(Neyshabur et al., 2018) and extends it to the correlated setting, following the approach of (Ma
et al., 2021). It leverages the Lipschitz continuity of ζ-MPNNs, established in Theorem 3.4, to derive
the generalization bound. Throughout the remainder of this paper, we use the following simplified
version of the bound from Theorem 4.1:

L0
te(h̃) ≤ L̂γ

tr(h̃) + O
(

MC(C◦Eζ)

N2α
tr γ1/D δ︸ ︷︷ ︸

complexity term

+ C ξζ︸︷︷︸
structural

similarity term

)
. (4)

Here, MC(C ◦Eζ) captures the model complexity, i.e., spectral norms of all learnable weight matrices,
hidden dimensions, and maximal graph degree. Notably, the model complexity may increase if
the graph transformation Rζ enlarges the size, maximum degree, or node feature dimension of the
original input graphs.

The structural similarity term, ξζ , depends on the alignment between training and test graphs under
ζ-TMD. Whether ξζ increases or decreases with more expressive networks depends on the task.

The same PAC-Bayes machinery yields analogous bounds when the graph encoder is frozen and only
the MLP head is trained. We relegate the formal statement and proof to Appendix F to keep the main
exposition focused on the end-to-end learnable case.

5 WHEN DOES MORE EXPRESSIVITY HURT?

In this section, we explore two scenarios within our framework: first, we identify conditions under
which augmenting expressivity beyond task-specific requirements can negatively impact generaliza-
tion. Second, we highlight conditions where increasing expressivity to accurately capture task-specific
features does not degrade the bound in Theorem 4.1. This gives a possible explanation of why such
graph classifiers achieve an optimal balance between expressivity and generalization, resulting in
superior performance.

To formalize this, consider a classification task where the labels yG are strongly correlated with
the pseudometric F-TMDT+1 for a specific set of substructures F ⊂ G. Assume that all MPNNs
considered in this section have T layers. Let F ′ ⊊ F ⊊ F̃ ⊂ G be finite sets of graphs, where
F ′-MPNNs are less expressive than F-MPNNs, which in turn are less expressive than F̃-MPNNs.
Denote the corresponding hypothesis spaces as HF ′ ,HF , and HF̃ .

Our analysis shows that increasing expressivity to the level required to capture task-relevant features
(e.g., transitioning from F ′-MPNNs to F-MPNNs) generally preserves generalization. However,
further increasing expressivity beyond this necessary level (e.g., to F̃ -MPNNs) can degrade general-
ization significantly.

Theorem 5.1. Consider the setting above. Then, for any γ > 0 and α < 1
4 , with probability at least

1− δ over the sample of training labels ytr,

i) the test loss of any F ′-MPNN classifier h′, satisfies

L0
te(h

′) ≤ Lγ
tr(h

′) +O

(
MC(HF ′)ξ

1/D
F

N2α
tr γ1/Dδ

+ CξF

)
.

where C is described in Theorem 4.1 and ξF = F-TMDT+1(Gtr,Gte).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

101 102 103 104
0.8

0.9

1

TMD to training set

A
cc

ur
ac

y

BZR
#layers

1
3
5

101 102 103 104
0.75

0.8

0.85

0.9

TMD to training set

Mutagenicity

#layers
1
3
5

101 102 103 104
0.7

0.8

0.9

TMD to training set

NCI109
#layers

1
3
5

Figure 2: Accuracy of a GIN with 1, 3, and 5 layers versus TMD (log scale) to the training dataset.

ii) the test loss of any F-MPNN classifier h, satisfies

L0
te(h) ≤ Lγ

tr(h) +O

(
MC(HF)ξ

1/D
F

N2α
tr γ1/Dδ

+ CξF

)
.

iii) the test loss of any F̃-MPNN classifier h̃, satisfies

L0
te(h̃) ≤ Lγ

tr(h̃) +O

(
MC(HF̃)ξ

1/D

F̃
N2α

tr γ1/Dδ
+ CξF̃

)
.

where ξF̃ = F̃-TMDT+1(Gtr,Gte).

Theorem 5.1 highlights the critical role of structural alignment between training and test graphs in
determining generalization performance. In cases i) and ii), the same F -TMD governs the similarity
between training and test graphs, ensuring that the bound remains controlled. However, in case iii),
introducing a more expressive GNN that captures features beyond those captured by F-TMD (with
which the labels are strongly correlated) leads to a higher structural discrepancy ξF̃ ≥ ξF , see
Lemma G.1. These findings underscore the importance of aligning model expressivity with the
structural requirements of the task, as excessive expressivity can increase our generalization bound in
Theorem 4.1.

6 EXPERIMENTS

In this section, we evaluate GNNs on both synthetic and real-world graph datasets. We introduce two
tasks to evaluate how structural similarity between training and test graphs, as well as task-relevant
expressivity, impact classification performance and generalization. All experiments use 10-fold
cross-validation, and we report the mean accuracy or error. Additional experiments and tasks, details
and extended results are provided in Appendix I.

Table 1: Test accuracy on Erdős–Rényi
graphs for Task 1. All GNNs achieve a
train accuracy greater than 0.99. More
results in Table 4 in Appendix I.

Model Test Accuracy

LF-G 0.8450± 0.0135
L-G 0.8543± 0.0063
Sub-G 0.8623± 0.0058
F7-MPNN 0.9660± 0.0065
F4-MPNN 0.9793± 0.0068
F3-MPNN 0.8657± 0.0085
MPNN 0.8490± 0.0045

Task 1: Median-Based Labeling with Cycle Counts.
We generate 3,000 random graphs from Erdős–Rényi,
Barabási–Albert, and Stochastic Block Model distribu-
tions. The sum of 3-cycle and 4-cycle counts is computed
for each graph, and graphs with counts below the dataset’s
median receive label 0, while those above receive label
1. We evaluate multiple GNN variants, including stan-
dard MPNNs, Fl-MPNNs where Fl contains cycles up to
length l, Subgraph GNNs (Sub-G), Local 2-GNNs (L-G),
and Local Folklore 2-GNNs (LF-G). Model expressivity
increases strictly in this order. We report training and test
accuracies at both the final and the epoch with the best
validation performance. Results can be found in Table 1,
and more details and experiments in Appendix I.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 200 400 600 800
0.8

1

1.2

1.4

5 · 10−2

0.1

·104

TMD to training dataset

E
rr

or
B

ou
nd

Mutagenicity

E
m

pi
ri

ca
lE

rr
or

0 500 1,000
1

1.5

2

5 · 10−2

0.1

0.15

0.2

·104

TMD to training dataset

E
rr

or
B

ou
nd

NCI109

E
m

pi
ri

ca
lE

rr
or

Figure 3: Error-bound curves for Mutagenicity, and NCI109. Each plot shows our theoretical bound
(blue, left axis) and the empirical generalization error (red, right axis) as a function of TMD to the
training set. Shaded areas indicate ±1 standard deviation across 10 random splits.

Task 2: Real-World Datasets We evaluate our framework on six graph classification datasets from
the TUDataset (Morris et al., 2020a). Results on BZR, MUTAGENICITY, and NCI109 include:
Figure 2, which plots test accuracy versus ζ-TMD distance, and Figure 3, which compares our
bound to the observed generalization gap. Additional results on PROTEINS, AIDS, COX2, and
experiments on fixed encoders via molecular fingerprints (Gainza et al., 2019) appear in Appendix I.

Results and Discussion. In Task 1, GNNs that explicitly incorporate task-relevant cycle information,
in particular F4-MPNNs, outperform MPNNs and expressive GNNs like Local Folklore 2-GNNs.
Since the labels in Task 1 strongly correlated with F4-TMD, these results align with our theoretical
findings in Section 5: GNNs that effectively leverage features strongly correlated with the task
generalize better than more expressive models. On real-world datasets, we observe that classification
accuracy declines as test graphs become more distant from the training set, in line with our theoretical
insights in Theorem 4.1. Importantly, our bound closely aligns with the observed generalization
gap across these datasets. By explicitly capturing structure–label correlation, our framework yields
significantly tighter generalization bounds compared to standard PAC-Bayes bounds (Liao et al.,
2021), which are often orders of magnitude larger (e.g., on the order of 1016 compared to our 104).

7 CONCLUSION

We introduced a framework for analyzing GNN generalization in settings where graph labels correlate
with different pseudometrics. Our analysis provided generalization bounds that emphasize the role of
structural similarity between training and test data. We show that increasing expressivity does not
necessarily degrade generalization if it aligns with the task. However, both theoretical and empirical
results show that excessive expressivity can worsen generalization and predictive performance.

Empirical results confirm that GNNs whose embeddings align with task-relevant structures, i.e., those
that are proven to be Lipschitz continuous with respect to pseudometrics strongly correlated with
the labels, achieve better generalization. We show that performance degrades for test graphs that
are structurally distant from the training set, supporting our theoretical findings. Additionally, we
identify cases where increased expressivity can either improve or hinder generalization, depending
on task alignment, providing insights for GNN design.

Limitations. While our framework enables comparisons between F-MPNNs, in general the depen-
dence of our bound in Theorem 4.1 on different TMDs makes direct model comparisons challenging.
These bounds serve as qualitative guidelines rather than precise estimates, as they are not tight and
may not reflect practical performance. Moreover, the relevant pseudometric is often unknown and
possibly expensive to compute, limiting direct applicability and leaving the identification of suitable
metrics an open problem.

Future Work. Our generalization bounds improve with increased structural similarity between test
and train graphs. Future work could explore augmentation techniques that generate synthetic graphs
to improve this similarity, thereby boosting generalization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on theoretical analysis of GNNs and does not involve experiments on human
subjects, sensitive personal data, or applications with direct societal risks. The datasets referenced
are publicly available benchmark graphs, and no private or restricted data was used. Potential ethical
concerns related to misuse are minimal, as the contributions are mainly theoretical and methodological.
We explicitly acknowledge that LLMs were used only for polishing sentence clarity and grammar,
not for generating research ideas, proofs, or results.

REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure reproducibility of our results. All theoretical claims are
accompanied by rigorous proofs, presented in detail in the appendix. Assumptions underlying the
theorems are explicitly stated, and definitions are given in full to allow independent verification. In
addition, we provide open-source code to reproduce illustrative experiments and examples, which is
available anonymously at anonymous GitHub.

REFERENCES

Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The Surprising Power
of Graph Neural Networks with Random Node Initialization. In International Joint Conference on
Artificial Intelligence (IJCAI), pp. 2112–2118, 2021. doi: 10.24963/ijcai.2021/291.

Ralph Abboud, Radoslav Dimitrov, and Ismail Ilkan Ceylan. Shortest Path Networks for Graph
Property Prediction. In Learning on Graphs Conference (LoG), pp. 5:1–5:25, 2022.

László Babai, Paul Erdös, and Stanley M. Selkow. Random graph isomorphism. SIAM J. Comput., 9:
628–635, 1980. URL https://api.semanticscholar.org/CorpusID:9371805.

Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. Graph neural networks with
local graph parameters. In Advances in Neural Information Processing Systems (NeurIPS), pp.
25280–25293, 2021.

Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. Graph neural networks with
local graph parameters. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 25280–25293.
Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_
files/paper/2021/file/d4d8d1ac7e00e9105775a6b660dd3cbb-Paper.pdf.

Franka Bause, Fabian Jogl, Patrick Indri, Tamara Drucks, David Penz, Nils Kriege, Thomas Gärtner,
Pascal Welke, and Maximilian Thiessen. Maximally expressive gnns for outerplanar graphs. In
NeurIPS 2023 Workshop: New Frontiers in Graph Learning, 2023.

Maya Bechler-Speicher, Ido Amos, Ran Gilad-Bachrach, and Amir Globerson. Graph neural networks
use graphs when they shouldn’t, 2024. URL https://arxiv.org/abs/2309.04332.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant Subgraph Aggregation
Networks. In International Conference on Learning Representations (ICLR), 2021.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Liò, Guido Montufar, and
Michael M. Bronstein. Weisfeiler and lehman go cellular: CW networks. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/forum?id=uVPZCMVtsSG.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657–668, January 2023. ISSN 1939-3539. doi: 10.1109/
tpami.2022.3154319. URL http://dx.doi.org/10.1109/TPAMI.2022.3154319.

10

https://anonymous.4open.science/r/GenVsExp-D688/README.md
https://api.semanticscholar.org/CorpusID:9371805
https://proceedings.neurips.cc/paper_files/paper/2021/file/d4d8d1ac7e00e9105775a6b660dd3cbb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d4d8d1ac7e00e9105775a6b660dd3cbb-Paper.pdf
https://arxiv.org/abs/2309.04332
https://openreview.net/forum?id=uVPZCMVtsSG
http://dx.doi.org/10.1109/TPAMI.2022.3154319

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
Deep Learning: Going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017. ISSN 1558-0792. doi: 10.1109/MSP.2017.2693418.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel,
Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake
VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine learning
software: experiences from the scikit-learn project. In ECML PKDD Workshop: Languages for
Data Mining and Machine Learning, pp. 108–122, 2013.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 15868–15876, 2019.

Ching-Yao Chuang and Stefanie Jegelka. Tree mover’s distance: Bridging graph metrics and
stability of graph neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=Qh89hwiP5ZR.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

George Dasoulas, Ludovic Dos Santos, Kevin Scaman, and Aladin Virmaux. Coloring graph neural
networks for node disambiguation. In International Joint Conference on Artificial Intelligence
(IJCAI), pp. 2126–2132, 2020. ISBN 978-0-9992411-6-5.

Yair Davidson and Nadav Dym. On the hölder stability of multiset and graph neural networks, 2024.
URL https://arxiv.org/abs/2406.06984.

Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász meets Weisfeiler and Leman. In International
Colloquium on Automata, Languages, and Programming (ICALP), volume 107 of LIPIcs, pp. 40:1–
40:14, 2018. doi: 10.4230/LIPICS.ICALP.2018.40. URL https://doi.org/10.4230/
LIPIcs.ICALP.2018.40.

Radoslav Dimitrov, Zeyang Zhao, Ralph Abboud, and Ismail Ilkan Ceylan. Plane: Representation
learning over planar graphs. In Advances in Neural Information Processing Systems (NeurIPS),
2023. URL https://openreview.net/forum?id=u2RJ0I3o3j.

Simon S. Du, Kangcheng Hou, Barnabás Póczos, Ruslan Salakhutdinov, Ruosong Wang, and Keyulu
Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels, 2019. URL
https://arxiv.org/abs/1905.13192.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Billy Joe Franks, Christopher Morris, Ameya Velingker, and Floris Geerts. Weisfeiler-leman at the
margin: When more expressivity matters. In Forty-first International Conference on Machine
Learning, 2024.

Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding and
Extending Subgraph GNNs by Rethinking Their Symmetries. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 31376–31390, 2022.

Pablo Gainza, Freyr Sverrisson, F. Monti, Emanuele Rodolà, Davide Boscaini, Michael M. Bronstein,
and Bruno E. Correia. Deciphering interaction fingerprints from protein molecular surfaces
using geometric deep learning. Nature Methods, 17:184 – 192, 2019. URL https://api.
semanticscholar.org/CorpusID:209167696.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. Proceedings of the 37th International Conference on Machine Learn-
ing, 119:3419–3430, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
garg20c.html.

11

https://openreview.net/forum?id=Qh89hwiP5ZR
https://openreview.net/forum?id=Qh89hwiP5ZR
https://arxiv.org/abs/2406.06984
https://doi.org/10.4230/LIPIcs.ICALP.2018.40
https://doi.org/10.4230/LIPIcs.ICALP.2018.40
https://openreview.net/forum?id=u2RJ0I3o3j
https://arxiv.org/abs/1905.13192
https://api.semanticscholar.org/CorpusID:209167696
https://api.semanticscholar.org/CorpusID:209167696
https://proceedings.mlr.press/v119/garg20c.html
https://proceedings.mlr.press/v119/garg20c.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Floris Geerts and Juan L Reutter. Expressiveness and approximation properties of graph neural
networks. In International Conference on Learning Representations (ICLR), 2022. URL https:
//openreview.net/forum?id=wIzUeM3TAU.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Caterina Graziani, Tamara Drucks, Fabian Jogl, Monica Bianchini, franco scarselli, and Thomas
Gärtner. The expressive power of path-based graph neural networks. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
io1XSRtcO8.

Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function
using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United
States), 2008.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting power of
graph neural networks with I2-GNNs. In International Conference on Learning Representations
(ICLR), 2022.

Emily Jin, Michael Bronstein, Ismail Ilkan Ceylan, and Matthias Lanzinger. Homomorphism counts
for graph neural networks: All about that basis. In International Conference on Machine Learning
(ICML), 2024.

Fabian Jogl, Maximilian Thiessen, and Thomas Gärtner. Expressivity-preserving gnn simulation.
Advances in Neural Information Processing Systems, 36, 2024.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks. In
Advances in Neural Information Processing Systems (NeurIPS), pp. 7090–7099, 2019.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris. A survey on graph kernels. Applied
Network Science, 5:1–42, 2020.

J. B. Kruskal. Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29(2):
115–129, 1964.

Ron Levie. A graphon-signal analysis of graph neural networks. Advances in Neural Information
Processing Systems, 36, 2024.

Shouheng Li, Floris Geerts, Dongwoo Kim, and Qing Wang. Towards bridging generalization
and expressivity of graph neural networks, 2024. URL https://arxiv.org/abs/2410.
10051.

Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization bounds
for graph neural networks. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=TR-Nj6nFx42.

Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning. In
International Conference on Learning Representations (ICLR), 2022.

László Miklós Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum
Hungarica, 18:321–328, 1967. URL https://api.semanticscholar.org/CorpusID:
121512807.

12

https://openreview.net/forum?id=wIzUeM3TAU
https://openreview.net/forum?id=wIzUeM3TAU
https://openreview.net/forum?id=io1XSRtcO8
https://openreview.net/forum?id=io1XSRtcO8
https://arxiv.org/abs/2410.10051
https://arxiv.org/abs/2410.10051
https://openreview.net/forum?id=TR-Nj6nFx42
https://api.semanticscholar.org/CorpusID:121512807
https://api.semanticscholar.org/CorpusID:121512807

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiaqi Ma, Junwei Deng, and Qiaozhu Mei. Subgroup generalization and fairness of graph neural
networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?
id=68B1ezcffDc.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations (ICLR), 2018.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably Powerful Graph
Networks. In Advances in Neural Information Processing Systems (NeurIPS), pp. 2153–2164,
2019a.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In International Conference on Machine Learning (ICML), pp. 4363–4371, 2019b. URL
https://proceedings.mlr.press/v97/maron19a.html.

Sohir Maskey, Ron Levie, Yunseok Lee, and Gitta Kutyniok. Generalization analysis of message
passing neural networks on large random graphs. Advances in Neural Information Processing
Systems, 35, 2022a.

Sohir Maskey, Ali Parviz, Maximilian Thiessen, Hannes Stärk, Ylli Sadikaj, and Haggai Maron.
Generalized laplacian positional encoding for graph representation learning. In NeurIPS 2022
Workshop on Symmetry and Geometry in Neural Representations, 2022b.

Sohir Maskey, Gitta Kutyniok, and Ron Levie. Generalization bounds for message passing networks
on mixture of graphons. arXiv preprint arXiv:2404.03473, 2024.

Gaspard Michel, Giannis Nikolentzos, Johannes F. Lutzeyer, and Michalis Vazirgiannis. Path Neural
Networks: Expressive and Accurate Graph Neural Networks. In International Conference on
Machine Learning (ICML), pp. 24737–24755, 2023.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks.
In AAAI Conference on Artificial Intelligence (AAAI), pp. 4602–4609, 2019. doi: 10.1609/aaai.
v33i01.33014602.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs, 2020a. URL
https://arxiv.org/abs/2007.08663.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 21824–21840, 2020b.

Christopher Morris, Gaurav Rattan, Sandra Kiefer, and Siamak Ravanbakhsh. Speqnets: Sparsity-
aware permutation-equivariant graph networks. In International Conference on Machine Learning
(ICML), pp. 16017–16042. PMLR, 2022.

Christopher Morris, Floris Geerts, Jan Tönshoff, and Martin Grohe. WL meet VC. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp. 25275–25302. PMLR, 23–29 Jul 2023a.
URL https://proceedings.mlr.press/v202/morris23a.html.

Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M. Kriege, Martin Grohe,
Matthias Fey, and Karsten Borgwardt. Weisfeiler and Leman go Machine Learning: The Story
so far. Journal of Machine Learning Research, 24:333:1–333:59, 2023b. URL http://jmlr.
org/papers/v24/22-0240.html.

Christopher Morris, Fabrizio Frasca, Nadav Dym, Haggai Maron, İsmail İlkan Ceylan, Ron Levie,
Derek Lim, Michael Bronstein, Martin Grohe, and Stefanie Jegelka. Future directions in the theory
of graph machine learning. In International Conference on Machine Learning (ICML), 2024.

13

https://openreview.net/forum?id=68B1ezcffDc
https://openreview.net/forum?id=68B1ezcffDc
https://proceedings.mlr.press/v97/maron19a.html
https://arxiv.org/abs/2007.08663
https://proceedings.mlr.press/v202/morris23a.html
http://jmlr.org/papers/v24/22-0240.html
http://jmlr.org/papers/v24/22-0240.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian approach to
spectrally-normalized margin bounds for neural networks. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=Skz_WfbCZ.

Hoang Nguyen and Takanori Maehara. Graph homomorphism convolution. In International Con-
ference on Machine Learning (ICML), pp. 7306–7316, 2020. URL https://proceedings.
mlr.press/v119/nguyen20c.html.

Raffaele Paolino, Sohir Maskey, Pascal Welke, and Gitta Kutyniok. Weisfeiler and leman go loopy:
A new hierarchy for graph representational learning. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=9O2sVnEHor.

Pál András Papp and Roger Wattenhofer. A theoretical comparison of graph neural network extensions.
In International Conference on Machine Learning, pp. 17323–17345. PMLR, 2022.

Chendi Qian, Gaurav Rattan, Floris Geerts, Mathias Niepert, and Christopher Morris. Ordered
subgraph aggregation networks. Advances in Neural Information Processing Systems (NeurIPS),
pp. 21030–21045, 2022.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural networks
for combinatorial problems. Advances in Neural Information Processing Systems, 32, 2019.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In SIAM International Conference on Data Mining (SDM), pp. 333–341, 2021. doi: 10.
1137/1.9781611976700.38. URL https://doi.org/10.1137/1.9781611976700.38.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
Graph Neural Network Model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009. doi:
10.1109/TNN.2008.2005605.

Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik–chervonenkis dimension
of graph and recursive neural networks. Neural Networks, 108:248–259, 2018.

Joshua Southern, Yam Eitan, Guy Bar-Shalom, Michael Bronstein, Haggai Maron, and Fabrizio
Frasca. Balancing efficiency and expressiveness: Subgraph gnns with walk-based centrality, 2025.
URL https://arxiv.org/abs/2501.03113.

Gottfried Tinhofer. Graph isomorphism and theorems of birkhoff type. Computing, 36:285–300,
1986. URL https://api.semanticscholar.org/CorpusID:23977711.

Gottfried Tinhofer. A note on compact graphs. Discrete Applied Mathematics, 30:253–264, 1991.
URL https://api.semanticscholar.org/CorpusID:7530138.

Joel A. Tropp. An introduction to matrix concentration inequalities. Found. Trends Mach. Learn.,
8(1–2):1–230, may 2015. ISSN 1935-8237. doi: 10.1561/2200000048. URL https://doi.
org/10.1561/2200000048.

Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Walking out of the weisfeiler leman
hierarchy: Graph learning beyond message passing, 2023. URL https://arxiv.org/abs/
2102.08786.

Antonis Vasileiou, Ben Finkelshtein, Floris Geerts, Ron Levie, and Christopher Morris. Covered
forest: Fine-grained generalization analysis of graph neural networks, 2024. URL https:
//arxiv.org/abs/2412.07106.

Clément Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant graph
neural networks with structural message-passing. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 14143–14155, 2020.

Zhiyang Wang, Juan Cervino, and Alejandro Ribeiro. A manifold perspective on the statistical
generalization of graph neural networks. arXiv preprint arXiv:2406.05225, 2024.

14

https://openreview.net/forum?id=Skz_WfbCZ
https://proceedings.mlr.press/v119/nguyen20c.html
https://proceedings.mlr.press/v119/nguyen20c.html
https://openreview.net/forum?id=9O2sVnEHor
https://openreview.net/forum?id=9O2sVnEHor
https://doi.org/10.1137/1.9781611976700.38
https://arxiv.org/abs/2501.03113
https://api.semanticscholar.org/CorpusID:23977711
https://api.semanticscholar.org/CorpusID:7530138
https://doi.org/10.1561/2200000048
https://doi.org/10.1561/2200000048
https://arxiv.org/abs/2102.08786
https://arxiv.org/abs/2102.08786
https://arxiv.org/abs/2412.07106
https://arxiv.org/abs/2412.07106

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Boris Weisfeiler and A. A. Lehman. A Reduction of a Graph to a Canonical Form and an Algebra
Arising During This Reduction. Nauchno-Technicheskaya Informatsia, Ser. 2(N9):12–16, 1968.

Pascal Welke, Maximilian Thiessen, Fabian Jogl, and Thomas Gärtner. Expectation-complete graph
representations with homomorphisms. In International Conference on Machine Learning (ICML),
pp. 36910–36925, 2023. URL https://proceedings.mlr.press/v202/welke23a.
html.

Asiri Wijesinghe and Qing Wang. A new perspective on ”how graph neural networks go beyond
weisfeiler-lehman?”. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=uxgg9o7bI_3.

Huan Xu and Shie Mannor. Robustness and generalization. Machine Learning, 86(3):391–423, 2012.
doi: 10.1007/s10994-011-5268-1.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, Chao Chen, and Yusu Wang. Cycle invariant
positional encoding for graph representation learning. In Learning on Graphs Conference, pp. 4–1.
PMLR, 2024.

Jiaxuan You, Jonathan M. Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware Graph
Neural Networks. AAAI Conference on Artificial Intelligence (AAAI), pp. 10737–10745, 2021.
ISSN 2374-3468. doi: 10.1609/aaai.v35i12.17283.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of GNNs
via graph biconnectivity. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=r9hNv76KoT3.

Bohang Zhang, Jingchu Gai, Yiheng Du, Qiwei Ye, Di He, and Liwei Wang. Beyond Weisfeiler-
Lehman: A quantitative framework for GNN expressiveness. In International Conference on
Learning Representations (ICLR), 2024.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning requires rethinking generalization. In International Conference on Learning
Representations, 2017. URL https://openreview.net/forum?id=Sy8gdB9xx.

Markus Zopf. 1-wl expressiveness is (almost) all you need, 2022. URL https://arxiv.org/
abs/2202.10156.

15

https://proceedings.mlr.press/v202/welke23a.html
https://proceedings.mlr.press/v202/welke23a.html
https://openreview.net/forum?id=uxgg9o7bI_3
https://openreview.net/forum?id=r9hNv76KoT3
https://openreview.net/forum?id=Sy8gdB9xx
https://arxiv.org/abs/2202.10156
https://arxiv.org/abs/2202.10156

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

NOTATION

c (MLP) classifier
G A graph G = (V,E)
G The set of all graphs
N (v) Neighborhood of vertex v in graph G
xv Feature of node v
∥ · ∥2 Frobenius norm
∥ · ∥ Spectral norm
TDw Tree Distance weighted by function w
TMDT

w Tree Mover’s Distance at depth T with weight
w

T T
G Multiset of depth-T computation trees for graph

G
P Prior distribution in PAC-Bayes framework
Q Posterior distribution in PAC-Bayes framework
Lγ Expected margin loss with margin γ

L̂γ Empirical margin loss with margin γ
h Classifier function (e.g., a MPNN + MLP)
H Hypothesis space
E Graph embedding networks (e.g., a MPNN)
C Final classifer (e.g., a MLP)
Pr(·) Probability function
Gtr Training graphs
Gte Test graphs
TMDL

w (Gtr,Gte) Distance between Gtr and Gte

Ntr Number of training graphs
Nte Number of test graphs
b Maximal hidden dimension of classifier func-

tion
B Maximum L2-norm of input node features
d Maximum degree of all graphs in training or

test set
d(f) Depth of MLP f
T Number of MPNN layers
C Maximum Frobenius norm of any learnable

weight matrix
D Number of learnable weight matrices in hypoth-

esis space
g(t) Message function in layer t
f (t) Update function in layer t

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A DETAILED RELATED WORK

A.1 EXPRESSIVITY OF GNNS

Expressivity in standard neural networks is often associated with their ability to approximate functions
within a specific function class. For example, early works showed that MLPs can approximate
any continuous function (Cybenko, 1989; Hornik et al., 1989). In the context of GNNs, however,
expressivity is more commonly measured by the ability to distinguish between non-isomorphic graphs.
This focus stems from computational challenges associated with achieving universality in GNNs
and is further supported by the Stone-Weierstrass theorem: a GNN that can distinguish all graphs is
also capable of approximating any continuous function on graphs (Chen et al., 2019; Dasoulas et al.,
2020). Consequently, practical research often centers on characterizing the distinguishing power of
specific GNN architectures (Xu et al., 2019; Morris et al., 2023b).

Xu et al. (2019); Morris et al. (2019) established that the expressive power of standard MPNNs is
limited by the 1-WL test. To overcome this limitation, later works introduced higher-order GNNs
based on k-WL and its local variants (Maron et al., 2018; Morris et al., 2020b; Geerts & Reutter,
2022). These models are theoretically universal (Maron et al., 2019b; Keriven & Peyré, 2019),
meaning they can distinguish any non-isomorphic graphs and approximate continuous functions on
graphs. However, their expressivity comes at the cost of exponential time and space complexity
with respect to k, making them impractical for large-scale applications. To reduce this complexity,
Morris et al. (2020b); Zhang et al. (2024) proposed local k-WL variants, while Abboud et al. (2022)
introduced k-hop GNNs, which expand the receptive field to k-hop neighborhoods. Despite these
improvements, the computational complexity of these approaches remains exponential in k.

Subgraph-based models further enhance expressivity by decomposing graphs into subgraphs and
aggregating their information (Papp & Wattenhofer, 2022; Bevilacqua et al., 2021; You et al., 2021;
Frasca et al., 2022; Huang et al., 2022). Although these models are more expressive than 1-WL, their
power is bounded by 3-WL (Frasca et al., 2022). Moreover, subgraph GNNs increase computational
complexity significantly, often scaling quadratically or cubically with the number of nodes N , which
worsens the computational complexity of standard MPNNs by a factor of N .

Most subgraph-based GNNs associate a family of subgraphs with specific nodes or edges by either
deleting or marking nodes. However, other strategies for subgraph representation have also been
explored. For instance, Michel et al. (2023); Graziani et al. (2024); Paolino et al. (2024) focus
on paths to enhance expressivity, while Tönshoff et al. (2023) leverage random walks for similar
purposes.

Positional encodings (PEs) and structural encodings (SEs) have emerged as effective strategies to
enhance the expressivity of MPNNs. PEs augment node representations with additional information,
such as unique node identifiers (Vignac et al., 2020), random features (Abboud et al., 2021; Sato et al.,
2021), or spectral features like eigenvectors (Lim et al., 2022; Maskey et al., 2022b). In contrast,
SEs enrich MPNNs by embedding structural information about the graph. Examples of SEs include
subgraph counts (Bouritsas et al., 2023) and homomorphism counts (Nguyen & Maehara, 2020;
Barceló et al., 2021; Welke et al., 2023; Jin et al., 2024).

While PEs and SEs enhance the expressivity of MPNNs by modifying the initial node features,
another line of research focuses on using computational graphs that differ from the input graph. For
instance, Dimitrov et al. (2023) and Bause et al. (2023) propose graph transformations that enable
MPNNs to achieve universality for specific classes of graphs, such as (outer-)planar graphs. More
broadly, Jogl et al. (2024) demonstrate that many expressive GNN variants, including k-GNNs and
subgraph GNNs, can be simulated by applying suitable graph transformations followed by standard
message passing.

While incorporating SEs does not increase the forward-pass complexity of MPNNs, it introduces
significant preprocessing overhead. For instance, computing homomorphism counts for graphs with
treewidth k requires O(Nk) operations, where N is the number of nodes. This preprocessing com-
plexity becomes exponential in k, making it computationally prohibitive for achieving expressivity
beyond k-WL.

Most prior work evaluates GNN expressivity using the k-WL hierarchy, which provides a qualitative
measure of distinguishing power but does not quantify the specific substructures a GNN can encode.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

To address this gap, Zhang et al. (2024) proposed homomorphism counts as a quantitative measure
of expressivity. Building on the work of Lovász (1967), they demonstrated that homomorphism
counts are a complete graph invariant, meaning that two graphs are isomorphic if and only if their
homomorphism counts are identical. Tinhofer (1986; 1991) showed that 1-WL is equivalent to
counting homomorphisms from graphs with treewidth one, while Dell et al. (2018) extended this to
prove that k-WL corresponds to counting homomorphisms from graphs with treewidth k.

Recent studies have further explored the relationship between homomorphism counts and GNN
expressivity. For example, Barceló et al. (2021) showed that MPNNs augmented with homomorphism
counts as initial node features can count homomorphisms of trees augmented with the included
patterns. Similarly, Paolino et al. (2024) demonstrated that MPNNs enriched with specific path
information can count homomorphisms of cactus graphs.

A.2 GENERALIZATION BOUNDS FOR GNNS

The generalization capabilities of Graph Neural Networks (GNNs) have been studied from various
theoretical perspectives. Scarselli et al. (2018) provided an early understanding of GNN capacity by
deriving generalization bounds for implicitly defined GNNs based on their VC-dimension. Building
on this, Du et al. (2019) analyzed the generalization behavior of GNNs in the infinite-width limit
using the Graph Neural Tangent Kernel (GNTK), offering insights into their asymptotic performance
as network width grows unbounded.

Focusing on data-dependent approaches, Garg et al. (2020) and Liao et al. (2021) investigated the
generalization properties of specific MPNNs with sum aggregation. By employing Rademacher com-
plexity and PAC-Bayes methods, they established bounds that depend on the observed training data,
shedding light on how factors like data distribution and architectural choices influence generalization.

Levie (2024) introduced the graphon-signal cut distance, a metric for measuring similarity between
graph-signal distributions, and demonstrated that MPNNs are Lipschitz-continuous with respect
to this distance. This insight enabled the derivation of generalization bounds for MPNNs in the
context of arbitrary graph-signal distributions. However, these bounds exhibit a slow convergence
rate of O(1/ log log(

√
m)), where m is the number of training graphs. This slow rate arises from the

generality of their assumptions, which accommodate highly flexible graph-signal distributions.

The connection between GNN expressivity and generalization was further explored by Morris et al.
(2023a), who showed that the number of graphs distinguishable by the 1-WL test is directly linked to
the VC-dimension of GNNs. This result highlights the role of the Weisfeiler-Lehman hierarchy in
understanding both the combinatorial expressivity and theoretical capacity of GNNs. In the restricted
setting of linear separability, margin-based bounds have been proposed to partially bridge theory
and practice (Franks et al., 2024), yet our broader understanding of how expressivity influences
generalization remains incomplete.

Li et al. (2024) provide a novel perspective on the generalization behavior of graph neural networks
by decoupling the representation learning component from the classification step. Their framework
considers fixed graph encoders—such as MPNNs, k-WL, or homomorphism-based models—which
map graphs into an embedding space. A separate, typically parametric, classifier (e.g., a softmax-
based MLP) is then applied to these embeddings. This setting allows for a focused study of the
generalization ability of classifiers conditioned on precomputed graph representations, shifting
attention away from the learning dynamics of the GNN and toward the geometry and concentration
properties of the induced embedding distributions.

Their analysis formalizes how generalization depends on two key factors: intra-class concentration,
i.e., how tightly embeddings from the same class cluster, and inter-class separation, i.e., how well
embeddings of different classes are separated. These are quantified using the 1-Wasserstein dis-
tance between class-conditional embedding distributions. The main theoretical result establishes
a generalization bound on the classifier’s margin loss, showing it can be upper-bounded in terms
of these geometric quantities. Importantly, the bound incorporates the expressivity of the graph
encoder through a Lipschitz constant that quantifies how much the embedding distribution of a more
expressive encoder (bounding in distinguishing power) can distort the geometry of a less expressive
one (that is used for calculating the graph embeddings). This captures how changes in expressivity
influence intra-class concentration and inter-class separation, and thus directly affect generalization.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Although the results elegantly characterize the trade-off between expressivity and generalization,
a central limitation is that the graph encoders are fixed. They are fixed feature extractors, often
derived from CRAs or fixed GNN architectures. As such, the framework does not directly reflect the
behavior of trainable GNNs in practical deep learning pipelines, where representation learning and
classifier fitting are tightly coupled. Additionally, in contrast to our correlation-based analysis, the
generalization bounds in Li et al. (2024) require the existence of a fixed positive margin, which is
a strong assumption that may not hold in practice. Our framework is more general, as it does not
rely on margin separability and can quantify generalization even in the presence of label noise or
overlapping classes. Nonetheless, the insights are valuable: they reveal conditions under which more
expressive encoders can improve generalization—specifically, when expressivity increases intra-class
concentration without excessively harming inter-class separation. In this way, the paper offers a
principled theoretical basis for interpreting empirical phenomena observed in GNN performance
across datasets and model classes.

Related to our work, Maskey et al. (2022a; 2024) analyzed scenarios where graph labels are correlated
with random graph models, based on graphons. They demonstrated that MPNNs generalize better as
the size of the sampled graphs increases, since the statistical properties of larger graphs more closely
approximate those of the underlying random graph models.

The approach by Maskey et al. (2022a; 2024) is limited because it assumes labels are linked to
random graph models, where many specific assumptions are made about the underlying graphon
governing the data. These assumptions may not hold in practical scenarios, making their results less
general and potentially less applicable to real-world tasks. In contrast, our framework accommodates
arbitrary correlations between graph labels and structural features, as long as they can be described
by a Lipschitz-continuous distribution. This broader scope makes our method suitable for analyzing
a wide variety of graph datasets, including those where the graph generation process is not well
understood or where random graph model assumptions are too restrictive.

The work most closely related to ours is (Ma et al., 2021), which studies generalization in a semi-
supervised node classification setting. Their analysis considers a scenario where node labels are
correlated with features derived from the node’s local neighborhood and its attributes. Using a
PAC-Bayes approach that heavily inspired our work, they show that generalization improves when
the extracted features are similar between the training and test sets. However, their framework is
limited by the assumption of a fixed, non-learnable graph encoder, and their results do not generalize
to multi-graph settings or models with learnable parameters.

In contrast, our approach provides a general framework to analyze GNN generalization in settings
where graph labels are correlated with structural features. This is achieved by introducing a pseu-
dometric, such as the Tree Mover’s Distance, which captures structural differences between graphs.
Unlike prior works, our framework does not rely on restrictive assumptions about the underlying
graph distribution. Instead, we assume only that the labels are generated by a Lipschitz-continuous
probability distribution with respect to the pseudometric. This allows us to analyze a broad range of
tasks where the graph structure plays a critical role in determining labels. By explicitly connecting
generalization bounds to structural alignment between training and test graphs, our framework offers
a flexible and robust method to study GNN performance in diverse applications.

Our framework overcomes these limitations by supporting learnable GNN architectures and extending
naturally to multi-graph settings. This allows for a broader analysis of generalization, including
GNNs beyond 1-WL expressivity. Moreover, our approach bridges the gap between theory and
practice by providing insights into how the interplay between model capacity, structural similarity,
and feature alignment affects performance.

B SIMULATABLE COLOR REFINE ALGORITHMS

It is possible to represent many different GNNs as MPNNs without loss in expressivity. For this,
Jogl et al. (2024) developed the concept of simulation. Intuitively, a GNN with t > 0 layers can
be simulated if we can map its input domain to the set of graphs and achieve the same expressivity
with a t-layer MPNN on this adapted set of graphs. To generalize to different types of GNNs, one
represents GNNs ϕ as color refinement functions that iteratively refine a coloring on some relational
structure X .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Definition B.1. Let ϕ be a color update function. Let R be a mapping from the domain of ϕ to the set
of graphs.1 We consider two arbitrary relational structures from the domain of ϕ, say X and X ′. We
say ϕ can be strongly simulated under R if for every t ≥ 0 it holds that WLt(R(X)) = WLt(R(X ′))
implies that ϕt(X) = ϕt(X ′).

As an example, consider 3-WL from Section C.3. It can be seen as a color update function c
that operates on a set of labeled 3-tuples, i.e. in iteration t > 0 it refines the coloring of tuple
(v1, v2, v3) ∈ V 3 by utilizing the coloring c(t−1):

ct(v1,v2,v3) = HASH
(
ct−1
(v1,v2,v3)

,
(
Ct

1((v1, v2, v3)), . . . , C
t
3((v1, v2, v3))

))
where

Ct
1((v1, v2, v3)) = HASH

(
{{ct−1

(w,v2,v3)
| w ∈ V }}

)
,

Ct
2((v1, v2, v3)) = HASH

(
{{ct−1

(v1,w,v3)
| w ∈ V }}

)
,

Ct
3((v1, v2, v3)) = HASH

(
{{ct−1

(v1,v2,w) | w ∈ V }}
)
.

Instead of using 3-WL, we can create the graph G⊗3 with vertices (v1, v2, v3) ∈ V 3 and three types
of edges

E1 = ∪v1,v2,v3∈V {{(v1, v2, v3), (w, v2, v3)} | w ∈ V },
E2 = ∪v1,v2,v3∈V {{(v1, v2, v3), (v1, w, v3)} | w ∈ V },
E3 = ∪v1,v2,v3∈V {{(v1, v2, v3), (v1, v2, w)} | w ∈ V }.

Observe, that for a tuple (v1, v2, v3) the neighborhood Ej contains exactly those tuples as aggregated
in the definition of Cj . We can merge these three edge sets E1, E2, E3 into a single edge set E by
using edge features that encode from which of the three sets the edge originates. Such a transformation
R it allows for the strong simulation of 3-WL.

B.1 OTHER STRONGLY-SIMULATABLE ARCHITECTURES

A GNN/WL variant is strongly simulated when there exists a structure-to-graph encoding R such
that applying R to the input and running a depth–t MPNN reproduces—layer by layer—the colours
(or hidden states) produced by the original depth–t model (Definition B.1). Table 3 summarises some
architectures that admit such a simulation and sketches the key transformation behind R; full proofs
are in (Jogl et al., 2024).

C TREE MOVER’S DISTANCE

We summarize some important results from Chuang & Jegelka (2022) and Davidson & Dym (2024).
We first start with the definition of the tree mover’s distance which provides us with a tool to compare
two graphs based on their computational trees quantitatively.

C.1 TREE MOVER’S DISTANCE

The definition and notations in this section largely follow (Chuang & Jegelka, 2022).

Definition C.1. Let G = (V,E) be a graph. We define the depth-T computational tree TT
v of node v

recursively by connecting the neighbors of the leaf nodes of TT−1
v to the tree. We set T 1

v := v as
the single node tree without any edges. The multiset of depth-T computation trees defined by G is
denoted by T T

G := {{TT
v }}v∈V . Additionally, for a tree T with root r, we denote by Tr the multiset

of subtrees that root at the descendants of r.

In other words, the depth-T computational tree TT
v of node v is the 1-WL computational tree of node

v after T − 1 iterations. To compare two multisets of computational tree we need to augments trees.

1Jogl et al. (2024) introduces some additional restrictions on R that we omit for the sake of simplicity.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Model / Algorithm Graph transformation R(G)

VVC-GNN (Sato et al., 2019) For a given port ordering, write on each edge direction the port of the source and target node.

k-WL / k-GNN (Morris et al., 2019) Compute all k-tuples of nodes. Create a node for each k-tuple and encode the isomorphism
class of each tuple as a node feature. Connect tuples differing in one position encoding this
postion as an edge feature.

δ-k-(L)WL / GNN (Morris et al.,
2020b)

Similar as the k-tuple graph above: when connecting tuples add a local/global flag encoding
whether the nodes that differ in the tuple form an edge in the original graph. For δ-k-LWL,
only connect tuples when these nodes do form an edge.

(k, s)-LWL / SpeqNet (Morris
et al., 2022)

Similar as δ-k-WL above: keep only tuple-vertices whose induced subgraph has ≤ s
components.

GSN-e / GSN-v (Bouritsas et al.,
2023)

For pre-computed subgraph pattern counts, augment original node and edge features with
these counts.

DS-WL / DS-GNN (Bevilacqua
et al., 2021)

For a given policy π to generate subgraphs, create a graph by taking the disjoint union of all
extracted subgraphs π(G).

k-OSWL / OSAN (Qian et al.,
2022)

For each k tuple of vertices in the graph (“k-ordered subgraphs”), create a copy of all vertices
in the original graph and use node features to encode the atomic type of that node in this
ordered subgraph. In each subgraph, either link all vertices or only neighbors in the original
graph.

Mk-GNN (Papp & Wattenhofer,
2022)

For a given set of marked nodes, on each edge encode whether the target node is marked or
unmarked.

GMP (Wijesinghe & Wang, 2022) Attach structural coefficients as node or edge features.

Shortest-Path Nets (Abboud et al.,
2022)

For i ∈ 1, . . . , k add an edge between every pair of nodes with shortest path distance i and
encode i as a feature on that edge.

Generalised-Distance WL (Zhang
et al., 2023)

For a given distance metric d and graph G, add an edge between every pair of nodes u, v
and encode the metric dG(u, v) as a feature on this edge.

Table 3: GNN families whose per-layer updates can be exactly reproduced by a 1-WL–equivalent
MPNN on the transformed graph R(G).

Definition C.2. A blank tree T∅ is defined as a tree graph that contains a single node and no edge,
where the node feature is the zero vector 0p ∈ Rp. We define Tn

∅ as the multiset of n blank trees.
Definition C.3. Let Tv, Tu be two multisets of trees. We define ρ as function that augments a pair of
trees with blank trees as follows:

ρ : (Tv, Tu) 7→
(
Tv ∪ T

max(|Tu|−|Tv|,0)
∅ , Tu ∪ T

max(|Tv|−|Tu|,0)
∅

)
. (5)

Definition C.4. Let w : N → R+ be a depth-dependent weighting function. For two trees Ta, Tb, we
define the tree distance TDw(Ta, Tb) between Ta and Tb recursively as

TDw(Ta, Tb) :=

{
∥xa − xb∥+ w(T) · OTTDw

(ρ(Ta, Tb)) if T > 1

∥xa − xb∥ otherwise,
(6)

where T = max(Depth(Ta),Depth(Tb)) and

We note that the optimal transport OT with respect to some metric d between two multisets x =
{{x1, . . . , xn}} and y = {{y1, . . . , yn}} of the same size n is defined via

OTd (x,y) = min
σ

∑
i

d
(
xi, yσ(i)

)
. (7)

Definition C.5. Let G,H ∈ G, w : N → R+, and T ≥ 0. The tree mover’s distance between G and
H is defined as

TMDT
w(G,H) = OTTDw

(
ρ(T T

G , T T
H)
)
, (8)

where T T
G and T T

H are multisets of the depth-T computation trees of graphs G and H , respectively.

We note that, for simplicity, we omit the weighting function w the corresponding subscript in the
definition of TMDT

w and simply write TMDT
w in the main part of this manuscript.

C.2 PROOFS IN SECTION 3

Proof of Proposition 3.2. By (Chuang & Jegelka, 2022, Theorem 6), TMDt
w is a pseudometric. It is

easy to see that ζ-TMDt
w is also a pseudometric. For example, given G,H ∈ G, we have

ζ-TMD(G,H) = TMD(Rζ(G), Rζ(H))

= TMD(Rζ(H), Rζ(G))

= ζ-TMD(H,G),

(9)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

showing the symmetry of ζ-TMDt
w.

Proof of Proposition 3.3. By (Chuang & Jegelka, 2022, Theorem 7), if two graphs G′ and H ′ are
determined to be non-isomorphic in WL iteration T and w(t) > 0 for all 0 < t ≤ T + 1, then
TMDT+1

w (G′, H ′) > 0.

If ζ distinguishes G and H after T iterations, then WL determines Rζ(G) and Rζ(H) to be non-
isomorphic, i.e., TMDT+1

w (Rζ(G), Rζ(H)) > 0. Then,

ζ-TMDT+1
w (G,H) > 0.

We reformulate and prove a more general version of Theorem 3.4, where we consider general message
functions on multisets that are Lipschitz continuous on the multiset domain, and update function that
are Lipschitz on the standard Euclidean latent space. This follows the approach in (Davidson & Dym,
2024), where a similar version was proved in Theorem F.2. in their manuscript. However, in contrast,
we calculate the explicit constant of the Lipschitz constant which we will need for later proofs.

Theorem 3.4 then follows as a corollary as permutations-invariant aggregation functions composed of
a MLP followed by sum aggregation are Lipschitz continuous on multisets.
Lemma C.6. Consider a MPNN of the form

x(t)
v = f (t)

(
x(t−1)
v , g(t)

(
{{x(t−1)

u , }}u∈N (v)

))
(10)

with message and update functions
(
g(t), f (t)

)T
t=1

. Consider also a global readout function e of the
form

h(G) = c
(
{{x(T)

v }}v∈V (G)

)
.

Suppose that for all t = 1, . . . , T , the message and update functions are Lipschitz continuous with
Lipschitz constants bounded by Lg(t) and Lf(t) , respectively. Suppose that the readout function is
Lipschitz continuous with Lipschitz constants bounded by Lc. Then, for all layers t = 0, 1, . . . , T
and for all pairs of graphs G,H ∈ G and all pairs of nodes u ∈ V (G) and v ∈ V (H), we have∥∥∥x(t)

u − x(t)
v

∥∥∥ ≤

(
t∏

t′=1

Lg(t′)Lf(t′)

)
2tTD

(
T (t+1)
u , T (t+1)

v

)
. (11)

For the global output, we have

∥h(G)− h(H)∥ ≤ Lc

(
T∏

t=1

Lg(t)Lf(t)

)
2T TMDT+1 (G,H) . (12)

Proof. Without loss of generality, suppose that Lf(t) , Lg(t) ≥ 1. We show Equation (11) by induction.
For t = 0 Equation (11) holds trivially.

Step 1: Bound the difference between message function outputs.∥∥∥g(t) ({{x(t−1)
s }}s∈N (u)

)
− g(t)

(
{{x(t−1)

s′ }}s′∈N (u)

)∥∥∥
≤ Lg(t)WD∥·∥

(
{{x(t−1)

s }}s∈N (v), {{x
(t−1)
s′ }}s′∈N (u)

)
= Lg(t) min

τ∈Sn

∑
u

∥∥∥x(t−1)
s − x

(t−1)
τ(s)

∥∥∥
≤ Lg(t)

∑
s

∥∥∥x(t−1)
s − x

(t−1)
τ∗(s)

∥∥∥
= Lg(t)

(
t−1∏
t′=1

Lg(t′)Lf(t′)

)
2t−1

∑
s

TD
(
T (t)
s , T

(t)
τ∗(s)

)
= Lg(t)

(
t−1∏
t′=1

Lg(t′)Lf(t′)

)
2t−1WDTD

(
{{T (t)

s }}s∈N (v), {{T
(t)
s′ }}s′∈N (u)

)
,

(13)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where τ∗ is the optimal permutation in the definition of WDTD

(
{{T (t)

s }}s∈N (v), {{T
(t)
s′ }}s′∈N (u)

)
.

Step 2: Bound the difference between update function outputs.∥∥∥x(t)
u − x(t)

v

∥∥∥
=
∥∥∥f (t)

(
x(t−1)
s , g(t)

(
{{x(t−1)

s }}s∈N (u)

))
− f (t)

(
x(t−1)
v , g(t)

(
{{x(t−1)

s′ }}s′∈N (v)

))∥∥∥
≤ Lf(t)

(∥∥∥x(t−1)
u − x(t−1)

v

∥∥∥+ ∥∥∥g(t) ({{x(t−1)
s }}s∈N (u)

)
− g(t)

(
{{x(t−1)

s′ }}s′∈N (v)

)∥∥∥)
≤ Lf(t)

(∥∥∥x(t−1)
u − x(t−1)

v

∥∥∥+ Lg(t)

(
t−1∏
t′=1

Lg(t′)Lf(t′)

)
2t−1WDTD

(
{{T (t)

s }}s∈N (v), {{T
(t)
s′ }}s′∈N (u)

))

≤ Lf(t)

((
t−1∏
t′=1

Lg(t′)Lf(t′)

)
2t−1TD

(
T (t)
u , T (t)

v

)
+ Lg(t)

(
t−1∏
t′=1

Lg(t′)Lf(t′)

)
2t−1WDTD

(
{{T (t)

s }}s∈N (v), {{T
(t)
s′ }}s′∈N (u)

))

≤

(
t∏

t′=1

Lg(t′)Lf(t′)

)
2tTD

(
T (t+1)
v , T (t+1)

u

)
.

(14)

This finishes the proof of the first claim.

Step 3: Bound the different between global outputs. The second claim follows by calculating,

∥h(G)− h(H)∥ =
∥∥∥c({{x(T)

u }}u∈V (G)

)
− c

(
{{x(T)

v }}v∈V (G)

)∥∥∥
≤ LcWD∥·∥({{x(T)

u }}u∈V (G), {{x(T)
v }}v∈V (G))

= Lc min
τ

∑
s

∥x(T)
s − x

(T)
τ(s)∥

≤ Lc

(
T∏

t′=1

Lg(t′)Lf(t′)

)
2T
∑
s

TD
(
T (T+1)
s , T

(T+1)
τ∗(s)

)
= Lc

(
T∏

t′=1

Lg(t′)Lf(t′)

)
2T TMDT+1 (G,H) ,

(15)

where τ∗ is the optimal permutation in the definition of TMDT+1 (G,H).

We now consider the case where Lipschitz continuous functions on multisets are implemented via
sum aggregation, followed by Lipschitz continuous functions on the Euclidean domain. This includes
scenarios where the message, update, and readout functions are MLPs with Lipschitz continuous
activation functions, such as ReLU.

Corollary C.7. Consider a MPNN of the form

x(t+1)
v = f (t+1)

x(t)
v ,

∑
u∈N (v)

g(t+1)
(
x(t)
u

) ,

with message and update functions
(
g(t), f (t)

)T
t=1

. Consider also a global readout function e of the
form

h(G) = e

 ∑
v∈V (G)

x(T)
v

 .

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Suppose that for all t = 1, . . . , T , the message and update functions are Lipschitz continuous with
Lipschitz constants bounded by Lg(t) and Lf(t) , respectively. Suppose that the readout function is
Lipschitz continuous with Lipschitz constants bounded by Lc. Then, for all layers t = 0, 1, . . . , T
and for all pairs of graphs G,H ∈ G and all pairs of nodes u ∈ V (G) and v ∈ V (H), we have∥∥∥x(t)

u − x(t)
v

∥∥∥ ≤

(
t∏

t′=1

Lg(t′)Lf(t′)

)
2tTD

(
T (t+1)
u , T (t+1)

v

)
. (16)

For the global output, we have

∥h(G)− h(G)∥ ≤ Lc

(
T∏

t=1

Lg(t)Lf(t)

)
2T TMDT+1 (G,H) .

Proof. This follows directly from Lemma C.6, since for any Lipschitz continuous function f with
Lipschitz constant Lf , the induced multiset function f̃ : X 7→

∑
x∈X f(x) remains Lipschitz

continuous with a Lipschitz constant bounded by Lf .

Theorem C.8. Let ζ be a strongly simulatable CRA, and let h : G → RK be a ζ-MPNN with T
layers, where the message and update functions are Lipschitz continuous with Lipschitz constants
bounded by Lg(t) and Lf(t) , respectively. Suppose h includes a global sum pooling layer followed by
a Lipschitz continuous classifier c with Lipschitz constant Lc. Then, for any graphs G and H ,

∥h(G)− h(H)∥ ≤ L · ζ-TMDT+1(G,H),

where L = Lc2
T
∏T

t=1 Lf(t)Lg(t) .

Proof. Let h′ be the underlying MPNN of h. The proof of theorem follows from Corollary C.7 by

∥h(G)− h(G)∥ =
∥∥h′ (Rζ(G)

)
− h′ (Rζ(H)

)∥∥
≤ Lc

(
T∏

t=1

Lg(t)Lf(t)

)
2T TMDT+1

(
Rζ(G), Rζ(H)

)
= Lc

(
T∏

t=1

Lg(t)Lf(t)

)
2T ζ-TMDT+1 (G,H) .

C.3 EXAMPLE II: k-GNNS

The k-Weisfeiler-Leman (k-WL) test enhances the expressive power of the 1-WL test by considering
interactions between k-tuples of nodes. To strongly simulate k-WL, a product graph G⊗k is con-
structed, where each node represents a k-tuple of nodes from the original graph G, and edges are
defined based on the adjacency relationships in G.

Similarly, k-MPNNs operate directly on the product graph G⊗k, achieving the same level of expres-
sivity as the k-WL.
Corollary C.9. Let h be an k-MPNN with T layers. Then, there exists a constant L such that for any
graphs G and H ,

∥h(G)− h(H)∥ ≤ L · k-TMDT+1(G,H). (17)

D GRAPH CLASSIFICATION SETTING

We consider a classification problem with K classes over a fixed set of training graphs Gtr and test
graphs Gte. Each graph G is equipped with node features x, and we assume there exists a constant
D > 0 such that ∥xi∥ ≤ D for every node i ∈ V (G) and every G ∈ Gtr ∪ Gte. Let Ntr = |Gtr|
and Nte = |Gte|. Each graph G has a label y sampled from an unknown distribution p. Moreover,
we assume that graphs closer in a given pseudometric pm are more likely to share the same label.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Concretely, for each class k ∈ {1, . . . ,K}, there is a Lipschitz continuous function ηk (with respect
to some pseudometric pm) such that

Pr
(
y = k

∣∣G) = ηk(G),

and we denote by C := maxk Lip(ηk) the maximum Lipschitz constant among all {ηk}. Let ξ be
an upper bound on the distance (with respect to pm) between any training graph in Gtr and any test
graph in Gte.

We now introduce a PAC-Bayes framework to derive a generalization bound for classifiers under this
setting. We consider two different setups for learning on graphs:

1. ζ-MPNNs: Let ζ be a strongly simulatable color-refinement algorithm (see Definition B.1).
A ζ-MPNN has a fixed depth T and a final MLP e as the classifier. Each layer t ∈
{1, . . . , T} has message and update functions denoted by g(t) and f (t), each with fixed
depths d(g(t)) and d(f (t)), respectively. The corresponding weight matrices are written

as {w(g(t), s)}d(g
(t))

s=1 and {w(f (t), s)}d(f
(t))

s=1 . The final MLP classifier e has parameters
{w(e, s)}d(e)s=1 . Define b to be the maximum hidden dimension across these modules, and let
Hζ be the class of all such ζ-MPNN classifiers.

2. MLPs on non-learnable graph embeddings: Here, the final MLP classifier c has the same
notations for its parameters as above, and we denote the hypothesis set by Hlatent.

We assume that every non-linearities in the MLPs are Lipschitz continuous and homogeneous.

Finally, we adapt the following assumption from Ma et al. (2021).
Assumption D.1 (Assumption on Concentrated Expected Loss Difference.). Let P be a distribution
over H obtained by sampling the (vectorized) trainable weight matrices from N (0, σ2I), with

σ2 ≤
(
γ/(8ξ)

)2
/D

2 b
(
λN−α

tr + ln(2 bD)
) .

For any classifier h ∈ H with model parameters {wj}j , define Th := maxj
∥∥wj

∥∥
2
. Assume there

exists an 0 < α < 1
4 such that

Prh∼P

(
Lγ/4
te (h) − Lγ/2

tr (h) > N−α
tr + cK ξ

∣∣ TD
h ξ > γ

8

)
≤ e−N2α

tr .

This assumption posits that when the model parameters h sampled from P do not exceed a certain
norm threshold (i.e., TD

h ξ ≤ γ
8) and the number of training samples Ntr is sufficiently large, then the

expected margin loss on the test set will not exceed that on the training set by more than N−α
tr + cKξ.

Informally, once the training set grows large enough (and model weights are not too large), the test
performance cannot deviate significantly from the training performance. This property becomes
trivially true if all samples in Gtr and Gte are i.i.d. since Lγ/2

te − Lγ/2
tr ≤ 0 in that case.

E PROOFS OF THE RESULTS SECTION 4

In this section, we provide detailed proofs of the theoretical results presented in the Section 4.

We note that the proof of Theorem 4.1 follows the proof of Theorem 3 in (Ma et al., 2021), carefully
adapted for graph classification tasks and learnable graph encoders.

Specifically, the proof leverages the PAC-Bayes framework, properties of the chosen pseudometric,
and structural constraints on the hypothesis space. For clarity, we decompose it into a series of steps,
each contributing to the final result.

In Appendix E.1, we present intermediate results that are independent of the choice of pseudometric
and hypothesis space. To emphasize this generality, we denote the pseudometric by pm and the
hypothesis space by H. This ensures that the results in Appendix E.1 apply regardless of whether the
pseudometric is defined in the graph space or latent space, and whether the classifier is an end-to-
end learnable GNN or a deterministic graph encoder followed by a learnable MLP classifier. This

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

approach allows us to establish in Appendix E.2 the generalization bound for end-to-end learnable
GNNs, and in the following subsection, the bound for graph classifiers with fixed encoders–both
derived from the results in Appendix E.1.

We note that if pm is defined on G, the corresponding classifier h : G → {1, . . . ,K} is assumed to
be Lipschitz with respect to pm. If instead pm is defined on Rb, the classifier h : Rb → {1, . . . ,K},
typically an MLP, is assumed to be Lipschitz with respect to pm. In the latter case, classification is
performed via h ◦ e(G), where e : G → Rb is a deterministic graph embedding network.

E.1 PRELIMINARIES FOR THE PROOFS IN SECTION 4

Step 1: Deterministic Bound via PAC-Bayes We begin by establishing a deterministic bound
on the test loss in terms of the training loss and the Kullback-Leibler (KL) divergence between the
posterior and prior distributions over the hypothesis space H.

Lemma E.1. Let h̃ ∈ H be any classifier and let P be a prior distribution on H independent of the
training data. For any λ > 0 and γ ≥ 0, with probability at least 1− δ over the training sample ytr,
for any posterior distribution Q on H satisfying

Ph∼Q

(
max

G∈Gtr∪Gte

∥h(G)− h̃(G)∥∞ <
γ

8

)
≥ 1

2
,

the following bound holds:

L0
te(h̃) ≤ Lγ

tr(h̃) +
1

λ

(
2 (DKL(Q∥P) + 1) + ln

1

δ
+

λ2

4Ntr
+D

γ/2
te,tr(P ;λ)

)
, (18)

where D
γ/2
te,tr(P ;λ) = lnEh∼P exp

(
λ
(
Lγ/2
te (h)− Lγ

tr(h)
))

.

Proof of Lemma E.1. The proof adapts Theorem 2 from Ma et al. (2021) from the node to the graph
classification setting. We present the proof for completeness.

First, define a subset Hh̃ ⊂ H as:

Hh̃ =

{
h ∈ H | max

G∈Gtr∪Gte

∥h(G)− h̃(G)∥∞ ≤ γ

8

}
. (19)

Using this subset Hh̃, define the modified distribution Q′ over Hh̃ as:

Q′(h) =

{
1

Ph∼Q(h∈Hh̃)
Q(h), if h ∈ Hh̃,

0, otherwise
(20)

We aim to show
L0
te(h̃) ≤ Lγ/4

te (h) and L̂γ/2
tr (h) ≤ L̂γ

tr(h̃). (21)

The first inequality holds since

L0
te(h̃)− Lγ/4

te (h)

= Eyi∼Pr(y|Gi),Gi∈Gte

[
L̂γ
te(h̃)

]
− Eyi∼Pr(y|gi),Gi∈Gte

[
L̂γ/4
t (h)

]
= Eyi∼Pr(y|Gi),Gi∈Gte

[
1

Nte

∑
Gi∈Gte

1

[
h̃(Gi)[yi] ≤

(
0 + max

k ̸=yGi

h(Gi)[k]

)]]

− Eyi∼Pr(y|Gi),Gi∈Gte

[
1

Nte

∑
Gi∈Gte

1

[
h(Gi)[yi] ≤

(
γ/4 + max

k ̸=yGi

h(Gi)[k]

)]]

= Eyi∼Pr(y|Gi),Gi∈Gte

[
1

Nte

∑
Gi∈Gte

1

[
h̃(Gi)[yi] ≤

(
0 + max

k ̸=yGi

h̃(Gi)[k]

)]

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

−1
[
h(Gi)[yi] ≤

(
γ/4 + max

k ̸=yGi

h(Gi)[k]

)]]
,

i.e., it remains to show that if h̃(Gi)[yi] ≤
(
0 + maxk ̸=yGi

h(Gi)[k]
)

holds, then also h(Gi)[yi] ≤(
γ/4 + maxk ̸=yGi

h(Gi)[k]
)
. This is clear by Equation (19),

h(Gi)[yi] ≤ γ/8 + h̃(Gi)[yi]

≤ γ/8 + max
k ̸=yGi

h̃(Gi)[k]

≤ γ/4 + max
k ̸=yGi

h(Gi)[k].

Similarly, one can prove the second inequality in Equation (21).

Therefore, with probability at least 1− δ over the samples ytr, we get

Lte
0 ≤ Eh∼Q′Lγ/4

te (h)

≤ Eh∼Q′L̂γ/2
tr (h) +

1

λ

(
DKL(Q

′||P) + ln
1

δ
+

λ2

4Ntr
+D

γ/2
te,tr(P ;λ)

)
≤ L̂γ

tr(h̃) +
1

λ

(
DKL(Q

′||P) + ln
1

δ
+

λ2

4Ntr
+D

γ/2
te,tr(P ;λ)

)
.

The second inequality applies Theorem 1 from Ma et al. (2021), while the first and last inequalities
follow directly from (21) and the definitions of Hh̃ and Q′. The remaining steps align with the proof
of Theorem 2 from Ma et al. (2021).

Step 2: Bounding the Discrepancy Term Next, we bound the term D
γ/2
te,tr(P ;λ) from Equa-

tion (18) in Lemma E.1, which captures the difference in expected losses between the test and training
distributions under the prior P . We begin by bounding Lγ/2

te (h)− Lγ
tr(h) in this step.

Lemma E.2. Let h ∈ H be any classifier with Lipschitz constant L with respect to the pseudometric
pm. For any γ ≥ 0, if Lξ ≤ γ

4 , then

Lγ/2
te (h)− Lγ

tr(h) ≤ CKξ,

where K is the number of classes and C is the maximum Lipschitz constant of the functions ηk.

Proof of Lemma E.2. We set

Lγ(G, y) := 1

[
h(G)[y] ≤ γ +max

k ̸=y
h(G)[k]

]
,

where h(G)[k] denotes the output score for class k.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Then, we can write

Lγ/2
te (h)− Lγ

tr(h)

= Eyte

 ∑
Gj∈Gte

1

Nte
Lγ/2(Gj , yj)

− Eytr

[∑
Gi∈Gtr

1

Ntr
Lγ(Gi, yi)

]

=
1

Nte

∑
Gj∈Gte

K∑
k=1

ηk(Gj)Lγ/2(Gj , k)−
1

Ntr

∑
Gi∈Gtr

K∑
k=1

ηk(Gi)Lγ(Gi, k)

=
1

Nte

1

Ntr

∑
Gi∈Gtr

∑
Gj∈Gte

K∑
k=1

ηk(Gj)Lγ/2(Gj , k)−
1

Ntr

1

Nte

∑
Gj∈Gte

∑
Gi∈Gtr

K∑
k=1

ηk(Gi)Lγ(Gi, k)

=
1

NteNtr

∑
Gi∈Gtr

∑
Gj∈Gte

K∑
k=1

(
ηk(Gj)Lγ/2(Gj , k)− ηk(Gi)Lγ(Gi, k)

)

=
1

NteNtr

∑
Gi∈Gtr

∑
Gj∈Gte

K∑
k=1

(
ηk(Gj)Lγ/2(Gj , k)− ηk(Gj)Lγ(Gi, k)

)
+ (ηk(Gj)Lγ(Gi, k)− ηk(Gi)Lγ(Gi, k))

=
1

NteNtr

∑
Gi∈Gtr

∑
Gj∈Gte

K∑
k=1

ηk(Gj)
(
Lγ/2(Gj , k)− Lγ(Gi, k)

)
+ Lγ(Gi, k) (ηk(Gj)− ηk(Gi))

≤ 1

NteNtr

∑
Gi∈Gtr

∑
Gj∈Gte

K∑
k=1

(
Lγ/2(Gj , k)− Lγ(Gi, k)

)
+ (ηk(Gj)− ηk(Gi)) .

(22)
The last inequality holds since Lγ and ηk are bounded by 1. We have, by assumption on the probability
distribution,

ηk(Gj)− ηk(Gi) ≤ C · pm (Gj , Gi) ≤ Cξ. (23)

Furthermore, by assumption,

∥h(Gi)− h(Gj)∥∞ ≤ L · pm (Gj , Gi) ≤ Lξ ≤ γ

4
. (24)

Then, for any k = 1, . . . ,K,

Lγ/2 (h(Gj), k) ≤ Lγ (h(Gi), k) . (25)

This is true since both Lγ/2 (h(Gj), k) and Lγ (h(Gi), k) are 0-1-valued. If Lγ/2 (h(Gj), k) = 1,
we have by Equation (24),

h(Gi)[k] ≤ γ/4 + h(Gi)[k]

≤ γ/4 + γ/2 + max
l=1,...,K

h(Gj)[l]

≤ γ/4 + γ/2 + γ/4 + max
l=1,...,K

h(Gi)[l]

= γ + max
l=1,...,K

h(Gi)[l],

i.e., Lγ (h(Gi), k) = 1 as well.

Finally, we continue with the calculation in Equation (22),

Lγ/2
te (h)− Lγ

tr(h) ≤
1

NteNtr

∑
Gi∈Gtr

∑
Gj∈Gte

K∑
k=1

(
Lγ/2(Gj , k)− Lγ(Gi, k)

)
+ (ηk(Gj)− ηk(Gi))

≤ 1

Ntr

∑
Gi∈Gtr

1

Nte

∑
Gj∈Gte

K∑
k=1

(0 + Cξ)

= CKξ,
(26)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

where the second inequality holds by Equation (23) and Equation (25).

Step 3: Bounding the Discrepancy Term D
γ/2
tr,te(P ;λ).

Lemma E.3. Let α > 0. For any 0 < λ ≤ N2α and γ ≥ 0, assume the “prior” P on H is defined by
sampling the vectorized trainable weight matrices from N (0, σ2I) for some σ2 ≤ (γ/8m)2/D

2b(λN−α
tr +ln 2bD)

.
We have

D
γ/2
tr,te(P ;λ) ≤ ln 3 + λCKξ, (27)

where D
γ/2
te,tr(P ;λ) = lnEh∼P e

λ
(
Lγ/2

te (h)−Lγ
tr(h)

)
.

Proof. First, set Th := maxj=1,...,D ∥wj∥2. We prove this lemma by partitioning H into two events:
one with high probability, where the spectral norms of the model parameters satisfy the conditions in
Lemma E.2, and its complement. For the latter event, we use Assumption D.1.

For any j = 1, . . . , D, we have, by (Tropp, 2015), for any t > 0,

Pr (∥wj∥2 ≥ t) ≤ 2be−
t2

2bσ2 ,

where b is the maximum width of all hidden layers of the considered classifier. We set t =
(

γ
8ξ

)1/D
.

Applying a union bound leads to

Pr
(
TD
h ξ >

γ

8

)
= Pr

(
Th >

(
γ

8ξ

)1/D
)

≤ 2bDe−
(γ/8ε)2/D

2bσ2 ≤ e−λN−α
tr , (28)

where the last inequality uses the condition σ2 ≤ (γ/8ξ)2/D

2b(λN−α
tr +ln 2bD)

.

For any h satisfying TD
h ξ ≤ γ

8 , by Lemma E.2, we have e
λ
(
Lγ/4

te (h)−Lγ/2
tr (h)

)
≤ eλCKξ.

The complement event, i.e., TD
h ξ > γ

8 occurs with probability at most e−λN−α
tr . We decompose

D
γ/2
tr,te(P ;λ) as follows,

D
γ/2
tr,te(P ;λ) = lnEh∼P e

λ
(
Lγ/4

te (h)−Lγ/2
tr (h)

)

≤ ln

(
Pr
(
TD
h ξ ≤ γ

8

)
eλCKξ + Pr

(
TD
h ξ >

γ

8

)
Eh∼P |TD

h ξ> γ
8
e
λ
(
Lγ/4

te (h)−Lγ/2
tr (h)

))
≤ ln

(
eλCKξ + e−λN−α

tr Eh∼P |TD
h ξ> γ

8
e
λ
(
Lγ/4

te (h)−Lγ/2
tr (h)

))
≤ ln

(
eλCKξ + e−λN−α

tr

(
e−N2α

tr · eλ +
(
1− e−N2α

tr

)
· eλN

−α
tr +λCKξ

))
= ln

(
eλCKξ + eλ−N2α

tr + e−λN−α
tr

((
1− e−N2α

)
· eλN

−α
tr +λCKξ

))
= ln

(
eλCKξ + eλ−N2α

tr +
((

1− e−N2α
tr

)
· eλCKξ

))
≤ ln

(
2eλCKξ + 1

)
≤ ln 3 + λCKξ.

(29)
The first inequality holds by decomposing the domain over the expectation/integral into the event
in which TD

h ξ ≤ γ
8 holds and its complement. The second inequality holds by Pr

(
TD
h ξ ≤ γ

8

)
≤ 1

and Equation (28). The third inequality holds by Assumption D.1. The second-to-last inequality
holds by the assumption 0 < λ ≤ N2α. The remaining equations and inequalities are algebraic
reformulations.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E.2 PROOF OF THEOREM 4.1

We first present auxiliary results for the proof of Theorem 4.1, focusing on MPNNs, which may be
end-to-end learnable. At the end of this chapter, we provide the full proof of Theorem 4.1, building
on the results from this and the previous section. For simplicity, we derive the results for MPNNs;
the corresponding results for ζ-MPNNs applied to a graph G follow by applying the derived results
for standard MPNNs to the strong simulation ζ. Let us denote the hypothesis space of MPNNs by
Hmpnn, where the parameters follow the assumptions in Theorem 4.1.

Step 4: MPNNs are stable under weight pertubations. We proceed by proving the following
result that shows that MPNNs are stable under small pertubations of their weights.

Lemma E.4. Let h̃ be any classifier in Hmpnn with learnable weight matrices w ={
{w(f (t), s)}d(f

(t))
s=1 , {w(g(t), s)}d(g

(t))
s=1 , {w(c, s)}d(c)s=1

}
and β̃ > 0. Let GB,d be the set of graphs

with maximum degree d and input node features in a ball of radius B. Then,

max
G∈GB,d

|h̃w+u(G)− h̃w(G)|

≤ e

d(c)∏
s=1

∥w(c, s)∥2

(T−1∏
k=0

d(f(k+1))∏
s

∥w(f (k+1), s)∥

 ·

(
1 + d

(d(g(k+1))∏
s

∥w(g(k+1), s)∥
)))

B

·
T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)
(30)

Proof. We denote by x
(t)
v the representation of node v after t layers of the MPNN h̃w with standard

weights w and x̃
(t)
v is the representation of node v after t + 1 layers of the MPNN h̃w+u with

perturbed weights w + u. We similarly define the message terms m(t)
v and m̃

(t)
v . We further define

δt+1 := max
v

∥∥∥x̃(t+1)
v − x(t+1)

v

∥∥∥ .
We calculate

δt+1 = max
v

∥∥∥x̃(t+1)
v − x(t+1)

v

∥∥∥
= max

v

∥∥∥f (t+1)
w+u (x̃(t)

v , m̃(t+1)
v)− f (t+1)

w (x(t)
v ,m(t+1)

v)
∥∥∥

≤
∥∥∥f (t+1)

w+u (x̃
(t)
v∗ , m̃

(t+1)
v∗)− f

(t+1)
w+u (x

(t)
v∗ ,m

(t+1)
v∗)

∥∥∥
+
∥∥∥f (t+1)

w+u (x
(t)
v∗ ,m

(t+1)
v∗)− f (t+1)

w (x
(t)
v∗ ,m

(t+1)
v∗)

∥∥∥
= (A) + (B),

where v∗ is the node where the maximum is taken.

Bound (A). We begin by bounding the first term (A). It holds

(A) ≤ L(f
(t+1)
w+u)

(
∥x̃(t)

v − x(t)
v ∥+ ∥m̃(t)

v −m(t)
v ∥
)

≤ L(f
(t+1)
w+u)

δt +

∥∥∥∥∥∥
∑

ũ∈N (v)

g
(t+1)
w+u (x̃

(t)
ũ)− g(t+1)

w (x
(t)
ũ)

∥∥∥∥∥∥


≤ L(f
(t+1)
w+u)

(
δt + d max

u∗∈N (v)

∥∥∥g(t+1)
w+u (x̃

(t)
u∗)− g(t+1)

w (x
(t)
u∗)
∥∥∥)

≤ L(f
(t+1)
w+u)

(
δt + d max

u∗∈N (v)

∥∥∥g(t+1)
w+u (x̃

(t)
u∗)− g(t+1)

w (x
(t)
u∗)
∥∥∥)

(31)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

We calculate,

∥g(t+1)
w+u (x̃

(t)
u∗)− g(t+1)

w (x
(t)
u∗)∥

≤ ∥g(t+1)
w+u (x̃

(t)
u∗)− g

(t+1)
w+u (x

(t)
u∗)∥+ ∥g(t+1)

w+u (x
(t)
u∗)− g(t+1)

w (x
(t)
u∗)∥

≤
(
1 +

1

D

)d(g(t+1))
(∏

s

∥w(g(t+1), s)∥

)
max

u∗∈N (v)
∥x(t)

u∗∥
∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+ L(g
(t+1)
w+u) max

u∗∈N (v)
∥x̃(t)

u∗ − x
(t)
u∗∥

(32)

Hence,

(A) ≤ L(f
(t+1)
w+u)

(
δt + d

(
1 +

1

D

)d(g(t+1))
(∏

s

∥w(g(t+1), s)∥

)
∥x(t)∥

∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+ L(g
(t+1)
w+u)δt

)
(33)

Bound (B). We continue by bounding the first term (B). It holds

(B) ≤
(
1 +

1

D

)d(f(t+1))
(∏

s

∥w(f (t+1), s)∥

)(
∥x(t)

v∗ ∥+ ∥m(t+1)
v∗ ∥

)∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

.

(34)

Together, we have

δt+1 ≤ L(f
(t+1)
w+u)

(
δt + d

(
1 +

1

D

)d(g(t+1))
(∏

s

∥w(g(t+1), s)∥

)
∥x(t)∥

∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+ L(g
(t+1)
w+u)δt

)

+

(
1 +

1

D

)d(f(t+1))
(∏

s

∥w(f (t+1), s)∥

)(
∥x(t)

v∗ ∥+ ∥m(t+1)
v∗ ∥

)∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

= L(f
(t+1)
w+u)

(
(1 + L(g

(t+1)
w+u))

)
δt

+ L(f
(t+1)
w+u)

(
d

(
1 +

1

D

)d(g(t+1))
(∏

s

∥w(g(t+1), s)∥

)
∥x(t)∥

∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

)

+

(
1 +

1

D

)d(f(t+1))
(∏

s

∥w(f (t+1), s)∥

)(
∥x(t)

v∗ ∥+ ∥m(t+1)
v∗ ∥

)∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

.

(35)

We solve this recurrence relation to get

δT ≤
T−1∑
t=0

(
T−1∏

k=t+1

Ak

)
Bt,

where

At = L(f
(t+1)
w+u)

(
1 + L

(
g
(t+1)
w+u

))
, (36)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Bt = L(f
(t+1)
w+u)

(
d
(
1 + 1

D

)d(g(t+1))

d(g(t+1))∏
s

∥w
(
g(t+1), s

)
∥


·

(
t∏

k=1

L(f (k)
w)

(
1 + dL(g(k)w)

))
B
∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

)

+
(
1 + 1

D

)d(f(t+1))

d(f(t+1))∏
s

∥w
(
f (t+1), s

)
∥


·
(
(1 + dL(g(t+1)

w))

(
t∏

k=1

L(f (k)
w)

(
1 + dL(g(k)w)

))
B
)∑

s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

,

(37)

where

L(f
(t+1)
w+u) =

d(f(t+1))∏
s=1

∥w(f (t), s) + u(f (t), s)∥

 , (38)

L(g
(t+1)
w+u) =

d(g(t+1))∏
s=1

∥w(g(t), s) + u(g(t), s)∥

 , (39)

and the product
T−1∏

k=t+1

Ak is taken to be 1 when t = T (empty product).

Final Step As a final step we need to incorporate the MLP classifier after the T message passing
layers. For this we calculate,

δT+1 =

∥∥∥∥∥fw+u

(
1

N

N∑
v=1

x̃(T)
v

)
− fw

(
1

N

N∑
v=1

x(T)
v

)∥∥∥∥∥
≤

∥∥∥∥∥fw+u

(
1

N

N∑
v=1

x̃(T)
v

)
− fw+u

(
1

N

N∑
v=1

x(T)
v

)∥∥∥∥∥
+

∥∥∥∥∥fw+u

(
1

N

N∑
i=1

x(T)
v

)
− fw

(
1

N

N∑
v=1

x(T)
v

)∥∥∥∥∥
≤
(
1 +

1

D

)d(f)
d(f)∏

s=1

∥w(c, s)∥2

 δT +

(
1 +

1

D

)d(f)
d(f)∏

s=1

∥w(c, s)∥2

∥∥∥x(T)
∥∥∥
2

d(f)∑
i=1

∥u(f, s)∥2
∥w(c, s)∥2

≤
(
1 +

1

D

)d(f)
d(f)∏

s=1

∥w(c, s)∥2

 T−1∑
t=0

(
T−1∏

k=t+1

Ak

)
Bt

+

(
1 +

1

D

)d(f)
d(f)∏

s=1

∥w(c, s)∥2

(T∏
t=1

L(f (t)
w)

(
1 + dL(g(t)w)

))
B

d(f)∑
i=1

∥u(f, s)∥2
∥w(c, s)∥2

= (C) + (D)
(40)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

For the term (C), we calculate

(
1 +

1

D

)d(c)
d(c)∏

s=1

∥w(c, s)∥2

 T−1∑
t=0

(
T−1∏

k=t+1

Ak

)
Bt

≤
(
1 +

1

D

)d(c)
d(c)∏

s=1

∥w(c, s)∥2

 T−1∑
t=0

(
T−1∏

k=t+1

L(f
(k+1)
w+u)

(
1 + L

(
g
(k+1)
w+u

))
,

)
Bt

=

(
1 +

1

D

)d(c)
d(c)∏

s=1

∥w(c, s)∥2

 T−1∑
t=0

(
T−1∏

k=t+1

(
1 +

1

D

)d(f(k+1))
d(f(k+1))∏

s

∥w(f (k+1), s)∥


·

(
1 +

(
1 +

1

D

)d(g(k+1)) (d(g(k+1))∏
s

∥w(g(k+1), s)∥
)))

·Bt

(41)
For Bt, we calculate

Bt = L(f
(t+1)
w+u)

(
d
(
1 + 1

D

)d(g(t+1))

d(g(t+1))∏
s

∥w
(
g(t+1), s

)
∥


·

(
t∏

k=1

L(f (k)
w)

(
1 + dL(g(k)w)

))
D
∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

)

+
(
1 + 1

D

)d(f(t+1))

d(f(t+1))∏
s

∥w
(
f (t+1), s

)
∥


·
(
(1 + dL(g(t+1)

w))

(
t∏

k=1

L(f (k)
w)

(
1 + dL(g(k)w)

))
D
)∑

s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

=
(
1 + 1

D

)d(f(t+1))

d(f(t+1))∏
s

∥w
(
f (t+1), s

)
∥

(t∏
k=1

L(f (k)
w)

(
1 + dL(g(k)w)

))
B

·

d
(
1 + 1

D

)d(g(t+1))

d(g(t+1))∏
s

∥w
(
g(t+1), s

)
∥

∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+

1 + d

d(f(t+1))∏
s

∥w
(
f (t+1), s

)
∥

∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥


≤
(
1 + 1

D

)d(f(t+1))

d(f(t+1))∏
s

∥w
(
f (t+1), s

)
∥

(t∏
k=1

L(f (k)
w)

(
1 + dL(g(k)w)

))

·B

1 + d
(
1 + 1

D

)d(g(t+1))

d(g(t+1))∏
s

∥w
(
g(t+1), s

)
∥

 ·

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)

≤
(
1 + 1

D

)d(f(t+1))+d(g(t+1))
(

t+1∏
k=1

L(f (k)
w)

(
1 + dL(g(k)w)

))
B ·

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)
,

(42)
since L(g

(t+1)
w) =

∏d(g(t+1))
s ∥w

(
g(t+1), s

)
∥ and L(f

(t+1)
w) =

∏d(f(t+1))
s ∥w

(
f (t+1), s

)
∥, respec-

tively.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Together, we get

(C) ≤
(
1 +

1

D

)D
d(c)∏

s=1

∥w(c, s)∥2

 T−1∑
t=0

(
T−1∏

k=t+1

d(f(k+1))∏
s

∥w(f (k+1), s)∥

 ·

(
1 +

(d(g(k+1))∏
s

∥w(g(k+1), s)∥
)))

·
(
1 + 1

D

)d(f(t+1))+d(g(t+1))
(

t+1∏
k=1

L(f (k)
w)

(
1 + dL(g(k)w)

))
B ·

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)

≤
(
1 +

1

D

)D
d(c)∏

s=1

∥w(c, s)∥2

(T−1∏
k=0

d(f(k+1))∏
s

∥w(f (k+1), s)∥

 ·

(
1 + d

(d(g(k+1))∏
s

∥w(g(k+1), s)∥
)))

B

·
T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)

≤ e

d(c)∏
s=1

∥w(c, s)∥2

(T−1∏
k=0

d(f(k+1))∏
s

∥w(f (k+1), s)∥

 ·

(
1 + d

(d(g(k+1))∏
s

∥w(g(k+1), s)∥
)))

B

·
T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)
(43)

where D = d(f) +
∑T

k=1

(
d
(
f (k)

)
+ d

(
g(k)

))
. Hence,

δT+1 ≤ (C) + (D)

e

d(c)∏
s=1

∥w(c, s)∥2

(T−1∏
k=0

d(f(k+1))∏
s

∥w(f (k+1), s)∥

 ·

(
1 + d

(d(g(k+1))∏
s

∥w(g(k+1), s)∥
)))

B

·
T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)

+

(
1 +

1

D

)d(f)
d(f)∏

s=1

∥w(c, s)∥2

(T∏
t=1

L(f (t)
w)

(
1 + dL(g(t)w)

))
B

d(f)∑
i=1

∥u(f, s)∥2
∥w(c, s)∥2

≤ e

d(c)∏
s=1

∥w(c, s)∥2

(T−1∏
k=0

d(f(k+1))∏
s

∥w(f (k+1), s)∥

 ·

(
1 + d

(d(g(k+1))∏
s

∥w(g(k+1), s)∥
)))

B

·

T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)
+

d(f)∑
i=1

∥u(f, s)∥2
∥w(c, s)∥2

 .

(44)

Step 5: Derive sufficient conditions for Lemma E.1 We proceed with the following lemma that
gives sufficient conditions under which the conditions of Lemma E.1 are satisfied. The following
lemma is the first result that is specific to the hypothesis space Hmpnn.

Lemma E.5. Let h̃ be any classifier in Hmpnn with learnable weight matrices w ={
{w(f (t), s)}d(f

(t))
s=1 , {w(g(t), s)}d(g

(t))
s=1 , {w(c, s)}d(c)s=1

}
and β̃ > 0. Consider random perturbations

to w given by u =
{
{u(f (t), s)}d(f

(t))
s=1 , {u(g(t), s)}d(g

(t))
s=1 , {u(c, s)}d(c)s=1

}
, where each perturbation

follows an independent Gaussian distribution N (0, σ2I). Suppose the following conditions hold:

• The variance of the perturbation satisfies

σ ≤ γ

e2B
(
β̃D−(

∑T
k=1 d(g(k)))−1 + dT−1β̃D−1

)√
2h ln(4Dh)

. (45)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

• All weights w ∈ w satisfy ∥w∥2 = β, with |β̃ − β| ≤ β̃
D .

Then, with respect to the random draw of u,

Pr

(
max

G∈Gtr∪Gte

∥h̃w(G)− h̃w+u(G)∥∞ <
γ

8

)
≥ 1

2
.

Proof. By |β − β̃| ≤ 1
D β̃, we get

1

e
βD−1 ≤ β̃D−1 ≤ eβD−1.

We can bound the spectral norm of each perturbation matrix u ∈ u, by Tropp (2015), as follows:

Pr (∥u∥2 > t) ≤ 2b exp

(
− t2

2bσ2

)
,

where b represents the hidden dimension. Applying a union bound over all layers, we obtain that with
probability at least 1/2, the spectral norm of each perturbation u ∈ u is bounded by

σ
√
2b ln (4Db).

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Substituting this spectral norm bound into Lemma E.4, we have with probability at least 1/2,

max
G∈Gtr∪Gte

|h̃w+u(G)− h̃w(G)|

≤ e

d(c)∏
s=1

∥w(c, s)∥2

 T−1∏
k=0

d(f(k+1))∏
s

∥w(f (k+1), s)∥

 ·

(
1 + d

d(g(k+1))∏
s

∥w(g(k+1), s)∥

)
B

·

T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)
+

d(f)∑
i=1

∥u(f, s)∥2
∥w(c, s)∥2


≤ e

d(c)∏
s=1

∥w(c, s)∥2

 T−1∏
k=0

d(f(k+1))∏
s

∥w(f (k+1), s)∥

 · d
d(g(k+1))∏

s

∥w(g(k+1), s)∥B

·

T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)
+

d(f)∑
i=1

∥u(f, s)∥2
∥w(c, s)∥2


+ e

d(c)∏
s=1

∥w(c, s)∥2

 T−1∏
k=0

d(f(k+1))∏
s

∥w(f (k+1), s)∥

B

·

T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)
+

d(f)∑
i=1

∥u(f, s)∥2
∥w(c, s)∥2


= eβD−1dT−1B ·

T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥+
∑
s

∥u(f (t+1), s)∥

)
+

d(f)∑
s=1

∥u(f, s)∥


+ eβD−(

∑T
k=1 d(g(k)))−1B ·

T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥+
∑
s

∥u(f (t+1), s)∥

)
+

d(f)∑
s=1

∥u(f, s)∥


≤ e2β̃D−1dT−1B ·

T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥+
∑
s

∥u(f (t+1), s)∥

)
+

d(f)∑
s=1

∥u(f, s)∥


+ e2β̃D−(

∑T
k=1 d(g(k)))−1B ·

T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥+
∑
s

∥u(f (t+1), s)∥

)
+

d(f)∑
s=1

∥u(f, s)∥


= e2

(
β̃D−(

∑T
k=1 d(g(k)))−1 + dT−1β̃D−1

)
B ·

T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥+
∑
s

∥u(f (t+1), s)∥

)
+

d(f)∑
s=1

∥u(f, s)∥


≤ e2

(
β̃D−(

∑T
k=1 d(g(k)))−1 + dT−1β̃D−1

)
Bσ
√
2b ln (4Db)

≤ γ

4
,

where for the last inequality we used Equation (45).

Step 6: Putting everything together We finish this section by reformulating and proving Theo-
rem 4.1.

Theorem E.6. Let h̃ be any classifier in Hmpnn with parameters {wi}Di=1. For any γ ≥ 0, α ≥ 1/4
and large enough Ntr, with probability at least 1− δ over the sample of ytr, we have

L0
te(h̃)− L̂γ

tr(h̃) ≤ O

(
b
∑

i ∥wi∥2F
N2α

tr (γ/8)
2/D

ξ2/D +
1

N2α
tr

h2 ln 2h
DC (2dB)

1/D

γ1/Dδ
+

1

N1−2α
tr

+ CKξ

)
.

(46)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Proof. The proof follows the proof of Theorem 1 in (Neyshabur et al., 2018) Theorem 6 in (Ma et al.,
2021).

There are two main steps in the proof. In the first step, for a given constant β > 0, we first define the
”prior” P and the ”posterior” Q on H in a way complying with conditions in Lemma E.1, Lemma E.3,
and Lemma E.5. Without loss of generality (due to the homogeneity of the activation function), we
can assume that ∥w(j)

i ∥2 = β for some β ≥ 0. Then, for all classifiers with parameters satisfying
|β − β̃| ≤ β̃

D and β̃ being some value on a predefined grid in the parameters space, we can derive a
generalization bound by applying Lemma E.1, Lemma E.3, and Lemma E.5.

In the second step, we investigate the number of β̃ we need to cover all possible relevant classifier
parameters and apply a union bound to get the final bound. The two steps are essentially the same as
Neyshabur et al. (2018) with the first step differing by the need for incorporating Lemma E.1.

Step 1. We first show the first step. Given a choice of β̃ independent of the training data, let

σ = min

 (γ/8ξ)
1/D√

2b
(
λN−α

tr + ln 2bD
) , γ

e2B
(
β̃D−(

∑T
k=1 d(g(k)))−1 + dT−1β̃D−1

)√
2h ln(4Dh)

 .

(47)
Assume the ”prior” P on H is defined by sampling the vectorized MLP parameters from N (0, σ2I).
The ”posterior” Q on H is defined by first sampling a set of random perturbations {ui}Di=1 and then
adding them to {wi}Di=1. By Lemma E.5, we have

Pr

(
max

G∈Gtr∪Gte

∥h̃w(G)− h̃w+u(G)∥∞ <
γ

8

)
≥ 1

2
. (48)

Therefore, by applying Lemma E.1, we get with probability at least 1− δ,

L0
te(h̃)− L̂γ

tr(h̃) ≤
1

λ

(
2 (DKL(Q||P) + 1) + ln

1

δ
+

λ2

4Ntr
+D

γ/2
te,tr(P ;λ)

)
≤ 1

λ

(
2 (DKL(Q||P) + 1) + ln

1

δ
+

λ2

4Ntr
+ (ln 3 + λCKξ)

)
≤ 2

N2α
tr

DKL(Q||P) +
1

N2α
tr

ln
1

δ
+

1

4N1−2α
tr

+
2 + ln 3

N2α
tr

+ CKξ.

(49)

where we chose λ = N2α
tr .

Moreover, since both P and Q are normal distributions, we know that

DKL(Q||P) ≤
∑
i

∥wi∥22
2σ2

. (50)

Per assumption, both B and D are constant with respect to Ntr. Hence, for large enough Ntr,

(γ/8ξ)
1/D√

2b
(
λN−α

tr + ln 2bD
) <

γ

4(e2 + 1)e2 dJB βD−1
√
2h ln (4Dh)

, (51)

which implies,

σ =
(γ/8ξ)

1/D√
2b
(
λN−α

tr + ln 2bD
) (52)

and hence

DKL(Q||P) ≤
b (Nα

tr + ln 2bD)
∑

i ∥wi∥22
(γ/8)

2/D
ξ2/D. (53)

Therefore, with probability at least 1− δ,

L0
te(h̃)− Lγ

tr(h̃) ≤
2

N2α
tr

DKL(Q||P) +
1

N2α
tr

ln
1

δ
+

1

4N1−2α
tr

+
2 + ln 3

N2α
tr

+ CKξ

≤ O

(
b
∑

i ∥wi∥22
Nα

tr (γ/8)
2/D

ξ2/D +
1

N2α
tr

ln
1

δ
+

1

N1−2α
tr

+ CKξ

)
.

(54)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Step 2. Then we show the second step, i.e., finding out the number of β̃ we need to cover all possible
relevant classifier parameters. Similarly as Neyshabur et al. (2018), we will show that we only need
to consider

(
γ
2B

)1/D ≤ β ≤ C (recall that the spectral norm of all weight matrices is bounded by C).

If β <
(

γ
2B

)1/D
, then for any graph G ∈ Gtr ∪ Gte, we get ∥h̃(G)∥∞ ≤ γ

2 , which implies that the
bound trivially holds. Since we only consider β in the above range, a sufficient condition to make
|β − β̃| ≤ β

D hold would be |β − β̃| ≤ 1
D

(
γ
2B

)1/D
. Therefore, it suffices to find a covering for all

possible weight matrices with radius 1
D

(
γ
2B

)1/D
for a ball in Rb×b of radius C. This can be satisfied

by
(
2DCb(2B)1/D

γ1/D

)b2
balls. Taking a union bound, we get, with probability at least 1− δ,

L0
te(h̃)− Lγ

tr(h̃) ≤ O

(
b
∑

j

∑
i ∥wi∥22

N2α
tr (γ/8)

2/D
ξ2/D +

1

N2α
tr

b2 ln 2b
DC (2B)

1/D

γ1/Dδ
+

1

N1−2α
tr

+ CKξ

)
.

(55)

F FIXED GRAPH ENCODERS

Next, we apply our analysis to GNNs with fixed encoders. Here, the embedding function e : G → Rb

is fixed, and only the classifier c : Rb → RK is trainable. Let H = C ◦ E , where E now represents a
fixed graph embedding network. The generalization bound in this setting simplifies to the following.

Corollary F.1. Let lat be any pseudometric in the latent space Rd. Under mild assumptions (see
Appendix D), for any γ > 0 and 0 < α < 1

4 , with probability at least 1 − δ over the sample of
training labels ytr, the test loss of any classifier h̃ ∈ H

L0
te(h̃) ≤ L̂γ

tr(h̃) + O
(

MC(C)
N2α

tr γ1/D δ︸ ︷︷ ︸
complexity term

+ C ξlat︸ ︷︷ ︸
structural

similarity term

)
, (56)

where ξlat = maxG∈Gte minH∈Gtr lat (g(G), g(H)) and the other constants are defined in Theo-
rem 4.1.

Proof. The proof follows the same steps as in the proof of Theorem E.6. For example, Lemma E.4 can
be shown for MLPs by simply assuming that there are no MPNN layers in Lemma E.4. Theorem E.6
can then be proved for the hypothesis space H by defining the variance as

σ = min

 (γ/8ξ)
1/D√

2b
(
λN−α

tr + ln 2bD
) , γ

e2B β̃D−1
√

2b ln(4Db)

 .

In this case, the complexity of the graph embedding model no longer contributes to the bound, and
only the complexity of the MLP classifier affects generalization. This reduced complexity underscores
promise of fixed graph encoders.

G PROOF OF LEMMA ON COMPARISON OF TMD AND F -TMD

Lemma G.1. For any G,H ∈ G and any non-empty family of features F ′ ⊂ F ⊂ G, we have

F ′-TMD(G,H) ≤ F-TMD(G,H).

Proof. Starting from the definitions, we have:

F ′-TMD(G,H) = min
σ∈Sn

n∑
j=1

TD
(
TGF′

j , THF′

σ(j)

)
,

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

F-TMD(G,H) = min
σ∈Sn

n∑
j=1

TD
(
TGF

j , THF

σ(j)

)
,

where Sn is the set of all permutations of the node set {1, 2, . . . , n}, and TGF

j denotes the subtree of
GF (the graph G augmented with additional features F) at node j.

Let σ′ be the optimal assignment for F-TMD(G,H), i.e.,

F-TMD(G,H) =

n∑
j=1

TD
(
TGF

j , THF

σ′(j)

)
.

Since F ′-TMD(G,H) optimizes over all assignments, it follows that

F ′-TMD(G,H) ≤
n∑

j=1

TD
(
TGF′

j , THF′

σ′(j)

)
. (57)

Our goal is to show that for every j:

TD
(
TGF′

j , THF′

σ′(j)

)
≤ TD

(
TGF

j , THF

σ′(j)

)
. (58)

Together, Equation (57) and Equation (58), lead to

F ′-TMD(G,H) ≤
n∑

j=1

TD
(
TGF′

j , THF′

σ′(j)

)
≤

n∑
j=1

TD
(
TGF

j , THF

σ′(j)

)
= F-TMD(G,H).

We proceed to prove Equation (58) via induction. In fact, we show a more general version: for every
assignment ρ between nodes of G and H and any node j, we have

TD
(
TGF′

j , THF′

ρ(j)

)
≤ TD

(
TGF

j , THF

ρ(j)

)
.

Base Case (t = 0)

At depth 0, the trees consist only of root nodes. The tree distance is the difference between node
features, i.e.,

TD
(
TGF′

j , THF′

ρ(j)

)
= ∥x′

j − x′
ρ(j)∥

≤ ∥x̃j − x̃ρ(j)∥

= TD
(
TGF

j , THF

ρ(j)

)
,

where x′
j = (xj , cj(F1), . . . , cj(F|F ′|)) and x̃j = (xj , cj(F1), . . . , cj(F|F|)) include the additional

features.

Induction Step (t− 1 7→ t)

Assume that for every tree of depth t− 1, we have, for every assignment ρ and every j = 1, . . . , n,

TD
(
TGF′

j , THF′

ρ(j)

)
≤ TD

(
TGF

j , THF

ρ(j)

)
.

Let σ′ be any assignment of trees and let τ be the optimal assignment in WTD

(
T F
j , T F

σ′(j)

)
.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Then, for any j = 1, . . . , n

TD
(
TGF′

j , THF′

σ′(j)

)
= ∥x′

j − x′
σ′(j)∥+ min

τ ′∈Sn

n∑
j=1

TD
(
TGF′

j , THF′

τ ′(j)

)
≤ ∥x′

j − x′
σ′(j)∥+

n∑
j=1

TD
(
TGF′

j , THF′

τ(j)

)
≤ ∥x′

j − x′
σ′(j)∥+

n∑
j=1

TD
(
TGF

j , THF

τ(j)

)
= ∥x′

j − x′
σ′(j)∥+WTD

(
ρ
(
T F
j , T F

σ′(j)

))
≤ ∥x̃j − x̃σ′(j)∥+WTD

(
ρ
(
T F
j , T F

σ′(j)

))
= TD

(
TGF

j , THF

σ′(j)

)
.

(59)

The second inequality follows by the induction hypothesis as the considered trees are of depth t− 1.
Hence, by induction, the inequality TD

(
TGF′

j , THF′

σ′(j)

)
≤ TD

(
TGF

j , THF

ρ(j)

)
holds, completing the

proof.

Proof of Theorem 6.1. Assume that y ∼ F-TMD.

1. Since any F -GIN classifier h is Lipschitz continuous with respect to F-TMD and h is stable
with respect to weight perturbations, by Theorem 4.1, we have

L0
te(h̃) ≤ Lγ

tr(h̃) +O

(
b
∑

j

∑
i ∥W

(j)
i ∥2F

N2α
tr (γ/8)2/D

ξ2/D +
h2 ln(2h)DC(2dB)1/D

N2α
tr γ1/Dδ

+
1

N1−2α
tr

+ CKξ

)
,

with ξ := maxGtr∈Gtr,Gte∈Gte
F-TMDL+1

w (Gtr, Gte) and B = maxG ∥X(RF (G))[i, :]∥2.

2. By Lemma G.1, every F ′-GIN classifier h′ is Lipschitz continuous with respect to F-TMD,
as

∥h′(G)− h′(H)∥ ≤ L′F ′-TMD(G,H) ≤ L′F-TMD(G,H). (60)
Hence, applying Theorem 4.1, we have

L0
te(h̃) ≤ Lγ

tr(h̃) +O

(
b
∑

j

∑
i ∥W

(j)
i ∥2F

N2α
tr (γ/8)2/D

ξ2/D +
h2 ln(2h)DC(2dB′)1/D

N2α
tr γ1/Dδ

+
1

N1−2α
tr

+ CKξ

)
,

where B′ = maxG ∥X(RF ′
(G))[i, :]∥2. Note that B′ is the only difference compared to

the previous bound.

3. Assume y ∼ F-TMD, but apply a F̃-GIN classifier h̃. Since h̃ is not necessarily Lipschitz
continuous with respect to F-TMD, we cannot directly apply Theorem 4.1.

However, if y ∼ F-TMD, then y ∼ F̃-TMD as well. Specifically, if y ∼ F-TMD, there
exists for every class k some ηk such that ηk(G) = Pr(yG = k | G), and ηk is Lipschitz
continuous with constant Lηk . Then, by Lemma G.1,

|ηk(G)− ηk(H)| ≤ Lηk · F-TMD(G,H) ≤ Lηk · F̃-TMD(G,H). (61)

Consequently, we can now apply Theorem 4.1 to obtain

L0
te(h̃) ≤ Lγ

tr(h̃) +O

(
b
∑

j

∑
i ∥W

(j)
i ∥2F

N2α
tr (γ/8)2/D

ξ̃2/D +
h2 ln(2h)DC(2dB̃)1/D

N2α
tr γ1/Dδ

+
1

N1−2α
tr

+ CKξ̃

)
,

where ξ̃ := maxGtr∈Gtr,Gte∈Gte F̃-TMDL+1
w (Gtr, Gte) and B̃ = maxG ∥X(RF̃ (G))[i, :

]∥2. Note that B̃ and ξ̃ are now different compared to the previous bounds in Item 1 and 2.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

0 50 100
0

0.2

0.4

0.6

Epoch

Training loss
Label noise

0.0

0.2

0.5

0.8

1.0

0 0.5 1
0.2

0.3

0.4

0.5

Noise p

Test error vs. noise

0 0.5 1
0

50

100

Noise p

Time to Overfit vs Noise

Figure 4: Left: Training-loss trajectories of a GIN on MUTAGENICITY under increasing label noise p.
Center: Corresponding test errors on MUTAGENICITYrises sharply as label–structure correlation is
essential for generalization (mean ± standard deviation across five seeds). Right: Number of epochs
to overfit, i.e., reach 99% training accuracy under increasing label noise p.

H OTHER RESULTS

The following lemmata are easy to prove.
Lemma H.1. Given a MPNN with t layers such that the message and update functions g(k) and
f (k) are Lipschitz continuos with Lipschitz constant L(f (k)) and L(g(k)), respectively. Then for any
graph G with maximum node degree v, we have

max
v∈V (G)

∥x(t)
v ∥ ≤

(
t∏

k=1

L(f (k))
(
1 + dL(g(k))

))
B, (62)

where x
(t)
v denotes the output of the MPNN after t layers at node v.

Lemma H.2. Given a MPNN with t+ 1 layers such that the message and update functions g(k) and
f (k) are Lipschitz continuos with Lipschitz constant L(f (k) and L(g(k)), respectively. Then for any
graph G with maximum node degree v, we have

max
v

∥m(t+1)
v ∥ ≤ dLg(t+1)

(
t∏

k=1

L(f (k)
w)

(
1 + dL(g(k)w)

))
B, (63)

where m
(t)
v denotes the message of the MPNN at the (t+ 1)’th layer at node v.

Lemma H.3 (Lemma 2 in (Neyshabur et al., 2018)). let fw : Rn → Rk be a neural network
with Lipschitz continuous and homogenous activations and d(f) layers For any D, Then for any w,
x ∈ XB,n, and any perturbation u = vec({Ui}di=1) such that ∥Ui∥2 ≤ 1

d∥Wi∥2, the change in the
output of the network can be bounded as follows:

∥fw+u(x)− fw(x)∥2 ≤ eB

(
d∏

i=1

∥Wi∥2

)
d∑

i=1

∥Ui∥2
∥Wi∥2

.

I ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS

This appendix provides a comprehensive overview of our experimental setup, including dataset
generation, model architectures, training procedures, evaluation metrics, and additional analyses. All
experiments were run on an internal cluster with Intel Xeon CPUs (28 cores, 192GB RAM) and
GeForce RTX 3090 Ti GPUs (4 units, 24GB memory each), as well as Intel Xeon CPUs (32 cores,
192GB RAM) and NVIDIA RTX A6000 GPUs (3 units, 48GB memory each). Each subsection
corresponds to one of the three experimental tasks.

I.1 LABEL NOISE EXPERIMENTS

To investigate how MPNNs behave under noisy supervision, we conducted controlled label corruption
experiments on three benchmark molecular graph classification datasets from the TUDataset collection

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

0 10 20 30
0

0.2

0.4

0.6

0.8

Epoch

Training loss
Label noise

0.0

0.2

0.5

0.8

1.0

0 0.5 1
0.2

0.3

0.4

0.5

Noise p

Test error vs. noise

0 0.5 1
0

10

20

Noise p

Time to Overfit vs Noise

Figure 5: Left: Training-loss trajectories of a GIN on BZR under increasing label noise p. Center:
Corresponding test errors on BZRrises sharply as label–structure correlation is essential for general-
ization (mean ± standard deviation across five seeds). Right: Number of epochs to overfit, i.e., reach
99% training accuracy under increasing label noise p.

0 200 400
0

0.2

0.4

0.6

Epoch

Training loss
Label noise

0.0

0.2

0.5

0.8

1.0

0 0.5 1
0.2

0.3

0.4

0.5

Noise p

Test error vs. noise

0 0.5 1
0

100

200

Noise p

Time to Overfit vs Noise

Figure 6: Left: Training-loss trajectories of a GIN on NCI109 under increasing label noise p.
Center: Corresponding test errors on NCI109 rises sharply as label–structure correlation is essential
for generalization (mean ± standard deviation across five seeds). Right: Number of epochs to overfit,
i.e., reach 99% training accuracy under increasing label noise p.

(Morris et al., 2020a): MUTAGENICITY, NCI109, and BZR. For each dataset, we randomly corrupted
a fixed proportion of the training labels by replacing them with uniformly sampled class labels.

We employed a MPNN with four layers, ReLU activations, GraphNorm, and a two-layer MLP head.
Each message and update function in the MPNN is given by a MLP with two layers. The models were
trained for up to 5000 epochs with early stopping once 99% training accuracy was achieved. Label
noise levels were varied in 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, and results were averaged over five random
seeds per setting.

We track the per-epoch training and test accuracy/loss, the number of epochs until memorization,
and total training time. This setup closely follows the protocol of Zhang et al. (2017), adapted to
the graph setting, and enables us to study not only final generalization but also how memorization
unfolds over time under increasing label noise.

Figure 4, 5, and 6 visualize the results on MUTAGENICITY, BZR, and NCI109, respectively. Each
figure presents from left to right: (left) the full training curves, (middle) final test accuracy versus
noise level, and (right) the number of epochs required to reach 99% training accuracy. These plots
collectively illustrate the sharp transition from generalization to memorization and the dataset-specific
sensitivity of MPNNs to label corruption.

As the label noise increases, the time required to reach 99% training accuracy increases moder-
ately—suggesting that fitting corrupted labels is harder, but still feasible. However, all models
eventually reach near-perfect training accuracy across all noise levels, even for fully randomized
labels (p = 1.0), underscoring the high memorization capacity of GNNs. In stark contrast, the test
accuracy consistently deteriorates with increasing noise and converges to chance level at p = 1.0,

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

where labels are entirely uninformative. This gap between training and test performance confirms
that GNNs can overfit to pure noise and emphasizes the need for principled regularization and early
stopping to preserve generalization.

I.2 TASK 1: MEDIAN-BASED LABELING WITH CYCLE COUNTS

To investigate the role of local structural patterns in graph classification, we generate 3,000 random
graphs using three common models: Erdős–Rényi (ER), Barabási–Albert (BA), and Stochastic Block
Model (SBM). Each graph’s label is related to the sum of its 3-cycle and 4-cycle counts, which are
computed using NetworkX (Hagberg et al., 2008). The total cycle count is then used to assign labels:
graphs with counts below the dataset median are labeled 0, while those above receive label 1.

For all synthetic graphs, we sample the number of nodes randomly between 35 and 55. For each
random graph model, we chose the following parameters.

• Erdős–Rényi (ER) Graphs: We generate an ER graph with edge probability p = 0.1.
• Barabási–Albert (BA) Graphs: Each new node is connected to m = 2 existing nodes

following the BA preferential attachment process.
• Stochastic Block Model (SBM) Graphs: We randomly select between 3 and 6 blocks,

ensuring each block has at least 3 nodes. The probability of an edge within the same block
is sampled uniformly between [0.1, 0.3], while inter-block connections have a probability in
the range [0.001, 0.02].

We evaluate multiple GNN variants to assess the impact of different levels of expressivity:

• MPNN: A standard Message Passing Neural Network (Gilmer et al., 2017).
• Fl-MPNN: MPNNs enriched with cycle counts of cycles up to length l (Bouritsas et al.,

2023; Barceló et al., 2021).
• Subgraph GNN: Incorporates subgraph structures (Frasca et al., 2022).
• Local 2-GNN: A local variant of 2-GNN (Morris et al., 2019).
• Local Folklore 2-GNN: A local variant of 2-Folklore-GNN (Zhang et al., 2024).

Each model is implemented in PyTorch Geometric (Fey & Lenssen, 2019), using the implementation
details of Zhang et al. (2024). We trained the models using the Adam optimizer (Kingma, 2014) with
a learning rate of 10−3 for 100 epochs and cosine scheduler. We fix the test set, and we perform
10-fold cross-validation, reporting mean accuracy (ACC) and standard deviation. Performance is
measured at both the final epoch and the best validation epoch.

We present additional experimental results in Table 4–6 in this appendix. To further illustrate the
strong correlation between labels and F4-TMD, we provide a qualitative visualization of the dataset
structure (see Figure 7). Specifically, we select 50 graphs of the ER dataset and project them into a
two-dimensional space using Multidimensional Scaling (MDS), with distances computed based on
standard TMD, F3-TMD, F4-TMD, and F12-TMD. Among these, the projection using F4-TMD
exhibits the clearest class separation, visually reinforcing its alignment with the classification task.

I.3 TASK 2: REAL-WORLD DATASETS

We evaluate our generalization framework on six real-world datasets from the TU Dataset collection
(Morris et al., 2020a), spanning both biological and chemical graph classification tasks:

• Mutagenicity: 4,337 molecular graphs labeled as mutagenic or non-mutagenic.
• PROTEINS: 1,113 protein graphs classified by their enzymatic function.
• BZR: 405 graphs representing benzodiazepine receptor ligands labeled for activity.
• COX2: 467 graphs labeled based on activity against the COX2 enzyme.
• NCI109: 4,127 graphs representing chemical compounds screened for anti-cancer activity.
• AIDS: 2,000 graphs with binary activity labels relevant to AIDS antiviral screening.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Figure 7: Low-dimensional embeddings via MDS for Task 1 in Section 6. MDS projects the graphs
into R2 while preserving the pairwise Fl-TMDs between graphs in the dataset. From left to right:
TMD, F3-TMD, F4-TMD, and F12-TMD. Visually, F4-TMD achieves the best class separation,
highlighting that the labels strongly correlate with F4-TMD. As a result, F4-MPNNs provide the
best generalization and predictive performance.

To assess whether generalization in MPNNs and MLPs with fixed feature extractors depends on the
structural similarity between test and training graphs, as predicted by our generalization bound in
Theorem 4.1, we conduct two complementary evaluations:

(i) GIN with TMD: We train GINs (Xu et al., 2019) and measure distances between graphs
using the TMD.

(ii) Fixed encoder with Hamming distance: We compute molecular fingerprints (Gainza et al.,
2019) for each graph, apply an MLP classifier, and measure distances in the resulting feature
space via Hamming distance.

We analyze two key properties:

Error vs. TMD Distance To quantify the relationship between structural proximity and model
performance, we report cumulative accuracy. Test graphs are ordered by increasing distance to the
training set, and we compute the cumulative average accuracy. Specifically, given the ordered test set
G1, . . . , GNte , we define

ỹi =
1

i

i∑
j=1

1

[
h(Gi)[yGi

] ≤ max
k ̸=yGi

h(G)[k]

]
,

where ỹi represents the average accuracy over the first i graphs. For end-to-end trained GIN models,
Figure 2 and Figure 8 illustrate that test accuracy consistently decreases as the structural distance
from the training distribution increases. A similar trend is observed for MLP+fingerprint models in
Figure 9. These empirical results align with our theoretical insights presented in Theorem 4.1, which
predict this performance degradation.

Theoretical vs. Empirical Generalization Bound We further examine how well our bound from
Theorem 4.1 predicts the actual generalization behavior. For each dataset and model, we compute
the theoretical bound using the empirical training loss and the graph distances to the training set
as prescribed by Theorem 4.1 We compare this bound to the observed test error across all datasets.
Results are presented in Figure 3 and in the appendix (Figure 10). While our bound is not tight, it
does track the empirical error trends well across datasets, substantiating our claim that structural
similarity with respect to the right pseudometric governs generalization in graph learning.

I.4 TASK 3: MDS-BASED LABELING VIA F5-TMD DISTANCES

For the second synthetic task, we construct 500 random graphs and compute pairwise distances using
the F5-TMD pseudometric, where F5 includes cycles up to length 5. Labels are assigned using a
clustering algorithm, ensuring that graphs closer in F5-TMD likely share the same label. We test
different GNNs and summarize the results in Figure 11.

Details For the second synthetic task, we generate 500 random graphs between 15 and 35 nodes
using ER graphs with edge probability p = 0.1. We use the F5-TMD pseudometric, where F5

consists of cycles up to length 5. We compute pairwise graph distances with respect to F5-TMD

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Table 4: Train and test accuracy, Erdős–Rényi graphs. The task is to predict if the count of cycles of
length at most 4 in the cycle basis of each graph is above or below the median of the whole dataset.
The node features are augmented with (homN) homomorphism-counts of cycles up to length N,
(subN) subgraph-counts of cycles up to length N, and (basN) number of cycle graphs up to length N
in the cycle basis.

(a) w/ early stopping.

Num. layers

Model 1 3 5

L-G 0.9180 ± 0.0179
0.8707 ± 0.0105

0.9216 ± 0.0379
0.8707 ± 0.0110

0.9226 ± 0.0318
0.8637 ± 0.0106

LF-G 0.9162 ± 0.0165
0.8647 ± 0.0095

0.9148 ± 0.0409
0.8683 ± 0.0086

0.9226 ± 0.0391
0.8623 ± 0.0112

MP 0.9050 ± 0.0094
0.8737 ± 0.0091

0.9135 ± 0.0256
0.8694 ± 0.0165

0.9255 ± 0.0403
0.8597 ± 0.0126

MP+hom3
0.8993 ± 0.0122
0.8783 ± 0.0105

0.9115 ± 0.0316
0.8710 ± 0.0116

0.9335 ± 0.0462
0.8750 ± 0.0098

MP+hom4
0.8993 ± 0.0121
0.8783 ± 0.0089

0.8998 ± 0.0120
0.8767 ± 0.0063

0.9185 ± 0.0408
0.8710 ± 0.0125

MP+hom7
0.8913 ± 0.0117
0.8740 ± 0.0065

0.9002 ± 0.0198
0.8693 ± 0.0178

0.8915 ± 0.0286
0.8700 ± 0.0097

MP+bas3
0.9210 ± 0.0201
0.8717 ± 0.0173

0.9465 ± 0.0376
0.8773 ± 0.0168

0.9436 ± 0.0393
0.8783 ± 0.0096

MP+bas4
0.9754 ± 0.0061
0.9870 ± 0.0046

0.9761 ± 0.0066
0.9700 ± 0.0154

0.9841 ± 0.0081
0.9603 ± 0.0048

MP+bas7
0.9782 ± 0.0087
0.9720 ± 0.0111

0.9804 ± 0.0051
0.9573 ± 0.0077

0.9850 ± 0.0155
0.9490 ± 0.0093

MP+sub3
0.8979 ± 0.0174
0.8827 ± 0.0123

0.9340 ± 0.0473
0.8697 ± .0135

0.9166 ± 0.0320
0.8747 ± 0.0144

MP+sub4
0.8976 ± 0.0111
0.8780 ± 0.0031

0.9090 ± 0.0270
0.8717 ± 0.0098

0.9233 ± 0.0287
0.8733 ± 0.0109

MP+sub7
0.8963 ± 0.0059
0.8790 ± 0.0067

0.9140 ± 0.0174
0.8760 ± 0.0092

0.9312 ± 0.0304
0.8657 ± 0.0075

Sub-G 0.9194 ± 0.0238
0.8710 ± 0.0088

0.9060 ± 0.0338
0.8663 ± 0.0074

0.9561 ± 0.0411
0.8640 ± 0.0099

(b) w/o early stopping.

Num. layers

1 3 5

0.9904 ± 0.0041
0.8543 ± 0.0063

0.9998 ± 0.0004
0.8520 ± 0.0073

1.0000 ± 0.0001
0.8553 ± 0.0102

0.9868 ± 0.0051
0.8450 ± 0.0135

0.9999 ± 0.0003
0.8540 ± 0.0121

1.0000 ± 0.0001
0.8543 ± 0.0116

0.9906 ± 0.0033
0.8490 ± 0.0045

1.0000 ± 0.0001
0.8567 ± 0.0087

0.9998 ± 0.0005
0.8637 ± 0.0138

0.9886 ± 0.0039
0.8480 ± 0.0108

0.9999 ± 0.0002
0.8537 ± 0.0107

1.0000 ± 0.0000
0.8673 ± 0.0141

0.9302 ± 0.0039
0.8720 ± 0.0088

0.9978 ± 0.0018
0.8520 ± 0.0138

0.9990 ± 0.0011
0.8540 ± 0.0102

0.9091 ± 0.0081
0.8693 ± 0.0099

0.9795 ± 0.0040
0.8450 ± 0.0123

0.9897 ± 0.0058
0.8390 ± 0.0145

0.9956 ± 0.0028
0.8657 ± 0.0085

0.9999 ± 0.0002
0.8670 ± 0.0097

1.0000 ± 0.0000
0.8723 ± 0.0049

0.9904 ± 0.0034
0.9793 ± 0.0068

0.9985 ± 0.0021
0.9587 ± 0.0072

0.9997 ± 0.0004
0.9523 ± 0.0102

0.9958 ± 0.0026
0.9660 ± 0.0065

0.9999 ± 0.0003
0.9550 ± 0.0062

0.9998 ± 0.0005
0.9537 ± 0.0072

0.9933 ± 0.0029
0.8510 ± 0.0078

1.0000 ± 0.0001
0.8547 ± 0.0075

1.0000 ± 0.0000
0.8683 ± 0.0080

0.9853 ± 0.0034
0.8487 ± 0.0155

0.9995 ± 0.0009
0.8613 ± 0.0127

0.9998 ± 0.0004
0.8623 ± 0.0130

0.9018 ± 0.0035
0.8803 ± 0.0070

0.9670 ± 0.0070
0.8680 ± 0.0121

0.9815 ± 0.0090
0.8553 ± 0.0135

0.9887 ± 0.0048
0.8623 ± 0.0058

1.0000 ± 0.0001
0.8533 ± 0.0088

1.0000 ± 0.0000
0.8680 ± 0.0100

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Table 5: Train and test accuracy, Barabasi-Albert graphs. The task is to predict if the count of cycles
of length at most 4 in the cycle basis of each graph is above or below the median of the whole dataset.
The node features are augmented with (homN) homomorphism-counts of cycles up to length N,
(subN) subgraph-counts of cycles up to length N, and (basN) number of cycle graphs up to length N
in the cycle basis.

(a) w/ early stopping.

Num. layers

Model 1 2 5

L-G 0.819 ± 0.013
0.767 ± 0.014

0.794 ± 0.017
0.751 ± 0.013

0.793 ± 0.019
0.747 ± 0.010

LF-G 0.818 ± 0.018
0.775 ± 0.008

0.807 ± 0.021
0.770 ± 0.012

0.822 ± 0.051
0.747 ± 0.015

MP 0.811 ± 0.015
0.771 ± 0.015

0.802 ± 0.013
0.767 ± 0.011

0.798 ± 0.022
0.757 ± 0.009

MP+hom4
0.777 ± 0.010
0.774 ± 0.019

0.750 ± 0.010
0.749 ± 0.021

0.789 ± 0.019
0.772 ± 0.01

MP+bas3
0.840 ± 0.010
0.809 ± 0.020

0.847 ± 0.017
0.804 ± 0.021

0.863 ± 0.039
0.798 ± 0.016

MP+bas4
0.963 ± 0.012
0.995 ± 0.003

0.970 ± 0.005
0.994 ± 0.005

0.963 ± 0.008
0.980 ± 0.008

MP+bas8
0.978 ± 0.008
0.989 ± 0.005

0.978 ± 0.014
0.977 ± 0.007

0.981 ± 0.016
0.953 ± 0.006

Sub-G 0.795 ± 0.013
0.760 ± 0.015

0.814 ± 0.030
0.730 ± 0.015

0.821 ± 0.060
0.733 ± 0.016

(b) w/o early stopping.

Num. layers

1 2 5

0.928 ± 0.009
0.747 ± 0.007

0.827 ± 0.006
0.757 ± 0.014

0.993 ± 0.003
0.719 ± 0.011

0.846 ± 0.008
0.773 ± 0.013

0.902 ± 0.006
0.745 ± 0.010

0.978 ± 0.006
0.730 ± 0.018

0.849 ± 0.004
0.762 ± 0.009

0.909 ± 0.011
0.740 ± 0.011

1.000 ± 0.000
0.751 ± 0.025

0.787 ± 0.004
0.778 ± 0.006

0.760 ± 0.005
0.759 ± 0.011

0.908 ± 0.012
0.737 ± 0.015

0.962 ± 0.003
0.809 ± 0.016

0.982 ± 0.005
0.807 ± 0.015

0.998 ± 0.001
0.807 ± 0.008

0.972 ± 0.005
0.994 ± 0.004

0.977 ± 0.007
0.991 ± 0.006

0.992 ± 0.005
0.973 ± 0.003

0.982 ± 0.004
0.989 ± 0.007

0.994 ± 0.003
0.971 ± 0.009

0.998 ± 0.001
0.954 ± 0.004

0.918 ± 0.004
0.755 ± 0.015

0.878 ± 0.011
0.728 ± 0.011

0.992 ± 0.004
0.712 ± 0.025

Table 6: Train and test accuracy, Stochastic Block Model graphs. The task is to predict if the count of
cycles of length at most 4 in the cycle basis of each graph is above or below the median of the whole
dataset. The node features are augmented with (homN) homomorphism-counts of cycles up to length
N, (subN) subgraph-counts of cycles up to length N, and (basN) number of cycle graphs up to length
N in the cycle basis.

(a) w/ early stopping.

Num. layers

Model 1 2 5

L-G 0.961 ± 0.007
0.961 ± 0.003

0.972 ± 0.009
0.949 ± 0.003

0.960 ± 0.011
0.943 ± 0.010

LF-G 0.965 ± 0.005
0.948 ± 0.005

0.959 ± 0.020
0.942 ± 0.004

0.962 ± 0.020
0.953 ± 0.011

MP 0.967 ± 0.006
0.955 ± 0.006

0.973 ± 0.004
0.962 ± 0.007

0.967 ± 0.004
0.955 ± 0.006

MP+hom4
0.947 ± 0.005
0.953 ± 0.006

0.950 ± 0.007
0.946 ± 0.006

0.963 ± 0.013
0.953 ± 0.004

MP+bas3
0.966 ± 0.007
0.958 ± 0.012

0.958 ± 0.007
0.960 ± 0.005

0.973 ± 0.012
0.959 ± 0.007

MP+bas4
0.957 ± 0.011
0.981 ± 0.005

0.959 ± 0.007
0.977 ± 0.011

0.979 ± 0.012
0.975 ± 0.005

MP+bas8
0.964 ± 0.006
0.982 ± 0.007

0.959 ± 0.010
0.973 ± 0.004

0.955 ± 0.005
0.975 ± 0.008

Sub-G 0.957 ± 0.006
0.951 ± 0.012

0.959 ± 0.010
0.943 ± 0.006

0.977 ± 0.006
0.934 ± 0.008

(b) w/o early stopping.

Num. layers

1 2 5

0.968 ± 0.003
0.961 ± 0.005

0.981 ± 0.002
0.948 ± 0.005

0.998 ± 0.001
0.923 ± 0.004

0.968 ± 0.003
0.957 ± 0.002

0.979 ± 0.005
0.941 ± 0.006

0.999 ± 0.001
0.937 ± 0.005

0.973 ± 0.006
0.951 ± 0.005

0.975 ± 0.003
0.963 ± 0.005

0.991 ± 0.002
0.955 ± 0.007

0.958 ± 0.003
0.953 ± 0.008

0.963 ± 0.002
0.939 ± 0.008

0.973 ± 0.006
0.953 ± 0.006

0.979 ± 0.003
0.960 ± 0.005

0.991 ± 0.001
0.962 ± 0.007

0.994 ± 0.003
0.959 ± 0.007

0.980 ± 0.001
0.989 ± 0.003

0.989 ± 0.003
0.984 ± 0.003

0.995 ± 0.002
0.971 ± 0.010

0.982 ± 0.004
0.978 ± 0.003

0.995 ± 0.001
0.967 ± 0.003

0.999 ± 0.001
0.966 ± 0.006

0.970 ± 0.006
0.954 ± 0.004

0.975 ± 0.002
0.948 ± 0.009

0.994 ± 0.003
0.931 ± 0.009

and embed the graphs into a two-dimensional space via Multidimensional Scaling (MDS) (Kruskal,
1964). MDS embeds the graphs into a two-dimensional space while preserving the initial F5-Tree
Mover’s Distances from the raw graph space, i.e., one can formulate it as the optimization problem
given by

arg min
x1,...,xn∈R2

∑
i<j

(∥xi − xj∥ − ζ-TMD(Gi, Gj))
2
.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

101 102 103

0.8

0.9

1

TMD to training set

A
cc

ur
ac

y

COX2
#layers

1
3
5

101 102 103
0.98

1

TMD to training set

AIDS
#layers

1
3
5

101 103 105

0.7

0.8

0.9

TMD to training set

PROTEINS
#layers

1
3
5

Figure 8: Accuracy of a GIN with 1, 3, and 5 layers versus Tree Mover’s Distance (log scale) to the
training dataset.

0 1 2 3 4 5 6 7

·10−2

0.81

0.82

0.83

0.84

0.85

0.86

FPD

C
um

ul
at

iv
e

te
st

av
g

ac
cu

ra
cy

Mutagenicity

1 layer
2 layer
3 layer

Figure 9: Cumulative test accuracy of MLP vs. Fingerprint Distance (FPD).

Labels are assigned using 2-means clustering, ensuring that structurally similar graphs remain in the
same class. MDS and 2-means clustering are implemented via scikit-learn (Buitinck et al., 2013).

The experimental setup is identical to Task 1, with models trained and evaluated under the same
protocol: We perform 10-fold cross validation with a training/validation/test set with 80/10/10 splits.
We report the test accuracy at the epoch with the highest validation accuracy. This task tests the
ability of different GNN architectures to generalize. The task is generated such that labels strongly
correlate with F5-TMD. We present classification performance, showing that F5-MPNNs perform
better than MPNNs and more expressive GNN variants.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

0 200 400
2.4

2.6

2.8

3

−0.1

0

0.1
·104

TMD to training dataset

E
rr

or
B

ou
nd

BZR

E
m

pi
ri

ca
lE

rr
or

0 100 200
2.2

2.4

2.6

−0.1

0

0.1

·104

TMD to training dataset

E
rr

or
B

ou
nd

COX2

E
m

pi
ri

ca
lE

rr
or

0 200 400

1.1

1.2

1.3

1.4

1.5

−1

0

1
·104

TMD to training dataset

E
rr

or
B

ou
nd

AIDS
·10−2

E
m

pi
ri

ca
lE

rr
or

0 1 2 3

2

4

6

−0.1

−5 · 10−2

0

5 · 10−2

·104

·104

TMD to training dataset

E
rr

or
B

ou
nd

PROTEINS

E
m

pi
ri

ca
lE

rr
or

Figure 10: Caption

0 5 10 15 20

MPNN

F5-MPNN

Sub-G

LF-G

10.37

11.36

12.1

11.01

13.2

16.8

17

15.6

Error (%)

Train Error
Test Error

Figure 11: Performance of different GNNs for y ∼ F5-TMD3, where F5 includes cycles up to length
5. F5-MPNN achieves the best performance, supporting our claim that incorporating task-relevant
features outperforms excessive expressivity.

48

	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Generalized Tree Mover's Distance for Strongly Simulatable Colorings
	Example: F-MPNNs

	Generalization Bounds With Respect to Tree Mover’s Distance
	Problem Setup and Assumptions
	Main Results
	End-to-End Learnable GNNs

	When Does More Expressivity Hurt?
	Experiments
	Conclusion
	Notation
	Detailed Related Work
	Expressivity of GNNs
	Generalization Bounds for GNNs

	Simulatable Color Refine Algorithms
	Other Strongly‑Simulatable Architectures

	Tree Mover's Distance
	Tree Mover's Distance
	Proofs in Section 3
	Example II: k-GNNs

	Graph Classification Setting
	Proofs of the Results Section 4
	Preliminaries for the Proofs in Section 4
	Proof ofTheorem 4.1

	Fixed Graph Encoders
	Proof of Lemma on Comparison of TMD and F-TMD
	Other Results
	Additional Experimental Results and Details
	Label Noise Experiments
	Task 1: Median-Based Labeling with Cycle Counts
	Task 2: Real-World Datasets
	Task 3: MDS-Based Labeling via F5-TMD Distances

