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ABSTRACT

Graph Neural Networks (GNNs) are powerful tools for learning on structured data,
yet the relationship between their expressivity and predictive performance remains
unclear. We introduce a family of pseudometrics that capture different degrees of
structural similarity between graphs and relate these similarities to generalization,
and consequently, the performance of expressive GNNs. By considering a setting
where graph labels are correlated with structural features, we derive generalization
bounds that depend on the distance between training and test graphs, model com-
plexity, and training set size. These bounds reveal that more expressive GNNs may
generalize worse unless their increased complexity is balanced by a sufficiently
large training set or reduced distance between training and test graphs. Our findings
relate expressivity and generalization, offering theoretical insights supported by
empirical results. Our code is available on anonymous GitHub.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Scarselli et al., 2009; Bronstein et al., 2017) have become a central
tool for learning representations of structured data. A major line of research has focused on improving
their expressivity, that is, their capacity to distinguish non-isomorphic graphs, often evaluated with
respect to the Weisfeiler-Lehman (WL) hierarchy of graph isomorphism tests (Weisfeiler & Lehman,
1968; Xu et al., 2019; Morris et al., 2020b; 2023b).

The relationship between expressivity and performance of GNNs remains poorly understood. While
more expressive models are theoretically capable of distinguishing a broader range of non-isomorphic
graphs, their practical effectiveness in real-world tasks is not always apparent. On the one hand, more
expressive models have been shown to outperform standard architectures (Maron et al., 2019a; Bodnar
et al., 2021; Bouritsas et al., 2023), even when their additional expressive power does not result in
separating more non-isomorphic graphs in the benchmarks at hand (Zopf, 2022). For instance, the
1-WL test, and by extension simple message-passing neural networks (MPNNs) such as GIN (Xu
et al., 2019), can separate all graphs in widely used datasets (Zopf, 2022; Kriege et al., 2020) and
almost all random graphs (Babai et al., 1980), but performance is still far from saturated. On the
other hand, less expressive models can outperform their more expressive counterparts. For example,
Bechler-Speicher et al. (2024) show that models which completely discard the graph structure (hence,
less-expressive than 1-WL) can outperform sophisticated GNNs in certain tasks.

These contrasting observations suggest a complex and nuanced relationship between expressivity and
performance, raising two critical questions:

1. When does increased expressivity in GNNs help, and when does it hurt performance?
2. If a more expressive GNN performs better on a given task, is it due to its improved expres-

sivity in terms of graph separability?

To explore these questions, we begin with a synthetic graph-classification task in which the labels are
designed to depend on a known structural feature, namely the number of cycles. We train a sequence
of models whose expressive power increases from a plain MPNN to an LF-GNN (Zhang et al.,
2024). As Figure 1 (left) shows, moderately expressive models achieve the lowest test error, while
the most expressive ones overfit, and performance deteriorates on unseen graphs. The result echoes
a well-documented phenomenon in Euclidean deep learning: large neural networks can memorize
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Figure 1: Left: Train–test errors for several GNN variants on a synthetic cycle-counting task;
moderately expressive models such as F4-MPNN (Barceló et al., 2021), i.e., MPNNs augmented
with cycle counts, generalize best, while more expressive ones tend to overfit. Center: Training-loss
curves of a MPNN on MUTAGENICITY under increasing label noise p. Right: Corresponding test
errors on BZR, MUTAGENICITY, and NCI109 rises sharply as label-structure correlation is essential
for generalization (mean ± standard deviation across five seeds). See Appendix I.1 for more details.

arbitrary labels, yet they generalize only when there is genuine correlation between data and labels.
Classical complexity measures such as the VC dimension or Rademacher complexity cannot account
for this behavior in over-parametrized regimes (Zhang et al., 2017). A more plausible explanation is
that generalization requires a balance between the model’s inductive bias (in our case, its expressivity)
and the structure–label correlation present in the data.

We further test this hypothesis on three real-world graph datasets: BZR, MUTAGENICITY, and
NCI109 (Morris et al., 2020a). We follow the setup from Zhang et al. (2017) by progressively
resampling the labels uniformly at random, i.e., introducing label noise, while leaving the graphs
untouched. Figure 1 (center and right) shows that training loss still converges to zero, confirming
the network’s ability to memorize, yet the test error rises sharply as soon as the correlation between
the graphs and labels is destroyed. Together, these experiments indicate that expressivity by itself
is neither strictly harmful nor helpful; model performance ultimately is determined by the model’s
ability to measure similarity in a way that reflects the task-relevant relation between graphs and labels.
In this work, we set out to better understand this phenomenon.

1.1 OUR CONTRIBUTION

We formalize the empirical insight that generalization heavily depends on structure–label correlation
as follows. We introduce a family of pseudometrics, called ζ-Tree Mover Distances (ζ-TMDs), each
parameterized by a graph invariant (e.g., degree distributions or k-WL colors), which measure a
specific level of expressivity. We then consider a graph classification setting where labels correlate
with a fixed ζ-TMD: two graphs are likely to share the same label if they are similar under the chosen
pseudometric. This captures structure–label alignment, a property we empirically validate across
several real-world graph learning tasks, where generalization depends critically on such alignment.

Within this framework, we derive data-dependent generalization bounds for models with fixed
encoders (e.g., random GNN features) and expressive, end-to-end trainable GNNs (e.g., GIN, GAT,
k-GNNs). Our bound (Theorem 4.1, Equation (4)) decomposes the generalization gap into two
terms: a capacity term, depending on model width, weight norms, and maximum node degree, and
a structural similarity term, which measures the distance between training and test graphs under
the chosen ζ-TMD. This decomposition highlights that generalization improves when the model
maps structurally similar graphs (with respect to the ζ-TMD that correlates with the labels) to similar
representations while keeping model capacity in check.

This perspective not only explains existing empirical observations but also guides model design.
Deeper or more expressive GNNs can improve performance—but only if they enhance the structural
similarity between train and test graphs. Otherwise, increased complexity may fail to improve label
alignment, thereby degrading both generalization and computational efficiency. This trade-off is
especially relevant since higher-order methods often introduce significant computational overhead. In
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Section 5, we formalize this phenomenon and show that, in a concrete setting, the optimal GNN is
precisely as expressive as required to capture the relevant structure-label correlation—no more, no
less.

1.2 RELATED WORK

Expressivity in GNNs. A common benchmark for GNN expressivity is the Weisfeiler-Leman (k-WL)
hierarchy, which measures the ability to distinguish non-isomorphic graphs. Standard MPNNs are
provably limited by 1-WL expressivity (Xu et al., 2019; Morris et al., 2019), while higher-order
k-GNNs (Morris et al., 2020b) and subgraph-based models (Frasca et al., 2022) extend this by
incorporating higher-order structural interactions. Structural and positional encodings (Vignac et al.,
2020; Barceló et al., 2021) enhance expressivity by injecting global features into node representations.
Jogl et al. (2024) offer a unifying view by showing that many expressive architectures can be simulated
via input transformations followed by standard message passing.

However, expressivity often comes at a computational cost: while MPNNs scale linearly with edges
(O(|E|)), subgraph-based and higher-order models scale super-linearly (e.g., O(|V ||E|) or O(|V |k)),
making them less viable for large-scale graphs.

Generalization in GNNs. Generalization theory for GNNs has traditionally relied on classical
complexity measures such as VC-dimension (Scarselli et al., 2018), Rademacher complexity (Garg
et al., 2020), and PAC-Bayes bounds (Liao et al., 2021). Graphon-based frameworks (Levie, 2024)
establish bounds using covering numbers in continuous function spaces. Similarly, Maskey et al.
(2022a; 2024) establish tighter bounds using graphon models, but under stronger assumptions on the
data distribution and their analysis does not directly handle expressive GNNs.

Recent works increasingly focus on the interplay between expressivity and generalization. Morris
et al. (2023a) relate 1-WL to VC-dimension in MPNNs. Li et al. (2024) analyze a trade-off between
intra-class concentration and inter-class separation, but only for fixed graph encoders. Wang et al.
(2024) study graphs sampled from manifolds, and Ma et al. (2021) model label–feature correlations
in node classification, but neither framework extends to graph-level tasks or expressive GNNs.

Most recently, Vasileiou et al. (2024) derive tighter generalization bounds by combining covering
number arguments with the robustness framework of Xu & Mannor (2012), using the fact that MPNNs
are Lipschitz with respect to Tree and Forest distances. Their analysis does not model structure–label
correlation and is limited to standard MPNNs. We refer to Appendix A for further discussion.

Comparison with Prior Work. While existing approaches have deepened our understanding of GNN
generalization, many rely on idealized assumptions—such as known graphon distributions or fixed
feature maps—that limit applicability to real-world graph learning. The work most closely related
to ours is Ma et al. (2021), which models label-feature alignment but does not support graph-level
tasks or trainable GNNs. In contrast, our framework explicitly models structure-label correlation
using task-aligned pseudometrics and supports expressive, end-to-end trainable GNNs.This enables a
fine-grained analysis of how architectural expressivity and task alignment interact. Our generalization
bounds identify when increased expressivity may improve performance—and when it leads to
overfitting—addressing a key open question posed by Morris et al. (2024).

2 PRELIMINARIES

Let G denote the set of all simple, undirected graphs, and let G = (V,E) ∈ G, where V, or V (G), is
the set of nodes and E is the set of edges. For any node v ∈ V , the neighborhood of v is defined as:
N (v) := {u ∈ V | {v, u} ∈ E}.
Definition 2.1 (Graph Invariant and CRA). A graph invariant is a function ζ : G → C that assigns a
value to each graph such that for any isomorphic graphs G and H , it holds that ζ(G) = ζ(H).

A color refinement algorithm (CRA) ζ(·) is a mapping that assigns to each graph G a function ζG :
V (G) → P such that for any graph H isomorphic to G, and any isomorphism h : V (H) → V (G),
the CRA satisfies ζG(v) = ζH(h(v)) for all v ∈ V (G).

We note that every CRA ζ(·) induces a graph invariant ζ by aggregating the vertex labels into a
multiset. Specifically, the induced graph invariant is defined as ζ(G) := {{ζG(v)}}v∈V (G), where

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

{{·}} denotes a multiset. Throughout this work, we use the terms “graph invariant” and “CRA”
interchangeably when the context allows.

Graph invariants vary in their ability to distinguish between graphs. We say that a graph invariant
ζ is more expressive than another graph invariant θ if ζ(G) = ζ(H) implies θ(G) = θ(H) for all
G,H ∈ G.
Definition 2.2 (Message Passing Neural Networks (MPNNs)). For a graph G = (V,E) with node
features x ∈ R|V |×F , an MPNN updates node v ∈ V at layer t as:

x(t+1)
v = f (t+1)

(
x(t)
v ,□u∈N (v)

{{
g(t+1)

(
x(t)
u

)}})
,

where f (t+1) and g(t+1) are MLPs, and □ denotes a permutation-invariant aggregation function.

We focus on sum aggregation, but our framework naturally extends to mean or weighted sum
aggregation. After the final message passing layer, node features are typically aggregated into a
graph-level representation, followed by a final MLP.

Similar to MPNNs, the 1-Weisfeiler-Lehman (1-WL) Test updates the node features of input graphs
through local neighborhood aggregation. However, a key distinction is that in 1-WL, both the message
and update functions are necessarily injective. 1-WL provides a tight upper bound on the expressivity
of MPNNs (Xu et al., 2019; Morris et al., 2020b).

To quantify similarity between graphs, we use the notion of pseudometrics. In particular, every
graph invariant naturally induces a pseudometric dζ(G,H) with dζ(G,H) = 0 if ζ(G) = ζ(H)
and dζ(G,H) = 1 otherwise. However, such pseudometrics only indicate whether two graphs are
distinguishable by ζ (distance 0 or 1). To capture finer structural similarities, general pseudometrics
are often employed. Conversely, any pseudometric d can induce a graph invariant ζd by anchoring
comparisons to a fixed graph A ∈ G with ζd,A(G) := d(G,A). Thus, pseudometrics can be seen as
generalizations of graph invariants, offering richer measures of graph similarity.

The Tree Mover’s Distance (TMD) (Chuang & Jegelka, 2022) is a pseudometric that quantifies the
dissimilarity between two graphs. Formally, for graphs G and H , and a depth t, the TMD is defined
as the Wasserstein distance between their distributions of rooted trees up to depth t:

TMDt(G,H) = Wasserstein
(
T t(G), T t(H)

)
,

where T t(G) and T t(H) are the multisets of rooted trees of depth t generated by the 1-WL test for
G and H , respectively. For further details, we refer to Appendix C.

3 GENERALIZED TREE MOVER’S DISTANCE FOR STRONGLY SIMULATABLE
COLORINGS

We now extend the concept of the TMD to a broader class of CRAs that can be strongly simulated by
the 1-WL test. For detailed proofs of the results presented in this section, refer to Appendix C.2.

A CRA ζ is said to be strongly simulatable if, for any graph G, running t iterations of the CRA on G
can be simulated by running t iterations of the 1-WL test on a suitably transformed graph Rζ(G).
This transformation, called the strong simulation under ζ, ensures that the colorings at each 1-WL
iteration on Rζ(G) are at least as expressive as those of ζ (Jogl et al., 2024) on G. See Appendix B
for more details and examples of CRAs and their corresponding transformed graphs.

For any strongly simulatable CRA ζ, we define a generalized pseudometric as the TMD between the
strong simulations of the graphs under ζ.
Definition 3.1. Let ζ be a strongly simulatable CRA. For any depth t > 0, the ζ-TMD is defined as:

ζ-TMDt(G,H) := TMDt(Rζ(G), Rζ(H)), (1)

where Rζ(G) and Rζ(H) are the strong simulations of G and H under ζ, respectively.
Proposition 3.2. Let ζ be a strongly simulatable CRA. For every t > 0, ζ-TMDt is a pseudometric.

Similar to the standard TMD, ζ-TMDt(G,H) can be zero even if G ̸= H , as it is a pseudometric.
Nonetheless, it can distinguish graphs that are differentiable by the color refinement algorithm ζ
within T iterations.
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Proposition 3.3. Let ζ be a strongly simulatable CRA. If two graphs G and H are distinguished by ζ
after T iterations, then ζ-TMDT+1(G,H) > 0.

Another immediate consequence is that MPNNs corresponding to the CRA ζ , referred to as ζ-MPNNs,
are Lipschitz continuous with respect to the ζ-TMD. Specifically, we have the following result:
Theorem 3.4. Let ζ be a strongly simulatable CRA, and let h : G → RK be a ζ-MPNN with T
layers, where the message and update functions are Lipschitz continuous with Lipschitz constants
bounded by Lg(t) and Lf(t) , respectively. Suppose h includes a global sum pooling layer followed by
a Lipschitz continuous classifier c with Lipschitz constant Lc. Then, for any graphs G and H ,

∥h(G)− h(H)∥ ≤ L · ζ-TMDT+1(G,H),

where L = Lc2
T
∏T

t=1 Lf(t)Lg(t) and ∥ · ∥ denotes the Euclidean vector norm.

The Lipschitz property established in Theorem 3.4 plays a key role in deriving the generalization
bounds for ζ-MPNNs presented in Section 4. Next, we illustrate the Lipschitz continuity using the
example of F-MPNNs.

3.1 EXAMPLE: F -MPNNS

The F-Weisfeiler-Leman (F-WL) test generalizes the 1-WL test by incorporating features derived
from a finite family of graphs, F ⊂ G. These features, often referred to as motifs or patterns, are
used to enhance node representations.

Specifically, for each node v in a graph G, the feature vector of v is augmented with counts of patterns
in F that include v. Formally, the augmented feature vector is defined as:

x̃v =
(
xv , cnt(P1, G; v) , . . . , cnt(P|F|, G; v)

)
,

where cnt(P,G; v) represents the number of occurrences of the pattern P in G such that v is part
of the pattern. These counts can for example be (injective) homomorphism counts (Bouritsas et al.,
2023) or cycle basis counts (Yan et al., 2024).

If F ⊂ F̃ , then F̃-WL is more expressive than F-WL (Barceló et al., 2021; Bouritsas et al., 2023).

Correspondingly, F-MPNNs incorporate these motif counts into their message-passing scheme.
Clearly, F-WL can be strongly simulated via a transformed graph RF (G) that includes the motif
counts as node features.
Corollary 3.5. Let h be an F -MPNN with T layers. Then, there exists a constant L such that for any
graphs G and H ,

∥h(G)− h(H)∥ ≤ L · F-TMDT+1(G,H). (2)

We emphasize that this is just one example; analogous definitions of ζ-TMDs and corresponding
versions of Corollary 3.5 can be derived for other GNN architectures, such as k-GNNs (Morris et al.,
2019), see Appendix C.3.

4 GENERALIZATION BOUNDS WITH RESPECT TO TREE MOVER’S DISTANCE

In this section, we establish generalization bounds for GNNs using our generalized TMD framework.

4.1 PROBLEM SETUP AND ASSUMPTIONS

We consider a classification task where each data point is a graph equipped with node features.
Formally, let Gtr and Gte denote the fixed sets of training and test graphs, respectively. We assume
that there exists a constant B > 0 such that the norm of each node feature is bounded, i.e.,

∥x(G)i∥2 ≤ B ∀G ∈ Gtr ∪ Gte,∀i ∈ V (G).

Each graph G is assigned a label yG ∈ {1, . . . ,K}. We assume that, for each class k, there exists a
Lipschitz continuous function ηk : G → [0, 1] with respect to some pseudometric pm such that

Pr(yG = k | G) = ηk(G),

5
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and set C := maxk∈{1,...,K} Lip(ηk). If the labels are sampled according to such functions ηk, we
say that the labels y are strongly correlated with pm and write y ∼ pm.

Furthermore, we define ξpm as the distance between the training set and the test set:

ξpm = pm(Gte,Gtr) := max
G∈Gte

min
H∈Gtr

pm(G,H). (3)

Given the set of labeled graphs Gtr the task of graph-level supervised learning is to learn a classifier
h : G → RK from a function family H. Given a classifier h ∈ H, the classification for a graph G is
obtained by

ỹG = argmax
k∈{1,...,K}

h(G)[k],

where h(G)[k] refers to the k-th entry of h(G).

For the observed graph labels (yG)G∈Gtr
, the empirical margin loss of h on Gtr for a margin γ ≥ 0 is

defined as
L̂γ
tr(h) :=

1

Ntr

∑
G∈Gtr

1[h(G)[yG] ≤ (γ + max
k ̸=yG

h(G)[k])].

Here, 1 is the indicator function. The empirical margin loss of h on Gte is defined equivalently. The
expected margin loss is defined as follows, Lγ

te(h) := EyG∼Pr(yG|G),G∈Gte

[
L̂γ
te(h)

]
.

4.2 MAIN RESULTS

In this section, we derive generalization bounds for GNNs, where we focus on the standard approach
involving end-to-end trainable GNNs.

We consider the GNN to be the composition of two functions. Specifically, let e : G → Rb denote
the graph embedding network, which maps a graph G ∈ G into a b-dimensional latent space, and
let c : Rb → RK denote the classifier, which maps embeddings to class scores. Consequently, the
hypothesis space for these models can be written as:

H = C ◦ E ,
where E represents the space of graph embedding networks and C represents the class of MLP
classifiers. For end-to-end learnable GNNs, both E and C are trainable. In contrast, for models with
fixed encoders, only C is trainable, while E remains fixed.

4.2.1 END-TO-END LEARNABLE GNNS

Let ζ represent a CRA that can be strongly simulated by 1-WL. In this context, we consider the
hypothesis space Hζ = C ◦ Eζ , where Eζ is the set of all ζ-MPNNs of depth T , where each layer
consists of a message function g(t) and an update function f (t). Both g(t) and f (t) are MLPs with a
maximum hidden dimension of b and may contain an arbitrary number of layers. The weight matrices
across all message and update functions are denoted by {Wi}Pi=1.

Let C denote the set of MLP classifiers with L layers and a maximum hidden dimension of b. The
weight matrices in the MLP classifier are denoted by {W̃l}Ll=1.

We now present the generalization bound for end-to-end learnable GNNs.

Theorem 4.1. Suppose that y ∼ ζ-TMDT+1. Under mild assumptions (see Appendix D), for any
γ > 0 and 0 < α < 1

4 , with probability at least 1− δ over the sample of training labels ytr, we have
for any h̃ ∈ Hζ

L0
te(h̃) ≤ L̂γ

tr(h̃) +O

(
b
(∑

i ∥Wi∥22 +
∑

l ∥W̃l∥22
)

N2α
tr (γ/8)2/D

ξ
2/D
ζ +

b2 ln
(
2bDC(2dB)1/D

)
N2α

tr γ1/Dδ
+ CKξζ

)
,

where ξζ := ζ-TMDT+1 (Gte,Gtr) is defined in Equation (3), D represents the total number of
learnable weight matrices, b denotes the maximum hidden dimension, d is the maximum degree of the
graphs, and C serves as an upper bound on the spectral norm of all weight matrices.
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Theorem 4.1 highlights key factors influencing generalization in learnable graph classifiers, which are
the structural similarity ξζ under ζ-TMD, model complexity

(
D, b, {∥Wi∥2}i, {∥W̃l∥2}l

)
, graph

properties such as maximum degree d, and training set size Ntr. The structural similarity term ξζ
emphasizes the importance of diverse training data. This agrees with empirical observations by
Southern et al. (2025), who demonstrated that augmenting graph representation to maximize TMD
dissimilarity improves predictive performance and generalization. These findings underscore the
significance of diverse training data (via task-specific augmentations) and balancing model complexity
to achieve robust graph-based learning.

The proof of Theorem 4.1, given in Appendix E, follows a standard PAC-Bayesian approach
(Neyshabur et al., 2018) and extends it to the correlated setting, following the approach of (Ma
et al., 2021). It leverages the Lipschitz continuity of ζ-MPNNs, established in Theorem 3.4, to derive
the generalization bound. Throughout the remainder of this paper, we use the following simplified
version of the bound from Theorem 4.1:

L0
te(h̃) ≤ L̂γ

tr(h̃) + O
(

MC(C◦Eζ)

N2α
tr γ1/D δ︸ ︷︷ ︸

complexity term

+ C ξζ︸︷︷︸
structural

similarity term

)
. (4)

Here, MC(C ◦Eζ) captures the model complexity, i.e., spectral norms of all learnable weight matrices,
hidden dimensions, and maximal graph degree. Notably, the model complexity may increase if
the graph transformation Rζ enlarges the size, maximum degree, or node feature dimension of the
original input graphs.

The structural similarity term, ξζ , depends on the alignment between training and test graphs under
ζ-TMD. Whether ξζ increases or decreases with more expressive networks depends on the task.

The same PAC-Bayes machinery yields analogous bounds when the graph encoder is frozen and only
the MLP head is trained. We relegate the formal statement and proof to Appendix F to keep the main
exposition focused on the end-to-end learnable case.

5 WHEN DOES MORE EXPRESSIVITY HURT?

In this section, we explore two scenarios within our framework: first, we identify conditions under
which augmenting expressivity beyond task-specific requirements can negatively impact generaliza-
tion. Second, we highlight conditions where increasing expressivity to accurately capture task-specific
features does not degrade the bound in Theorem 4.1. This gives a possible explanation of why such
graph classifiers achieve an optimal balance between expressivity and generalization, resulting in
superior performance.

To formalize this, consider a classification task where the labels yG are strongly correlated with
the pseudometric F-TMDT+1 for a specific set of substructures F ⊂ G. Assume that all MPNNs
considered in this section have T layers. Let F ′ ⊊ F ⊊ F̃ ⊂ G be finite sets of graphs, where
F ′-MPNNs are less expressive than F-MPNNs, which in turn are less expressive than F̃-MPNNs.
Denote the corresponding hypothesis spaces as HF ′ ,HF , and HF̃ .

Our analysis shows that increasing expressivity to the level required to capture task-relevant features
(e.g., transitioning from F ′-MPNNs to F-MPNNs) generally preserves generalization. However,
further increasing expressivity beyond this necessary level (e.g., to F̃ -MPNNs) can degrade general-
ization significantly.

Theorem 5.1. Consider the setting above. Then, for any γ > 0 and α < 1
4 , with probability at least

1− δ over the sample of training labels ytr,

i) the test loss of any F ′-MPNN classifier h′, satisfies

L0
te(h

′) ≤ Lγ
tr(h

′) +O

(
MC(HF ′)ξ

1/D
F

N2α
tr γ1/Dδ

+ CξF

)
.

where C is described in Theorem 4.1 and ξF = F-TMDT+1(Gtr,Gte).
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Figure 2: Accuracy of a GIN with 1, 3, and 5 layers versus TMD (log scale) to the training dataset.

ii) the test loss of any F-MPNN classifier h, satisfies

L0
te(h) ≤ Lγ

tr(h) +O

(
MC(HF )ξ

1/D
F

N2α
tr γ1/Dδ

+ CξF

)
.

iii) the test loss of any F̃-MPNN classifier h̃, satisfies

L0
te(h̃) ≤ Lγ

tr(h̃) +O

(
MC(HF̃ )ξ

1/D

F̃
N2α

tr γ1/Dδ
+ CξF̃

)
.

where ξF̃ = F̃-TMDT+1(Gtr,Gte).

Theorem 5.1 highlights the critical role of structural alignment between training and test graphs in
determining generalization performance. In cases i) and ii), the same F -TMD governs the similarity
between training and test graphs, ensuring that the bound remains controlled. However, in case iii),
introducing a more expressive GNN that captures features beyond those captured by F-TMD (with
which the labels are strongly correlated) leads to a higher structural discrepancy ξF̃ ≥ ξF , see
Lemma G.1. These findings underscore the importance of aligning model expressivity with the
structural requirements of the task, as excessive expressivity can increase our generalization bound in
Theorem 4.1.

6 EXPERIMENTS

In this section, we evaluate GNNs on both synthetic and real-world graph datasets. We introduce two
tasks to evaluate how structural similarity between training and test graphs, as well as task-relevant
expressivity, impact classification performance and generalization. All experiments use 10-fold
cross-validation, and we report the mean accuracy or error. Additional experiments and tasks, details
and extended results are provided in Appendix I.

Table 1: Test accuracy on Erdős–Rényi
graphs for Task 1. All GNNs achieve a
train accuracy greater than 0.99. More
results in Table 4 in Appendix I.

Model Test Accuracy

LF-G 0.8450± 0.0135
L-G 0.8543± 0.0063
Sub-G 0.8623± 0.0058
F7-MPNN 0.9660± 0.0065
F4-MPNN 0.9793± 0.0068
F3-MPNN 0.8657± 0.0085
MPNN 0.8490± 0.0045

Task 1: Median-Based Labeling with Cycle Counts.
We generate 3,000 random graphs from Erdős–Rényi,
Barabási–Albert, and Stochastic Block Model distribu-
tions. The sum of 3-cycle and 4-cycle counts is computed
for each graph, and graphs with counts below the dataset’s
median receive label 0, while those above receive label
1. We evaluate multiple GNN variants, including stan-
dard MPNNs, Fl-MPNNs where Fl contains cycles up to
length l, Subgraph GNNs (Sub-G), Local 2-GNNs (L-G),
and Local Folklore 2-GNNs (LF-G). Model expressivity
increases strictly in this order. We report training and test
accuracies at both the final and the epoch with the best
validation performance. Results can be found in Table 1,
and more details and experiments in Appendix I.
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Figure 3: Error-bound curves for Mutagenicity, and NCI109. Each plot shows our theoretical bound
(blue, left axis) and the empirical generalization error (red, right axis) as a function of TMD to the
training set. Shaded areas indicate ±1 standard deviation across 10 random splits.

Task 2: Real-World Datasets We evaluate our framework on six graph classification datasets from
the TUDataset (Morris et al., 2020a). Results on BZR, MUTAGENICITY, and NCI109 include:
Figure 2, which plots test accuracy versus ζ-TMD distance, and Figure 3, which compares our
bound to the observed generalization gap. Additional results on PROTEINS, AIDS, COX2, and
experiments on fixed encoders via molecular fingerprints (Gainza et al., 2019) appear in Appendix I.

Results and Discussion. In Task 1, GNNs that explicitly incorporate task-relevant cycle information,
in particular F4-MPNNs, outperform MPNNs and expressive GNNs like Local Folklore 2-GNNs.
Since the labels in Task 1 strongly correlated with F4-TMD, these results align with our theoretical
findings in Section 5: GNNs that effectively leverage features strongly correlated with the task
generalize better than more expressive models. On real-world datasets, we observe that classification
accuracy declines as test graphs become more distant from the training set, in line with our theoretical
insights in Theorem 4.1. Importantly, our bound closely aligns with the observed generalization
gap across these datasets. By explicitly capturing structure–label correlation, our framework yields
significantly tighter generalization bounds compared to standard PAC-Bayes bounds (Liao et al.,
2021), which are often orders of magnitude larger (e.g., on the order of 1016 compared to our 104).

7 CONCLUSION

We introduced a framework for analyzing GNN generalization in settings where graph labels correlate
with different pseudometrics. Our analysis provided generalization bounds that emphasize the role of
structural similarity between training and test data. We show that increasing expressivity does not
necessarily degrade generalization if it aligns with the task. However, both theoretical and empirical
results show that excessive expressivity can worsen generalization and predictive performance.

Empirical results confirm that GNNs whose embeddings align with task-relevant structures, i.e., those
that are proven to be Lipschitz continuous with respect to pseudometrics strongly correlated with
the labels, achieve better generalization. We show that performance degrades for test graphs that
are structurally distant from the training set, supporting our theoretical findings. Additionally, we
identify cases where increased expressivity can either improve or hinder generalization, depending
on task alignment, providing insights for GNN design.

Limitations. While our framework enables comparisons between F-MPNNs, in general the depen-
dence of our bound in Theorem 4.1 on different TMDs makes direct model comparisons challenging.
These bounds serve as qualitative guidelines rather than precise estimates, as they are not tight and
may not reflect practical performance. Moreover, the relevant pseudometric is often unknown and
possibly expensive to compute, limiting direct applicability and leaving the identification of suitable
metrics an open problem.

Future Work. Our generalization bounds improve with increased structural similarity between test
and train graphs. Future work could explore augmentation techniques that generate synthetic graphs
to improve this similarity, thereby boosting generalization.
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NOTATION

c (MLP) classifier
G A graph G = (V,E)
G The set of all graphs
N (v) Neighborhood of vertex v in graph G
xv Feature of node v
∥ · ∥2 Frobenius norm
∥ · ∥ Spectral norm
TDw Tree Distance weighted by function w
TMDT

w Tree Mover’s Distance at depth T with weight
w

T T
G Multiset of depth-T computation trees for graph

G
P Prior distribution in PAC-Bayes framework
Q Posterior distribution in PAC-Bayes framework
Lγ Expected margin loss with margin γ

L̂γ Empirical margin loss with margin γ
h Classifier function (e.g., a MPNN + MLP)
H Hypothesis space
E Graph embedding networks (e.g., a MPNN)
C Final classifer (e.g., a MLP)
Pr(·) Probability function
Gtr Training graphs
Gte Test graphs
TMDL

w (Gtr,Gte) Distance between Gtr and Gte

Ntr Number of training graphs
Nte Number of test graphs
b Maximal hidden dimension of classifier func-

tion
B Maximum L2-norm of input node features
d Maximum degree of all graphs in training or

test set
d(f) Depth of MLP f
T Number of MPNN layers
C Maximum Frobenius norm of any learnable

weight matrix
D Number of learnable weight matrices in hypoth-

esis space
g(t) Message function in layer t
f (t) Update function in layer t
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A DETAILED RELATED WORK

A.1 EXPRESSIVITY OF GNNS

Expressivity in standard neural networks is often associated with their ability to approximate functions
within a specific function class. For example, early works showed that MLPs can approximate
any continuous function (Cybenko, 1989; Hornik et al., 1989). In the context of GNNs, however,
expressivity is more commonly measured by the ability to distinguish between non-isomorphic graphs.
This focus stems from computational challenges associated with achieving universality in GNNs
and is further supported by the Stone-Weierstrass theorem: a GNN that can distinguish all graphs is
also capable of approximating any continuous function on graphs (Chen et al., 2019; Dasoulas et al.,
2020). Consequently, practical research often centers on characterizing the distinguishing power of
specific GNN architectures (Xu et al., 2019; Morris et al., 2023b).

Xu et al. (2019); Morris et al. (2019) established that the expressive power of standard MPNNs is
limited by the 1-WL test. To overcome this limitation, later works introduced higher-order GNNs
based on k-WL and its local variants (Maron et al., 2018; Morris et al., 2020b; Geerts & Reutter,
2022). These models are theoretically universal (Maron et al., 2019b; Keriven & Peyré, 2019),
meaning they can distinguish any non-isomorphic graphs and approximate continuous functions on
graphs. However, their expressivity comes at the cost of exponential time and space complexity
with respect to k, making them impractical for large-scale applications. To reduce this complexity,
Morris et al. (2020b); Zhang et al. (2024) proposed local k-WL variants, while Abboud et al. (2022)
introduced k-hop GNNs, which expand the receptive field to k-hop neighborhoods. Despite these
improvements, the computational complexity of these approaches remains exponential in k.

Subgraph-based models further enhance expressivity by decomposing graphs into subgraphs and
aggregating their information (Papp & Wattenhofer, 2022; Bevilacqua et al., 2021; You et al., 2021;
Frasca et al., 2022; Huang et al., 2022). Although these models are more expressive than 1-WL, their
power is bounded by 3-WL (Frasca et al., 2022). Moreover, subgraph GNNs increase computational
complexity significantly, often scaling quadratically or cubically with the number of nodes N , which
worsens the computational complexity of standard MPNNs by a factor of N .

Most subgraph-based GNNs associate a family of subgraphs with specific nodes or edges by either
deleting or marking nodes. However, other strategies for subgraph representation have also been
explored. For instance, Michel et al. (2023); Graziani et al. (2024); Paolino et al. (2024) focus
on paths to enhance expressivity, while Tönshoff et al. (2023) leverage random walks for similar
purposes.

Positional encodings (PEs) and structural encodings (SEs) have emerged as effective strategies to
enhance the expressivity of MPNNs. PEs augment node representations with additional information,
such as unique node identifiers (Vignac et al., 2020), random features (Abboud et al., 2021; Sato et al.,
2021), or spectral features like eigenvectors (Lim et al., 2022; Maskey et al., 2022b). In contrast,
SEs enrich MPNNs by embedding structural information about the graph. Examples of SEs include
subgraph counts (Bouritsas et al., 2023) and homomorphism counts (Nguyen & Maehara, 2020;
Barceló et al., 2021; Welke et al., 2023; Jin et al., 2024).

While PEs and SEs enhance the expressivity of MPNNs by modifying the initial node features,
another line of research focuses on using computational graphs that differ from the input graph. For
instance, Dimitrov et al. (2023) and Bause et al. (2023) propose graph transformations that enable
MPNNs to achieve universality for specific classes of graphs, such as (outer-)planar graphs. More
broadly, Jogl et al. (2024) demonstrate that many expressive GNN variants, including k-GNNs and
subgraph GNNs, can be simulated by applying suitable graph transformations followed by standard
message passing.

While incorporating SEs does not increase the forward-pass complexity of MPNNs, it introduces
significant preprocessing overhead. For instance, computing homomorphism counts for graphs with
treewidth k requires O(Nk) operations, where N is the number of nodes. This preprocessing com-
plexity becomes exponential in k, making it computationally prohibitive for achieving expressivity
beyond k-WL.

Most prior work evaluates GNN expressivity using the k-WL hierarchy, which provides a qualitative
measure of distinguishing power but does not quantify the specific substructures a GNN can encode.
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To address this gap, Zhang et al. (2024) proposed homomorphism counts as a quantitative measure
of expressivity. Building on the work of Lovász (1967), they demonstrated that homomorphism
counts are a complete graph invariant, meaning that two graphs are isomorphic if and only if their
homomorphism counts are identical. Tinhofer (1986; 1991) showed that 1-WL is equivalent to
counting homomorphisms from graphs with treewidth one, while Dell et al. (2018) extended this to
prove that k-WL corresponds to counting homomorphisms from graphs with treewidth k.

Recent studies have further explored the relationship between homomorphism counts and GNN
expressivity. For example, Barceló et al. (2021) showed that MPNNs augmented with homomorphism
counts as initial node features can count homomorphisms of trees augmented with the included
patterns. Similarly, Paolino et al. (2024) demonstrated that MPNNs enriched with specific path
information can count homomorphisms of cactus graphs.

A.2 GENERALIZATION BOUNDS FOR GNNS

The generalization capabilities of Graph Neural Networks (GNNs) have been studied from various
theoretical perspectives. Scarselli et al. (2018) provided an early understanding of GNN capacity by
deriving generalization bounds for implicitly defined GNNs based on their VC-dimension. Building
on this, Du et al. (2019) analyzed the generalization behavior of GNNs in the infinite-width limit
using the Graph Neural Tangent Kernel (GNTK), offering insights into their asymptotic performance
as network width grows unbounded.

Focusing on data-dependent approaches, Garg et al. (2020) and Liao et al. (2021) investigated the
generalization properties of specific MPNNs with sum aggregation. By employing Rademacher com-
plexity and PAC-Bayes methods, they established bounds that depend on the observed training data,
shedding light on how factors like data distribution and architectural choices influence generalization.

Levie (2024) introduced the graphon-signal cut distance, a metric for measuring similarity between
graph-signal distributions, and demonstrated that MPNNs are Lipschitz-continuous with respect
to this distance. This insight enabled the derivation of generalization bounds for MPNNs in the
context of arbitrary graph-signal distributions. However, these bounds exhibit a slow convergence
rate of O(1/ log log(

√
m)), where m is the number of training graphs. This slow rate arises from the

generality of their assumptions, which accommodate highly flexible graph-signal distributions.

The connection between GNN expressivity and generalization was further explored by Morris et al.
(2023a), who showed that the number of graphs distinguishable by the 1-WL test is directly linked to
the VC-dimension of GNNs. This result highlights the role of the Weisfeiler-Lehman hierarchy in
understanding both the combinatorial expressivity and theoretical capacity of GNNs. In the restricted
setting of linear separability, margin-based bounds have been proposed to partially bridge theory
and practice (Franks et al., 2024), yet our broader understanding of how expressivity influences
generalization remains incomplete.

Li et al. (2024) provide a novel perspective on the generalization behavior of graph neural networks
by decoupling the representation learning component from the classification step. Their framework
considers fixed graph encoders—such as MPNNs, k-WL, or homomorphism-based models—which
map graphs into an embedding space. A separate, typically parametric, classifier (e.g., a softmax-
based MLP) is then applied to these embeddings. This setting allows for a focused study of the
generalization ability of classifiers conditioned on precomputed graph representations, shifting
attention away from the learning dynamics of the GNN and toward the geometry and concentration
properties of the induced embedding distributions.

Their analysis formalizes how generalization depends on two key factors: intra-class concentration,
i.e., how tightly embeddings from the same class cluster, and inter-class separation, i.e., how well
embeddings of different classes are separated. These are quantified using the 1-Wasserstein dis-
tance between class-conditional embedding distributions. The main theoretical result establishes
a generalization bound on the classifier’s margin loss, showing it can be upper-bounded in terms
of these geometric quantities. Importantly, the bound incorporates the expressivity of the graph
encoder through a Lipschitz constant that quantifies how much the embedding distribution of a more
expressive encoder (bounding in distinguishing power) can distort the geometry of a less expressive
one (that is used for calculating the graph embeddings). This captures how changes in expressivity
influence intra-class concentration and inter-class separation, and thus directly affect generalization.
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Although the results elegantly characterize the trade-off between expressivity and generalization,
a central limitation is that the graph encoders are fixed. They are fixed feature extractors, often
derived from CRAs or fixed GNN architectures. As such, the framework does not directly reflect the
behavior of trainable GNNs in practical deep learning pipelines, where representation learning and
classifier fitting are tightly coupled. Additionally, in contrast to our correlation-based analysis, the
generalization bounds in Li et al. (2024) require the existence of a fixed positive margin, which is
a strong assumption that may not hold in practice. Our framework is more general, as it does not
rely on margin separability and can quantify generalization even in the presence of label noise or
overlapping classes. Nonetheless, the insights are valuable: they reveal conditions under which more
expressive encoders can improve generalization—specifically, when expressivity increases intra-class
concentration without excessively harming inter-class separation. In this way, the paper offers a
principled theoretical basis for interpreting empirical phenomena observed in GNN performance
across datasets and model classes.

Related to our work, Maskey et al. (2022a; 2024) analyzed scenarios where graph labels are correlated
with random graph models, based on graphons. They demonstrated that MPNNs generalize better as
the size of the sampled graphs increases, since the statistical properties of larger graphs more closely
approximate those of the underlying random graph models.

The approach by Maskey et al. (2022a; 2024) is limited because it assumes labels are linked to
random graph models, where many specific assumptions are made about the underlying graphon
governing the data. These assumptions may not hold in practical scenarios, making their results less
general and potentially less applicable to real-world tasks. In contrast, our framework accommodates
arbitrary correlations between graph labels and structural features, as long as they can be described
by a Lipschitz-continuous distribution. This broader scope makes our method suitable for analyzing
a wide variety of graph datasets, including those where the graph generation process is not well
understood or where random graph model assumptions are too restrictive.

The work most closely related to ours is (Ma et al., 2021), which studies generalization in a semi-
supervised node classification setting. Their analysis considers a scenario where node labels are
correlated with features derived from the node’s local neighborhood and its attributes. Using a
PAC-Bayes approach that heavily inspired our work, they show that generalization improves when
the extracted features are similar between the training and test sets. However, their framework is
limited by the assumption of a fixed, non-learnable graph encoder, and their results do not generalize
to multi-graph settings or models with learnable parameters.

In contrast, our approach provides a general framework to analyze GNN generalization in settings
where graph labels are correlated with structural features. This is achieved by introducing a pseu-
dometric, such as the Tree Mover’s Distance, which captures structural differences between graphs.
Unlike prior works, our framework does not rely on restrictive assumptions about the underlying
graph distribution. Instead, we assume only that the labels are generated by a Lipschitz-continuous
probability distribution with respect to the pseudometric. This allows us to analyze a broad range of
tasks where the graph structure plays a critical role in determining labels. By explicitly connecting
generalization bounds to structural alignment between training and test graphs, our framework offers
a flexible and robust method to study GNN performance in diverse applications.

Our framework overcomes these limitations by supporting learnable GNN architectures and extending
naturally to multi-graph settings. This allows for a broader analysis of generalization, including
GNNs beyond 1-WL expressivity. Moreover, our approach bridges the gap between theory and
practice by providing insights into how the interplay between model capacity, structural similarity,
and feature alignment affects performance.

B SIMULATABLE COLOR REFINE ALGORITHMS

It is possible to represent many different GNNs as MPNNs without loss in expressivity. For this,
Jogl et al. (2024) developed the concept of simulation. Intuitively, a GNN with t > 0 layers can
be simulated if we can map its input domain to the set of graphs and achieve the same expressivity
with a t-layer MPNN on this adapted set of graphs. To generalize to different types of GNNs, one
represents GNNs ϕ as color refinement functions that iteratively refine a coloring on some relational
structure X .
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Definition B.1. Let ϕ be a color update function. Let R be a mapping from the domain of ϕ to the set
of graphs.1 We consider two arbitrary relational structures from the domain of ϕ, say X and X ′. We
say ϕ can be strongly simulated under R if for every t ≥ 0 it holds that WLt(R(X)) = WLt(R(X ′))
implies that ϕt(X) = ϕt(X ′).

As an example, consider 3-WL from Section C.3. It can be seen as a color update function c
that operates on a set of labeled 3-tuples, i.e. in iteration t > 0 it refines the coloring of tuple
(v1, v2, v3) ∈ V 3 by utilizing the coloring c(t−1):

ct(v1,v2,v3) = HASH
(
ct−1
(v1,v2,v3)

,
(
Ct

1((v1, v2, v3)), . . . , C
t
3((v1, v2, v3))

))
where

Ct
1((v1, v2, v3)) = HASH

(
{{ct−1

(w,v2,v3)
| w ∈ V }}

)
,

Ct
2((v1, v2, v3)) = HASH

(
{{ct−1

(v1,w,v3)
| w ∈ V }}

)
,

Ct
3((v1, v2, v3)) = HASH

(
{{ct−1

(v1,v2,w) | w ∈ V }}
)
.

Instead of using 3-WL, we can create the graph G⊗3 with vertices (v1, v2, v3) ∈ V 3 and three types
of edges

E1 = ∪v1,v2,v3∈V {{(v1, v2, v3), (w, v2, v3)} | w ∈ V },
E2 = ∪v1,v2,v3∈V {{(v1, v2, v3), (v1, w, v3)} | w ∈ V },
E3 = ∪v1,v2,v3∈V {{(v1, v2, v3), (v1, v2, w)} | w ∈ V }.

Observe, that for a tuple (v1, v2, v3) the neighborhood Ej contains exactly those tuples as aggregated
in the definition of Cj . We can merge these three edge sets E1, E2, E3 into a single edge set E by
using edge features that encode from which of the three sets the edge originates. Such a transformation
R it allows for the strong simulation of 3-WL.

B.1 OTHER STRONGLY-SIMULATABLE ARCHITECTURES

A GNN/WL variant is strongly simulated when there exists a structure-to-graph encoding R such
that applying R to the input and running a depth–t MPNN reproduces—layer by layer—the colours
(or hidden states) produced by the original depth–t model (Definition B.1). Table 3 summarises some
architectures that admit such a simulation and sketches the key transformation behind R; full proofs
are in (Jogl et al., 2024).

C TREE MOVER’S DISTANCE

We summarize some important results from Chuang & Jegelka (2022) and Davidson & Dym (2024).
We first start with the definition of the tree mover’s distance which provides us with a tool to compare
two graphs based on their computational trees quantitatively.

C.1 TREE MOVER’S DISTANCE

The definition and notations in this section largely follow (Chuang & Jegelka, 2022).

Definition C.1. Let G = (V,E) be a graph. We define the depth-T computational tree TT
v of node v

recursively by connecting the neighbors of the leaf nodes of TT−1
v to the tree. We set T 1

v := v as
the single node tree without any edges. The multiset of depth-T computation trees defined by G is
denoted by T T

G := {{TT
v }}v∈V . Additionally, for a tree T with root r, we denote by Tr the multiset

of subtrees that root at the descendants of r.

In other words, the depth-T computational tree TT
v of node v is the 1-WL computational tree of node

v after T − 1 iterations. To compare two multisets of computational tree we need to augments trees.

1Jogl et al. (2024) introduces some additional restrictions on R that we omit for the sake of simplicity.
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Model / Algorithm Graph transformation R(G)

VVC-GNN (Sato et al., 2019) For a given port ordering, write on each edge direction the port of the source and target node.

k-WL / k-GNN (Morris et al., 2019) Compute all k-tuples of nodes. Create a node for each k-tuple and encode the isomorphism
class of each tuple as a node feature. Connect tuples differing in one position encoding this
postion as an edge feature.

δ-k-(L)WL / GNN (Morris et al.,
2020b)

Similar as the k-tuple graph above: when connecting tuples add a local/global flag encoding
whether the nodes that differ in the tuple form an edge in the original graph. For δ-k-LWL,
only connect tuples when these nodes do form an edge.

(k, s)-LWL / SpeqNet (Morris
et al., 2022)

Similar as δ-k-WL above: keep only tuple-vertices whose induced subgraph has ≤ s
components.

GSN-e / GSN-v (Bouritsas et al.,
2023)

For pre-computed subgraph pattern counts, augment original node and edge features with
these counts.

DS-WL / DS-GNN (Bevilacqua
et al., 2021)

For a given policy π to generate subgraphs, create a graph by taking the disjoint union of all
extracted subgraphs π(G).

k-OSWL / OSAN (Qian et al.,
2022)

For each k tuple of vertices in the graph (“k-ordered subgraphs”), create a copy of all vertices
in the original graph and use node features to encode the atomic type of that node in this
ordered subgraph. In each subgraph, either link all vertices or only neighbors in the original
graph.

Mk-GNN (Papp & Wattenhofer,
2022)

For a given set of marked nodes, on each edge encode whether the target node is marked or
unmarked.

GMP (Wijesinghe & Wang, 2022) Attach structural coefficients as node or edge features.

Shortest-Path Nets (Abboud et al.,
2022)

For i ∈ 1, . . . , k add an edge between every pair of nodes with shortest path distance i and
encode i as a feature on that edge.

Generalised-Distance WL (Zhang
et al., 2023)

For a given distance metric d and graph G, add an edge between every pair of nodes u, v
and encode the metric dG(u, v) as a feature on this edge.

Table 3: GNN families whose per-layer updates can be exactly reproduced by a 1-WL–equivalent
MPNN on the transformed graph R(G).

Definition C.2. A blank tree T∅ is defined as a tree graph that contains a single node and no edge,
where the node feature is the zero vector 0p ∈ Rp. We define Tn

∅ as the multiset of n blank trees.
Definition C.3. Let Tv, Tu be two multisets of trees. We define ρ as function that augments a pair of
trees with blank trees as follows:

ρ : (Tv, Tu) 7→
(
Tv ∪ T

max(|Tu|−|Tv|,0)
∅ , Tu ∪ T

max(|Tv|−|Tu|,0)
∅

)
. (5)

Definition C.4. Let w : N → R+ be a depth-dependent weighting function. For two trees Ta, Tb, we
define the tree distance TDw(Ta, Tb) between Ta and Tb recursively as

TDw(Ta, Tb) :=

{
∥xa − xb∥+ w(T ) · OTTDw

(ρ(Ta, Tb)) if T > 1

∥xa − xb∥ otherwise,
(6)

where T = max(Depth(Ta),Depth(Tb)) and

We note that the optimal transport OT with respect to some metric d between two multisets x =
{{x1, . . . , xn}} and y = {{y1, . . . , yn}} of the same size n is defined via

OTd (x,y) = min
σ

∑
i

d
(
xi, yσ(i)

)
. (7)

Definition C.5. Let G,H ∈ G, w : N → R+, and T ≥ 0. The tree mover’s distance between G and
H is defined as

TMDT
w(G,H) = OTTDw

(
ρ(T T

G , T T
H )
)
, (8)

where T T
G and T T

H are multisets of the depth-T computation trees of graphs G and H , respectively.

We note that, for simplicity, we omit the weighting function w the corresponding subscript in the
definition of TMDT

w and simply write TMDT
w in the main part of this manuscript.

C.2 PROOFS IN SECTION 3

Proof of Proposition 3.2. By (Chuang & Jegelka, 2022, Theorem 6), TMDt
w is a pseudometric. It is

easy to see that ζ-TMDt
w is also a pseudometric. For example, given G,H ∈ G, we have

ζ-TMD(G,H) = TMD(Rζ(G), Rζ(H))

= TMD(Rζ(H), Rζ(G))

= ζ-TMD(H,G),

(9)
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showing the symmetry of ζ-TMDt
w.

Proof of Proposition 3.3. By (Chuang & Jegelka, 2022, Theorem 7), if two graphs G′ and H ′ are
determined to be non-isomorphic in WL iteration T and w(t) > 0 for all 0 < t ≤ T + 1, then
TMDT+1

w (G′, H ′) > 0.

If ζ distinguishes G and H after T iterations, then WL determines Rζ(G) and Rζ(H) to be non-
isomorphic, i.e., TMDT+1

w (Rζ(G), Rζ(H)) > 0. Then,

ζ-TMDT+1
w (G,H) > 0.

We reformulate and prove a more general version of Theorem 3.4, where we consider general message
functions on multisets that are Lipschitz continuous on the multiset domain, and update function that
are Lipschitz on the standard Euclidean latent space. This follows the approach in (Davidson & Dym,
2024), where a similar version was proved in Theorem F.2. in their manuscript. However, in contrast,
we calculate the explicit constant of the Lipschitz constant which we will need for later proofs.

Theorem 3.4 then follows as a corollary as permutations-invariant aggregation functions composed of
a MLP followed by sum aggregation are Lipschitz continuous on multisets.
Lemma C.6. Consider a MPNN of the form

x(t)
v = f (t)

(
x(t−1)
v , g(t)

(
{{x(t−1)

u , }}u∈N (v)

))
(10)

with message and update functions
(
g(t), f (t)

)T
t=1

. Consider also a global readout function e of the
form

h(G) = c
(
{{x(T )

v }}v∈V (G)

)
.

Suppose that for all t = 1, . . . , T , the message and update functions are Lipschitz continuous with
Lipschitz constants bounded by Lg(t) and Lf(t) , respectively. Suppose that the readout function is
Lipschitz continuous with Lipschitz constants bounded by Lc. Then, for all layers t = 0, 1, . . . , T
and for all pairs of graphs G,H ∈ G and all pairs of nodes u ∈ V (G) and v ∈ V (H), we have∥∥∥x(t)

u − x(t)
v

∥∥∥ ≤

(
t∏

t′=1

Lg(t′)Lf(t′)

)
2tTD

(
T (t+1)
u , T (t+1)

v

)
. (11)

For the global output, we have

∥h(G)− h(H)∥ ≤ Lc

(
T∏

t=1

Lg(t)Lf(t)

)
2T TMDT+1 (G,H) . (12)

Proof. Without loss of generality, suppose that Lf(t) , Lg(t) ≥ 1. We show Equation (11) by induction.
For t = 0 Equation (11) holds trivially.

Step 1: Bound the difference between message function outputs.∥∥∥g(t) ({{x(t−1)
s }}s∈N (u)

)
− g(t)

(
{{x(t−1)

s′ }}s′∈N (u)

)∥∥∥
≤ Lg(t)WD∥·∥

(
{{x(t−1)

s }}s∈N (v), {{x
(t−1)
s′ }}s′∈N (u)

)
= Lg(t) min

τ∈Sn

∑
u

∥∥∥x(t−1)
s − x

(t−1)
τ(s)

∥∥∥
≤ Lg(t)

∑
s

∥∥∥x(t−1)
s − x

(t−1)
τ∗(s)

∥∥∥
= Lg(t)

(
t−1∏
t′=1

Lg(t′)Lf(t′)

)
2t−1

∑
s

TD
(
T (t)
s , T

(t)
τ∗(s)

)
= Lg(t)

(
t−1∏
t′=1

Lg(t′)Lf(t′)

)
2t−1WDTD

(
{{T (t)

s }}s∈N (v), {{T
(t)
s′ }}s′∈N (u)

)
,

(13)
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where τ∗ is the optimal permutation in the definition of WDTD

(
{{T (t)

s }}s∈N (v), {{T
(t)
s′ }}s′∈N (u)

)
.

Step 2: Bound the difference between update function outputs.∥∥∥x(t)
u − x(t)

v

∥∥∥
=
∥∥∥f (t)

(
x(t−1)
s , g(t)

(
{{x(t−1)

s }}s∈N (u)

))
− f (t)

(
x(t−1)
v , g(t)

(
{{x(t−1)

s′ }}s′∈N (v)

))∥∥∥
≤ Lf(t)

(∥∥∥x(t−1)
u − x(t−1)

v

∥∥∥+ ∥∥∥g(t) ({{x(t−1)
s }}s∈N (u)

)
− g(t)

(
{{x(t−1)

s′ }}s′∈N (v)

)∥∥∥)
≤ Lf(t)

(∥∥∥x(t−1)
u − x(t−1)

v

∥∥∥+ Lg(t)

(
t−1∏
t′=1

Lg(t′)Lf(t′)

)
2t−1WDTD

(
{{T (t)

s }}s∈N (v), {{T
(t)
s′ }}s′∈N (u)

))

≤ Lf(t)

((
t−1∏
t′=1

Lg(t′)Lf(t′)

)
2t−1TD

(
T (t)
u , T (t)

v

)
+ Lg(t)

(
t−1∏
t′=1

Lg(t′)Lf(t′)

)
2t−1WDTD

(
{{T (t)

s }}s∈N (v), {{T
(t)
s′ }}s′∈N (u)

))

≤

(
t∏

t′=1

Lg(t′)Lf(t′)

)
2tTD

(
T (t+1)
v , T (t+1)

u

)
.

(14)

This finishes the proof of the first claim.

Step 3: Bound the different between global outputs. The second claim follows by calculating,

∥h(G)− h(H)∥ =
∥∥∥c({{x(T )

u }}u∈V (G)

)
− c

(
{{x(T )

v }}v∈V (G)

)∥∥∥
≤ LcWD∥·∥({{x(T )

u }}u∈V (G), {{x(T )
v }}v∈V (G))

= Lc min
τ

∑
s

∥x(T )
s − x

(T )
τ(s)∥

≤ Lc

(
T∏

t′=1

Lg(t′)Lf(t′)

)
2T
∑
s

TD
(
T (T+1)
s , T

(T+1)
τ∗(s)

)
= Lc

(
T∏

t′=1

Lg(t′)Lf(t′)

)
2T TMDT+1 (G,H) ,

(15)

where τ∗ is the optimal permutation in the definition of TMDT+1 (G,H).

We now consider the case where Lipschitz continuous functions on multisets are implemented via
sum aggregation, followed by Lipschitz continuous functions on the Euclidean domain. This includes
scenarios where the message, update, and readout functions are MLPs with Lipschitz continuous
activation functions, such as ReLU.

Corollary C.7. Consider a MPNN of the form

x(t+1)
v = f (t+1)

x(t)
v ,

∑
u∈N (v)

g(t+1)
(
x(t)
u

) ,

with message and update functions
(
g(t), f (t)

)T
t=1

. Consider also a global readout function e of the
form

h(G) = e

 ∑
v∈V (G)

x(T )
v

 .
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Suppose that for all t = 1, . . . , T , the message and update functions are Lipschitz continuous with
Lipschitz constants bounded by Lg(t) and Lf(t) , respectively. Suppose that the readout function is
Lipschitz continuous with Lipschitz constants bounded by Lc. Then, for all layers t = 0, 1, . . . , T
and for all pairs of graphs G,H ∈ G and all pairs of nodes u ∈ V (G) and v ∈ V (H), we have∥∥∥x(t)

u − x(t)
v

∥∥∥ ≤

(
t∏

t′=1

Lg(t′)Lf(t′)

)
2tTD

(
T (t+1)
u , T (t+1)

v

)
. (16)

For the global output, we have

∥h(G)− h(G)∥ ≤ Lc

(
T∏

t=1

Lg(t)Lf(t)

)
2T TMDT+1 (G,H) .

Proof. This follows directly from Lemma C.6, since for any Lipschitz continuous function f with
Lipschitz constant Lf , the induced multiset function f̃ : X 7→

∑
x∈X f(x) remains Lipschitz

continuous with a Lipschitz constant bounded by Lf .

Theorem C.8. Let ζ be a strongly simulatable CRA, and let h : G → RK be a ζ-MPNN with T
layers, where the message and update functions are Lipschitz continuous with Lipschitz constants
bounded by Lg(t) and Lf(t) , respectively. Suppose h includes a global sum pooling layer followed by
a Lipschitz continuous classifier c with Lipschitz constant Lc. Then, for any graphs G and H ,

∥h(G)− h(H)∥ ≤ L · ζ-TMDT+1(G,H),

where L = Lc2
T
∏T

t=1 Lf(t)Lg(t) .

Proof. Let h′ be the underlying MPNN of h. The proof of theorem follows from Corollary C.7 by

∥h(G)− h(G)∥ =
∥∥h′ (Rζ(G)

)
− h′ (Rζ(H)

)∥∥
≤ Lc

(
T∏

t=1

Lg(t)Lf(t)

)
2T TMDT+1

(
Rζ(G), Rζ(H)

)
= Lc

(
T∏

t=1

Lg(t)Lf(t)

)
2T ζ-TMDT+1 (G,H) .

C.3 EXAMPLE II: k-GNNS

The k-Weisfeiler-Leman (k-WL) test enhances the expressive power of the 1-WL test by considering
interactions between k-tuples of nodes. To strongly simulate k-WL, a product graph G⊗k is con-
structed, where each node represents a k-tuple of nodes from the original graph G, and edges are
defined based on the adjacency relationships in G.

Similarly, k-MPNNs operate directly on the product graph G⊗k, achieving the same level of expres-
sivity as the k-WL.
Corollary C.9. Let h be an k-MPNN with T layers. Then, there exists a constant L such that for any
graphs G and H ,

∥h(G)− h(H)∥ ≤ L · k-TMDT+1(G,H). (17)

D GRAPH CLASSIFICATION SETTING

We consider a classification problem with K classes over a fixed set of training graphs Gtr and test
graphs Gte. Each graph G is equipped with node features x, and we assume there exists a constant
D > 0 such that ∥xi∥ ≤ D for every node i ∈ V (G) and every G ∈ Gtr ∪ Gte. Let Ntr = |Gtr|
and Nte = |Gte|. Each graph G has a label y sampled from an unknown distribution p. Moreover,
we assume that graphs closer in a given pseudometric pm are more likely to share the same label.
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Concretely, for each class k ∈ {1, . . . ,K}, there is a Lipschitz continuous function ηk (with respect
to some pseudometric pm) such that

Pr
(
y = k

∣∣G) = ηk(G),

and we denote by C := maxk Lip(ηk) the maximum Lipschitz constant among all {ηk}. Let ξ be
an upper bound on the distance (with respect to pm) between any training graph in Gtr and any test
graph in Gte.

We now introduce a PAC-Bayes framework to derive a generalization bound for classifiers under this
setting. We consider two different setups for learning on graphs:

1. ζ-MPNNs: Let ζ be a strongly simulatable color-refinement algorithm (see Definition B.1).
A ζ-MPNN has a fixed depth T and a final MLP e as the classifier. Each layer t ∈
{1, . . . , T} has message and update functions denoted by g(t) and f (t), each with fixed
depths d(g(t)) and d(f (t)), respectively. The corresponding weight matrices are written

as {w(g(t), s)}d(g
(t))

s=1 and {w(f (t), s)}d(f
(t))

s=1 . The final MLP classifier e has parameters
{w(e, s)}d(e)s=1 . Define b to be the maximum hidden dimension across these modules, and let
Hζ be the class of all such ζ-MPNN classifiers.

2. MLPs on non-learnable graph embeddings: Here, the final MLP classifier c has the same
notations for its parameters as above, and we denote the hypothesis set by Hlatent.

We assume that every non-linearities in the MLPs are Lipschitz continuous and homogeneous.

Finally, we adapt the following assumption from Ma et al. (2021).
Assumption D.1 (Assumption on Concentrated Expected Loss Difference.). Let P be a distribution
over H obtained by sampling the (vectorized) trainable weight matrices from N (0, σ2I), with

σ2 ≤
(
γ/(8ξ)

)2
/D

2 b
(
λN−α

tr + ln(2 bD)
) .

For any classifier h ∈ H with model parameters {wj}j , define Th := maxj
∥∥wj

∥∥
2
. Assume there

exists an 0 < α < 1
4 such that

Prh∼P

(
Lγ/4
te (h) − Lγ/2

tr (h) > N−α
tr + cK ξ

∣∣ TD
h ξ > γ

8

)
≤ e−N2α

tr .

This assumption posits that when the model parameters h sampled from P do not exceed a certain
norm threshold (i.e., TD

h ξ ≤ γ
8 ) and the number of training samples Ntr is sufficiently large, then the

expected margin loss on the test set will not exceed that on the training set by more than N−α
tr + cKξ.

Informally, once the training set grows large enough (and model weights are not too large), the test
performance cannot deviate significantly from the training performance. This property becomes
trivially true if all samples in Gtr and Gte are i.i.d. since Lγ/2

te − Lγ/2
tr ≤ 0 in that case.

E PROOFS OF THE RESULTS SECTION 4

In this section, we provide detailed proofs of the theoretical results presented in the Section 4.

We note that the proof of Theorem 4.1 follows the proof of Theorem 3 in (Ma et al., 2021), carefully
adapted for graph classification tasks and learnable graph encoders.

Specifically, the proof leverages the PAC-Bayes framework, properties of the chosen pseudometric,
and structural constraints on the hypothesis space. For clarity, we decompose it into a series of steps,
each contributing to the final result.

In Appendix E.1, we present intermediate results that are independent of the choice of pseudometric
and hypothesis space. To emphasize this generality, we denote the pseudometric by pm and the
hypothesis space by H. This ensures that the results in Appendix E.1 apply regardless of whether the
pseudometric is defined in the graph space or latent space, and whether the classifier is an end-to-
end learnable GNN or a deterministic graph encoder followed by a learnable MLP classifier. This
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approach allows us to establish in Appendix E.2 the generalization bound for end-to-end learnable
GNNs, and in the following subsection, the bound for graph classifiers with fixed encoders–both
derived from the results in Appendix E.1.

We note that if pm is defined on G, the corresponding classifier h : G → {1, . . . ,K} is assumed to
be Lipschitz with respect to pm. If instead pm is defined on Rb, the classifier h : Rb → {1, . . . ,K},
typically an MLP, is assumed to be Lipschitz with respect to pm. In the latter case, classification is
performed via h ◦ e(G), where e : G → Rb is a deterministic graph embedding network.

E.1 PRELIMINARIES FOR THE PROOFS IN SECTION 4

Step 1: Deterministic Bound via PAC-Bayes We begin by establishing a deterministic bound
on the test loss in terms of the training loss and the Kullback-Leibler (KL) divergence between the
posterior and prior distributions over the hypothesis space H.

Lemma E.1. Let h̃ ∈ H be any classifier and let P be a prior distribution on H independent of the
training data. For any λ > 0 and γ ≥ 0, with probability at least 1− δ over the training sample ytr,
for any posterior distribution Q on H satisfying

Ph∼Q

(
max

G∈Gtr∪Gte

∥h(G)− h̃(G)∥∞ <
γ

8

)
≥ 1

2
,

the following bound holds:

L0
te(h̃) ≤ Lγ

tr(h̃) +
1

λ

(
2 (DKL(Q∥P ) + 1) + ln

1

δ
+

λ2

4Ntr
+D

γ/2
te,tr(P ;λ)

)
, (18)

where D
γ/2
te,tr(P ;λ) = lnEh∼P exp

(
λ
(
Lγ/2
te (h)− Lγ

tr(h)
))

.

Proof of Lemma E.1. The proof adapts Theorem 2 from Ma et al. (2021) from the node to the graph
classification setting. We present the proof for completeness.

First, define a subset Hh̃ ⊂ H as:

Hh̃ =

{
h ∈ H | max

G∈Gtr∪Gte

∥h(G)− h̃(G)∥∞ ≤ γ

8

}
. (19)

Using this subset Hh̃, define the modified distribution Q′ over Hh̃ as:

Q′(h) =

{
1

Ph∼Q(h∈Hh̃)
Q(h), if h ∈ Hh̃,

0, otherwise
(20)

We aim to show
L0
te(h̃) ≤ Lγ/4

te (h) and L̂γ/2
tr (h) ≤ L̂γ

tr(h̃). (21)

The first inequality holds since

L0
te(h̃)− Lγ/4

te (h)

= Eyi∼Pr(y|Gi),Gi∈Gte

[
L̂γ
te(h̃)

]
− Eyi∼Pr(y|gi),Gi∈Gte

[
L̂γ/4
t (h)

]
= Eyi∼Pr(y|Gi),Gi∈Gte

[
1

Nte

∑
Gi∈Gte

1

[
h̃(Gi)[yi] ≤

(
0 + max

k ̸=yGi

h(Gi)[k]

)]]

− Eyi∼Pr(y|Gi),Gi∈Gte

[
1

Nte

∑
Gi∈Gte

1

[
h(Gi)[yi] ≤

(
γ/4 + max

k ̸=yGi

h(Gi)[k]

)]]

= Eyi∼Pr(y|Gi),Gi∈Gte

[
1

Nte

∑
Gi∈Gte

1

[
h̃(Gi)[yi] ≤

(
0 + max

k ̸=yGi

h̃(Gi)[k]

)]
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−1
[
h(Gi)[yi] ≤

(
γ/4 + max

k ̸=yGi

h(Gi)[k]

)]]
,

i.e., it remains to show that if h̃(Gi)[yi] ≤
(
0 + maxk ̸=yGi

h(Gi)[k]
)

holds, then also h(Gi)[yi] ≤(
γ/4 + maxk ̸=yGi

h(Gi)[k]
)
. This is clear by Equation (19),

h(Gi)[yi] ≤ γ/8 + h̃(Gi)[yi]

≤ γ/8 + max
k ̸=yGi

h̃(Gi)[k]

≤ γ/4 + max
k ̸=yGi

h(Gi)[k].

Similarly, one can prove the second inequality in Equation (21).

Therefore, with probability at least 1− δ over the samples ytr, we get

Lte
0 ≤ Eh∼Q′Lγ/4

te (h)

≤ Eh∼Q′L̂γ/2
tr (h) +

1

λ

(
DKL(Q

′||P ) + ln
1

δ
+

λ2

4Ntr
+D

γ/2
te,tr(P ;λ)

)
≤ L̂γ

tr(h̃) +
1

λ

(
DKL(Q

′||P ) + ln
1

δ
+

λ2

4Ntr
+D

γ/2
te,tr(P ;λ)

)
.

The second inequality applies Theorem 1 from Ma et al. (2021), while the first and last inequalities
follow directly from (21) and the definitions of Hh̃ and Q′. The remaining steps align with the proof
of Theorem 2 from Ma et al. (2021).

Step 2: Bounding the Discrepancy Term Next, we bound the term D
γ/2
te,tr(P ;λ) from Equa-

tion (18) in Lemma E.1, which captures the difference in expected losses between the test and training
distributions under the prior P . We begin by bounding Lγ/2

te (h)− Lγ
tr(h) in this step.

Lemma E.2. Let h ∈ H be any classifier with Lipschitz constant L with respect to the pseudometric
pm. For any γ ≥ 0, if Lξ ≤ γ

4 , then

Lγ/2
te (h)− Lγ

tr(h) ≤ CKξ,

where K is the number of classes and C is the maximum Lipschitz constant of the functions ηk.

Proof of Lemma E.2. We set

Lγ(G, y) := 1

[
h(G)[y] ≤ γ +max

k ̸=y
h(G)[k]

]
,

where h(G)[k] denotes the output score for class k.
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Then, we can write

Lγ/2
te (h)− Lγ

tr(h)

= Eyte

 ∑
Gj∈Gte

1

Nte
Lγ/2(Gj , yj)

− Eytr

[ ∑
Gi∈Gtr

1

Ntr
Lγ(Gi, yi)

]

=
1

Nte

∑
Gj∈Gte

K∑
k=1

ηk(Gj)Lγ/2(Gj , k)−
1

Ntr

∑
Gi∈Gtr

K∑
k=1

ηk(Gi)Lγ(Gi, k)

=
1

Nte

1

Ntr

∑
Gi∈Gtr

∑
Gj∈Gte

K∑
k=1

ηk(Gj)Lγ/2(Gj , k)−
1

Ntr

1

Nte

∑
Gj∈Gte

∑
Gi∈Gtr

K∑
k=1

ηk(Gi)Lγ(Gi, k)

=
1

NteNtr

∑
Gi∈Gtr

∑
Gj∈Gte

K∑
k=1

(
ηk(Gj)Lγ/2(Gj , k)− ηk(Gi)Lγ(Gi, k)

)

=
1

NteNtr

∑
Gi∈Gtr

∑
Gj∈Gte

K∑
k=1

(
ηk(Gj)Lγ/2(Gj , k)− ηk(Gj)Lγ(Gi, k)

)
+ (ηk(Gj)Lγ(Gi, k)− ηk(Gi)Lγ(Gi, k))

=
1

NteNtr

∑
Gi∈Gtr

∑
Gj∈Gte

K∑
k=1

ηk(Gj)
(
Lγ/2(Gj , k)− Lγ(Gi, k)

)
+ Lγ(Gi, k) (ηk(Gj)− ηk(Gi))

≤ 1

NteNtr

∑
Gi∈Gtr

∑
Gj∈Gte

K∑
k=1

(
Lγ/2(Gj , k)− Lγ(Gi, k)

)
+ (ηk(Gj)− ηk(Gi)) .

(22)
The last inequality holds since Lγ and ηk are bounded by 1. We have, by assumption on the probability
distribution,

ηk(Gj)− ηk(Gi) ≤ C · pm (Gj , Gi) ≤ Cξ. (23)

Furthermore, by assumption,

∥h(Gi)− h(Gj)∥∞ ≤ L · pm (Gj , Gi) ≤ Lξ ≤ γ

4
. (24)

Then, for any k = 1, . . . ,K,

Lγ/2 (h(Gj), k) ≤ Lγ (h(Gi), k) . (25)

This is true since both Lγ/2 (h(Gj), k) and Lγ (h(Gi), k) are 0-1-valued. If Lγ/2 (h(Gj), k) = 1,
we have by Equation (24),

h(Gi)[k] ≤ γ/4 + h(Gi)[k]

≤ γ/4 + γ/2 + max
l=1,...,K

h(Gj)[l]

≤ γ/4 + γ/2 + γ/4 + max
l=1,...,K

h(Gi)[l]

= γ + max
l=1,...,K

h(Gi)[l],

i.e., Lγ (h(Gi), k) = 1 as well.

Finally, we continue with the calculation in Equation (22),

Lγ/2
te (h)− Lγ

tr(h) ≤
1

NteNtr

∑
Gi∈Gtr

∑
Gj∈Gte

K∑
k=1

(
Lγ/2(Gj , k)− Lγ(Gi, k)

)
+ (ηk(Gj)− ηk(Gi))

≤ 1

Ntr

∑
Gi∈Gtr

1

Nte

∑
Gj∈Gte

K∑
k=1

(0 + Cξ)

= CKξ,
(26)
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where the second inequality holds by Equation (23) and Equation (25).

Step 3: Bounding the Discrepancy Term D
γ/2
tr,te(P ;λ).

Lemma E.3. Let α > 0. For any 0 < λ ≤ N2α and γ ≥ 0, assume the “prior” P on H is defined by
sampling the vectorized trainable weight matrices from N (0, σ2I) for some σ2 ≤ (γ/8m)2/D

2b(λN−α
tr +ln 2bD)

.
We have

D
γ/2
tr,te(P ;λ) ≤ ln 3 + λCKξ, (27)

where D
γ/2
te,tr(P ;λ) = lnEh∼P e

λ
(
Lγ/2

te (h)−Lγ
tr(h)

)
.

Proof. First, set Th := maxj=1,...,D ∥wj∥2. We prove this lemma by partitioning H into two events:
one with high probability, where the spectral norms of the model parameters satisfy the conditions in
Lemma E.2, and its complement. For the latter event, we use Assumption D.1.

For any j = 1, . . . , D, we have, by (Tropp, 2015), for any t > 0,

Pr (∥wj∥2 ≥ t) ≤ 2be−
t2

2bσ2 ,

where b is the maximum width of all hidden layers of the considered classifier. We set t =
(

γ
8ξ

)1/D
.

Applying a union bound leads to

Pr
(
TD
h ξ >

γ

8

)
= Pr

(
Th >

(
γ

8ξ

)1/D
)

≤ 2bDe−
(γ/8ε)2/D

2bσ2 ≤ e−λN−α
tr , (28)

where the last inequality uses the condition σ2 ≤ (γ/8ξ)2/D

2b(λN−α
tr +ln 2bD)

.

For any h satisfying TD
h ξ ≤ γ

8 , by Lemma E.2, we have e
λ
(
Lγ/4

te (h)−Lγ/2
tr (h)

)
≤ eλCKξ.

The complement event, i.e., TD
h ξ > γ

8 occurs with probability at most e−λN−α
tr . We decompose

D
γ/2
tr,te(P ;λ) as follows,

D
γ/2
tr,te(P ;λ) = lnEh∼P e

λ
(
Lγ/4

te (h)−Lγ/2
tr (h)

)

≤ ln

(
Pr
(
TD
h ξ ≤ γ

8

)
eλCKξ + Pr

(
TD
h ξ >

γ

8

)
Eh∼P |TD

h ξ> γ
8
e
λ
(
Lγ/4

te (h)−Lγ/2
tr (h)

))
≤ ln

(
eλCKξ + e−λN−α

tr Eh∼P |TD
h ξ> γ

8
e
λ
(
Lγ/4

te (h)−Lγ/2
tr (h)

))
≤ ln

(
eλCKξ + e−λN−α

tr

(
e−N2α

tr · eλ +
(
1− e−N2α

tr

)
· eλN

−α
tr +λCKξ

))
= ln

(
eλCKξ + eλ−N2α

tr + e−λN−α
tr

((
1− e−N2α

)
· eλN

−α
tr +λCKξ

))
= ln

(
eλCKξ + eλ−N2α

tr +
((

1− e−N2α
tr

)
· eλCKξ

))
≤ ln

(
2eλCKξ + 1

)
≤ ln 3 + λCKξ.

(29)
The first inequality holds by decomposing the domain over the expectation/integral into the event
in which TD

h ξ ≤ γ
8 holds and its complement. The second inequality holds by Pr

(
TD
h ξ ≤ γ

8

)
≤ 1

and Equation (28). The third inequality holds by Assumption D.1. The second-to-last inequality
holds by the assumption 0 < λ ≤ N2α. The remaining equations and inequalities are algebraic
reformulations.
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E.2 PROOF OF THEOREM 4.1

We first present auxiliary results for the proof of Theorem 4.1, focusing on MPNNs, which may be
end-to-end learnable. At the end of this chapter, we provide the full proof of Theorem 4.1, building
on the results from this and the previous section. For simplicity, we derive the results for MPNNs;
the corresponding results for ζ-MPNNs applied to a graph G follow by applying the derived results
for standard MPNNs to the strong simulation ζ. Let us denote the hypothesis space of MPNNs by
Hmpnn, where the parameters follow the assumptions in Theorem 4.1.

Step 4: MPNNs are stable under weight pertubations. We proceed by proving the following
result that shows that MPNNs are stable under small pertubations of their weights.

Lemma E.4. Let h̃ be any classifier in Hmpnn with learnable weight matrices w ={
{w(f (t), s)}d(f

(t))
s=1 , {w(g(t), s)}d(g

(t))
s=1 , {w(c, s)}d(c)s=1

}
and β̃ > 0. Let GB,d be the set of graphs

with maximum degree d and input node features in a ball of radius B. Then,

max
G∈GB,d

|h̃w+u(G)− h̃w(G)|

≤ e

d(c)∏
s=1

∥w(c, s)∥2

(T−1∏
k=0

d(f(k+1))∏
s

∥w(f (k+1), s)∥

 ·

(
1 + d

(d(g(k+1))∏
s

∥w(g(k+1), s)∥
)))

B

·
T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)
(30)

Proof. We denote by x
(t)
v the representation of node v after t layers of the MPNN h̃w with standard

weights w and x̃
(t)
v is the representation of node v after t + 1 layers of the MPNN h̃w+u with

perturbed weights w + u. We similarly define the message terms m(t)
v and m̃

(t)
v . We further define

δt+1 := max
v

∥∥∥x̃(t+1)
v − x(t+1)

v

∥∥∥ .
We calculate

δt+1 = max
v

∥∥∥x̃(t+1)
v − x(t+1)

v

∥∥∥
= max

v

∥∥∥f (t+1)
w+u (x̃(t)

v , m̃(t+1)
v )− f (t+1)

w (x(t)
v ,m(t+1)

v )
∥∥∥

≤
∥∥∥f (t+1)

w+u (x̃
(t)
v∗ , m̃

(t+1)
v∗ )− f

(t+1)
w+u (x

(t)
v∗ ,m

(t+1)
v∗ )

∥∥∥
+
∥∥∥f (t+1)

w+u (x
(t)
v∗ ,m

(t+1)
v∗ )− f (t+1)

w (x
(t)
v∗ ,m

(t+1)
v∗ )

∥∥∥
= (A) + (B),

where v∗ is the node where the maximum is taken.

Bound (A). We begin by bounding the first term (A). It holds

(A) ≤ L(f
(t+1)
w+u )

(
∥x̃(t)

v − x(t)
v ∥+ ∥m̃(t)

v −m(t)
v ∥
)

≤ L(f
(t+1)
w+u )

δt +

∥∥∥∥∥∥
∑

ũ∈N (v)

g
(t+1)
w+u (x̃

(t)
ũ )− g(t+1)

w (x
(t)
ũ )

∥∥∥∥∥∥


≤ L(f
(t+1)
w+u )

(
δt + d max

u∗∈N (v)

∥∥∥g(t+1)
w+u (x̃

(t)
u∗ )− g(t+1)

w (x
(t)
u∗ )
∥∥∥)

≤ L(f
(t+1)
w+u )

(
δt + d max

u∗∈N (v)

∥∥∥g(t+1)
w+u (x̃

(t)
u∗ )− g(t+1)

w (x
(t)
u∗ )
∥∥∥)

(31)
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We calculate,

∥g(t+1)
w+u (x̃

(t)
u∗ )− g(t+1)

w (x
(t)
u∗ )∥

≤ ∥g(t+1)
w+u (x̃

(t)
u∗ )− g

(t+1)
w+u (x

(t)
u∗ )∥+ ∥g(t+1)

w+u (x
(t)
u∗ )− g(t+1)

w (x
(t)
u∗ )∥

≤
(
1 +

1

D

)d(g(t+1))
(∏

s

∥w(g(t+1), s)∥

)
max

u∗∈N (v)
∥x(t)

u∗∥
∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+ L(g
(t+1)
w+u ) max

u∗∈N (v)
∥x̃(t)

u∗ − x
(t)
u∗∥

(32)

Hence,

(A) ≤ L(f
(t+1)
w+u )

(
δt + d

(
1 +

1

D

)d(g(t+1))
(∏

s

∥w(g(t+1), s)∥

)
∥x(t)∥

∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+ L(g
(t+1)
w+u )δt

)
(33)

Bound (B). We continue by bounding the first term (B). It holds

(B) ≤
(
1 +

1

D

)d(f(t+1))
(∏

s

∥w(f (t+1), s)∥

)(
∥x(t)

v∗ ∥+ ∥m(t+1)
v∗ ∥

)∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

.

(34)

Together, we have

δt+1 ≤ L(f
(t+1)
w+u )

(
δt + d

(
1 +

1

D

)d(g(t+1))
(∏

s

∥w(g(t+1), s)∥

)
∥x(t)∥

∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+ L(g
(t+1)
w+u )δt

)

+

(
1 +

1

D

)d(f(t+1))
(∏

s

∥w(f (t+1), s)∥

)(
∥x(t)

v∗ ∥+ ∥m(t+1)
v∗ ∥

)∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

= L(f
(t+1)
w+u )

(
(1 + L(g

(t+1)
w+u ))

)
δt

+ L(f
(t+1)
w+u )

(
d

(
1 +

1

D

)d(g(t+1))
(∏

s

∥w(g(t+1), s)∥

)
∥x(t)∥

∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

)

+

(
1 +

1

D

)d(f(t+1))
(∏

s

∥w(f (t+1), s)∥

)(
∥x(t)

v∗ ∥+ ∥m(t+1)
v∗ ∥

)∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

.

(35)

We solve this recurrence relation to get

δT ≤
T−1∑
t=0

(
T−1∏

k=t+1

Ak

)
Bt,

where

At = L(f
(t+1)
w+u )

(
1 + L

(
g
(t+1)
w+u

))
, (36)
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Bt = L(f
(t+1)
w+u )

(
d
(
1 + 1

D

)d(g(t+1))

d(g(t+1))∏
s

∥w
(
g(t+1), s

)
∥


·

(
t∏

k=1

L(f (k)
w )

(
1 + dL(g(k)w )

))
B
∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

)

+
(
1 + 1

D

)d(f(t+1))

d(f(t+1))∏
s

∥w
(
f (t+1), s

)
∥


·
(
(1 + dL(g(t+1)

w ))

(
t∏

k=1

L(f (k)
w )

(
1 + dL(g(k)w )

))
B
)∑

s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

,

(37)

where

L(f
(t+1)
w+u ) =

d(f(t+1))∏
s=1

∥w(f (t), s) + u(f (t), s)∥

 , (38)

L(g
(t+1)
w+u ) =

d(g(t+1))∏
s=1

∥w(g(t), s) + u(g(t), s)∥

 , (39)

and the product
T−1∏

k=t+1

Ak is taken to be 1 when t = T (empty product).

Final Step As a final step we need to incorporate the MLP classifier after the T message passing
layers. For this we calculate,

δT+1 =

∥∥∥∥∥fw+u

(
1

N

N∑
v=1

x̃(T )
v

)
− fw

(
1

N

N∑
v=1

x(T )
v

)∥∥∥∥∥
≤

∥∥∥∥∥fw+u

(
1

N

N∑
v=1

x̃(T )
v

)
− fw+u

(
1

N

N∑
v=1

x(T )
v

)∥∥∥∥∥
+

∥∥∥∥∥fw+u

(
1

N

N∑
i=1

x(T )
v

)
− fw

(
1

N

N∑
v=1

x(T )
v

)∥∥∥∥∥
≤
(
1 +

1

D

)d(f)
d(f)∏

s=1

∥w(c, s)∥2

 δT +

(
1 +

1

D

)d(f)
d(f)∏

s=1

∥w(c, s)∥2

∥∥∥x(T )
∥∥∥
2

d(f)∑
i=1

∥u(f, s)∥2
∥w(c, s)∥2

≤
(
1 +

1

D

)d(f)
d(f)∏

s=1

∥w(c, s)∥2

 T−1∑
t=0

(
T−1∏

k=t+1

Ak

)
Bt

+

(
1 +

1

D

)d(f)
d(f)∏

s=1

∥w(c, s)∥2

( T∏
t=1

L(f (t)
w )

(
1 + dL(g(t)w )

))
B

d(f)∑
i=1

∥u(f, s)∥2
∥w(c, s)∥2

= (C) + (D)
(40)
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For the term (C), we calculate

(
1 +

1

D

)d(c)
d(c)∏

s=1

∥w(c, s)∥2

 T−1∑
t=0

(
T−1∏

k=t+1

Ak

)
Bt

≤
(
1 +

1

D

)d(c)
d(c)∏

s=1

∥w(c, s)∥2

 T−1∑
t=0

(
T−1∏

k=t+1

L(f
(k+1)
w+u )

(
1 + L

(
g
(k+1)
w+u

))
,

)
Bt

=

(
1 +

1

D

)d(c)
d(c)∏

s=1

∥w(c, s)∥2

 T−1∑
t=0

(
T−1∏

k=t+1

(
1 +

1

D

)d(f(k+1))
d(f(k+1))∏

s

∥w(f (k+1), s)∥


·

(
1 +

(
1 +

1

D

)d(g(k+1)) (d(g(k+1))∏
s

∥w(g(k+1), s)∥
)))

·Bt

(41)
For Bt, we calculate

Bt = L(f
(t+1)
w+u )

(
d
(
1 + 1

D

)d(g(t+1))

d(g(t+1))∏
s

∥w
(
g(t+1), s

)
∥


·

(
t∏

k=1

L(f (k)
w )

(
1 + dL(g(k)w )

))
D
∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

)

+
(
1 + 1

D

)d(f(t+1))

d(f(t+1))∏
s

∥w
(
f (t+1), s

)
∥


·
(
(1 + dL(g(t+1)

w ))

(
t∏

k=1

L(f (k)
w )

(
1 + dL(g(k)w )

))
D
)∑

s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

=
(
1 + 1

D

)d(f(t+1))

d(f(t+1))∏
s

∥w
(
f (t+1), s

)
∥

( t∏
k=1

L(f (k)
w )

(
1 + dL(g(k)w )

))
B

·

d
(
1 + 1

D

)d(g(t+1))

d(g(t+1))∏
s

∥w
(
g(t+1), s

)
∥

∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+

1 + d

d(f(t+1))∏
s

∥w
(
f (t+1), s

)
∥

∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥


≤
(
1 + 1

D

)d(f(t+1))

d(f(t+1))∏
s

∥w
(
f (t+1), s

)
∥

( t∏
k=1

L(f (k)
w )

(
1 + dL(g(k)w )

))

·B

1 + d
(
1 + 1

D

)d(g(t+1))

d(g(t+1))∏
s

∥w
(
g(t+1), s

)
∥

 ·

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)

≤
(
1 + 1

D

)d(f(t+1))+d(g(t+1))
(

t+1∏
k=1

L(f (k)
w )

(
1 + dL(g(k)w )

))
B ·

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)
,

(42)
since L(g

(t+1)
w ) =

∏d(g(t+1))
s ∥w

(
g(t+1), s

)
∥ and L(f

(t+1)
w ) =

∏d(f(t+1))
s ∥w

(
f (t+1), s

)
∥, respec-

tively.
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Together, we get

(C) ≤
(
1 +

1

D

)D
d(c)∏

s=1

∥w(c, s)∥2

 T−1∑
t=0

(
T−1∏

k=t+1

d(f(k+1))∏
s

∥w(f (k+1), s)∥

 ·

(
1 +

(d(g(k+1))∏
s

∥w(g(k+1), s)∥
)))

·
(
1 + 1

D

)d(f(t+1))+d(g(t+1))
(

t+1∏
k=1

L(f (k)
w )

(
1 + dL(g(k)w )

))
B ·

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)

≤
(
1 +

1

D

)D
d(c)∏

s=1

∥w(c, s)∥2

(T−1∏
k=0

d(f(k+1))∏
s

∥w(f (k+1), s)∥

 ·

(
1 + d

(d(g(k+1))∏
s

∥w(g(k+1), s)∥
)))

B

·
T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)

≤ e

d(c)∏
s=1

∥w(c, s)∥2

(T−1∏
k=0

d(f(k+1))∏
s

∥w(f (k+1), s)∥

 ·

(
1 + d

(d(g(k+1))∏
s

∥w(g(k+1), s)∥
)))

B

·
T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)
(43)

where D = d(f) +
∑T

k=1

(
d
(
f (k)

)
+ d

(
g(k)

))
. Hence,

δT+1 ≤ (C) + (D)

e

d(c)∏
s=1

∥w(c, s)∥2

(T−1∏
k=0

d(f(k+1))∏
s

∥w(f (k+1), s)∥

 ·

(
1 + d

(d(g(k+1))∏
s

∥w(g(k+1), s)∥
)))

B

·
T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)

+

(
1 +

1

D

)d(f)
d(f)∏

s=1

∥w(c, s)∥2

( T∏
t=1

L(f (t)
w )

(
1 + dL(g(t)w )

))
B

d(f)∑
i=1

∥u(f, s)∥2
∥w(c, s)∥2

≤ e

d(c)∏
s=1

∥w(c, s)∥2

(T−1∏
k=0

d(f(k+1))∏
s

∥w(f (k+1), s)∥

 ·

(
1 + d

(d(g(k+1))∏
s

∥w(g(k+1), s)∥
)))

B

·

T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)
+

d(f)∑
i=1

∥u(f, s)∥2
∥w(c, s)∥2

 .

(44)

Step 5: Derive sufficient conditions for Lemma E.1 We proceed with the following lemma that
gives sufficient conditions under which the conditions of Lemma E.1 are satisfied. The following
lemma is the first result that is specific to the hypothesis space Hmpnn.

Lemma E.5. Let h̃ be any classifier in Hmpnn with learnable weight matrices w ={
{w(f (t), s)}d(f

(t))
s=1 , {w(g(t), s)}d(g

(t))
s=1 , {w(c, s)}d(c)s=1

}
and β̃ > 0. Consider random perturbations

to w given by u =
{
{u(f (t), s)}d(f

(t))
s=1 , {u(g(t), s)}d(g

(t))
s=1 , {u(c, s)}d(c)s=1

}
, where each perturbation

follows an independent Gaussian distribution N (0, σ2I). Suppose the following conditions hold:

• The variance of the perturbation satisfies

σ ≤ γ

e2B
(
β̃D−(

∑T
k=1 d(g(k)))−1 + dT−1β̃D−1

)√
2h ln(4Dh)

. (45)

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

• All weights w ∈ w satisfy ∥w∥2 = β, with |β̃ − β| ≤ β̃
D .

Then, with respect to the random draw of u,

Pr

(
max

G∈Gtr∪Gte

∥h̃w(G)− h̃w+u(G)∥∞ <
γ

8

)
≥ 1

2
.

Proof. By |β − β̃| ≤ 1
D β̃, we get

1

e
βD−1 ≤ β̃D−1 ≤ eβD−1.

We can bound the spectral norm of each perturbation matrix u ∈ u, by Tropp (2015), as follows:

Pr (∥u∥2 > t) ≤ 2b exp

(
− t2

2bσ2

)
,

where b represents the hidden dimension. Applying a union bound over all layers, we obtain that with
probability at least 1/2, the spectral norm of each perturbation u ∈ u is bounded by

σ
√
2b ln (4Db).
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Substituting this spectral norm bound into Lemma E.4, we have with probability at least 1/2,

max
G∈Gtr∪Gte

|h̃w+u(G)− h̃w(G)|

≤ e

d(c)∏
s=1

∥w(c, s)∥2

 T−1∏
k=0

d(f(k+1))∏
s

∥w(f (k+1), s)∥

 ·

(
1 + d

d(g(k+1))∏
s

∥w(g(k+1), s)∥

)
B

·

T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)
+

d(f)∑
i=1

∥u(f, s)∥2
∥w(c, s)∥2


≤ e

d(c)∏
s=1

∥w(c, s)∥2

 T−1∏
k=0

d(f(k+1))∏
s

∥w(f (k+1), s)∥

 · d
d(g(k+1))∏

s

∥w(g(k+1), s)∥B

·

T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)
+

d(f)∑
i=1

∥u(f, s)∥2
∥w(c, s)∥2


+ e

d(c)∏
s=1

∥w(c, s)∥2

 T−1∏
k=0

d(f(k+1))∏
s

∥w(f (k+1), s)∥

B

·

T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥
∥w(g(t+1), s)∥

+
∑
s

∥u(f (t+1), s)∥
∥w(f (t+1), s)∥

)
+

d(f)∑
i=1

∥u(f, s)∥2
∥w(c, s)∥2


= eβD−1dT−1B ·

T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥+
∑
s

∥u(f (t+1), s)∥

)
+

d(f)∑
s=1

∥u(f, s)∥


+ eβD−(

∑T
k=1 d(g(k)))−1B ·

T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥+
∑
s

∥u(f (t+1), s)∥

)
+

d(f)∑
s=1

∥u(f, s)∥


≤ e2β̃D−1dT−1B ·

T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥+
∑
s

∥u(f (t+1), s)∥

)
+

d(f)∑
s=1

∥u(f, s)∥


+ e2β̃D−(

∑T
k=1 d(g(k)))−1B ·

T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥+
∑
s

∥u(f (t+1), s)∥

)
+

d(f)∑
s=1

∥u(f, s)∥


= e2

(
β̃D−(

∑T
k=1 d(g(k)))−1 + dT−1β̃D−1

)
B ·

T−1∑
t=0

(∑
s

∥u(g(t+1), s)∥+
∑
s

∥u(f (t+1), s)∥

)
+

d(f)∑
s=1

∥u(f, s)∥


≤ e2

(
β̃D−(

∑T
k=1 d(g(k)))−1 + dT−1β̃D−1

)
Bσ
√
2b ln (4Db)

≤ γ

4
,

where for the last inequality we used Equation (45).

Step 6: Putting everything together We finish this section by reformulating and proving Theo-
rem 4.1.

Theorem E.6. Let h̃ be any classifier in Hmpnn with parameters {wi}Di=1. For any γ ≥ 0, α ≥ 1/4
and large enough Ntr, with probability at least 1− δ over the sample of ytr, we have

L0
te(h̃)− L̂γ

tr(h̃) ≤ O

(
b
∑

i ∥wi∥2F
N2α

tr (γ/8)
2/D

ξ2/D +
1

N2α
tr

h2 ln 2h
DC (2dB)

1/D

γ1/Dδ
+

1

N1−2α
tr

+ CKξ

)
.

(46)
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Proof. The proof follows the proof of Theorem 1 in (Neyshabur et al., 2018) Theorem 6 in (Ma et al.,
2021).

There are two main steps in the proof. In the first step, for a given constant β > 0, we first define the
”prior” P and the ”posterior” Q on H in a way complying with conditions in Lemma E.1, Lemma E.3,
and Lemma E.5. Without loss of generality (due to the homogeneity of the activation function), we
can assume that ∥w(j)

i ∥2 = β for some β ≥ 0. Then, for all classifiers with parameters satisfying
|β − β̃| ≤ β̃

D and β̃ being some value on a predefined grid in the parameters space, we can derive a
generalization bound by applying Lemma E.1, Lemma E.3, and Lemma E.5.

In the second step, we investigate the number of β̃ we need to cover all possible relevant classifier
parameters and apply a union bound to get the final bound. The two steps are essentially the same as
Neyshabur et al. (2018) with the first step differing by the need for incorporating Lemma E.1.

Step 1. We first show the first step. Given a choice of β̃ independent of the training data, let

σ = min

 (γ/8ξ)
1/D√

2b
(
λN−α

tr + ln 2bD
) , γ

e2B
(
β̃D−(

∑T
k=1 d(g(k)))−1 + dT−1β̃D−1

)√
2h ln(4Dh)

 .

(47)
Assume the ”prior” P on H is defined by sampling the vectorized MLP parameters from N (0, σ2I).
The ”posterior” Q on H is defined by first sampling a set of random perturbations {ui}Di=1 and then
adding them to {wi}Di=1. By Lemma E.5, we have

Pr

(
max

G∈Gtr∪Gte

∥h̃w(G)− h̃w+u(G)∥∞ <
γ

8

)
≥ 1

2
. (48)

Therefore, by applying Lemma E.1, we get with probability at least 1− δ,

L0
te(h̃)− L̂γ

tr(h̃) ≤
1

λ

(
2 (DKL(Q||P ) + 1) + ln

1

δ
+

λ2

4Ntr
+D

γ/2
te,tr(P ;λ)

)
≤ 1

λ

(
2 (DKL(Q||P ) + 1) + ln

1

δ
+

λ2

4Ntr
+ (ln 3 + λCKξ)

)
≤ 2

N2α
tr

DKL(Q||P ) +
1

N2α
tr

ln
1

δ
+

1

4N1−2α
tr

+
2 + ln 3

N2α
tr

+ CKξ.

(49)

where we chose λ = N2α
tr .

Moreover, since both P and Q are normal distributions, we know that

DKL(Q||P ) ≤
∑
i

∥wi∥22
2σ2

. (50)

Per assumption, both B and D are constant with respect to Ntr. Hence, for large enough Ntr,

(γ/8ξ)
1/D√

2b
(
λN−α

tr + ln 2bD
) <

γ

4(e2 + 1)e2 dJB βD−1
√
2h ln (4Dh)

, (51)

which implies,

σ =
(γ/8ξ)

1/D√
2b
(
λN−α

tr + ln 2bD
) (52)

and hence

DKL(Q||P ) ≤
b (Nα

tr + ln 2bD)
∑

i ∥wi∥22
(γ/8)

2/D
ξ2/D. (53)

Therefore, with probability at least 1− δ,

L0
te(h̃)− Lγ

tr(h̃) ≤
2

N2α
tr

DKL(Q||P ) +
1

N2α
tr

ln
1

δ
+

1

4N1−2α
tr

+
2 + ln 3

N2α
tr

+ CKξ

≤ O

(
b
∑

i ∥wi∥22
Nα

tr (γ/8)
2/D

ξ2/D +
1

N2α
tr

ln
1

δ
+

1

N1−2α
tr

+ CKξ

)
.

(54)
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Step 2. Then we show the second step, i.e., finding out the number of β̃ we need to cover all possible
relevant classifier parameters. Similarly as Neyshabur et al. (2018), we will show that we only need
to consider

(
γ
2B

)1/D ≤ β ≤ C (recall that the spectral norm of all weight matrices is bounded by C).

If β <
(

γ
2B

)1/D
, then for any graph G ∈ Gtr ∪ Gte, we get ∥h̃(G)∥∞ ≤ γ

2 , which implies that the
bound trivially holds. Since we only consider β in the above range, a sufficient condition to make
|β − β̃| ≤ β

D hold would be |β − β̃| ≤ 1
D

(
γ
2B

)1/D
. Therefore, it suffices to find a covering for all

possible weight matrices with radius 1
D

(
γ
2B

)1/D
for a ball in Rb×b of radius C. This can be satisfied

by
(
2DCb(2B)1/D

γ1/D

)b2
balls. Taking a union bound, we get, with probability at least 1− δ,

L0
te(h̃)− Lγ

tr(h̃) ≤ O

(
b
∑

j

∑
i ∥wi∥22

N2α
tr (γ/8)

2/D
ξ2/D +

1

N2α
tr

b2 ln 2b
DC (2B)

1/D

γ1/Dδ
+

1

N1−2α
tr

+ CKξ

)
.

(55)

F FIXED GRAPH ENCODERS

Next, we apply our analysis to GNNs with fixed encoders. Here, the embedding function e : G → Rb

is fixed, and only the classifier c : Rb → RK is trainable. Let H = C ◦ E , where E now represents a
fixed graph embedding network. The generalization bound in this setting simplifies to the following.

Corollary F.1. Let lat be any pseudometric in the latent space Rd. Under mild assumptions (see
Appendix D), for any γ > 0 and 0 < α < 1

4 , with probability at least 1 − δ over the sample of
training labels ytr, the test loss of any classifier h̃ ∈ H

L0
te(h̃) ≤ L̂γ

tr(h̃) + O
(

MC(C)
N2α

tr γ1/D δ︸ ︷︷ ︸
complexity term

+ C ξlat︸ ︷︷ ︸
structural

similarity term

)
, (56)

where ξlat = maxG∈Gte minH∈Gtr lat (g(G), g(H)) and the other constants are defined in Theo-
rem 4.1.

Proof. The proof follows the same steps as in the proof of Theorem E.6. For example, Lemma E.4 can
be shown for MLPs by simply assuming that there are no MPNN layers in Lemma E.4. Theorem E.6
can then be proved for the hypothesis space H by defining the variance as

σ = min

 (γ/8ξ)
1/D√

2b
(
λN−α

tr + ln 2bD
) , γ

e2B β̃D−1
√

2b ln(4Db)

 .

In this case, the complexity of the graph embedding model no longer contributes to the bound, and
only the complexity of the MLP classifier affects generalization. This reduced complexity underscores
promise of fixed graph encoders.

G PROOF OF LEMMA ON COMPARISON OF TMD AND F -TMD

Lemma G.1. For any G,H ∈ G and any non-empty family of features F ′ ⊂ F ⊂ G, we have

F ′-TMD(G,H) ≤ F-TMD(G,H).

Proof. Starting from the definitions, we have:

F ′-TMD(G,H) = min
σ∈Sn

n∑
j=1

TD
(
TGF′

j , THF′

σ(j)

)
,
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F-TMD(G,H) = min
σ∈Sn

n∑
j=1

TD
(
TGF

j , THF

σ(j)

)
,

where Sn is the set of all permutations of the node set {1, 2, . . . , n}, and TGF

j denotes the subtree of
GF (the graph G augmented with additional features F) at node j.

Let σ′ be the optimal assignment for F-TMD(G,H), i.e.,

F-TMD(G,H) =

n∑
j=1

TD
(
TGF

j , THF

σ′(j)

)
.

Since F ′-TMD(G,H) optimizes over all assignments, it follows that

F ′-TMD(G,H) ≤
n∑

j=1

TD
(
TGF′

j , THF′

σ′(j)

)
. (57)

Our goal is to show that for every j:

TD
(
TGF′

j , THF′

σ′(j)

)
≤ TD

(
TGF

j , THF

σ′(j)

)
. (58)

Together, Equation (57) and Equation (58), lead to

F ′-TMD(G,H) ≤
n∑

j=1

TD
(
TGF′

j , THF′

σ′(j)

)
≤

n∑
j=1

TD
(
TGF

j , THF

σ′(j)

)
= F-TMD(G,H).

We proceed to prove Equation (58) via induction. In fact, we show a more general version: for every
assignment ρ between nodes of G and H and any node j, we have

TD
(
TGF′

j , THF′

ρ(j)

)
≤ TD

(
TGF

j , THF

ρ(j)

)
.

Base Case (t = 0)

At depth 0, the trees consist only of root nodes. The tree distance is the difference between node
features, i.e.,

TD
(
TGF′

j , THF′

ρ(j)

)
= ∥x′

j − x′
ρ(j)∥

≤ ∥x̃j − x̃ρ(j)∥

= TD
(
TGF

j , THF

ρ(j)

)
,

where x′
j = (xj , cj(F1), . . . , cj(F|F ′|)) and x̃j = (xj , cj(F1), . . . , cj(F|F|)) include the additional

features.

Induction Step (t− 1 7→ t)

Assume that for every tree of depth t− 1, we have, for every assignment ρ and every j = 1, . . . , n,

TD
(
TGF′

j , THF′

ρ(j)

)
≤ TD

(
TGF

j , THF

ρ(j)

)
.

Let σ′ be any assignment of trees and let τ be the optimal assignment in WTD

(
T F
j , T F

σ′(j)

)
.
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Then, for any j = 1, . . . , n

TD
(
TGF′

j , THF′

σ′(j)

)
= ∥x′

j − x′
σ′(j)∥+ min

τ ′∈Sn

n∑
j=1

TD
(
TGF′

j , THF′

τ ′(j)

)
≤ ∥x′

j − x′
σ′(j)∥+

n∑
j=1

TD
(
TGF′

j , THF′

τ(j)

)
≤ ∥x′

j − x′
σ′(j)∥+

n∑
j=1

TD
(
TGF

j , THF

τ(j)

)
= ∥x′

j − x′
σ′(j)∥+WTD

(
ρ
(
T F
j , T F

σ′(j)

))
≤ ∥x̃j − x̃σ′(j)∥+WTD

(
ρ
(
T F
j , T F

σ′(j)

))
= TD

(
TGF

j , THF

σ′(j)

)
.

(59)

The second inequality follows by the induction hypothesis as the considered trees are of depth t− 1.
Hence, by induction, the inequality TD

(
TGF′

j , THF′

σ′(j)

)
≤ TD

(
TGF

j , THF

ρ(j)

)
holds, completing the

proof.

Proof of Theorem 6.1. Assume that y ∼ F-TMD.

1. Since any F -GIN classifier h is Lipschitz continuous with respect to F-TMD and h is stable
with respect to weight perturbations, by Theorem 4.1, we have

L0
te(h̃) ≤ Lγ

tr(h̃) +O

(
b
∑

j

∑
i ∥W

(j)
i ∥2F

N2α
tr (γ/8)2/D

ξ2/D +
h2 ln(2h)DC(2dB)1/D

N2α
tr γ1/Dδ

+
1

N1−2α
tr

+ CKξ

)
,

with ξ := maxGtr∈Gtr,Gte∈Gte
F-TMDL+1

w (Gtr, Gte) and B = maxG ∥X(RF (G))[i, :]∥2.

2. By Lemma G.1, every F ′-GIN classifier h′ is Lipschitz continuous with respect to F-TMD,
as

∥h′(G)− h′(H)∥ ≤ L′F ′-TMD(G,H) ≤ L′F-TMD(G,H). (60)
Hence, applying Theorem 4.1, we have

L0
te(h̃) ≤ Lγ

tr(h̃) +O

(
b
∑

j

∑
i ∥W

(j)
i ∥2F

N2α
tr (γ/8)2/D

ξ2/D +
h2 ln(2h)DC(2dB′)1/D

N2α
tr γ1/Dδ

+
1

N1−2α
tr

+ CKξ

)
,

where B′ = maxG ∥X(RF ′
(G))[i, :]∥2. Note that B′ is the only difference compared to

the previous bound.

3. Assume y ∼ F-TMD, but apply a F̃-GIN classifier h̃. Since h̃ is not necessarily Lipschitz
continuous with respect to F-TMD, we cannot directly apply Theorem 4.1.

However, if y ∼ F-TMD, then y ∼ F̃-TMD as well. Specifically, if y ∼ F-TMD, there
exists for every class k some ηk such that ηk(G) = Pr(yG = k | G), and ηk is Lipschitz
continuous with constant Lηk . Then, by Lemma G.1,

|ηk(G)− ηk(H)| ≤ Lηk · F-TMD(G,H) ≤ Lηk · F̃-TMD(G,H). (61)

Consequently, we can now apply Theorem 4.1 to obtain

L0
te(h̃) ≤ Lγ

tr(h̃) +O

(
b
∑

j

∑
i ∥W

(j)
i ∥2F

N2α
tr (γ/8)2/D

ξ̃2/D +
h2 ln(2h)DC(2dB̃)1/D

N2α
tr γ1/Dδ

+
1

N1−2α
tr

+ CKξ̃

)
,

where ξ̃ := maxGtr∈Gtr,Gte∈Gte F̃-TMDL+1
w (Gtr, Gte) and B̃ = maxG ∥X(RF̃ (G))[i, :

]∥2. Note that B̃ and ξ̃ are now different compared to the previous bounds in Item 1 and 2.
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Figure 4: Left: Training-loss trajectories of a GIN on MUTAGENICITY under increasing label noise p.
Center: Corresponding test errors on MUTAGENICITYrises sharply as label–structure correlation is
essential for generalization (mean ± standard deviation across five seeds). Right: Number of epochs
to overfit, i.e., reach 99% training accuracy under increasing label noise p.

H OTHER RESULTS

The following lemmata are easy to prove.
Lemma H.1. Given a MPNN with t layers such that the message and update functions g(k) and
f (k) are Lipschitz continuos with Lipschitz constant L(f (k)) and L(g(k)), respectively. Then for any
graph G with maximum node degree v, we have

max
v∈V (G)

∥x(t)
v ∥ ≤

(
t∏

k=1

L(f (k))
(
1 + dL(g(k))

))
B, (62)

where x
(t)
v denotes the output of the MPNN after t layers at node v.

Lemma H.2. Given a MPNN with t+ 1 layers such that the message and update functions g(k) and
f (k) are Lipschitz continuos with Lipschitz constant L(f (k) and L(g(k)), respectively. Then for any
graph G with maximum node degree v, we have

max
v

∥m(t+1)
v ∥ ≤ dLg(t+1)

(
t∏

k=1

L(f (k)
w )

(
1 + dL(g(k)w )

))
B, (63)

where m
(t)
v denotes the message of the MPNN at the (t+ 1)’th layer at node v.

Lemma H.3 (Lemma 2 in (Neyshabur et al., 2018)). let fw : Rn → Rk be a neural network
with Lipschitz continuous and homogenous activations and d(f) layers For any D, Then for any w,
x ∈ XB,n, and any perturbation u = vec({Ui}di=1) such that ∥Ui∥2 ≤ 1

d∥Wi∥2, the change in the
output of the network can be bounded as follows:

∥fw+u(x)− fw(x)∥2 ≤ eB

(
d∏

i=1

∥Wi∥2

)
d∑

i=1

∥Ui∥2
∥Wi∥2

.

I ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS

This appendix provides a comprehensive overview of our experimental setup, including dataset
generation, model architectures, training procedures, evaluation metrics, and additional analyses. All
experiments were run on an internal cluster with Intel Xeon CPUs (28 cores, 192GB RAM) and
GeForce RTX 3090 Ti GPUs (4 units, 24GB memory each), as well as Intel Xeon CPUs (32 cores,
192GB RAM) and NVIDIA RTX A6000 GPUs (3 units, 48GB memory each). Each subsection
corresponds to one of the three experimental tasks.

I.1 LABEL NOISE EXPERIMENTS

To investigate how MPNNs behave under noisy supervision, we conducted controlled label corruption
experiments on three benchmark molecular graph classification datasets from the TUDataset collection
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Figure 5: Left: Training-loss trajectories of a GIN on BZR under increasing label noise p. Center:
Corresponding test errors on BZRrises sharply as label–structure correlation is essential for general-
ization (mean ± standard deviation across five seeds). Right: Number of epochs to overfit, i.e., reach
99% training accuracy under increasing label noise p.
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Figure 6: Left: Training-loss trajectories of a GIN on NCI109 under increasing label noise p.
Center: Corresponding test errors on NCI109 rises sharply as label–structure correlation is essential
for generalization (mean ± standard deviation across five seeds). Right: Number of epochs to overfit,
i.e., reach 99% training accuracy under increasing label noise p.

(Morris et al., 2020a): MUTAGENICITY, NCI109, and BZR. For each dataset, we randomly corrupted
a fixed proportion of the training labels by replacing them with uniformly sampled class labels.

We employed a MPNN with four layers, ReLU activations, GraphNorm, and a two-layer MLP head.
Each message and update function in the MPNN is given by a MLP with two layers. The models were
trained for up to 5000 epochs with early stopping once 99% training accuracy was achieved. Label
noise levels were varied in 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, and results were averaged over five random
seeds per setting.

We track the per-epoch training and test accuracy/loss, the number of epochs until memorization,
and total training time. This setup closely follows the protocol of Zhang et al. (2017), adapted to
the graph setting, and enables us to study not only final generalization but also how memorization
unfolds over time under increasing label noise.

Figure 4, 5, and 6 visualize the results on MUTAGENICITY, BZR, and NCI109, respectively. Each
figure presents from left to right: (left) the full training curves, (middle) final test accuracy versus
noise level, and (right) the number of epochs required to reach 99% training accuracy. These plots
collectively illustrate the sharp transition from generalization to memorization and the dataset-specific
sensitivity of MPNNs to label corruption.

As the label noise increases, the time required to reach 99% training accuracy increases moder-
ately—suggesting that fitting corrupted labels is harder, but still feasible. However, all models
eventually reach near-perfect training accuracy across all noise levels, even for fully randomized
labels (p = 1.0), underscoring the high memorization capacity of GNNs. In stark contrast, the test
accuracy consistently deteriorates with increasing noise and converges to chance level at p = 1.0,
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where labels are entirely uninformative. This gap between training and test performance confirms
that GNNs can overfit to pure noise and emphasizes the need for principled regularization and early
stopping to preserve generalization.

I.2 TASK 1: MEDIAN-BASED LABELING WITH CYCLE COUNTS

To investigate the role of local structural patterns in graph classification, we generate 3,000 random
graphs using three common models: Erdős–Rényi (ER), Barabási–Albert (BA), and Stochastic Block
Model (SBM). Each graph’s label is related to the sum of its 3-cycle and 4-cycle counts, which are
computed using NetworkX (Hagberg et al., 2008). The total cycle count is then used to assign labels:
graphs with counts below the dataset median are labeled 0, while those above receive label 1.

For all synthetic graphs, we sample the number of nodes randomly between 35 and 55. For each
random graph model, we chose the following parameters.

• Erdős–Rényi (ER) Graphs: We generate an ER graph with edge probability p = 0.1.
• Barabási–Albert (BA) Graphs: Each new node is connected to m = 2 existing nodes

following the BA preferential attachment process.
• Stochastic Block Model (SBM) Graphs: We randomly select between 3 and 6 blocks,

ensuring each block has at least 3 nodes. The probability of an edge within the same block
is sampled uniformly between [0.1, 0.3], while inter-block connections have a probability in
the range [0.001, 0.02].

We evaluate multiple GNN variants to assess the impact of different levels of expressivity:

• MPNN: A standard Message Passing Neural Network (Gilmer et al., 2017).
• Fl-MPNN: MPNNs enriched with cycle counts of cycles up to length l (Bouritsas et al.,

2023; Barceló et al., 2021).
• Subgraph GNN: Incorporates subgraph structures (Frasca et al., 2022).
• Local 2-GNN: A local variant of 2-GNN (Morris et al., 2019).
• Local Folklore 2-GNN: A local variant of 2-Folklore-GNN (Zhang et al., 2024).

Each model is implemented in PyTorch Geometric (Fey & Lenssen, 2019), using the implementation
details of Zhang et al. (2024). We trained the models using the Adam optimizer (Kingma, 2014) with
a learning rate of 10−3 for 100 epochs and cosine scheduler. We fix the test set, and we perform
10-fold cross-validation, reporting mean accuracy (ACC) and standard deviation. Performance is
measured at both the final epoch and the best validation epoch.

We present additional experimental results in Table 4–6 in this appendix. To further illustrate the
strong correlation between labels and F4-TMD, we provide a qualitative visualization of the dataset
structure (see Figure 7). Specifically, we select 50 graphs of the ER dataset and project them into a
two-dimensional space using Multidimensional Scaling (MDS), with distances computed based on
standard TMD, F3-TMD, F4-TMD, and F12-TMD. Among these, the projection using F4-TMD
exhibits the clearest class separation, visually reinforcing its alignment with the classification task.

I.3 TASK 2: REAL-WORLD DATASETS

We evaluate our generalization framework on six real-world datasets from the TU Dataset collection
(Morris et al., 2020a), spanning both biological and chemical graph classification tasks:

• Mutagenicity: 4,337 molecular graphs labeled as mutagenic or non-mutagenic.
• PROTEINS: 1,113 protein graphs classified by their enzymatic function.
• BZR: 405 graphs representing benzodiazepine receptor ligands labeled for activity.
• COX2: 467 graphs labeled based on activity against the COX2 enzyme.
• NCI109: 4,127 graphs representing chemical compounds screened for anti-cancer activity.
• AIDS: 2,000 graphs with binary activity labels relevant to AIDS antiviral screening.
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Figure 7: Low-dimensional embeddings via MDS for Task 1 in Section 6. MDS projects the graphs
into R2 while preserving the pairwise Fl-TMDs between graphs in the dataset. From left to right:
TMD, F3-TMD, F4-TMD, and F12-TMD. Visually, F4-TMD achieves the best class separation,
highlighting that the labels strongly correlate with F4-TMD. As a result, F4-MPNNs provide the
best generalization and predictive performance.

To assess whether generalization in MPNNs and MLPs with fixed feature extractors depends on the
structural similarity between test and training graphs, as predicted by our generalization bound in
Theorem 4.1, we conduct two complementary evaluations:

(i) GIN with TMD: We train GINs (Xu et al., 2019) and measure distances between graphs
using the TMD.

(ii) Fixed encoder with Hamming distance: We compute molecular fingerprints (Gainza et al.,
2019) for each graph, apply an MLP classifier, and measure distances in the resulting feature
space via Hamming distance.

We analyze two key properties:

Error vs. TMD Distance To quantify the relationship between structural proximity and model
performance, we report cumulative accuracy. Test graphs are ordered by increasing distance to the
training set, and we compute the cumulative average accuracy. Specifically, given the ordered test set
G1, . . . , GNte , we define

ỹi =
1

i

i∑
j=1

1

[
h(Gi)[yGi

] ≤ max
k ̸=yGi

h(G)[k]

]
,

where ỹi represents the average accuracy over the first i graphs. For end-to-end trained GIN models,
Figure 2 and Figure 8 illustrate that test accuracy consistently decreases as the structural distance
from the training distribution increases. A similar trend is observed for MLP+fingerprint models in
Figure 9. These empirical results align with our theoretical insights presented in Theorem 4.1, which
predict this performance degradation.

Theoretical vs. Empirical Generalization Bound We further examine how well our bound from
Theorem 4.1 predicts the actual generalization behavior. For each dataset and model, we compute
the theoretical bound using the empirical training loss and the graph distances to the training set
as prescribed by Theorem 4.1 We compare this bound to the observed test error across all datasets.
Results are presented in Figure 3 and in the appendix (Figure 10). While our bound is not tight, it
does track the empirical error trends well across datasets, substantiating our claim that structural
similarity with respect to the right pseudometric governs generalization in graph learning.

I.4 TASK 3: MDS-BASED LABELING VIA F5-TMD DISTANCES

For the second synthetic task, we construct 500 random graphs and compute pairwise distances using
the F5-TMD pseudometric, where F5 includes cycles up to length 5. Labels are assigned using a
clustering algorithm, ensuring that graphs closer in F5-TMD likely share the same label. We test
different GNNs and summarize the results in Figure 11.

Details For the second synthetic task, we generate 500 random graphs between 15 and 35 nodes
using ER graphs with edge probability p = 0.1. We use the F5-TMD pseudometric, where F5

consists of cycles up to length 5. We compute pairwise graph distances with respect to F5-TMD
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Table 4: Train and test accuracy, Erdős–Rényi graphs. The task is to predict if the count of cycles of
length at most 4 in the cycle basis of each graph is above or below the median of the whole dataset.
The node features are augmented with (homN ) homomorphism-counts of cycles up to length N,
(subN ) subgraph-counts of cycles up to length N, and (basN ) number of cycle graphs up to length N
in the cycle basis.

(a) w/ early stopping.

Num. layers

Model 1 3 5

L-G 0.9180 ± 0.0179
0.8707 ± 0.0105

0.9216 ± 0.0379
0.8707 ± 0.0110

0.9226 ± 0.0318
0.8637 ± 0.0106

LF-G 0.9162 ± 0.0165
0.8647 ± 0.0095

0.9148 ± 0.0409
0.8683 ± 0.0086

0.9226 ± 0.0391
0.8623 ± 0.0112

MP 0.9050 ± 0.0094
0.8737 ± 0.0091

0.9135 ± 0.0256
0.8694 ± 0.0165

0.9255 ± 0.0403
0.8597 ± 0.0126

MP+hom3
0.8993 ± 0.0122
0.8783 ± 0.0105

0.9115 ± 0.0316
0.8710 ± 0.0116

0.9335 ± 0.0462
0.8750 ± 0.0098

MP+hom4
0.8993 ± 0.0121
0.8783 ± 0.0089

0.8998 ± 0.0120
0.8767 ± 0.0063

0.9185 ± 0.0408
0.8710 ± 0.0125

MP+hom7
0.8913 ± 0.0117
0.8740 ± 0.0065

0.9002 ± 0.0198
0.8693 ± 0.0178

0.8915 ± 0.0286
0.8700 ± 0.0097

MP+bas3
0.9210 ± 0.0201
0.8717 ± 0.0173

0.9465 ± 0.0376
0.8773 ± 0.0168

0.9436 ± 0.0393
0.8783 ± 0.0096

MP+bas4
0.9754 ± 0.0061
0.9870 ± 0.0046

0.9761 ± 0.0066
0.9700 ± 0.0154

0.9841 ± 0.0081
0.9603 ± 0.0048

MP+bas7
0.9782 ± 0.0087
0.9720 ± 0.0111

0.9804 ± 0.0051
0.9573 ± 0.0077

0.9850 ± 0.0155
0.9490 ± 0.0093

MP+sub3
0.8979 ± 0.0174
0.8827 ± 0.0123

0.9340 ± 0.0473
0.8697 ± .0135

0.9166 ± 0.0320
0.8747 ± 0.0144

MP+sub4
0.8976 ± 0.0111
0.8780 ± 0.0031

0.9090 ± 0.0270
0.8717 ± 0.0098

0.9233 ± 0.0287
0.8733 ± 0.0109

MP+sub7
0.8963 ± 0.0059
0.8790 ± 0.0067

0.9140 ± 0.0174
0.8760 ± 0.0092

0.9312 ± 0.0304
0.8657 ± 0.0075

Sub-G 0.9194 ± 0.0238
0.8710 ± 0.0088

0.9060 ± 0.0338
0.8663 ± 0.0074

0.9561 ± 0.0411
0.8640 ± 0.0099

(b) w/o early stopping.

Num. layers

1 3 5

0.9904 ± 0.0041
0.8543 ± 0.0063

0.9998 ± 0.0004
0.8520 ± 0.0073

1.0000 ± 0.0001
0.8553 ± 0.0102

0.9868 ± 0.0051
0.8450 ± 0.0135

0.9999 ± 0.0003
0.8540 ± 0.0121

1.0000 ± 0.0001
0.8543 ± 0.0116

0.9906 ± 0.0033
0.8490 ± 0.0045

1.0000 ± 0.0001
0.8567 ± 0.0087

0.9998 ± 0.0005
0.8637 ± 0.0138

0.9886 ± 0.0039
0.8480 ± 0.0108

0.9999 ± 0.0002
0.8537 ± 0.0107

1.0000 ± 0.0000
0.8673 ± 0.0141

0.9302 ± 0.0039
0.8720 ± 0.0088

0.9978 ± 0.0018
0.8520 ± 0.0138

0.9990 ± 0.0011
0.8540 ± 0.0102

0.9091 ± 0.0081
0.8693 ± 0.0099

0.9795 ± 0.0040
0.8450 ± 0.0123

0.9897 ± 0.0058
0.8390 ± 0.0145

0.9956 ± 0.0028
0.8657 ± 0.0085

0.9999 ± 0.0002
0.8670 ± 0.0097

1.0000 ± 0.0000
0.8723 ± 0.0049

0.9904 ± 0.0034
0.9793 ± 0.0068

0.9985 ± 0.0021
0.9587 ± 0.0072

0.9997 ± 0.0004
0.9523 ± 0.0102

0.9958 ± 0.0026
0.9660 ± 0.0065

0.9999 ± 0.0003
0.9550 ± 0.0062

0.9998 ± 0.0005
0.9537 ± 0.0072

0.9933 ± 0.0029
0.8510 ± 0.0078

1.0000 ± 0.0001
0.8547 ± 0.0075

1.0000 ± 0.0000
0.8683 ± 0.0080

0.9853 ± 0.0034
0.8487 ± 0.0155

0.9995 ± 0.0009
0.8613 ± 0.0127

0.9998 ± 0.0004
0.8623 ± 0.0130

0.9018 ± 0.0035
0.8803 ± 0.0070

0.9670 ± 0.0070
0.8680 ± 0.0121

0.9815 ± 0.0090
0.8553 ± 0.0135

0.9887 ± 0.0048
0.8623 ± 0.0058

1.0000 ± 0.0001
0.8533 ± 0.0088

1.0000 ± 0.0000
0.8680 ± 0.0100
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Table 5: Train and test accuracy, Barabasi-Albert graphs. The task is to predict if the count of cycles
of length at most 4 in the cycle basis of each graph is above or below the median of the whole dataset.
The node features are augmented with (homN ) homomorphism-counts of cycles up to length N,
(subN ) subgraph-counts of cycles up to length N, and (basN ) number of cycle graphs up to length N
in the cycle basis.

(a) w/ early stopping.

Num. layers

Model 1 2 5

L-G 0.819 ± 0.013
0.767 ± 0.014

0.794 ± 0.017
0.751 ± 0.013

0.793 ± 0.019
0.747 ± 0.010

LF-G 0.818 ± 0.018
0.775 ± 0.008

0.807 ± 0.021
0.770 ± 0.012

0.822 ± 0.051
0.747 ± 0.015

MP 0.811 ± 0.015
0.771 ± 0.015

0.802 ± 0.013
0.767 ± 0.011

0.798 ± 0.022
0.757 ± 0.009

MP+hom4
0.777 ± 0.010
0.774 ± 0.019

0.750 ± 0.010
0.749 ± 0.021

0.789 ± 0.019
0.772 ± 0.01

MP+bas3
0.840 ± 0.010
0.809 ± 0.020

0.847 ± 0.017
0.804 ± 0.021

0.863 ± 0.039
0.798 ± 0.016

MP+bas4
0.963 ± 0.012
0.995 ± 0.003

0.970 ± 0.005
0.994 ± 0.005

0.963 ± 0.008
0.980 ± 0.008

MP+bas8
0.978 ± 0.008
0.989 ± 0.005

0.978 ± 0.014
0.977 ± 0.007

0.981 ± 0.016
0.953 ± 0.006

Sub-G 0.795 ± 0.013
0.760 ± 0.015

0.814 ± 0.030
0.730 ± 0.015

0.821 ± 0.060
0.733 ± 0.016

(b) w/o early stopping.

Num. layers

1 2 5

0.928 ± 0.009
0.747 ± 0.007

0.827 ± 0.006
0.757 ± 0.014

0.993 ± 0.003
0.719 ± 0.011

0.846 ± 0.008
0.773 ± 0.013

0.902 ± 0.006
0.745 ± 0.010

0.978 ± 0.006
0.730 ± 0.018

0.849 ± 0.004
0.762 ± 0.009

0.909 ± 0.011
0.740 ± 0.011

1.000 ± 0.000
0.751 ± 0.025

0.787 ± 0.004
0.778 ± 0.006

0.760 ± 0.005
0.759 ± 0.011

0.908 ± 0.012
0.737 ± 0.015

0.962 ± 0.003
0.809 ± 0.016

0.982 ± 0.005
0.807 ± 0.015

0.998 ± 0.001
0.807 ± 0.008

0.972 ± 0.005
0.994 ± 0.004

0.977 ± 0.007
0.991 ± 0.006

0.992 ± 0.005
0.973 ± 0.003

0.982 ± 0.004
0.989 ± 0.007

0.994 ± 0.003
0.971 ± 0.009

0.998 ± 0.001
0.954 ± 0.004

0.918 ± 0.004
0.755 ± 0.015

0.878 ± 0.011
0.728 ± 0.011

0.992 ± 0.004
0.712 ± 0.025

Table 6: Train and test accuracy, Stochastic Block Model graphs. The task is to predict if the count of
cycles of length at most 4 in the cycle basis of each graph is above or below the median of the whole
dataset. The node features are augmented with (homN ) homomorphism-counts of cycles up to length
N, (subN ) subgraph-counts of cycles up to length N, and (basN ) number of cycle graphs up to length
N in the cycle basis.

(a) w/ early stopping.

Num. layers

Model 1 2 5

L-G 0.961 ± 0.007
0.961 ± 0.003

0.972 ± 0.009
0.949 ± 0.003

0.960 ± 0.011
0.943 ± 0.010

LF-G 0.965 ± 0.005
0.948 ± 0.005

0.959 ± 0.020
0.942 ± 0.004

0.962 ± 0.020
0.953 ± 0.011

MP 0.967 ± 0.006
0.955 ± 0.006

0.973 ± 0.004
0.962 ± 0.007

0.967 ± 0.004
0.955 ± 0.006

MP+hom4
0.947 ± 0.005
0.953 ± 0.006

0.950 ± 0.007
0.946 ± 0.006

0.963 ± 0.013
0.953 ± 0.004

MP+bas3
0.966 ± 0.007
0.958 ± 0.012

0.958 ± 0.007
0.960 ± 0.005

0.973 ± 0.012
0.959 ± 0.007

MP+bas4
0.957 ± 0.011
0.981 ± 0.005

0.959 ± 0.007
0.977 ± 0.011

0.979 ± 0.012
0.975 ± 0.005

MP+bas8
0.964 ± 0.006
0.982 ± 0.007

0.959 ± 0.010
0.973 ± 0.004

0.955 ± 0.005
0.975 ± 0.008

Sub-G 0.957 ± 0.006
0.951 ± 0.012

0.959 ± 0.010
0.943 ± 0.006

0.977 ± 0.006
0.934 ± 0.008

(b) w/o early stopping.

Num. layers

1 2 5

0.968 ± 0.003
0.961 ± 0.005

0.981 ± 0.002
0.948 ± 0.005

0.998 ± 0.001
0.923 ± 0.004

0.968 ± 0.003
0.957 ± 0.002

0.979 ± 0.005
0.941 ± 0.006

0.999 ± 0.001
0.937 ± 0.005

0.973 ± 0.006
0.951 ± 0.005

0.975 ± 0.003
0.963 ± 0.005

0.991 ± 0.002
0.955 ± 0.007

0.958 ± 0.003
0.953 ± 0.008

0.963 ± 0.002
0.939 ± 0.008

0.973 ± 0.006
0.953 ± 0.006

0.979 ± 0.003
0.960 ± 0.005

0.991 ± 0.001
0.962 ± 0.007

0.994 ± 0.003
0.959 ± 0.007

0.980 ± 0.001
0.989 ± 0.003

0.989 ± 0.003
0.984 ± 0.003

0.995 ± 0.002
0.971 ± 0.010

0.982 ± 0.004
0.978 ± 0.003

0.995 ± 0.001
0.967 ± 0.003

0.999 ± 0.001
0.966 ± 0.006

0.970 ± 0.006
0.954 ± 0.004

0.975 ± 0.002
0.948 ± 0.009

0.994 ± 0.003
0.931 ± 0.009

and embed the graphs into a two-dimensional space via Multidimensional Scaling (MDS) (Kruskal,
1964). MDS embeds the graphs into a two-dimensional space while preserving the initial F5-Tree
Mover’s Distances from the raw graph space, i.e., one can formulate it as the optimization problem
given by

arg min
x1,...,xn∈R2

∑
i<j

(∥xi − xj∥ − ζ-TMD(Gi, Gj))
2
.
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Figure 8: Accuracy of a GIN with 1, 3, and 5 layers versus Tree Mover’s Distance (log scale) to the
training dataset.
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Figure 9: Cumulative test accuracy of MLP vs. Fingerprint Distance (FPD).

Labels are assigned using 2-means clustering, ensuring that structurally similar graphs remain in the
same class. MDS and 2-means clustering are implemented via scikit-learn (Buitinck et al., 2013).

The experimental setup is identical to Task 1, with models trained and evaluated under the same
protocol: We perform 10-fold cross validation with a training/validation/test set with 80/10/10 splits.
We report the test accuracy at the epoch with the highest validation accuracy. This task tests the
ability of different GNN architectures to generalize. The task is generated such that labels strongly
correlate with F5-TMD. We present classification performance, showing that F5-MPNNs perform
better than MPNNs and more expressive GNN variants.
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Figure 10: Caption

0 5 10 15 20

MPNN

F5-MPNN

Sub-G

LF-G

10.37

11.36

12.1

11.01

13.2

16.8

17

15.6

Error (%)

Train Error
Test Error

Figure 11: Performance of different GNNs for y ∼ F5-TMD3, where F5 includes cycles up to length
5. F5-MPNN achieves the best performance, supporting our claim that incorporating task-relevant
features outperforms excessive expressivity.
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