
Under review as submission to TMLR

Attacking Bayes:
On the Adversarial Robustness of Bayesian Neural Networks
Anonymous authors
Paper under double-blind review

Abstract

Adversarial examples have been shown to cause neural networks to fail on a wide range
of vision and language tasks, but recent work has claimed that Bayesian neural networks
(bnns) are inherently robust to adversarial perturbations. In this work, we examine this
claim. To study the adversarial robustness of bnns, we investigate whether it is possible to
successfully break state-of-the-art bnn inference methods and prediction pipelines using even
relatively unsophisticated attacks for three tasks: (1) label prediction under the posterior
predictive mean, (2) adversarial example detection with Bayesian predictive uncertainty, and
(3) semantic shift detection. We find that bnns trained with state-of-the-art approximate
inference methods, and even bnns trained with Hamiltonian Monte Carlo, are highly
susceptible to adversarial attacks. We also identify various conceptual and experimental
errors in previous works that claimed inherent adversarial robustness of bnns and conclusively
demonstrate that bnns and uncertainty-aware Bayesian prediction pipelines are not inherently
robust against adversarial attacks.

1 Introduction

Modern machine learning systems have been shown to lack robustness in the presence of adversarially chosen
inputs—so-called adversarial examples. This vulnerability was first observed in computer vision by Szegedy
et al. (2014) and has since been shown to be consistent across various benchmarks and environments, including
standard academic benchmarks (Carlini and Wagner, 2017b; Goodfellow et al., 2015; Papernot et al., 2017),
as well as in less controlled environments (Alzantot et al., 2018; Kurakin et al., 2017).

Several recent works—largely outside of the mainstream adversarial examples literature—have initiated the
study of adversarial robustness of Bayesian neural networks (bnns; MacKay, 1992; Neal, 1996; Murphy,
2013) and claim to provide empirical and theoretical evidence that bnns are able to detect adversarial
examples (Rawat et al., 2017; Smith and Gal, 2018) and to defend against gradient-based attacks on predictive
accuracy to a higher degree than their deterministic counterparts (Bortolussi et al., 2022; Carbone et al., 2020;
Zhang et al., 2021). This has led to a growing body of work that operates under the premise of “inherent
adversarial robustness” of bnns, alluding to this “well-known” fact as a starting point (e.g., De Palma et al.,
2021; Pang et al., 2021; Yuan et al., 2021; Zhang et al., 2021).

In this paper, we investigate the claim that bnns are inherently robust to adversarial attacks and able to
detect adversarial examples.

There are good reasons to suspect that, in principle, bnns may be more adversarial robust than deterministic
neural networks. bnns offer a principled way to quantify a model’s predictive uncertainty by viewing the
network parameters as random variables and inferring a posterior distribution over the network parameters
using Bayesian inference. This way—unlike deterministic neural networks—bnns can provide uncertainty
estimates that reflect limitations of the learned predictive model. Such epistemic uncertainty has been
successfully applied to various tasks to build more reliable and robust systems (Neal, 1996; Gal and Ghahramani,
2016). Improvements in bnns have been spurred by recent advances in approximate Bayesian inference, such as
function-space variational inference (fsvi; Rudner et al., 2022b), that yield significantly improved uncertainty
estimation. It is, therefore, plausible that a bnn’s predictive uncertainty may be able to successfully identify
adversarial examples and provide a—potentially significant—level of inherent adversarial robustness.

To evaluate empirical claims about inherent adversarial robustness of bnns (e.g., in Smith and Gal, 2018;
Bortolussi et al., 2022; Carbone et al., 2020), we reviewed prior evidence and conducted an independent
evaluation of established and state-of-the-art approximate inference methods for bnns. In our review, we
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Figure 1: Left (Label Prediction): Accuracy and robust accuracy on test and adversarial inputs for
CNNs trained on MNIST. Center & Right (Adversarial Example and Semantic Shift Detection):
Average selective prediction accuracy (ASA) for adversarial examples and semantically shifted inputs on
MNIST (with FashionMNIST as the semantic shifted data). Note that ASA has a lower bound of 12.5%. bnn
inference methods used are hmc (the “gold standard”), fsvi (the state of the art for approximate inference
and uncertainty quantification in bnns), and psvi and mcd (well-established approximate inference methods).
Simple PGD attacks break all methods in all prediction pipelines. For further details, see Section 5.

examined open-source code provided by authors of prior works, identified implementation errors, and found
that there is no evidence of inherent adversarial robustness of bnns after fixing these errors. To validate
this finding, we trained bnns using well-established and state-of-the-art approximate inference methods and
evaluated their robustness. In this evaluation, we found that none of the bnns were able to withstand even
relatively simple adversarial attacks. A summary of a representative subset of our results is shown in Figure 1.

In our independent evaluation, we focused on three key tasks to assess the adversarial robustness of bnns:
1) classification under the posterior predictive mean; 2) adversarial example detection, and 3) semantic shift
detection. Semantic shift detection is a staple application of bnns, previously not considered in the context
of adversarial attacks. We show that even simple adversarial attacks can fool bnns into primarily rejecting
in-distribution samples and completely failing on the detection task.

To summarize, our key contributions are as follows:

1. We re-examine prior evidence in the literature on robustness of bnns for (i) adversarial example detection
(Smith and Gal, 2018) and (ii) adversarial example classification (Bortolussi et al., 2022; Carbone et al.,
2020; Zhang et al., 2021) and find that prior works do not convincingly demonstrate robustness against
adversarial attacks. In particular, we find that results indicative of adversarial robustness in bnns presented
in previously published works are due to implementation errors and cannot be replicated once the errors
are fixed. We extract common pitfalls from these findings and provide a set of guiding principles to
evaluate the robustness of bnns with suitable attack methods (Section 4).

2. We conduct thorough evaluations of bnns trained with well-established and state-of-the-art approximate
inference methods (hmc, Neal (2010); psvi, Blundell et al. (2015); mcd, Gal and Ghahramani (2016);
fsvi, Rudner et al. (2022b)) on benchmarking tasks such as MNIST, FashionMNIST, and CIFAR-10. We
demonstrate that: (i) classification under the posterior predictive mean completely fails under adversarial
attacks; (ii) adversarial example detection fails even under attacks targeting accuracy only; and (iii) in
semantic shift detection (MNIST vs. FashionMNIST, CIFAR-10 vs. SVHN), adversarial attacks fool bnns
into rejecting in-distribution samples (Section 5). This work is the first to demonstrate this failure mode.

In summary, our analysis suggests that—using recognized adversarial testing protocols—bnns do not demon-
strate a meaningful level of inherent adversarial robustness.

2 Background & Preliminaries

We consider supervised learning tasks with N i.i.d. (independent and identically distributed) data realizations
S = {x(i), y(i)}N

i=1 = (xS , yS) of inputs x ∈ X and labels Y ∈ Y with input space X ⊆ RD and label space
Y ⊆ {0, 1}K for classification with K classes.

2



Under review as submission to TMLR

2.1 Adversarial Examples

An adversarial example (AE) for a classifier ŷ(·) =̇ softmax(f(·)) is an input that is indistinguishable from
a “natural” one (measured in some metric—typically an ℓp ball), yet it is being misclassified by ŷ(·). In
particular, if we let D be a distribution over X × Y and Bx encode our notion of indistinguishability from x,
we will consider the following adversarial risk:

P(x,y)∼D) [∃x′ ∈ Bx : ŷ(x′) ̸= y] . (1)
This is sometimes referred to as the constant in the ball definition of adversarial examples (Gourdeau et al.,
2019), because we assume that the magnitude of perturbation ϵ is small enough that does not result in a
change of the ground truth label. Please see the works of Diochnos et al. (2018); Gourdeau et al. (2019) for
more discussion on different definitions of adversarial robustness in classification settings. All the papers
we evaluated adopt the same definition in the experiment. Adversarial examples in deep learning systems
were first observed in Szegedy et al. (2014). Since then many approaches in generating such examples
have been proposed—called adversarial attacks (Carlini and Wagner, 2017b; Chen et al., 2017; Goodfellow
et al., 2015; Papernot et al., 2017; Kurakin et al., 2017)—and subsequently methods for shielding models
against them—called defenses (Goodfellow et al., 2015; Madry et al., 2018; Papernot et al., 2016)—have been
developed. Many such defenses have been found to be breakable—either by carefully implementing already
known attacks or by adapting to the defense (Carlini and Wagner, 2017b; Carlini et al., 2019b; Tramèr et al.,
2020).

Formally, the process of generating an adversarial example x̃ = x + η for a classifier ŷ(·) and a natural input
x under the ℓ∞ distance involves the solution of the following optimization problem:

η = arg max∥η∥∞≤ϵ L((ŷ(x + η)), y), (2)
for some ϵ > 0 that quantifies the dissimilarity between the two examples. There is some flexibility in the
choice of the loss function L, but typically it is chosen to be the cross-entropy loss. In general, this is a
non-convex problem and one can resort to first-order methods (Goodfellow et al., 2015):

x̃ = x + ϵ · sign (∇xL(ŷ(x), y)) , (3)
or iterative versions for solving it (Kurakin et al., 2017; Madry et al., 2018). The former method is called
Fast Gradient Sign Method (fgsm) and the latter Projected Gradient Descent (pgd; standard 10, 20, or 40
iterates are denoted by pgd10, pgd20, pgd40, respectively). When a classifier is stochastic, the adversarial
defense community argues that the attack should target the loss of the expected prediction (Expectation over
Transformation; Athalye et al., 2018a;b):

x̃ = x + ϵ · sign (∇xL(E[ŷ(x)], y)) , (4)
where the expectation is over the randomness at prediction time. Note that some works use an expectation of
gradients instead (e.g., Gao et al., 2022). In the common case of convex loss functions, this is a weaker attack,
however. One common pitfall when evaluating robustness with gradient-based attacks is what has been called
obfuscated gradients (Athalye et al., 2018a), when the gradients become too uninformative (or zero) to solve
the optimization in Equation (2). A suite of alternative adaptive attack benchmarks (AutoAttack) has been
developed to allow for standardized robustness evaluation (Carlini et al., 2019a; Croce and Hein, 2020; Croce
et al., 2021)

2.2 Bayesian Neural Networks

Consider a neural network f(· ; Θ) defined in terms of stochastic parameters Θ ∈ RP . For an observation
model pY|X,Θ and a prior distribution over parameters pΘ, Bayesian inference provides a mathematical
formalism for finding the posterior distribution over parameters given the observed data, pΘ|S (MacKay,
1992; Neal, 1996). However, since neural networks are non-linear in their parameters, exact inference over the
stochastic network parameters is analytically intractable.

Full-batch Hamiltonian Monte Carlo. Hamiltonian Monte Carlo (hmc) is a Markov Chain Monte Carlo
method that produces asymptotically exact samples from the posterior (Neal, 2010) and is commonly referred
to as the “gold standard” for inference in bnns. However, hmc does not scale to large neural networks and is
in practice limited to models with only a few 100,000 parameters (Izmailov et al., 2021).
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Variational inference. Variational inference is an approximate inference method that seeks to avoid the
intractability of exact inference and the limitations of hmc by framing posterior inference as a variational
optimization problem. Specifically, we can obtain a bnn defined in terms of a variational distribution over
parameters qΘ by solving the optimization problem

min
qΘ∈QΘ

DKL(qΘ ∥ pθ|S) ⇐⇒ max
qΘ∈QΘ

F(qΘ), (5)

where F(qΘ) is the variational objective

F(qΘ)=̇EqΘ [log pY|X,Θ(yS | xD, θ; f)]−DKL(qΘ ∥ pΘ), (6)

and QΘ is a variational family of distributions (Wainwright and Jordan, 2008). In the remainder of the
paper, we will drop subscripts unless needed for clarity.

Unlike hmc, variational inference is not guaranteed to converge to the exact posterior unless the variational
objective is convex in the variational parameters and the exact posterior is a member of the variational
family. Various approximate inference methods have been developed based on the variational problem above.
These methods make different assumptions about the variational family QΘ and, therefore, result in different
posterior approximations. Two particularly simple methods are Monte Carlo Dropout (mcd; Gal and
Ghahramani, 2016) and Parameter-Space Variational Inference under a mean-field assumption (psvi; also
referred to as Bayes-by-Backprop; Blundell et al., 2015; Graves, 2011). These methods enable stochastic (i.e.,
mini-batch-based) variational inference, can be scaled to large neural networks (Hoffman et al., 2013), and
can be combined with sophisticated priors (Rudner et al., 2023; Lopez et al., 2023; Rudner et al., 2024). More
recent work on Function-Space Variational Inference in bnns (fsvi; Rudner et al., 2022b;a) frames variational
inference as optimization over induced functions and has been demonstrated to result in state-of-the-art
predictive uncertainty estimates in computer vision tasks.

Uncertainty in Bayesian neural networks. To reason about the predictive uncertainty of bnns, we
decompose the total uncertainty of a predictive distribution into its constituent parts: The aleatoric uncertainty
of a model’s predictive distribution is the uncertainty inherent in the data (according to the model), and a
model’s epistemic uncertainty (or model uncertainty) denotes its uncertainty based on constraints on the
learned model (e.g., due to limited data, limited model capacity, inductive biases, optimization routines, etc.).
Mathematically, we can then express a model’s predictive uncertainty as

H(EqΘ [p(y | x, Θ; f)])︸ ︷︷ ︸
Total Uncertainty

= EqΘ [H(p(y | x, Θ; f))]︸ ︷︷ ︸
Expected Data Uncertainty

+ I(Y; Θ)︸ ︷︷ ︸
Model Uncertainty

,
(7)

where H(·) is the entropy functional and I(Y; Θ) is the mutual information (Shannon and Weaver, 1949;
Cover and Thomas, 1991; Depeweg et al., 2018).

2.3 Selective Prediction

Selective prediction modifies the standard prediction pipeline by introducing a rejection class, ⊥, via a gating
mechanism defined by a selection function s : X → R that determines whether a prediction should be made
for a given input point x ∈ X (El-Yaniv and Wiener, 2010). For a rejection threshold τ , the prediction model
is then given by

(p(y | ·; f), s)(x) =
{

p(y | x; f) s ≤ τ

⊥ otherwise,
(8)

with p(y | ·; f) = EqΘ [p(y | ·, Θ; f)], where q(θ) is an approximate posterior for bnns and a Dirac delta
distribution, q(θ) = δ(θ − θ∗), for deterministic models with learned parameters θ∗. A variety of methods
have been proposed to find a selection function s (Rabanser et al., 2022). bnns offer an automatic mechanism
for doing so, since their posterior predictive distributions do not only reflect the level of noise in the data
distribution via the model’s aleatoric uncertainty—which can also be captured by deterministic neural
networks—but also the level of uncertainty due to the model itself, for example, due to limited access to
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training data or an inflexible model class, via the model’s epistemic uncertainty. As such, the total uncertainty
of a bnn’s posterior predictive distribution reflects both uncertainty that can be derived from the training
data and uncertainty about a model’s limitations. The selective prediction model is then

(p(y | ·, θ; f), H(p(y | ·; f)))(x) =
{

p(y | x, θ; f) H(p(y | x; f)) ≤ τ

⊥ otherwise,
(9)

that is, a point x ∈ X will be placed into the rejection class if the model’s predictive uncertainty is above a
certain threshold. To evaluate the predictive performance of a prediction model (p(y | ·; f), s)(x), we compute
the predictive performance of the classifier p(y | x; f) over a range of thresholds τ . Successful selective
prediction models obtain high cumulative accuracy over many thresholds.

There is a rich body of work in the Bayesian deep learning literature that evaluates selective prediction in
settings where some test data may exhibit semantic shifts (e.g., Band et al., 2021; Nado et al., 2022; Tran
et al., 2022), arguing that the capability of bnns to represent epistemic uncertainty renders them particularly
well-suited for semantic shift detection.

3 Related Work

We begin by surveying existing work on inherent adversarial robustness of bnn prediction pipelines. Since
the focus of this work is to investigate claims about inherent robustness of bnns, an overview of works that
attempt to explicitly incorporate adversarial training into bnn training (Liu et al., 2018; Doan et al., 2022)
has been relegated to Appendix B.

To align this survey with our own results, we first outline prior work on adversarial example (AE) detection
with bnns, before proceeding to robustness of classification with bnns. Note that while AE detection
seems an easier task than robust classification, recent work (Tramer, 2022) shows that there is a reduction
from detection to classification (albeit a computationally inefficient one), which means that claims of a
high-confidence AE detector should receive equal scrutiny as robust classification claims would. In particular,
after nearly a decade of work by an ever-growing community, only robustness results achieved with adversarial
training (Madry et al., 2018) have stood the test of time and constitute today’s benchmark (Croce et al.,
2021) to establish empirical robustness against community-standard perturbation strength. Note that there
is an interesting body of work on achieving certifiable adversarial robustness, but the robustness guarantees
they achieve apply only for much smaller perturbation strengths.

Adversarial example detection with Bayesian neural networks. A first set of early works has
investigated model confidence on adversarial samples by looking at Bayesian uncertainty estimates using the
intuition that adversarial examples lie off the true data manifold. Feinman et al. (2017) give a first scheme
using uncertainty estimates in dropout neural networks, claiming AE detection, which is subsequently broken
in Carlini and Wagner (2017a) (who, incidentally break most AE detection schemes of their time). Rawat
et al. (2017) analyze four Bayesian methods and claim good AE detection using various uncertainty estimates,
but analyze only weak fgsm attacks on MNIST1. Smith and Gal (2018) claim to provide empirical evidence
that epistemic uncertainty of mcd could help detect stronger adversarial attacks (fgsm and BIM, a variant
of pgd) on a more sophisticated cats-and-dogs dataset (refuted in Section 4). Bekasov and Murray (2018)
evaluate AE detection ability of MCMC and psvi, but do so only in a simplified synthetic data setting. The
first to demonstrate adversarial vulnerability of Bayesian AE detection (though not for bnns) are Grosse
et al. (2018), who attack both accuracy and uncertainty of the Gaussian Process classifier (see Appendix
B.1). Several works leave the bnn-inference framework and thus are not our focus: by way of example Deng
et al. (2021) design a Bayesian tack-on module for AE detection and Li et al. (2021) add Gaussian noise
to all parameters in deterministic networks to generate distributions on each hidden representation for AE
detection. To the best of our knowledge, our work is the first to demonstrate adversarial vulnerability of
modern Bayesian inference methods (while examining and refuting previous claims about robustness of bnns).

1It is widely accepted that many proposed adversarial defenses fail to generalize from MNIST (Carlini and Wagner, 2017a).
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Robustness of Bayesian neural network predictions. Several recent works have hypothesized that bnn
posteriors enjoy enhanced robustness to adversarial attacks, compared to their deterministic counterparts.
Carbone et al. (2020); Bortolussi et al. (2022), guided by (correct) theoretical considerations of vanishing
gradients on the data manifold in the infinite data limit for bnns, claim to observe robustness to gradient-
based attacks like fgsm and pgd for hmc and psvi using a simple CNN and a fully-connected network
(reevaluated and refuted in Section 4)2. Uchendu et al. (2021) examine the robustness of VGG and DenseNet
with Variational Inference and claim marginal improvement over their deterministic counterparts. Pang
et al. (2021) evaluate Bayesian VGG networks for two inference methods (standard Bayes-by-Backprop and
Flipout), claiming evidence for surprising adversarial robustness3. Cardelli et al. (2019), De Palma et al.
(2021), Grosse et al. (2021), and Patane et al. (2022) study the adversarial robustness of gps. None of
these works benchmark recent Bayesian inference methods like fsvi, which are state-of-the-art for prediction
and semantic shift detection. Zhang et al. (2021) propose a regularization that could improve adversarial
robustness. Our evaluation both in their and in the standard attack parameter setting shows no significant
robustness gain with their regularization (see Section 4). The first in the literature to give negative evidence
for robustness of bnns is Blaas (2021), comparing a bnn trained with hmc to a deterministic network on
MNIST and FashionMNIST but observing no difference in robustness.

Robustness of semantic shift detection. To the best of our knowledge, there is no prior work examining
the adversarial robustness of Bayesian distribution shift detection pipelines. Appendix B surveys some
additional prior work.

4 Examination of Prior Claims About Bayesian Neural Networks Robustness
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Figure 2: Selective Accuracy for the AE detection in Smith and Gal
(2018). Total and Epistemic refer to the thresholding uncertainty.
A decrease in accuracy as the rejection rate increases indicates
that the model rejects more clean than adversarial samples as
the rejection threshold decreases. Even for the weakest attack on
model accuracy alone, the essentially flat curve demonstrates that
detection is no better than random. There is no advantage in using
epistemic uncertainty rather than total uncertainty.

Here, we examine (and refute) all papers
(to the best of our knowledge) that make
adversarial robustness claims about bnns
that have publicly accessible code and
have not been previously refuted (Smith
and Gal, 2018; Bortolussi et al., 2022;
Carbone et al., 2020; Zhang et al., 2021).
Each of them provides a different failure
mode that will help illustrate our rec-
ommendations for evaluating robustness
of bnns at the end of this section. We
note that in the adversarial robustness
community, a model is considered robust
only when it can resist adversarial per-
turbations generated with any method,
as long as these perturbations are within
the constraint set. As we will see, a
common failure mode is careless attack
evaluation, for instance because of dou-
ble application of the softmax function
in Equation (3) through inappropriate
use of standard packages.

Adversarial example detection with epistemic uncertainty. Smith and Gal (2018) examine adversarial
detection with mcd using a ResNet-50 on the large-scale ASSIRA Cats & Dogs dataset consisting of clean
test images, adversarial samples on that test set, and noisy test images with the same perturbation levels as
the adversarial ones, where they use pgd10 in their attacks. They present empirical findings claiming that

2We do not contest the theoretical analysis in the infinite limit, but observe that it does not seem to support the empirical
phenomenon.

3Both Uchendu et al. (2021) and Pang et al. (2021) have no code released to assess these claims. Pang et al. (2021) also
distinguishes between “variational inference” and “Bayes-by-Backprop” although Bayes-by-Backprop is a variational inference
method. We adversarially break Bayes-by-Backprop (i.e., psvi) in Section 5.
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Table 1: Robust accuracy (in %) on MNIST for bnns
trained with hmc and psvi. We show results reported
in Carbone et al. (2020); Bortolussi et al. (2022) and
our reevaluation.

Clean fgsm pgd40

hmc Reported - 96.0 97.0
Reevaluated 95.89±0.23 11.62±2.49 2.19±0.12

psvi Reported - 93.6 93.8
Reevaluated 97.35±0.18 51.45±3.70 0.07±0.05

Table 2: Robust accuracy (in %) on MNIST for the
“robust” bnn proposed by Zhang et al. (2021). We
show results for an MLP trained on MNIST using
the original and a revised evaluation protocol.

Radius fgsm pgd15

ϵ = 0.16 Original setting 44.23±1.32 11.38±0.57

Reevaluated 24.04±0.95 4.22±0.11

ϵ = 0.3 Original setting 25.30±0.91 3.64±0.38

Reevaluated 8.63±0.62 0.04±0.01

epistemic uncertainty in particular may help detect adversarial examples. However, after investigating their
code, we find several problems: leakage of batch statistics at test time, faulty cropping of noisy images and
the “double-softmax” problem resulting in improper evaluation (more details in Appendix D). This leads
the bnn to accept the noisy images and reject the clean and adversarial ones, resulting in misleading, overly
optimistic ROC curves. After correcting these errors, no evidence of successful AE detection from selective
prediction remains.

Figure 2 shows the updated selective accuracy using both total and epistemic uncertainty thresholds. A
successful AE detector would have a monotonically increasing accuracy curve, whereas we see flat or decreasing
curves meaning no better than random detection and no advantage of epistemic over total uncertainty. Lastly,
we implement stronger attacks (pgd40 and Transferpgd+, see Appendix D) to demonstrate the complete
failure of this AE detection method.

Robustness of Bayesian neural network accuracy. Carbone et al. (2020) and Bortolussi et al. (2022)
present empirical results claiming robustness of bnn accuracy due to vanishing gradients of the input with
respect to the posterior. They implement fgsm and pgd for bnns with hmc and psvi on MNIST and
FashionMNIST to show robust accuracy. However, when examining the publicly accessible code, we found
that instead of using Equation (4) to calculate gradients, they compute expectations of gradients. Combined
with large logit values before the softmax layer that lead to numerical overflow and result in zero gradients
for a large fraction of samples, this leads to inadvertent gradient masking. In addition, we also found the
double-softmax problem mentioned above. After correcting and rescaling logits to avoid numerical issues (see
Appendix D), their models are entirely broken by pgd40, see Table 1. Note that our critique specifically
addresses the empirical evidence in Carbone et al. (2020), and not at all their theoretical analysis.

Regularization for robust accuracy of Bayesian neural networks. Zhang et al. (2021) propose
to defend against adversarial attacks by adding a regularization term and present empirical results for
enhanced accuracy robustness for MNIST and CIFAR (most for non-standard settings of attack parameters
like smaller radius). We find that the adversarial gradient is erroneously computed on a singular randomly
selected model during the inference stage, instead of the expected prediction in Equation 4. Furthermore, the
hyper-parameters utilized for the attack are not aligned with established standards. After fixing these flaws,
the robustness claims do not hold any more, as shown in Table 2.

4.1 Recommendations for Evaluating the Robustness of Bayesian Neural Networks

Having examined these three robustness claims, we draw several conclusions about pitfalls and failure modes,
and list detailed recommendations to avoid them when attacking Bayesian pipelines:
1. When considering randomness, use the strongest attack appropriate for the model, all other things being

equal. In the case of stochastic models, attack the loss of the average (Equation (4)), rather than the
average loss (at least for convex losses).

2. Beware of double softmax. All prior works examined in this paper provide implementations that apply the
softmax function twice. Nearly all bnns output the probability prediction, and it is necessary to remove
the softmax function from the loss to effectively apply standard attack implementations.

3. Fix all normalization layers but enable all stochastic network components (such as dropout) at test time.
4. Monitor gradient values throughout the attack to avoid numerical issues. The gradients when attacking

accuracy should never be vanishing to zero.
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5. Increase the radius of perturbation to assess whether the model can be broken or not. In general, if
the perturbation is large enough, all models should fail to be robust (e.g. the semantics of an input can
change if we perturb it by much). If the model remains robust, check for the existence of vanishing or
uninformative gradients in the attacks (Athalye et al., 2018a). If the model still remains robust, attempt
to attack a deterministic network using the parameters from the posterior or several fixed samples.

6. If pgd attacks fail, consider using refined attack benchmarks like AutoAttack (Croce and Hein, 2020).

7. Design attacks appropriate for the model pipeline. Consider how to break the model based on its design,
such as targeting both accuracy and uncertainty estimation (like the pgd+ attack we introduce in
Section 5). Adaptiving attacks to the model quantities can provide more confidence in robustness results.

5 Empirical Evaluation of Adversarial Robustness in Bayesian Neural Networks

Here we present our findings on the lack of adversarial robustness of bnn pipelines for the three tasks:
1) classification with posterior prediction mean (Section 5.1), 2) AE detection (Section 5.2), and 3) OOD
detection (Section 5.3). We evaluate four Bayesian Inference methods, hmc, mcd, psvi, and fsvi for three
datasets: MNIST, FashionMNIST, and CIFAR-10. We implement two architectures, a four-layer CNN and
ResNet-18. All hyperparameter details can be found in Appendix F.

Reproducibility. Code to reproduce our results can be found at

https://anonymous.4open.science/r/attacking-bayes-B555/README.md

Threat model and generation of adversarial perturbations with FGSM, PGD, and PGD+. We
consider a full white-box attack: The adversary has knowledge of the entire model and its parameters, and
can obtain samples from its posterior, which is the white-box model considered in most prior work (Carbone
et al., 2020; Bortolussi et al., 2022; Zhang et al., 2021). We apply fgsm and pgd with 40 iterations to
attack expected accuracy (to break robustness in Section 5.1) or uncertainty (see Equation (7)) (to fool
OOD detectors in Section 5.3) as per Equation (4). To devise a stronger attack on AE detectors, we also
create a combined attack, pgd+: the idea is to produce adversarial examples that both fool the classifier (to
drive accuracy to zero) and have low uncertainty (lower than the clean samples), resulting in poor predictive
accuracy, worsening for higher rejection rates. To this end, pgd+ first attacks bnn accuracy in the first 40
iterates (using the bnn prediction as its label) and, from this starting point, computes another 40 iterates to
attack uncertainty within the allowed ϵ-ball around the original point. pgd+ does not need the ground truth
to attack uncertainty (unlike the uncertainty attack in Galil and El-Yaniv (2021)). We settle on pgd+ after
observing empirically that it is stronger than pgd80 targeting accuracy or targeting a linear combination of
accuracy and uncertainty, as its two stages are specifically designed to fool AE detectors. Throughout, we
use 10 samples from the posterior for each iteration of the attack (see Equation (4)). We find it unnecessary
to increase the attack sample size for our attacks and hence adopt this number for computational efficiency.
We only apply gradient-based attacks; since these are sufficient for breaking all bnns, we do not need to
implement AutoAttack (Croce and Hein, 2020). We showcase ℓ∞ attacks with standard attack parameters:
ϵ = 0.3 for MNIST, ϵ = 0.1 for FashionMNIST, ϵ = 8/255 for CIFAR-10. These perturbation magnitudes ϵ
are the ones most commonly adapted in the robustness literature, in particular since they lead to complete
misclassification by standard models. For completeness, we also include comprehensive results on smaller ϵ in
Appendix G. We only consider total uncertainty in our attack and for selective prediction, as we found no
evidence of an advantage in using epistemic uncertainty.

Metrics: We report accuracy from posterior mean prediction with 100 samples. Our notion of robustness for
bnns is the natural one that aligns with deployment of bnns: Robust accuracy is given by the fraction of
correctly classified adversarial samples when predicting the class with the largest posterior mean prediction
probability. As summary statistics for the selective prediction curves we use average selective accuracy (ASA),
that is, the area under the selective accuracy curve computed with rejection rates from 0% to 99% in integer
increments; and average negative log-likelihood (ANLL), for which we average NLL of all non-rejected samples
for the same rejection grid (see Appendix E).
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Table 3: Robustness of bnn and dnn to adversarial attacks. The table shows robust accuracy (in %).

Methods MNIST (ϵ = 0.3) FashionMNIST (ϵ = 0.1) CIFAR-10 (ϵ = 8/255)
Clean fgsm pgd Clean fgsm pgd Clean fgsm pgd

hmc CNN 99.26±0.00 21.44±0.58 0.57±0.05 92.33±0.04 32.79±0.829 6.73±0.30 – – –

mcd CNN 99.39±0.04 10.19±1.51 0.52±0.03 93.04±0.10 18.45±2.78 5.37±0.14 – – –
ResNet-18 99.39±0.05 10.19±1.51 5.20±0.03 94.27±0.05 7.58±0.29 4.40±0.11 94.12±0.07 26.45±0.15 4.23±0.17

sghmc CNN 99.36±0.03 14.24±1.39 0.53±0.01 – – – – – –
ResNet-18 – – – – – – 89.48±0.09 21.45±0.23 7.01±0.07

sgld CNN 99.07±0.07 12.18±1.38 0.40±0.01 – – – – – –
ResNet-18 – – – – – – 90.16±0.17 22.40±0.37 6.69±0.12

psvi CNN 99.21±0.02 2.60±0.02 0.64±0.02 92.58±0.01 13.95±0.88 5.50±0.14 – – –
ResNet-18 99.59±0.02 2.07±0.25 0.36±0.02 94.22±0.08 16.86±5.64 4.32±0.10 94.75±0.26 37.17±1.11 5.25±2.27

fsvi CNN 99.27±0.01 41.94±1.82 0.60±0.06 92.58±0.25 23.93±1.87 5.45±0.28 – – –
ResNet-18 99.58±0.02 6.45±3.33 0.39±0.02 93.62±0.33 28.23±2.63 4.60±0.02 93.48±0.18 43.85±0.94 5.18±0.27

Deterministic CNN 99.34±0.01 37.18±1.87 1.10±0.31 92.27±0.16 34.73±0.62 8.02±0.23 – – –
ResNet-18 99.56±0.02 3.64±0.44 0.39±0.03 93.93±0.11 11.12±0.78 4.64±0.03 93.46±0.10 23.95±0.11 4.74±0.10

5.1 Assessing Robust Accuracy of Bayesian Neural Networks

Table 3 shows the predictive accuracies from our evaluation. It demonstrates a significant deterioration in
predictive accuracy when evaluated on adversarial examples even for the weakest attacks (fgsm) with a
complete breakdown for pgd for all methods and datasets considered. Note that for deterministic neural
networks, robust accuracy under adversarial attacks approaches 0% while for our attacks on bnns it is in the
low single digits (still below the 10% accuracy for random guessing). Since the goal of this work is to evaluate
claims of significant adversarial robustness of bnns, we have not optimized our attacks to drive accuracy
to approach zero but believe this to be possible. Compared with the deterministic model, we observe no
significant difference in robust accuracy. In Appendix G, we provide the robustness curve for a range of
smaller adversarial radii ϵ and observe no significant difference either.

5.2 Assessing Robust Adversarial Example Detection

AE detection setting: We evaluate all AE detectors on test data consisting of 50% clean samples and 50%
adversarially perturbed samples, using total uncertainty for the rejection as described in Section 2.2. In the
case of perfect accuracy on clean data and 0% accuracy on adversarial samples, a perfect AE detector would
start with 50% accuracy at 0% rejection rate, increasing linearly to 100% accuracy at 50% rejection rate,
for a maximum ASA of 87.5%. A completely defunct AE detector, on the other hand, would start at 50%
and reject clean samples first, reaching 0% accuracy at 50% rejection rate for a minimum ASA of 12.5%. A
random detector would yield a horizontal curve with ASA 50%. To benchmark, we also show ASA for 100%
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Figure 3: Adversarial example detection statistics for all four methods on MNIST with a four-layer CNN
architecture. Higher curves correspond to better adversarial example detection. The adversarial attacks are
able to significantly deteriorate OOD detection in all settings and for all methods.
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Table 4: Selective Prediction (left) and average selective accuracy (right) for semantic shift detection with
bnns. Results on MNIST, FMNIST are with a CNN, while results on CIFAR-10 are with a ResNet-18.

Selective Prediction Average selective accuracy
Clean Noisy fgsm pgd pgd+ Clean Noisy fgsm pgd

MNIST

hmc 99.98±0.00 99.95±0.00 86.67±0.13 63.16±0.73 60.16±0.33 83.92±0.02 83.65±0.11 61.02±1.54 47.16±2.05

mcd 99.99±0.00 99.97±0.00 83.33±1.48 24.58±1.21 27.33±1.78 83.88±0.10 83.84±0.17 55.22±0.04 20.01±0.96

sghmc 99.99±0.00 99.98±0.00 83.73±0.23 25.32±0.53 27.70±1.29 99.36±0.04 83.95±0.10 66.23±2.50 24.48±1.92

sgld 99.97±0.01 99.97±0.01 77.92±0.90 43.19±9.52 37.67±13.35 83.43±0.36 83.45±0.35 54.14±6.34 28.86±13.6

psvi 99.98±0.00 99.98±0.00 74.98±0.83 35.28±1.88 20.28±0.70 83.92±0.01 83.83±0.04 48.21±2.37 18.03±0.54

fsvi 99.98±0.00 98.84±1.09 88.53±1.31 38.79±2.72 17.52±0.68 84.10±0.01 84.17±0.03 60.00±11.80 15.45±0.01

FMNIST

hmc 98.99±0.00 98.76±0.01 76.22±0.41 47.73±0.67 41.30±0.60 77.57±0.22 79.04±0.13 61.90±0.54 45.14±1.54

mcd 99.18±0.01 99.07±0.01 75.31±0.35 31.92±0.77 28.89±0.45 77.14±0.61 78.26±0.54 40.52±3.42 21.40±0.77

psvi 98.98±0.01 98.86±0.03 62.03±2.02 30.68±0.58 24.92±0.49 75.26±0.40 76.66±0.39 46.54±2.23 16.81±0.17

fsvi 98.58±0.04 97.93±0.28 69.59±1.48 30.94±1.91 24.17±0.82 76.75±0.55 79.97±0.27 28.94±2.66 15.15±0.03

CIFAR

mcd 99.37±0.01 99.35±0.01 76.97±0.21 22.85±0.49 19.73±0.24 77.51±0.42 78.18±0.26 75.31±1.01 15.31±0.00

sghmc 97.91±0.01 97.90±0.01 73.98±0.32 41.04±0.56 32.20±0.12 76.56±0.06 76.56±0.07 58.50±0.48 18.35±0.38

sgld 98.36±0.06 98.36±0.06 72.23±0.24 35.92±0.91 27.83±0.33 76.44±0.26 76.44±0.26 55.88±1.05 16.49±0.13

-10 psvi 99.40±0.04 99.36±0.04 82.38±0.50 19.78±0.97 19.89±1.51 79.16±0.27 78.30±1.71 72.97±0.98 15.33±0.00

fsvi 99.06±0.08 99.04±0.07 85.16±0.35 20.82±0.38 20.09±0.33 80.54±0.17 80.72±0.08 78.15±0.54 15.24±0.01

clean test data (“Clean”) and for a 50-50 mix of clean and noisy data where we add a pixel-wise Gaussian
perturbation with the same standard deviation as the radius in our adversarial perturbations (“Noisy”).

Results: Table 4 lists our results for ASA, with all methods failing under attack, coming quite close to the
idealized minimum ASA of 12.5%. Figure 3 (MNIST with CNN) (and Figures 8, 5, 6, 7 in Appendix E for
the other datasets and architectures) illustrate the selective accuracy curve for the benchmarks and our three
attacks, fgsm, pgd and pgd+, and show a histogram of uncertainties for adversarial samples. Table 5 in
Appendix E further lists ANLL. Our results show that our iterative attacks, pgd and pgd+, essentially
completely fool AE detection. Particularly interesting is the fact that pgd samples, optimized against
predictive accuracy only (but not against uncertainty), already manage to fool the uncertainty thresholding,
resulting in decreasing accuracy curves! The principled two-stage pgd+ attack that also targets uncertainty
directly further lowers detection performance and decreases uncertainty further for all adversarial samples.
We note that the weaker fgsm attack is not as successful: As the histograms show, uncertainty does not fall
below that of clean samples and the selective accuracy curve increases with an increased rejection rate.

5.3 Assessing Robust Semantic Shift Detection

Semantic shift detection is a common application of bnns, where they outperform state-of-the-art deterministic
uncertainty quantification methods for nns (Band et al., 2021; Rudner et al., 2022b; Tran et al., 2022; van
Amersfoort et al., 2020). Building on this body of work, we argue that attacking Bayesian neural networks
should not be constrained to attacking predictive accuracy, since a key application of Bayesian neural networks
is to enable effective semantic shift detection. As such, it is important to inquire whether it is possible to not
just attack the BNN’s accuracy but also their uncertainty estimates.
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Figure 4: Semantic shift detection statistics for hmc, mcd, psvi and fsvi for MNIST with a CNN. Higher
curves correspond to better OOD detection. The adversarial attacks are able to significantly deteriorate
OOD detection in all settings and for all methods.
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Setting: Our semantic shift datasets for MNIST, FashionMNIST and CIFAR-10 are FashionMNIST, MNIST,
and SVHN, respectively, each of them giving zero accuracy. The test set contains half in-distribution (ID)
and half semantically-shifted out-of-distribution (OOD) samples, hence selective accuracy curves start at 50%
accuracy. We attack only the OOD samples with fgsm and pgd, targeting the uncertainty. Since this is
already sufficient to reject most ID samples, we do not also attack the ID samples, though we could do so.

Results: Selective accuracy curves are shown in Figure 4 (for MNIST, using a CNN). See 8, 5, 6, 7 in
Appendix E for the additional datasets and architectures. Our results resemble what we have seen for AE
detection. The pgd attack nearly completely fools the detector to reject all ID samples, reaching close to
0% accuracy for 50% rejection rate and indeed most methods give ASA close to the lower bound of 12.5%,
with only hmc showing higher ASA. Still, even for hmc ASA is below 50%, meaning it performs worse than
random rejection. As before, fgsm attacks are too weak to turn the direction of the selective accuracy curve.

6 Discussion and Conclusions
In our empirical analysis, we have presented evidence that refutes claims in the literature that bnns enjoy some
natural inherent robustness to adversarial attacks and that they can be successfully deployed for adversarial
example detection. We benchmarked a set of contemporary bnn inference methods to further corroborate
this finding. In addition, we are the first to demonstrate that uncertainty-based detection of semantic shifts
with bnns is as vulnerable to relatively simple attacks as conventional prediction tasks: Slightly perturbing
the semantically shifted samples can lead the model to reject in-distribution samples instead.

Bayesian adversarial training. We thus hope to draw the attention of the Bayesian deep learning
community towards devising Bayesian defenses against adversarial attacks. The gold standard to create
robust deterministic models is adversarial training (Madry et al., 2018). Transposing this idea to bnns
poses some interesting challenges and opportunities since bnns allow tailoring priors but may face distinct
difficulties when optimizing the posterior adversarially. Some prior work has touched upon adversarially
training bnns or using bnns to improve adversarial training of deterministic models (Doan et al., 2022; Liu
et al., 2018; Uchendu et al., 2021; Wicker et al., 2021). (We provide a short review of related work in this area
in Appendix B.) Yet, while relevant, these works have not proposed defenses that preserve proper Bayesian
inference, and they do not assess their methods on Bayesian prediction pipelines that include uncertainty
quantification: They add modifications that depart from Bayesian inference, subtly but improperly change
the variational objective, and only consider accuracy-based adversarial robustness. Finding a principled and
conceptually simple approach to defending bnns (and possibly providing enhanced bnn-based robust models)
constitutes an exciting avenue for future research. Such work should explicitly focus on defending Bayesian
prediction pipelines using adversarial training approaches consistent with Bayesian inference.

Adversarial robustness and inference quality. In our empirical evaluation, we found that even bnns
trained with hmc, the gold standard for inference in bnns, do not withstand adversarial attacks and exhibit
a significant deterioration in robust accuracy, average selective accuracy, and semantic shift detection when
either their predictions or their predictive uncertainty are attacked. However, our analysis of hmc is limited
to a CNN architecture with only 100,000 parameters since training larger bnns with hmc is computationally
infeasible without super computer-grade hardware, leaving the adversarial robustness of larger bnns trained
with hmc an open question. As would be expected, the different approximate inference methods examined in
this work were less robust than hmc on the uncertainty-aware selective prediction metrics, and for ResNet-18
models, fsvi—a state-of-the-art approximate inference method—is more robust against strong attacks on the
uncertainty-aware selective prediction metrics than psvi and mcd, two well-established but empirically worse
methods (see Table 4).

Transfer-attack threat models. Most works have focused on a white-box threat model for bnns. It would
be interesting to explore vulnerability of bnns against transfer attacks from models that do not have access
to the posterior, especially in light of recent progress in deriving downstream bnns by creating priors from
pretrained publicly-available models (Shwartz-Ziv et al., 2022; Tran et al., 2022). Lastly, selective prediction
works well for clean and noisy data but is easily broken by adversarial attacks of standard strength. An
interesting direction for future research would be to explore the effect of varying the perturbation strength on
adversarial example detection.

11



Under review as submission to TMLR

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani B. Srivastava, and Kai-Wei Chang.

Generating natural language adversarial examples. In Ellen Riloff, David Chiang, Julia Hockenmaier,
and Jun’ichi Tsujii, editors, Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 - November 4, 2018, pages 2890–2896. Association for
Computational Linguistics, 2018.

Anish Athalye, Nicholas Carlini, and David A. Wagner. Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. In Jennifer G. Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 274–283. PMLR,
2018a.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial examples.
In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of
Proceedings of Machine Learning Research, pages 284–293. PMLR, 2018b.

Neil Band, Tim G. J. Rudner, Qixuan Feng, Angelos Filos, Zachary Nado, Michael W. Dusenberry, Ghassen
Jerfel, Dustin Tran, and Yarin Gal. Benchmarking Bayesian Deep Learning on Diabetic Retinopathy
Detection Tasks. 2021.

Artur Bekasov and Iain Murray. Bayesian adversarial spheres: Bayesian inference and adversarial examples
in a noiseless setting. arXiv preprint arXiv:1811.12335, 2018.

Arno Blaas and Stephen J Roberts. The effect of prior lipschitz continuity on the adversarial robustness of
Bayesian neural networks. arXiv preprint arXiv:2101.02689, 2021.

Arno C Blaas. On the adversarial robustness of Bayesian machine learning models. PhD thesis, University of
Oxford, 2021.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
networks. volume 37 of Proceedings of Machine Learning Research, pages 1613–1622, Lille, France, 07–09
Jul 2015. PMLR.

Luca Bortolussi, Ginevra Carbone, Luca Laurenti, Andrea Patane, Guido Sanguinetti, and Matthew Wicker.
On the robustness of Bayesian neural networks to adversarial attacks. arXiv preprint arXiv:2207.06154,
2022.

Ginevra Carbone, Matthew Wicker, Luca Laurenti, Andrea Patane', Luca Bortolussi, and Guido Sanguinetti.
Robustness of Bayesian neural networks to gradient-based attacks. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
15602–15613. Curran Associates, Inc., 2020.

Luca Cardelli, Marta Kwiatkowska, Luca Laurenti, and Andrea Patane. Robustness guarantees for Bayesian
inference with gaussian processes. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 7759–7768, 2019.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing ten detection
methods. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, AISec ’17, page
3–14, New York, NY, USA, 2017a. Association for Computing Machinery.

Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE
Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 39–57. IEEE
Computer Society, 2017b.

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris Tsipras, Ian
Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial robustness. arXiv preprint
arXiv:1902.06705, 2019a.

12



Under review as submission to TMLR

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris Tsipras, Ian J.
Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial robustness. CoRR,
abs/1902.06705, 2019b.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. ZOO: zeroth order optimization
based black-box attacks to deep neural networks without training substitute models. In Bhavani M.
Thuraisingham, Battista Biggio, David Mandell Freeman, Brad Miller, and Arunesh Sinha, editors,
Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, AISec@CCS 2017, Dallas,
TX, USA, November 3, 2017, pages 15–26. ACM, 2017.

Adam D Cobb and Brian Jalaian. Scaling hamiltonian monte carlo inference for Bayesian neural networks
with symmetric splitting. Uncertainty in Artificial Intelligence, 2021.

Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley, New York, 1991.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks. In ICML, 2020.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flammarion,
Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial robustness
benchmark. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

Giacomo De Palma, Bobak Kiani, and Seth Lloyd. Adversarial robustness guarantees for random deep neural
networks. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 2522–2534. PMLR,
18–24 Jul 2021.

Zhijie Deng, Xiao Yang, Shizhen Xu, Hang Su, and Jun Zhu. Libre: A practical Bayesian approach to
adversarial detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 972–982, 2021.

Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen Udluft. Decomposition of
uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 1184–1193, Stockholmsmässan, Stockholm Sweden, 10–15
Jul 2018. PMLR.

Dimitrios I. Diochnos, Saeed Mahloujifar, and Mohammad Mahmoody. Adversarial risk and robustness:
General definitions and implications for the uniform distribution. In Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 10380–10389, 2018.

Bao Gia Doan, Ehsan M. Abbasnejad, Javen Qinfeng Shi, and Damith Ranasinghe C. Bayesian learning
with information gain provably bounds risk for a robust adversarial defense. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pages 5309–5323. PMLR, 17–23 Jul 2022.

Ran El-Yaniv and Yair Wiener. On the foundations of noise-free selective classification. Journal of Machine
Learning Research, 11(53):1605–1641, 2010.

Reuben Feinman, Ryan R. Curtin, Saurabh Shintre, and Andrew B. Gardner. Detecting adversarial samples
from artifacts, 2017.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty
in deep learning. In Proceedings of the 33rd International Conference on International Conference on
Machine Learning - Volume 48, ICML 2016, pages 1050–1059, 2016.

13



Under review as submission to TMLR

Ido Galil and Ran El-Yaniv. Disrupting deep uncertainty estimation without harming accuracy. Advances in
Neural Information Processing Systems, 34:21285–21296, 2021.

Yue Gao, Ilia Shumailov, Kassem Fawaz, and Nicolas Papernot. On the limitations of stochastic pre-processing
defenses. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in
Neural Information Processing Systems, 2022.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Pascale Gourdeau, Varun Kanade, Marta Kwiatkowska, and James Worrell. On the hardness of robust classi-
fication. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,
and Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 7444–7453, 2019.

Alex Graves. Practical variational inference for neural networks. In Proceedings of the 24th International
Conference on Neural Information Processing Systems, NIPS’11, page 2348–2356, Red Hook, NY, USA,
2011. Curran Associates Inc. ISBN 9781618395993.

Kathrin Grosse, David Pfaff, Michael Thomas Smith, and Michael Backes. The limitations of model uncertainty
in adversarial settings. arXiv preprint arXiv:1812.02606, 2018.

Kathrin Grosse, Michael T Smith, and Michael Backes. Killing four birds with one gaussian process: the
relation between different test-time attacks. In 2020 25th International Conference on Pattern Recognition
(ICPR), pages 4696–4703. IEEE, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016, pages 770–778. IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.90.

J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In Proceedings of the Twenty-Ninth
Conference on Uncertainty in Artificial Intelligence, UAI’13, pages 282–290, Arlington, Virginia, United
States, 2013. AUAI Press.

James Hensman, Alexander G. de G. Matthews, and Zoubin Ghahramani. Scalable variational Gaussian
process classification. In AISTATS, 2014.

Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational inference.
Journal of Machine Learning Research, 14(1):1303–1347, May 2013. ISSN 1532-4435.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon Wilson. What are
Bayesian neural network posteriors really like? In Marina Meila and Tong Zhang, editors, Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 4629–4640. PMLR, 18–24 Jul 2021.

Anna-Kathrin Kopetzki, Bertrand Charpentier, Daniel Zügner, Sandhya Giri, and Stephan Günnemann.
Evaluating robustness of predictive uncertainty estimation: Are dirichlet-based models reliable? In
International Conference on Machine Learning, pages 5707–5718. PMLR, 2021.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the physical world. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Workshop Track Proceedings, 2017.

Yao Li, Tongyi Tang, Cho-Jui Hsieh, and Thomas Lee. Detecting adversarial examples with Bayesian neural
network. arXiv preprint arXiv:2105.08620, 2021.

Xuanqing Liu, Yao Li, Chongruo Wu, and Cho-Jui Hsieh. Adv-BNN: Improved adversarial defense through
robust Bayesian neural network. In International Conference on Learning Representations, 2018.

14



Under review as submission to TMLR

Julian Lechuga Lopez, Tim G. J. Rudner, and Farah Shamout. Informative priors improve the reliability of
multimodal clinical data classification. In Machine Learning for Health Symposium Findings, 2023.

David J. C. MacKay. A practical Bayesian framework for backpropagation networks. Neural Comput., 4(3):
448–472, May 1992. ISSN 0899-7667. doi: 10.1162/neco.1992.4.3.448.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards Deep
Learning Models Resistant to Adversarial Attacks. In International Conference on Learning Representations,
2018.

Kevin P. Murphy. Machine learning: A probabilistic perspective. MIT Press, Cambridge, Mass. [u.a.], 2013.

Zachary Nado, Neil Band, Mark Collier, Josip Djolonga, Michael W. Dusenberry, Sebastian Farquhar, Qixuan
Feng, Angelos Filos, Marton Havasi, Rodolphe Jenatton, Ghassen Jerfel, Jeremiah Liu, Zelda Mariet,
Jeremy Nixon, Shreyas Padhy, Jie Ren, Tim G. J. Rudner, Faris Sbahi, Yeming Wen, Florian Wenzel, Kevin
Murphy, D. Sculley, Balaji Lakshminarayanan, Jasper Snoek, Yarin Gal, and Dustin Tran. Uncertainty
baselines: Benchmarks for uncertainty & robustness in deep learning, 2022.

Radford M Neal. Bayesian Learning for Neural Networks. 1996.

Radford M. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, 54:113–162,
2010.

Yutian Pang, Sheng Cheng, Jueming Hu, and Yongming Liu. Evaluating the robustness of Bayesian neural
networks against different types of attacks. arXiv preprint arXiv:2106.09223, 2021.

Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a defense
to adversarial perturbations against deep neural networks. In IEEE Symposium on Security and Privacy,
SP 2016, San Jose, CA, USA, May 22-26, 2016, pages 582–597. IEEE Computer Society, 2016.

Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Ramesh Karri, Ozgur Sinanoglu, Ahmad-
Reza Sadeghi, and Xun Yi, editors, Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April 2-6, 2017, pages
506–519. ACM, 2017.

Andrea Patane, Arno Blaas, Luca Laurenti, Luca Cardelli, Stephen Roberts, and Marta Kwiatkowska.
Adversarial robustness guarantees for gaussian processes. Journal of Machine Learning Research, 23:1–55,
2022.

Stephan Rabanser, Anvith Thudi, Kimia Hamidieh, Adam Dziedzic, and Nicolas Papernot. Selective
classification via neural network training dynamics, 2022.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2006. URL www.GaussianProcess.org/gpml.

Ambrish Rawat, Martin Wistuba, and Maria-Irina Nicolae. Adversarial phenomenon in the eyes of Bayesian
deep learning, 2017.

Tim G. J. Rudner, Freddie Bickford Smith, Qixuan Feng, Yee Whye Teh, and Yarin Gal. Continual Learning
via Sequential Function-Space Variational Inference. In Proceedings of the 38th International Conference
on Machine Learning, Proceedings of Machine Learning Research. PMLR, 2022a.

Tim G. J. Rudner, Sanyam Kapoor, Shikai Qiu, and Andrew Gordon Wilson. Function-Space Regularization
in Neural Networks: A Probabilistic Perspective. In Proceedings of the 40th International Conference on
Machine Learning, Proceedings of Machine Learning Research. PMLR, 2023.

Tim G. J. Rudner, Ya Shi Zhang, Andrew Gordon Wilson, and Julia Kempe. Mind the gap: Improving
robustness to subpopulation shifts with group-aware priors. In Proceedings of The 26th International
Conference on Artificial Intelligence and Statistics, 2024.

15

www.GaussianProcess.org/gpml


Under review as submission to TMLR

Tim G.J. Rudner, Zonghao Chen, Yee Whye Teh, and Yarin Gal. Tractable Function-space Variational
Inference in Bayesian Neural Networks. In Advances in Neural Information Processing Systems, 2022b.

Vikash Sehwag, Arjun Nitin Bhagoji, Liwei Song, Chawin Sitawarin, Daniel Cullina, Mung Chiang, and
Prateek Mittal. Better the devil you know: An analysis of evasion attacks using out-of-distribution
adversarial examples. arXiv preprint arXiv:1905.01726, 2019.

Claude E. Shannon and Warren Weaver. The Mathematical Theory of Communication. University of Illinois
Press, Urbana and Chicago, 1949.

Ravid Shwartz-Ziv, Micah Goldblum, Hossein Souri, Sanyam Kapoor, Chen Zhu, Yann LeCun, and An-
drew Gordon Wilson. Pre-train your loss: Easy Bayesian transfer learning with informative priors. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022.

Lewis Smith and Yarin Gal. Understanding measures of uncertainty for adversarial example detection. In
Amir Globerson and Ricardo Silva, editors, Proceedings of the Thirty-Fourth Conference on Uncertainty in
Artificial Intelligence, UAI 2018, Monterey, California, USA, August 6-10, 2018, pages 560–569. AUAI
Press, 2018.

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Y. Weiss,
B. Schölkopf, and J. C. Platt, editors, Advances in Neural Information Processing Systems 18, pages
1257–1264. MIT Press, 2006.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks, 2014.

Florian Tramer. Detecting adversarial examples is (Nearly) as hard as classifying them. In Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings
of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pages 21692–21702. PMLR, 17–23 Jul 2022.

Florian Tramèr, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to adversarial
example defenses. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Dustin Tran, Jeremiah Liu, Michael W. Dusenberry, Du Phan, Mark Collier, Jie Ren, Kehang Han, Zi Wang,
Zelda Mariet, Huiyi Hu, Neil Band, Tim G. J. Rudner, Karan Singhal, Zachary Nado, Joost van Amersfoort,
Andreas Kirsch, Rodolphe Jenatton, Nithum Thain, Honglin Yuan, Kelly Buchanan, Kevin Murphy,
D. Sculley, Yarin Gal, Zoubin Ghahramani, Jasper Snoek, and Balaji Lakshminarayanan. Plex: Towards
reliability using pretrained large model extensions, 2022.

Adaku Uchendu, Daniel Campoy, Christopher Menart, and Alexandra Hildenbrandt. Robustness of Bayesian
neural networks to white-box adversarial attacks. In 2021 IEEE Fourth International Conference on
Artificial Intelligence and Knowledge Engineering (AIKE), pages 72–80. IEEE, 2021.

Joost van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation using a single
deep deterministic neural network. In International Conference on Machine Learning, 2020.

Martin J Wainwright and Michael I Jordan. Graphical Models, Exponential Families, and Variational
Inference. Now Publishers Inc., Hanover, MA, USA, 2008. ISBN 1601981848.

Ke Wang, Geoff Pleiss, Jacob Gardner, Stephen Tyree, Kilian Q Weinberger, and Andrew Gordon Wilson.
Exact Gaussian processes on a million data points. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32,
pages 14648–14659. Curran Associates, Inc., 2019.

16



Under review as submission to TMLR

Matthew Wicker, Luca Laurenti, Andrea Patane, Zhuotong Chen, Zheng Zhang, and Marta Kwiatkowska.
Bayesian inference with certifiable adversarial robustness. In Arindam Banerjee and Kenji Fukumizu,
editors, Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, volume
130 of Proceedings of Machine Learning Research, pages 2431–2439. PMLR, 13–15 Apr 2021.

Nanyang Ye and Zhanxing Zhu. Bayesian adversarial learning. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

Matthew Yuan, Matthew Robert Wicker, and Luca Laurenti. Gradient-free adversarial attacks for Bayesian
neural networks. In Third Symposium on Advances in Approximate Bayesian Inference, 2021.

Huimin Zeng, Zhenrui Yue, Yang Zhang, Ziyi Kou, Lanyu Shang, and Dong Wang. On attacking out-domain
uncertainty estimation in deep neural networks. In Lud De Raedt, editor, Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI-22, pages 4893–4899. International Joint
Conferences on Artificial Intelligence Organization, 7 2022. Main Track.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jordan.
Theoretically principled trade-off between robustness and accuracy. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 7472–7482. PMLR, 2019.

Jiaru Zhang, Yang Hua, Zhengui Xue, Tao Song, Chengyu Zheng, Ruhui Ma, and Haibing Guan. Robust
Bayesian neural networks by spectral expectation bound regularization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 3815–3824, June 2021.

Roland S Zimmermann. Comment on "Adv-BNN: Improved adversarial defense through robust Bayesian
neural network". arXiv preprint arXiv:1907.00895, 2019.

17



Under review as submission to TMLR

Supplementary Material

Table of Contents

A Reproducibility 19

B Further Background and Related Work 19

B.1 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B.2 Investigating Bayesian Neural Network Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B.3 Robustness of Semantic Shift Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B.4 Adversarial Training and Bayesian Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 19

C Consistence with Bayesian Inference 20

D Details of Evaluation of Prior Work 20

D.1 Attacking Adversarial Example Detection in Smith and Gal (2018) . . . . . . . . . . . . . . . 20

D.2 Attacking Robustness in Carbone et al. (2020) and Bortolussi et al. (2022) . . . . . . . . . . . 23

D.3 Attacking Robustness via Regularization in Zhang et al. (2021) . . . . . . . . . . . . . . . . . 24

E Further Results 26

E.1 Tabular Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

E.2 Additional Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

F Experimental Details 29

G Varying the Strength of the Adversarial Attacks 30

H Limitations 30

18



Under review as submission to TMLR

Appendix A Reproducibility

Code to reproduce our results can be found at:
https://anonymous.4open.science/r/attacking-bayes-B555/README.md

Appendix B Further Background and Related Work

Here we summarize prior work that, while not directly relevant to our results, provides interesting comple-
mentary analyses.

B.1 Gaussian Processes

Gaussian processes (gps; Rasmussen and Williams, 2006) are a non-parametric alternative to bnns. They
correspond to infinitely-wide stochastic neural networks (Neal, 1996) and allow for exact posterior inference
in small-data regression tasks but require approximate inference methods to be applied to classification tasks
and to datasets with more than a few ten thousand data points (Snelson and Ghahramani, 2006; Hensman
et al., 2013; 2014). While recent work has enabled exact posterior inference for gps in larger datasets using
approximate matrix inversion methods (Wang et al., 2019), classification, and especially prediction tasks
with high-dimensional input data such as images, require parametric feature extractors and approximate
methods, for which there are no guarantees that the approximate posterior distribution faithfully represents
the exact posterior, and underperform neural networks and bnns.

B.2 Investigating Bayesian Neural Network Priors

Blaas and Roberts (2021) ask how the prior could affect adversarial robustness for bnns. For psvi on a
three-layer fully-connected network, they observe a trade-off between accuracy and robustness (reminiscent
of the accuracy-robustness trade-off for deterministic nns (Zhang et al., 2019)): small priors yield a small
Lipschitz constant and thus better robustness but cannot fit the data; for large priors the opposite is true.

B.3 Robustness of Semantic Shift Detection

The profound advantage of a Bayesian neural network is that it can provide both aleatoric and epistemic
uncertainty estimations because of the probabilistic representation of the model. In particular, a large body
of work leverages this to create Bayesian pipelines for semantic shift detection. To the best of our knowledge,
there is no work prior to ours examining Bayesian OOD pipelines for their robustness against adversarial
attacks and our work is the first to do so. There is prior work on robustness of semantic shift detection with
deterministic models which we briefly survey here: Sehwag et al. (2019) attack the semantic shift detection of
deterministic models with calibration and temperature scaling. Kopetzki et al. (2021) attack both accuracy
and semantic shift detection for Dirichlet-based models. Zeng et al. (2022) attack out-domain uncertainty
estimation for deep ensembles and uncertainty estimation using radial basis function kernels and gps. All
these works break the semantic shift detection capabilities of the models.

In a different though related work, Galil and El-Yaniv (2021) attack in-distribution data to increase the
uncertainty of correctly classified images and decrease the uncertainty of incorrectly classified images, thus
targeting selective accuracy in an in-distribution setting for deterministic networks as well as mcd. Their
attack requires knowledge of the ground truth for the instances it attacks, which might be difficult to attain.

B.4 Adversarial Training and Bayesian Neural Networks

Some works have used Bayesian methods to improve robustness of deterministic models. For instance, Ye and
Zhu (2018) introduce uncertainty over the generation of adversarial examples to improve adversarial training.

Liu et al. (2018) propose to create robust models with a version of adversarial training for bnns guided
by the intuition that randomness in the model parameters could enhance adversarial training optimization

19

https://anonymous.4open.science/r/attacking-bayes-B555/README.md


Under review as submission to TMLR

against adversarial attacks. However, Zimmermann (2019) refutes these claims by observing that robustness
significantly diminishes when using expected gradients to attack. Moreover, it is unclear whether the observed
remaining robustness claims solely come from the adversarial training components in the algorithm. Uchendu
et al. (2021) directly combine adversarial training with bnn by training on iteratively generated adversarial
examples, and observe small improvements in robustness. Doan et al. (2022) make the interesting observation
that direct adversarial training of bnns as in Liu et al. (2018) might lead to mode collapse of the posterior
and propose a new “information gain” objective for more principled adversarial training of bnns.

We also argue that Liu et al. (2018) and Doan et al. (2022) depart from the standard Bayesian inference
framework. The foundation of variational inference is laid out in the equivalence given in Equations (5)
and (6) in Section 2.2. In Liu et al. (2018) and Doan et al. (2022), the data xD in log pY |X,Θ(yD|xD, θ; f) is
replaced by the adversarial examples generated on the fly and an additional regularization term is introduced.
Since the training data is being modified, the equivalence above is not given anymore and the solution to the
variational optimization problem under the modified data does not approximate the exact posterior in the
original model, moving us outside the realm of standard Bayesian inference. Therefore, we call for future
work on a principled and conceptual approach to defending Bayesian inference pipelines.

An interesting work deals with certifiable robustness Wicker et al. (2021). It also modifies the standard
variational objective to adversarially train a BNN, thus cleverly optimizing a posterior with improved
robustness. However, as before, this approach departs from the scope of Bayesian inference, since changing
the variational objective in this way biases the objective and will not lead to the best approximation to the
posterior within the variational family. In other words, the approach in Wicker et al. (2021) may superficially
look like approximate Bayesian inference but is not. Moreover, we point out that their code also applies the
incorrect double softmax and expected gradient computations to generate the attack. These errors lead to a
robust accuracy for HMC on FMNIST with ϵ = 0.1 of 40%, which is significantly higher than the robust
accuracy we would observe after fixing these errors (around 6%). This further emphasizes the importance of
re-evaluating previous robustness evaluations in published works and for heeding the recommendations for
robustness evaluations put forth in our work.

Appendix C Consistence with Bayesian Inference

Bayesian inference in neural networks involves finding a conditional distribution p(θ|yD, xD) (the posterior)
given a likelihood pY |X,Θ(yD|xD, θ; f) and a prior p(θ). Here, D is the observed data, and there are various
ways to find approximations to the posterior (e.g., variational inference, HMC, etc.). Liu et al. (2018) and
Doan et al. (2022) depart from the standard Bayesian inference framework of finding p(θ|yD, xD).

More specifically, in the adversarial training methods proposed by [1] and [2], the data xD in
log pY |X,Θ(yD|xD, θ; f) is replaced by the adversarial examples generated in an adaptive way during training
and an additional regularization term is introduced into the objective functions. Each of these modifications
means that the proposed methods do not seek to find p(θ|yD, xD) anymore. First, modifying the training
data implies that the true posterior is continually evolving as a function of the very model that is being
trained, which is not consistent with finding p(θ|yD, xD). Second, changing the optimization objective by
adding an ad-hoc regularization term changes the optimum and, as such, implies that the solution to the
optimization problem is not the posterior p(θ|yD, xD).

Both approaches, therefore, diverge from the standard Bayesian inference problem of finding p(θ|yD, xD).

Appendix D Details of Evaluation of Prior Work

Here we provide further details on implementation issues in prior work. This section complements Section 4.

D.1 Attacking Adversarial Example Detection in Smith and Gal (2018)

In addition to implementing the intended pgd10 attack on the bnns, we additionally provide evaluations
for two stronger attacks, pgd (=pgd40) and Transferpgd+. We use the same l∞ perturbation as in their
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results, 10/255. pgd directly attacks the bnn accuracy for 40 iterations with the gradient of the loss of the
expectation, as discussed in Section 2.1. At each iteration we use 10 samples from the posterior. Figure 2
shows that pgd10, and more so pgd already fool the AE detector leading it to reject more clean samples
than adversarial samples, as witnessed by the decreasing selective accuracy curve. However, when tracking
gradients for pgd40 we find some degree of gradient diminishing. Therefore, we design a stronger attack
called Transferpgd+. As its name indicates, it is a two phase attack that consists of a transfer attack that
warm-starts a subsequent pgd+. That is, we attack the deterministic non-dropout version of the bnn first
(by turning off dropout when computing the loss), and then perform 40 iterations of pgd on the uncertainty
estimation of the network starting from the transferred adversarial examples generated in the first phase,
again with 10 posterior samples per iteration. We use the label predicted by the bnn to avoid label leakage.
Transferpgd+ can break the accuracy of the bnn to 2% and fools the AE detector successfully.

Implementation issues: After investigating the code privided by Smith and Gal (2018), we find two mutually
reinforcing problems. First, they evaluate the clean, adversarial, and noisy data separately but do not set
batch-normalization layers to evaluation mode. (The first highlighted line in Listing 1). As a result, it is
possible that the detector may use batch statistics among the different sample groups to distinguish them.
Secondly, when creating the noisy data, re-centered images with initial values in [0, 255] are mistakenly clipped
to [0, 1], making all noisy data points very similar to each other (since most information is clipped to either 0
or 1), and leading to very small epistemic uncertainty for noisy images. See Listing 4. This leads the bnn to
accept the noisy images and reject the clean and adversarial ones, resulting in misleading, overly optimistic
ROC curves (this effect was further amplified once we fixed the batch-normalization issue). Moreover, care
needs to be applied when using standard packages, developed for vanilla nns, to bnns. Deterministic models
tend to operate on logits and the softmax and cross-entropy calculations are combined, and therefore standard
attack packages apply a softmax function on these pre-loss outputs. bnns, on the other hand, average
the probability predictions from posterior samples after the softmax function, and hence directly produce
probabilities. A direct application of standard attack packages to bnns would apply the softmax function
to class probabilities (a “double softmax problem”), thereby making the class probabilities more uniform
and weakening the attack strength (Listing 1 and Listing 2). See Listing 3 for the softmax in the standard
package, Cleverhans. The model already implements a softmax in Listing 1. To fix this problem, we change
the softmax function in Cleverhans to the bnn loss from Listing 3.

Note that Smith and Gal (2018) show the ROC curve and provide AUROC values, while we have chosen
to show slective accuracy curves throughout our work. AUROC and ASA are incomparable, so we do not
show a comparison of these metrics here. Both curves quantify the performance of the AE detector and our
findings (see Figure 2) show failure to detect AE.

1 line 62 def define_model_resnet():

2 K.set_learning_phase(True)

3 rn50 = ResNet50(weights='imagenet', include_top='False')

4 a = Dropout(rate=0.5)(rn50.output)

5 a = Dense(2, activation='softmax')(a)

6

7 model = keras.models.Model(inputs=rn50.input, outputs=a)

Listing 1: The first highlighted line shows that the batch normalization layers are set to be True, which should
be done in training mode but not for evaluation. The second highlighted line shows the softmax operation
in the model. Code is copied from https://github.com/lsgos/uncertainty-adversarial-paper/blob/
master/cats_and_dogs.py (commit dbc7ec5).

21

https://github.com/lsgos/uncertainty-adversarial-paper/blob/master/cats_and_dogs.py
https://github.com/lsgos/uncertainty-adversarial-paper/blob/master/cats_and_dogs.py


Under review as submission to TMLR

1 line 9 def fast_gradient_method(

2 model_fn,

3 x,

4 eps,

5 norm,

6 loss_fn=None,

7 clip_min=None,

8 clip_max=None,

9 y=None,

10 targeted=False,

11 sanity_checks=False,

12 ):

13 ...

14 line 46 if loss_fn is None:

15 loss_fn = tf.nn.sparse_softmax_cross_entropy_with_logits

Listing 2: The second softmax when performing the attack from https://github.com/cleverhans-
lab/cleverhans/blob/master/cleverhans/tf2/attacks/fast_gradient_method.py. Cleverhans
uses the same cross-entropy loss across its different versions, also see line 142 in v3.1 at
https://github.com/cleverhans-lab/cleverhans/blob/master/cleverhans_v3.1.0/cleverhans/
attacks/fast_gradient_method.py

1 def bnn_loss(labels, logits):

2 labels = tf.one_hot(labels, 2)

3 return - tf.math.reduce_sum(tf.math.log(logits+0.000001) * labels)

Listing 3: The NLL loss to avoid a double softmax.

1 line 161 noise = np.random.random(size=x_plus_noise.shape)

2 noise /= (dists * np.linalg.norm(noise.reshape(x_plus_noise.shape[0], - 1), axis=1))

3 [:, None, None, None]

4 x_plus_noise += noise

5 x_plus_noise = np.clip(x_plus_noise, 0, 1)

6

7 line 344 attack_params = [

8 {

9 "method": "fgm",

10 "eps": 5,

11 "clip_min": -103.939,

12 "clip_max": 131.32,

13 "ord": np.inf,

14 }, ...]

Listing 4: The incorrect clipping added to the noisy images. The first highlighted line shows the clipping of
noisy images to 0 and 1. However, from the other highlighted lines, one can see that the images actually are
on the [0,255] scale.
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D.2 Attacking Robustness in Carbone et al. (2020) and Bortolussi et al. (2022)

As we discuss in Section 4, the bnns trained in this evaluation tend to have large values before the softmax
layer, resulting in gradient vanishing. Therefore, we renormalize the logits by 100 to fix numerical issues
when attacking the trained model. We evaluate these adversarial examples on the unnormalized network.
With the double softmax corrected (see Listings 5 and 6) for issues with the uncorrected code, one can use
standard pgd on the loss of the expectation as in Equation (4) to break the accuracy to nearly 0% on MNIST
with perturbation radius ϵ = 0.3.

1 line 69 class BNN(PyroModule):

2 ...

3 line 121 def guide(self, x_data, y_data=None):

4 dists = {}

5 for key, value in self.basenet.state_dict().items():

6 loc = pyro.param(str(f"{key}_loc"), torch.randn_like(value))

7 scale = pyro.param(str(f"{key}_scale"), torch.randn_like(value))

8 distr = Normal(loc=loc, scale=softplus(scale))

9 dists.update({str(key):distr})

10

11 lifted_module = pyro.random_module("module", self.basenet, dists)()

12

13 with pyro.plate("data", len(x_data)):

14 logits = lifted_module(x_data)

15 preds = nnf.softmax(logits, dim=-1)

16

17 return preds

Listing 5: The first softmax in https://github.com/fengyzpku/robustBNNs/blob/master/model_bnn.py
(commit 71843ba).

1 line 69 def fgsm_attack(net, image, label, hyperparams=None, n_samples=None, avg_posterior=False):

2

3 epsilon = hyperparams["epsilon"] if hyperparams is not None else 0.3

4

5 image.requires_grad = True

6 output = net.forward(inputs=image, n_samples=n_samples, avg_posterior=avg_posterior)

7

8 loss = torch.nn.CrossEntropyLoss()(output, label)

9 net.zero_grad()

10 loss.backward()

11 image_grad = image.grad.data

12

13 perturbed_image = image + epsilon * image_grad.sign()

14 perturbed_image = torch.clamp(perturbed_image, 0, 1)

15 return perturbed_image

Listing 6: The second softmax in https://github.com/fengyzpku/robustBNNs/blob/master/
adversarialAttacks.py (commit 84e39ee).
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D.3 Attacking Robustness via Regularization in Zhang et al. (2021)

We use the publicly available code to train a Bayesian MLP on MNIST and then use the evaluation code to
assess its adversarial robustness for different values of perturbation budget ϵ. We find that the adversarial
gradient is erroneously computed on a singular randomly selected model during the inference stage, instead of
the expected prediction in Equation (4) (see Listing 7 and Listing 8 for our proposed fix). Furthermore, the
hyper-parameters utilized for the attack are not aligned with established standards. Specifically, the PGD
stepsize is set to 10,000 (Listing 9), while the usual stepsize is smaller than the adversarial budget ϵ. We set
this stepsize to 1/10 of the overall ϵ.

In Table 2, using their code, we have reevaluated the results in Zhang et al. (2021) in their setting (with the
double-softmax) and after fixing it, for ϵ = 0.16, where their work claimed the largest benefit of regularization,
and the more standard ϵ = 0.3.

1 line 31 def fgsm(model, X, y, norm, epsilon):

2 delta = torch.zeros_like(X, requires_grad=True)

3 X2 = norm(X + delta).cuda()

4 outputs = model(X2)

5 loss = nn.CrossEntropyLoss()(outputs, y.cuda())

6 loss.backward()

7 return epsilon * delta.grad.sign()

Listing 7: The highlighted line shows that the adversarial attack is only performed on one sample from
the model. The adversarial attack is weak due to not attacking the full model. The code is copied from
https://github.com/AISIGSJTU/SEBR/blob/main/mnist/SEBR_evaluating.py (commit e5b17ce).

1 def fgsm(model, X, y, norm, epsilon):

2 delta = torch.zeros_like(X, requires_grad=True)

3 X2 = norm(X + delta).cuda()

4 outputs, _, _, _, _ = model.sample_predict(X2, 20) # [fixed code] 20 logit MC samples

5 outputs = torch.nn.functional.softmax(outputs, dim=-1)

6 # [fixed code] application of softmax to logit MC samples

7 outputs = outputs.mean(dim=0)

8 # [fixed code] Monte Carlo estimate of posterior predictive mean

9 if type(outputs) == type(()):

10 outputs = outputs[0]

11 loss = nn.NLLLoss()(torch.log(outputs + 1e-10), y.cuda())

12 # [fixed code] cross entropy loss computation with mean of softmax predictions as input

13 loss.backward()

14 return epsilon * delta.grad.sign()

Listing 8: Our modification: We changed the code to directly attack the expected prediction as in
Equation (4).
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1 line 57 def test_with_adv_noise(attack, noise_ratios):

2 assert attack in ['pgd', 'fgsm']

3 cost_dev = 0.0

4 err_dev = 0.0

5 errs = []

6 for noise_ratio in noise_ratios:

7 nb_samples = 0.0

8 for j, (x, y) in enumerate(valloader):

9 if attack == 'pgd':

10 x_noise = x + pgd(net.model, x, y, MNIST_normalize, noise_ratio, 1e5, 15)

11 ...

12 line 42 def pgd(model, X, y, norm, epsilon, alpha, num_iter):

13 delta = torch.zeros_like(X, requires_grad=True)

14 delta.data.uniform_(-epsilon, epsilon)

15 for t in range(num_iter):

16 X2 = norm(X + delta).cuda()

17 outputs = model(X2)

18 if type(outputs) == type(()):

19 outputs = outputs[0]

20 loss = nn.CrossEntropyLoss()(outputs, y.cuda())

21 loss.backward()

22 delta.data = (delta + alpha * delta.grad.data.sign()).clamp(-epsilon, epsilon)

23 delta.grad.zero_()

24 return delta.detach()

Listing 9: The code shows the wrong step size for PGD in the PGD code. The code was copied from
https://github.com/AISIGSJTU/SEBR/blob/main/mnist/SEBR_evaluating.py (commit e5b17ce).
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Appendix E Further Results

E.1 Tabular Results

Table 5 shows the average negative log likelihood (ANLL) for AE detection on Section 5.2. The NLL is
an evaluation metric of interest, since it reflects the degree of confidence in a prediction and penalizes
underconfident correct predictions as well as overconfident wrong predictions. For classification models, the
NLL is given by the cross-entropy loss between the one-hot labels and the predicted class probabilities.

Table 5: Detecting Adversarial Examples with bnns. Average Negative Log-Likelihood.
Clean Noisy fgsm pgd pgd +

MNIST

CNN

hmc 0.20±0.00 0.10±0.04 1.51±0.15 4.06±0.23 4.45±0.51

mcd 0.00 ±0.00 0.00 ±0.00 1.70 ±0.04 10.42 ±0.17 10.03 ±0.24

psvi 0.00±0.00 0.00±0.00 2.48±0.12 8.75±0.29 10.84±0.12

fsvi 0.02 ±0.00 0.08 ±0.03 0.42 ±0.09 7.48 ±0.36 10.34 ±0.22

ResNet-18
mcd 0.00 ±0.00 2.34 ±0.37 1.60 ±0.11 10.60 ±0.09 11.56 ±0.02

psvi 0.00 ±0.00 1.09 ±0.17 1.53 ±0.17 11.11 ±0.05 11.58 ±0.65

fsvi 0.04±0.05 0.59±0.53 0.84±0.37 9.12±0.66 10.29±0.75

FMNIST

CNN
mcd 0.05 ±0.00 0.05 ±0.00 2.77 ±0.07 9.34 ±0.11 9.78 ±0.07

psvi 0.05 ±0.00 0.05 ±0.00 4.15 ±0.30 9.23 ±0.07 10.08 ±0.06

fsvi 0.08 ±0.00 0.12 ±0.01 1.83 ±0.12 8.75 ±0.28 9.73 ±0.25

ResNet-18
mcd 0.06 ±0.00 0.09 ±0.00 3.58 ±0.27 11.01 ±0.06 11.06 ±0.03

psvi 0.10 ±0.01 0.15 ±0.01 1.63 ±0.71 9.84 ±0.82 10.01 ±0.72

fsvi 0.08 ±0.01 0.12 ±0.01 1.69 ±0.19 10.65 ±0.03 10.86 ±0.06

CIFAR10 ResNet-18
mcd 0.04 ±0.00 0.04 ±0.00 2.67 ±0.03 10.64 ±0.07 11.08 ±0.03

psvi 0.04 ±0.01 0.05 ±0.01 1.61 ±0.35 10.18 ±1.38 10.44 ±1.08

fsvi 0.06 ±0.01 0.06 ±0.01 1.08 ±0.03 10.18 ±0.09 10.62 ±0.07

E.2 Additional Figures

In addition to the selective prediction curves shown in Sections 5.2 and 5.3, we also generate the full sets for
each dataset-method-architecture setting. The results are shown on the following pages in

• Figure 5 for MNIST with a ResNet-18,
• Figure 6 for FashionMNIST with a CNN,
• Figure 7 for FashionMNIST with a ResNet-18, and
• Figure 8 for CIFAR-10 with a ResNet-18.
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Figure 5: Adversarial example and semantic shift detection statistics for mcd, psvi, and fsvi on MNIST
with a ResNet-18 architecture
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Figure 6: Adversarial example and semantic shift detection statistics for hmc, mcd, psvi, and fsvi on
FashionMNIST with a CNN architecture
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Figure 7: Adversarial example and semantic shift detection statistics for mcd, psvi, and fsvi on FashionMNIST
with a ResNet-18 architecture
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Figure 8: Adversarial example and semantic shift detection statistics for mcd, psvi, and fsvi on CIFAR-10
with a ResNet-18 architecture.
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Appendix F Experimental Details

Here, we provide a detailed description of our experimental setup in Section 5.

Architectures For CNN models, we use a four-layer CNN for all the experiments. The architecture of the
CNN is shown in Table 6. We use the standard ResNet-18 from He et al. (2016). For mcd, we add dropout
after every activation function for both CNN and ResNet-18.

Hyperparameters We implement hmc using the Hamiltorch package from Cobb and Jalaian (2021) and
apply it to MNIST with a CNN model due to the lack of scalability. To optimize GPU memory usage, we use
10,000 training and 5,000 validation samples from the MNIST dataset. We deploy 100 samples burnin and
generate another 100 samples from the posterior. For each sample, we train the model for 20 steps with 0.001
as the step size. Such configuration already yields a hmc bnn with around 96% accuracy on the test set.
The hyperparameters for fsvi, psvi, and mcd are shown in Table 7, Table 8, and Table 9.

Table 6: The Architecture of the four-layer CNN
nn.Conv(out_features=32, kernel_size=(3, 3))
ReLU()
max_pool(window_shape=(2, 2), strides=(2, 2), padding=”VALID”)
nn.Conv(out_features=64, kernel_size=(3, 3))
ReLU()
max_pool(window_shape=(2, 2), strides=(2, 2), padding=”VALID”)
reshape to flatten
nn.fc(out_features=256
ReLU()
nn.fc(out_features=num_classes)

Table 7: Hyperparameters for fsvi

CIFAR10+ResNet-18 FMNIST+ResNet-18 FMNIST+CNN MNIST+ResNet-18 MNIST+CNN
Prior Var 100,000 100,000 1,000,000 100,000 1,000,000
Prior Mean 0 0 0 0 0
Epochs 200 30 200 10 200
Batch Size 128 128 128 128 128
Context Batch Size 128 128 16 128 16
Learning Rate 0.005 0.005 0.05 0.005 0.05
Momentum 0.9 0.9 0.9 0.9 0.9
Weight Decay 0 0 0 0 0
Alpha 0.05 0.05 0.05 0.05 0.05
Reg Scale 1 1 1 1 1

Table 8: Hyperparameters for psvi

CIFAR10+ResNet-18 FMNIST+ResNet-18 FMNIST+CNN MNIST+ResNet-18 MNIST+CNN
Prior Var 1 1 1 1 1
Prior Mean 0 0 0 0 0
Epochs 200 50 200 10 200
Batch Size 128 128 128 128 128
Learning Rate 0.005 0.005 0.05 0.005 0.05
Momentum 0.9 0.9 0.9 0.9 0.9
Weight Decay 0 0 0 0 0
Alpha 0.05 0.05 0.05 0.05 0.05
Reg Scale 1 1 1 1 1
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Table 9: Hyperparameters for mcd

CIFAR10+ResNet-18 FMNIST+ResNet-18 FMNIST+CNN MNIST+ResNet-18 MNIST+CNN
Prior Precision 0.0005 0.0005 0.0001 0.0005 0.0001
Dropout Rate 0.1 0.1 0.1 0.1 0.1
Epochs 200 30 200 10 200
Batch Size 128 128 128 128 128
Learning Rate 0.005 0.005 0.05 0.005 0.05
Momentum 0.9 0.9 0.9 0.9 0.9
Weight Decay 0 0 0 0 0
Alpha 0.05 0.05 0.05 0.05 0.05
Reg Scale 1 1 1 1 1

Appendix G Varying the Strength of the Adversarial Attacks

In addition to the robust accuracy results presented in the main text, we conducted a detailed analysis to
understand the robustness across varying attack radii ϵ, ranging from minimal to the radius discussed in the
main manuscript. Our examinations reveal that robust accuracy demonstrates substantial variation at smaller
radii, influenced by differences in random seeds and hyper-parameter choices. This insight may explain the
community’s preference for employing a standardized, larger radius to assess robustness. To shed light on
robustness at smaller radii, we adjusted the prior variance, learning rate, weight decay, and the number of
training epochs. We depict the upper and lower bounds of robustness in Figure 9 and Figure 10 for CNNs
and ResNets, respectively. Notably, our investigations do not identify a marked superiority of BNNs over
deterministic NNs at smaller radii. At the maximum radius examined, variations in hyper-parameters yield
negligible differences in robust accuracy, indicating that models universally exhibit vulnerability at this scale.
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Figure 9: Adversarial robustness for CNNs with different attack budgets. The shadow represents the
robustness range with different hyperparameters.
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Figure 10: Adversarial robustness for ResNets with different attack budgets. The shadow represents the
robustness range with different hyperparameters.

Appendix H Limitations

While we took careful steps to make the study presented in this paper exhaustive and to include a wide range
of representative method and datasets, as with any empirical study, it is possible that some of our findings
may not carry over to other datasets, neural network architectures, and bnn approximate inference methods.
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