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ABSTRACT
In today’s online advertising markets, it is common for advertis-
ers to set long-term budgets. Correspondingly, advertising plat-
forms adopt budget control methods to ensure that advertisers’
payments lie within their budgets. Most budget control methods
rely on the value distributions of advertisers. However, due to the
complex advertising landscape and potential privacy concerns, the
platform hardly learns advertisers’ true priors. Thus, it is crucial to
understand how budget control auction mechanisms perform un-
der unassured priors.

This work answers this problem from multiple aspects. Specif-
ically, we examine five budget-constrained parameterized mech-
anisms: bid-discount/pacing first-price/second-price auctions and
the Bayesian revenue-optimal auction. We consider the unassured
prior game among the seller and all buyers induced by these five
mechanisms in the stochastic model. We restrict the parameter-
ized mechanisms to satisfy the budget-extracting condition, which
maximizes the seller’s revenue by extracting buyers’ budgets as
effectively as possible. Our main result shows that the Bayesian
revenue-optimalmechanism and the budget-extracting bid-discount
first-price mechanism yield the same set of Nash equilibrium out-
comes in the unassured prior game. This implies that simple mech-
anisms can be as robust as the optimal mechanism under unas-
sured priors in the budget-constrained setting. In the symmetric
case, we further show that all these five (budget-extracting) mech-
anisms share the same set of possible outcomes. We further dig
into the structural properties of these mechanisms. We character-
ize sufficient and necessary conditions on the budget-extracting
parameter tuple for bid-discount/pacing first-price auctions. Mean-
while, when buyers do not take strategic behaviors, we exploit the
dominance relationships of these mechanisms by revealing their
intrinsic structures. In summary, our results establish vast connec-
tions among budget-constrained auctions with unassured priors
and explore their structural properties, particularly highlighting
the advantages of first-price mechanisms.
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1 INTRODUCTION
We have witnessed substantial growth in the online advertising
market in recent years. Billions of advertising positions are sold
every day on various kinds of platforms, including major search
engines (e.g., Google [28]) and social media (e.g., Meta [33]). Ac-
cording to statistics, the volume of the global online advertising
market is hopeful of reaching 626 billion dollars in 2023 [38]. From
a macro perspective, the contents of ads exhibit immense hetero-
geneity according to different types of ad queries. For example, a
new parent is more likely to receive ads promoting baby products,
while an older individual may be targeted with advertisements for
hearing aids.

To address such heterogeneity, advertising platforms employ
auctions to allocate ad spaces. Each advertiser submits a bid she
wants to pay for each ad query satisfying certain conditions (e.g.,
the ad query is from a new parent or an older individual). When
a real-time query is received, the platform conducts an auction
among all advertiserswho have proposed positive bids on the query.
As such a process occurs at a significant scale every day, an ad-
vertiser’s payment can vary drastically. Consequently, major plat-
forms now request advertisers to provide a long-term budget (e.g.,
for a day, a week, or a month) to mitigate this uncertainty. Corre-
spondingly, the platform’s auction mechanisms ensure that each
advertiser’s payment does not exceed her budget. Such an approach
can help advertisers control advertising costs and make long-term
plans.

Manyworks have studied different budget controlmethods, from
either a dynamic view [10, 19, 24] or an equilibrium view [3, 8,
11, 13, 14]. One crucial assumption adopted in these works is that
the platform knows the prior value distributions or even the ac-
tual values of advertisers. Nevertheless, such an assumption can
be unattainable in practice. From an information accessing stand-
point, the platform can only obtain an advertiser’s historical bids
rather than her historical values. Consequently, the platform lacks
information on her values or priors. Furthermore, the classicmethod-
ology of incentive compatibility (IC) embraced by existing works
hardly fits with today’s advertisers due to two main reasons: (1)
The traditional definition of IC does not capture the various con-
straints faced by advertisers, including budget constraint [3] and
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return-on-investment (ROI) constraint [7].Therefore, wemust care-
fully refine the concept to accommodate more complex circum-
stances, and such trials always lead to intricate outcomes [6]. The
concept becomes even more inadequate when considering that ad-
vertisers often cooperate simultaneously with multiple platforms
[2, 18]. (2) Advertisers have inherent incentives to hide their true
values to cope with the learning behavior of the platform and pro-
tect their data privacy. Once the platform has complete knowledge
of an advertiser’s actual value distribution, price discrimination
would inevitably occur, which could be a curse for the advertiser.

With the emergence of the above two phenomena, market de-
signers must face the fact that they may never be able to get adver-
tisers’ true values/value priors. Thus, an important problem natu-
rally arises:

How do unassured priors affect budget control methods in auc-
tions? Specifically, when priors are unassured, how are budget control
methods related?

This paper answers the above problem comprehensively. We
study a range of five kinds of budget-constrained auctions, respec-
tively Bayesian revenue-optimal auction (BROA) [3], as well as bid-
discount/pacing first-price/second-price auctions (BDFPA, PFPA,
BDSPA, PSPA) (See Table 1). In these auction forms, the seller adopts
diverse methods to help buyers control the expenditure within
their budgets. It is worth noting that pacing is one of the most ex-
tensively studied strategies for controlling advertisers’ payments
[11, 13, 14]. Moreover, bid-discount is a strategy that has been
adopted in sponsored search auctions [1, 20, 31] and second-price
auctions [25, 35]. While it is natural to incorporate such a strategy
into first-price auctions, to the best of our knowledge, this com-
bination has not been explored in previous literature. Meanwhile,
the power of bid-discount as a means of budget management re-
mains largely unexplored.We comprehensively compare these five
mechanisms from a game-theoretic view and study the structural
properties of these mechanisms, particularly focusing on variants
of first-price auctions.

1.1 Main Contributions
This work presents three main contributions.

Strategic equivalence among budget-constrained auctions in the
unassured prior game. We examine an unassured prior game with
budget constraints (abbreviated as unassured prior game) among
the seller and buyers within a stochastic setting [3, 5, 14, 29]. Tech-
nically, this game is an extension of the private data manipulation
(PDM) model [15, 39] to the budget-constrained scenario. In our
unassured prior game, the seller first commits to a parameterized
auction mechanism, after which buyers report their bid distribu-
tions and real budgets while keeping their value distributions pri-
vate. At last, a parameter tuple is calculated based on a predefined
rule that considers buyers’ bid distributions and budgets, ensur-
ing that each buyer’s budget is not exceeded in expectation. This
model captures the scenario in budget-constrained auctions where
the seller can only access buyers’ historical bids rather than their
true values.

BROA

ePFPAeBDFPA

eBDSPA ePSPA

ER, S ER + IL2, S Sym + IL,W

Figure 1: Summary of the results in Section 4 on the strate-
gic equivalence among different auction types. Two auc-
tion forms are strategic-equivalent if they are connected by
a bidirectional arrow. Different line types indicate the re-
strictions. ER: Each buyer’s virtual bidding quantile func-
tion is strictly increasing and differentiable. IL: Each buyer’s
bidding quantile function is inverse Lipschitz continuous.
IL2: Each buyer’s bidding quantile function and virtual bid-
ding quantile function are both inverse Lipschitz continu-
ous. Sym: Buyers and budget-extracting parameters are both
symmetric. Strong (S) and weak (W) strategic equivalence
are defined in Definition 4.1. The “e” at the front of mecha-
nisms stands for budget-extracting, which is defined in Def-
inition 3.1.

Within the unassured prior game, for variants of first-price/second-
price auctions, we introduce the concept of budget-extracting, which
guarantees that under the budget-extracting parameter tuple, the
platform adequately consumes each advertiser’s budget without
violating the individual rationality (IR) constraint. This concept is
similar to the notion of system equilibrium defined in Balseiro et al.
[3].We show that underminor assumptions, for bid-discount/pacing
first-price auctions and symmetric pacing second-price auction,
the budget-extracting condition leads to the seller’s revenue max-
imization (Theorem 3.1). Thus, we restrict the seller’s parameter
choice to budget-extracting ones, which are generally dominating.

With these game-theoretic preparations, we prove that the budget-
extracting bid-discount first-price auction is strongly strategic-equivalent
to the Bayesian revenue-optimal auction (Theorem 4.2) under mi-
nor restrictions. In simpler terms, this is to say that there is a map-
ping from a buyer’s strategy in the Bayesian revenue-optimal auc-
tion to a strategy in the budget-extracting bid-discount first-price
auction, such that the outcome profile is kept when the mapping
acts on each buyer’s strategy. Vice versa, from the budget-extracting
bid-discount first-price auction to the Bayesian revenue-optimal
auction. Combined with a reduction in buyers’ strategies in the
Bayesian revenue-optimal auction, we show that these two auction
formats yield the same set of Nash equilibrium outcomes (Theo-
rem 4.3).This theorem can be interpreted as a simple-versus-optimal
result in budget-constrainedmechanisms, showing that simplemech-
anisms (budget-extracting bid-discount first-price auction) can be
as robust as the optimal auction facing uncertain priors. Further,
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BROA

ePFPAeBDFPA

eBDSPA ePSPA

SI SR + IL2 SI + SR

Figure 2: Summary of the results inTheoremA.4 on the dom-
inance relationships among different auction types when
buyers truthful bid. A dominates B if there is an arrow from
A to B. Different line types indicate the assumptions. SI:
Each buyer’s bidding quantile function is strictly increasing.
SR: Each buyer’s virtual bidding quantile function is strictly
increasing. IL2: Each buyer’s bidding quantile function and
virtual bidding quantile function are both inverse Lipschitz
continuous.

in the symmetric case, we establish a broad weak strategic equiva-
lence result among first-price/second-price auctions (Theorem 4.4).
In short, this result indicates that these auctions have the same
set of possible symmetric outcomes when buyers are symmetric
(Corollary 4.5). We summarize these results in Figure 1.

Properties on variants of first-price auctions. We delve into the
properties of bid-discount and pacing first-price auctions. In par-
ticular, we study the sufficient and necessary conditions of budget-
extracting. As revealed in Theorems A.1 and A.3, with minor re-
strictions, there exists a maximum budget-feasible parameter tuple
for bid-discount/pacing first-price auctions, and is budget-extracting.
Interestingly, for the pacing first-price auction, the budget-extracting
parameter tuple is unique, while this is not necessarily the case for
bid-discount first-price auction. Subsequently, we further exploit
the behavior of budget-extracting tuples in the latter and derive an
equivalent condition for the uniqueness of the budget-extracting
tuple. Meanwhile, we show in Theorem A.2 that it is computation-
ally efficient to derive a budget-extracting tuple for bid-discount
first-price auction.

Dominance relationships on the seller’s revenue without strate-
gic bidding. At last, we suppose that buyers do not take strate-
gic behaviors to exploit the intrinsic properties of auction mech-
anisms further. Specifically, we compare the seller’s revenue in
these mechanisms under the budget-extracting condition. For this
part, we prove that under weak assumptions, bid-discount first-
price auction dominates Bayesian revenue-optimal auction and pac-
ing first-price auction. Meanwhile, Bayesian revenue-optimal auc-
tion outperforms two variants of second-price auctions. These re-
sults are illustrated in Figure 2.

1.2 Related Work
Prior manipulation model. In classic solutions, e.g., the seminal

work ofMyerson [34], a critical assumption is that the seller knows
the distribution of buyers’ values. In real life, however, from a
buyer’s view, when she takes some strategic behavior other than
truthful bidding (e.g., when she wants to protect her real data), the
seller can never get the true distribution. A line of work captures
such inconsistency between the ideal and real worlds and focuses
on how the auction market is affected when the seller wrongly es-
timates the buyers’ value distributions. Tang and Zeng [39] studies
the problem in general, and a surprising result is that Myerson auc-
tion, which is well-known for being revenue-optimal, is revenue-
equivalent to first-price auction under such a model. Concurrently,
Deng et al. [16], Deng and Zhu [17] consider specific distribution
families from a statistical optimization view in this setting. Deng
et al. [15] further studies the scenario in sponsored search auctions
and shows the general equivalence of different auction types under
such a setting. Our paper follows this research line bymodeling the
above intuition as the unassured prior game. Nevertheless, com-
pared to these prior works, our work considers buyers’ budgets
and explores deep relationships among different auction forms.

Market equilibrium with budget-constrained buyers. In real life,
it is always the case that a buyer’s affordability is small compared
with the massive amount of auctions happening every day. There-
fore, it is reasonable for a buyer to set a budget constraint. Much
research considers the market equilibrium in this scenario.

Theworksmost related to ours are Balseiro et al. [3, 4], Feng et al.
[21]. Balseiro et al. [3] surveys on various budget control meth-
ods in second-price auctions and compares these methods from
the aspects of seller’s revenue and social welfare in equilibrium.
Nevertheless, our work is not limited to second-price auctions. We
also consider the optimal auction and variants of first-price auc-
tion, and further build the connection among these three genres
of auctions when buyers are budget-constrained with unassured
priors. Balseiro et al. [4] focuses on the contextual scenario in stan-
dard auctions where a buyer’s value is decided collaboratively by
a public item type and a private buyer type.The paper shows a rev-
enue equivalence result across all standard auctions under symmet-
ric Bayes-Nash equilibrium, which seems similar to one of our re-
sults. However, a crucial difference is that our paper considers the
setting with prior manipulation and without any contextual infor-
mation. Furthermore, our result is not limited to symmetric cases,
which implies that our strategic equivalence theorems differ from
classical revenue equivalence results. At last, a recent work [21] fo-
cuses on the scenario when buyers can misreport the budget con-
straint and the maximum bid in the pacing first-price equilibrium
(PFPA) [13]. In comparison, our work studies five mechanisms, in-
cluding the pacing first-price auction. Meanwhile, a buyer’s strat-
egy in our work is her bid distribution, rather than her budget and
the maximum bid.

The bid-discountmethod has been adopted to generalized second-
price auctions for sponsored search in early years [1, 20, 31], with
the multipliers closely related to the click-through rates. In recent
years, such a method was applied to second-price auctions [25, 35],
known as boosted second-price auction (BDSPA in our work). Ex-
perimental results show that such an auction form earns the seller
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more revenue than the second-price and empirical Myerson auc-
tion without budget constraints. On the other hand, our work con-
siders the scenario when buyers are budget-constrained and intro-
duce the bid-discount method into first-price auctions.

Pacing (a.k.a. bid-shading) is perhaps the most well-studied bud-
get control method of all. In pacing, the seller would assign a multi-
plier to each buyer, and the multiplier would shade the bid of any
buyer before being sorted. The payment of a buyer is also corre-
spondingly scaled to control the budget. Chen et al. [11], Conitzer
et al. [13, 14] respectively considers the pacing equilibrium in first-
price and second-price auctions. However, these papers focus on a
discrete setting where buyers’ values are known a priori. Instead,
our work focuses on the stochastic setting where the value of each
buyer is unsure ex-ante. Some works [5, 29] consider the behav-
ior of many revenue-maximizing buyers with budget constraints
in second-price markets. They take the mean-field equilibrium as
the central solution concept and prove that pacing is an approxi-
mately optimal strategy for these buyers. In comparison, the main
goal of this paper is to provide general relationships among differ-
ent auction types. Besides the above, other works [8, 10, 23] con-
sider the dynamic environment in which each budget-constrained
buyer takes the pacing strategy. Our work, nevertheless, does not
explicitly involve any learning behavior.

2 MODEL
This work considers the scenario where 𝑛 budget-constrained buy-
ers participate in an auction. Each buyer 𝑖 ∈ [𝑛] receives a value
𝑣𝑖 drawn i.i.d. from the distribution 𝐹𝑖 , which captures her valua-
tion of the item. We assume that (𝐹𝑖 )𝑖∈[𝑛] are independent of each
other. Meanwhile, we use 𝑏𝑖 to denote buyer 𝑖’s bid. Both 𝑣𝑖 and 𝑏𝑖
are restricted to [0, 1] for all 𝑖 . Each buyer 𝑖 has a budget 𝜌𝑖 ∈ (0, 1]
for the auction, which is known to the seller. The seller has a fixed
opportunity cost 𝜆 ∈ (0, 1) for the item. Opportunity cost reflects
the seller’s unwillingness to sell the item.The seller’s revenue from
selling an item is all buyers’ total payment minus the opportunity
cost.

In this work, we consider the stochastic setting, which is known
to be a good approximation of the dynamic model and has been
adopted by lines of research works [3, 5, 14, 29]. In this setting,
we suppose that buyers take fixed bidding strategies. Meanwhile,
the model requires that each buyer’s expected payment does not
exceed her budget. As a remark, we argue that such a model real-
istically captures the stationary behavior when buyers participate
in a large number of auctions and the platform inquires for an “av-
erage budget constraint” [27]. To show how the stochastic setting
works, we now dig into how the seller sets a budget-constrained
auction mechanism and how buyers participate in the mechanism.

Parameterized auction mechanisms and monotonicity. We first
formalize the parameterized auction mechanism adopted by the
seller. Specifically, we use M(𝜽 ) = (𝑋 (𝜽 ), 𝑃 (𝜽 )) to denote a (di-
rect) parameterized auction mechanism, where 𝜽 ≥ 0 is the param-
eter vector. Here, given 𝜽 , 𝑋 (𝜽 , ·) : [0, 1]𝑛 → Δ𝑛 is the allocation
function and 𝑃 (𝜽 , ·) : [0, 1]𝑛 → R𝑛 is the payment function. We
should notice that the opportunity cost 𝜆 could implicitly occur in

the formulae of 𝑋 (𝜽 , ·) and 𝑃 (𝜽 , ·). The utilization of the parame-
ter vector 𝜽 guarantees each buyer’s budget constraint and will be
discussed in detail later.

With the above notation, given a value profile 𝒗 = (𝑣𝑖 )𝑖∈[𝑛] and
a bid profile 𝒃 = (𝑏𝑖 )𝑖∈𝑛 , buyer 𝑖’s utility in the auction is:

𝑈𝑖 (𝜽 , 𝒃, 𝑣𝑖 ) B 𝑋𝑖 (𝜽 , 𝒃) · 𝑣𝑖 − 𝑃𝑖 (𝜽 , 𝒃).
Correspondingly, the seller’s revenue is

𝑊 (𝜽 , 𝒃) B
∑
𝑖∈[𝑛]

𝑃𝑖 (𝜽 , 𝒃) − 𝜆 ·
∑
𝑖∈[𝑛]

𝑋𝑖 (𝜽 , 𝒃) .

In this work, we concentrate on monotone parameterized auc-
tion mechanisms, with the following definition:

Definition 2.1 (Monotonicity). We say a parameterized auction
mechanism M(𝜽 ) = (𝑋 (𝜽 ), 𝑃 (𝜽 )) is monotone, if for any 𝜽 ≥ 0
and 𝑖 ∈ [𝑛], buyer 𝑖’s allocation function 𝑋𝑖 (𝜽 , ·) is increasing of
her bid 𝑏𝑖 regardless of other buyers’ bids 𝒃−𝑖 .

Bidding functions. Given amonotone parameterized auctionmech-
anismM(𝜽 ), we now formally characterize buyers’ bidding strate-
gies. As mentioned earlier, under the stochastic setting, we sup-
pose each buyer takes a fixed bidding strategy. In other words, with
a slight abuse of notation, for each buyer 𝑖 ∈ [𝑛], there is a bid-
ding function 𝑏𝑖 : [0, 1] → [0, 1], such that 𝑏𝑖 = 𝑏𝑖 (𝑣𝑖 ) for any 𝑣𝑖 .
Moreover, we prove the following lemma, which states that when
facing a monotone auction mechanism, any buyer’s best strategy
is an increasing bidding function.

Lemma 2.1. For any buyer and bidding function, there exists an
increasing bidding function that yields at least the same utility for
the buyer under any monotone parameterized auction mechanism
and other bidders’ strategies.

The proof of Lemma 2.1 is given in Appendix B. With the result,
we introduce the terminology of the quantile function (abbreviated
as qf) [15–17, 39]1 to equivalently represent buyers’ private infor-
mation and strategies. We consider a specific buyer 𝑖 ∈ [𝑛] and
a quantile 𝑞𝑖 drawn uniformly from [0, 1]. With a slight abuse of
notation, the value function 𝑣𝑖 (𝑞𝑖 ) B inf{𝑣𝑖 : 𝐹𝑖 (𝑣𝑖 ) ≥ 𝑞𝑖 } is an
increasing function that follows the distribution 𝐹𝑖 and represents
buyer 𝑖’s private information. We denote the value function profile
as 𝒗 B (𝑣𝑖 )𝑖∈[𝑛] . Further, according to Lemma 2.1, it is without loss
of generality to assume that buyer 𝑖’s bid 𝑏𝑖 is also an increasing
function of 𝑣𝑖 . Hence,𝑏𝑖 can be expressed as an increasing function
of 𝑞𝑖 , denoted as 𝑏𝑖 B �̃�𝑖 (𝑞𝑖 ). Consequently, buyer 𝑖’s strategy can
be represented by an increasing bidding qf �̃�𝑖 . Here, it is important
to notice that since �̃�𝑖 operates on the quantile space and only re-
flects buyer 𝑖’s bidding distribution, this function is public to the
seller. We denote the bidding qf profile as �̃� B (�̃�𝑖 )𝑖∈[𝑛] .

With the above notations, we further define the interim alloca-
tion 𝑥𝑖 (𝜽 , 𝑞𝑖 , �̃�) and payment 𝑝𝑖 (𝜽 , 𝑞𝑖 , �̃�) of any buyer 𝑖 in each
auction, given the strategies of other buyers. Denoting �̃� (𝒒) B
(�̃�𝑖 (𝑞𝑖 ))𝑖∈[𝑛] , we define

𝑥𝑖 (𝜽 , 𝑞𝑖 , �̃�) B E𝒒−𝑖 [𝑋𝑖 (𝜽 , �̃� (𝒒))] ,
𝑝𝑖 (𝜽 , 𝑞𝑖 , �̃�) B E𝒒−𝑖 [𝑃𝑖 (𝜽 , �̃� (𝒒))] .

1Our model is essentially equivalent to the prior manipulation model as proposed in
these works. However, unlike their terminology, we employ the left quantile function
in this work, which is a more accessible way to define a quantile function.
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Therefore, buyer 𝑖’s interim utility in the auction is:
𝑢𝑖 (𝜽 , 𝑞𝑖 , �̃�, 𝑣𝑖 ) B 𝑥𝑖 (𝜽 , 𝑞𝑖 , �̃�) · 𝑣𝑖 (𝑞𝑖 ) − 𝑝𝑖 (𝜽 , 𝑞𝑖 , �̃�),

and with a slight abuse of notation, her expected utility is:

𝑢𝑖 (𝜽 , �̃�, 𝑣𝑖 ) B
∫ 1

0
𝑢𝑖 (𝜽 , 𝑞𝑖 , �̃�, 𝑣𝑖 ) d𝑞𝑖 . (1)

Finally, the seller’s expected revenue in the auction is given by

𝑤 (𝜽 , �̃�) B E𝒒

∑
𝑖∈[𝑛]

𝑃𝑖 (𝜽 , �̃� (𝒒)) − 𝜆 ·
∑
𝑖∈[𝑛]

𝑋𝑖 (𝜽 , �̃� (𝒒))


=
∑
𝑖∈[𝑛]

(∫ 1

0
(𝑝𝑖 (𝜽 , 𝑞𝑖 , �̃�) − 𝜆 · 𝑥𝑖 (𝜽 , 𝑞𝑖 , �̃�)) d𝑞𝑖

)
. (2)

Budget-constrained auction mechanisms. We now examine how
the parameter vector𝜽 acts in a budget-constrained auctionmecha-
nism. Here, a crucial observation is that in real-life scenarios, buy-
ers would react to a parameterized auction mechanism by devis-
ing a bidding strategy, which would subsequently influence the
evolution of the parameter vector. From an information-accessing
standpoint, the seller only sees buyers’ bidding distributions (or,
equivalently, bidding qfs) throughout the process.

Under the stochastic model [3, 5, 14], which serves as a good
simplification of the complicated dynamic process, we assume that
buyers report their bidding quantile functions (�̃�𝑖 )𝑖∈[𝑛] to the seller,
and the parameter vector𝜽 is a pre-known public function of (�̃�𝑖 )𝑖∈[𝑛]
and buyers’ budgets (𝜌𝑖 )𝑖∈[𝑛] . Under such modeling, it is essential
for the parameter vector choice to adhere to the budget constraints
as a fundamental requirement. For this part, we make the follow-
ing definition under the stochastic setting:

Definition 2.2 (Budget feasibility). Aparameterized auctionmech-
anismM(𝜽 ) is budget-feasible, if for any bidding qf profile (�̃�𝑖 )𝑖∈[𝑛]
and budget profile (𝜌𝑖 )𝑖∈[𝑛] , the mechanism and the correspond-
ing parameter vector 𝜽 satisfy that:∫ 1

0
𝑝𝑖 (𝜽 , 𝑞𝑖 , �̃�) d𝑞𝑖 ≤ 𝜌𝑖 , ∀1 ≤ 𝑖 ≤ 𝑛. (BF)

Meanwhile, individual rationality is also a crucial requirement
for budget-constrainedmechanisms, ensuring that any buyer’s util-
ity is non-negative as long as she truthfully bids:

Definition 2.3 (Individual rationality). A parameterized auction
mechanism M(𝜽 ) is individually rational, if for any value qf pro-
file (𝑣𝑖 )𝑖∈[𝑛] and budget profile (𝜌𝑖 )𝑖∈[𝑛] , the mechanism and the
corresponding parameter vector 𝜽 satisfies that:∫ 1

0
𝑢𝑖 (𝜽 , 𝑞𝑖 , 𝒗, 𝑣𝑖 ) d𝑞𝑖 ≥ 0, ∀1 ≤ 𝑖 ≤ 𝑛. (IR)

Unassured prior game with budget constraints among the seller
and buyers. As a conclusion of the above, we present the game-
theoretic interaction between the seller and buyers for a better
understanding. We call this game the unassured prior game (with
budget constraints):
Step 1. The seller commits to a parameterized auction mechanism

M(𝜽 ) (with a monotone allocation rule), along with a pub-
lic decision rule for 𝜽 . We assume that the auction mecha-
nism is budget-feasible (BF) and individually rational (IR).

Step 2. Buyers’ value qf’s {𝑣𝑖 }𝑖∈[𝑛] are private. Each buyer 𝑖 ∈ [𝑛]
chooses an increasing bidding qf �̃�𝑖 and reports it to the
seller. Additionally, buyers truthfully provide the budget
profile (𝜌𝑖 )𝑖∈[𝑛] to the seller.

Step 3. Given �̃� = (�̃�𝑖 )𝑖∈[𝑛] and (𝜌𝑖 )𝑖∈[𝑛] , the parameter vector
𝜽 is computed, and M(𝜽 ) is run. Buyer 𝑖 ∈ [𝑛]’s utility
is 𝑢𝑖 (𝜽 , �̃�, 𝑣𝑖 ) given in (1). The seller’s revenue is 𝑤 (𝜽 , �̃�)
given in (2).

Other terminologies. With the bidding qf, we now derive an ex-
pression of the virtual bidding qf. Specifically, for a strictly increas-
ing and differentiable bidding qf �̃� with cumulative distribution
function (CDF) 𝐹 and density 𝑓 , the virtual valuation is given by
𝑣−(1−𝐹 (𝑣))/𝑓 (𝑣).Therefore, for any quantile𝑞 ∈ [0, 1], the virtual
bidding qf is

𝜓 (𝑞) B �̃� (𝑞) − 1 − 𝐹 (�̃� (𝑞))
𝑓 (�̃� (𝑞))

= �̃� (𝑞) − (1 − 𝑞)�̃� ′ (𝑞).

We use (𝜓𝑖 )𝑖∈[𝑛] to represent buyers’ virtual bidding qfs. We say a
bidding qf �̃� is (strictly) regular if the corresponding virtual bidding
qf is (strictly) increasing.

Further, an important assumption that we repeatedly make in
this work is that each buyer’s (virtual) bidding qf is inverse Lips-
chitz continuous, with the following definition:

Definition 2.4 (Inverse Lipschitz continuity). We say a function
𝑔 : [0, 1] → [0, 1] is inverse Lipschitz continuous, if there is a
constant 𝐿 > 0, such that for any 0 ≤ 𝑞1 < 𝑞2 ≤ 1:

|𝑔(𝑞2) − 𝑔(𝑞1) | ≥ 𝐿(𝑞2 − 𝑞1) .

As an example, inverse Lipschitz continuity of the bidding qf im-
plies Lipschitz continuity of the bidding distribution CDF. We note
that since the seller typically learns the bidding distribution using
parameterized continuous models, the above assumption is natu-
ral, considering that the seller will adopt a relatively simple model,
e.g., truncated power-law distribution or Gaussian distribution for
the density. Additionally, we need to emphasize that an inverse
Lipschitz continuous function need not be continuous itself.

Discussions on the model. In this work, a buyer’s budget is not
explicitly incorporated into her utility function as long as her ex-
pected payment is within her budget. In practice, the budget for
advertisement is usually set as a fixed and sunk cost within the
company. On this side, the advertiser’s goal is to maximize her
quasi-linear utility while operating within the budget. If the bud-
get is exceeded, we implicitly assume that the advertiser’s utility
becomes negative infinity. Such a model has been adopted by var-
ious works in literature [3, 4, 12–14, 21].

3 MECHANISMS
This work examines five budget-constrained auction forms, all of
which take the opportunity cost 𝜆 as a reserve price. We list these
fivemechanisms in Table 1.They include two variants of first-price
auctions, two variants of second-price auctions, and the optimal
auction under budget constraints. These methods effectively con-
trol a buyer’s expenditure in two ways: (1) by reducing the likeli-
hood of winning through shading the effective bid and incorporat-
ing the reserve price 𝜆 > 0, and (2) by reducing a buyer’s payment
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Table 1: Definitions of parameterized mechanisms considered in this work. Buyers bid their quantiles which are uniformly
drawn in [0, 1].

Mech. (Abbrev.) Parameters Allocation / Payment Rules

Bid-Discount FPA
(BDFPA) 𝜶 ∈ [0, 1]𝑛

Buyer 𝑖 ∈ [𝑛]:
wins if 𝛼𝑖 �̃�𝑖 (𝑞𝑖 ) ≥ max𝑖′≠𝑖 {𝛼𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆}, and pays �̃�𝑖 (𝑞𝑖 ) ;
pays 0 otherwise.

Pacing FPA
(PFPA) 𝜷 ∈ [0, 1]𝑛

Buyer 𝑖 ∈ [𝑛]:
wins if 𝛽𝑖 �̃�𝑖 (𝑞𝑖 ) ≥ max𝑖′≠𝑖 {𝛽𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆}, and pays 𝛽𝑖 �̃�𝑖 (𝑞𝑖 ) ;
pays 0 otherwise.

Bayesian
Revenue-Optimal
Auction
(BROA)

𝜸∗ ∈ [0, 1]𝑛
given by (3)

Buyer 𝑖 ∈ [𝑛]:
wins if 𝛾∗𝑖𝜓𝑖 (𝑞𝑖 ) ≥ max𝑖′≠𝑖 {𝛾∗𝑖′𝜓𝑖′ (𝑞𝑖′ ), 𝜆}, and pays min{ �̃�𝑖 (𝑧 ) : 𝛾∗𝑖𝜓𝑖 (𝑧 ) ≥ max𝑖′≠𝑖 {𝛾∗𝑖′𝜓𝑖 (𝑞𝑖′ ), 𝜆}};
pays 0 otherwise.

Bid-Discount SPA
(BDSPA) 𝝁 ∈ [0, 1]𝑛

Buyer 𝑖 ∈ [𝑛]:
wins if 𝜇𝑖 �̃�𝑖 (𝑞𝑖 ) ≥ max𝑖′≠𝑖 {𝜇𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆}, and pays max𝑖′≠𝑖 {𝜇𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆}/𝜇𝑖 ;
pays 0 otherwise.

Pacing SPA
(PSPA) 𝝃 ∈ [0, 1]𝑛

Buyer 𝑖 ∈ [𝑛]:
wins if 𝜉𝑖 �̃�𝑖 (𝑞𝑖 ) ≥ max𝑖′≠𝑖 {𝜉𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆}, and pays max𝑖′≠𝑖 {𝜉𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆};
pays 0 otherwise.

FPA: First-Price Auction SPA: Second-Price Auction

when shewins.We should notice that all these fivemechanisms are
monotone (Definition 2.1) and satisfy individual rationality (Defi-
nition 2.3). Meanwhile, we assume that these mechanisms break
ties arbitrarily. We now discuss these mechanisms in more detail,
starting with the well-studied second-price auctions, followed by
the first-price auctions, and concluding with the optimal auction.

The bid-discount method [25, 35] and the pacing method [5, 8]
have beenwidely applied to second-price auctions in literature. Un-
der both mechanisms, the seller assigns a multiplier in [0, 1] to
each buyer, and buyers are ranked based on the bids shaded by the
multiplier. The difference between these two mechanisms is that
for the pacing method, the winner pays the second-highest paced
bid, while for the bid-discount method, the winner’s payment is
the lowest winning bid.

Pacing has also been studied in first-price auctions [13], where
the winner pays her shaded bid. Meanwhile, we naturally extend
the bid-discount method to first-price auctions. In this mechanism,
the winner pays her original bid rather than the shaded bid. Com-
bined with the reserve price, the bid-discount first-price auction
controls a buyer’s expenditure by reducing the likelihood of win-
ning. We will delve into more structural properties of the mecha-
nism in Section 5 and appendix A.

Finally, we introduce the Bayesian revenue-optimal auction pro-
posed by Balseiro et al. [3]. This mechanism maximizes the seller’s
revenue among all budget-constrained incentive-compatible auc-
tions when all buyers’ bidding qfs are strictly regular. In the mech-
anism, buyers are ranked according to the shaded virtual bids, and
the winner’s payment is the lowest winning bid. Here, the opti-
mal shading parameter 𝜸∗ is given by the following optimization

problem:

𝜸∗ B arg min
𝜸 ∈[0,1]𝑛

{
E𝑞

[
max
𝑖

{
𝛾𝑖𝜓𝑖 (𝑞𝑖 ) − 𝜆

}+]
+

𝑛∑
𝑖=1

(1 − 𝛾𝑖 )𝜌𝑖

}
.

(3)

3.1 The Budget-Extracting Concept
From the seller’s perspective, a crucial objective is to maximize
his revenue, and one direct approach to achieving this is to fully
utilize buyers’ budgets. To settle this idea, we now define a budget-
extracting concept that resembles the system equilibrium concept
given in Balseiro et al. [3]. This concept applies to variants of first-
price and second-price auctions. Specifically, the seller can care-
fully set the parameter vector such that either the budget feasibility
constraint or the IR constraint is binding for each buyer. Formally,
we give the following definition:

Definition 3.1 (Budget-extracting). We say a parameterized auc-
tion mechanism M(𝜽 ) is budget-extracting, if for any bidding qf
profile (�̃�𝑖 )𝑖∈[𝑛] and budget profile (𝜌𝑖 )𝑖∈[𝑛] , the mechanism and
the corresponding parameter vector 𝜽 satisfies that:(∫ 1

0
𝑝𝑖 (𝜽 , 𝑞𝑖 , �̃�) d𝑞𝑖 ≤ 𝜌𝑖

)
⊥

(
𝜽𝑖 ≤ 𝜽𝑖

)
.

Here, 𝜽𝑖 is the upper limit of 𝜽𝑖 , and the ⊥ notation means that at
least one of the two constraints is binding.

We now demonstrate that the budget-extracting concept can be
realized for two variants of first-price auctions and is well-defined
for second-price auctions when buyers are symmetric. Further, we
show that the budget-extracting mechanism is the optimal choice
for the seller in the case of BDFPA, PFPA, and symmetric PSPA
auctions.
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Theorem 3.1. We have the following:

1. When each buyer’s bidding qf is inverse Lipschitz continuous,
both BDFPA and PFPA support a budget-extracting mecha-
nism.

2. When all buyers are symmetric, and their common bidding
qf is inverse Lipschitz continuous, both BDSPA and PSPA sup-
port a symmetric budget-extracting mechanism.

Further, for BDFPA, PFPA, and symmetric PSPA, under the above con-
ditions, respectively, committing to a budget-extracting mechanism
maximizes the seller’s revenue among all mechanisms.

The proof of Theorem 3.1 is deferred to Appendix C. We should
notice that the revenue-maximizing part of Theorem 3.1 works
for all buyers’ bidding profiles under natural conditions. Conse-
quently, under the respective constraints, we only need to con-
sider budget-extracting mechanisms as they represent the seller’s
optimal choice regardless of the buyers’ strategies. For brevity, we
take eBDFPA as an abbreviation of “budget-extracting BDFPA” in
the rest of this work. The same abbreviation also holds for PFPA,
BDSPA, and PSPA.

4 STRATEGIC EQUIVALENCE RESULTS
In the previous section, we have established that for two varia-
tions of first-price auctions and the symmetric pacing second-price
auction, the optimal parameter choice for the seller is to satisfy
the budget-extracting requirement by adequately utilizing the buy-
ers’ budgets. In this section, we focus on the buyers’ perspective
and explore their bidding strategies when facing different budget-
extracting mechanisms or the optimal mechanism BROA. Specif-
ically, we show broad strategic equivalence results among these
five parameterized mechanisms in the unassured prior game. First,
we introduce two notions of strategic equivalence with varying
levels of guarantees.

Definition 4.1 (Strategic equivalence). We say two parameter-
ized auction mechanisms M1 (𝜽 ) and M2 (𝜽 ) are weakly strategic-
equivalent (in the unassured prior game), if there are two map-
pings 𝐺,𝐻 : ( [0, 1] → [0, 1])𝑛 → ([0, 1] → [0, 1])𝑛 such that
for any strategic bidding profiles �̃�, 𝐺 (�̃�) under M2 (𝜽 ) brings the
same utility-revenue profile with �̃� under M1 (𝜽 ); and 𝐻 (�̃�) un-
der M1 (𝜽 ) brings the same revenue-utility profile with �̃� under
M2 (𝜽 ). Further, if𝐺 and 𝐻 operate independently and identically
as 𝑔 and ℎ on each bidding function, we say M1 (𝜽 ) and M2 (𝜽 )
are strongly strategic-equivalent (in the unassured prior game).

In general, weak strategic equivalence, as defined above, indi-
cates that the sets of utility-revenue profiles under two parameter-
izedmechanisms are identical. Additionally, strong strategic equiv-
alence requires that each buyer’s strategy profile mapping be inde-
pendent and anonymous. An important observation is that under
strong strategic equivalence, if the two mappings 𝑔 and ℎ are fur-
ther inverse functions of each other, then for any bidder 𝑖 , if �̃�𝑖 is a
best-response for other bidders’ strategy �̃�−𝑖 under M1 (𝜽 ), 𝑔(�̃�𝑖 )
would also be a best-response to𝑔(�̃�−𝑖 ) underM2 (𝜽 ) since𝑔 keeps
the outcome.The same applies vice versa for ℎ = 𝑔−1. As a result, 𝑔
gives a one-to-one mapping between Nash equilibria of these two
parameterized mechanisms while preserving the utility-revenue

BROA

ER

ER + IL2

eBDFPA

ER

ER + IL2

Figure 3: An illustration of Theorem 4.2. ER: Each buyer’s
virtual bidding qf is strictly increasing and differentiable;
IL2: each buyer’s bidding qf and virtual bidding qf are both
inverse Lipschitz continuous.

profile. This observation is formalized in the following lemma. All
missing proofs in this section can be found in Appendix D.

Lemma 4.1. If two parameterized mechanismsM1 (𝜽 ) andM2 (𝜽 )
are strongly strategic-equivalent and the corresponding mappings𝐺
and𝐻 (𝑔 and ℎ) are inverse of each other, then the two sets comprised
of all Nash equilibrium utility-revenue profiles respectively for these
two mechanisms are the same in the unassured prior game.

Therest of this section discusses theweak/strong strategic equiv-
alence relationships among the five mechanisms. We begin by con-
sidering the general case where buyers can be asymmetric and
then proceed to the symmetric case.

4.1 General Case
We present our main results in the general case when buyers can
be asymmetric. Specifically, we establish a strong strategic equiva-
lence between BROA, the optimal budget-constrained mechanism,
and eBDFPA, the budget-extracting bid-discount first-price auc-
tion, under minor conditions on the buyers’ strategic bidding func-
tions. The formal statement of this result is as follows:

Theorem 4.2. When each buyer’s virtual bidding qf is restricted
to be strictly increasing and differentiable, BROA and eBDFPA are
strongly strategic-equivalent in the unassured prior game. This result
also holds when each buyer’s bidding qf and virtual bidding qf are
both inverse Lipschitz continuous.

To provide a visual representation ofTheorem 4.2, we include an
illustration in Figure 3. The solid rectangles represent the subsets
of BROA and eBDFPA with strictly increasing and differentiable
virtual bidding qfs, which are equivalent under independent map-
pings. Furthermore, the dashed rectangles, which are subsets of the
solid rectangles, indicate that when we additionally require the in-
verse Lipschitz continuity of both bidding qfs and virtual bidding
qfs, these restricted subsets remain equivalent. The proof of Theo-
rem 4.2 is based on the study of the properties of budget-extracting
BDFPA. The intuition is to notice the intrinsic similarity between
the programming of BROA and eBDFPA. Nevertheless, the rigor-
ous proof is far more complex. In particular, it involves the con-
struction of a mapping between the bidding strategies under these
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two mechanisms that result in the same utility-revenue profile out-
come. For this part, we adopt a technique we call “lifting” to adjust
those intractable bidding functions.

It is important to notice that Lemma 4.1 cannot be directly ap-
plied to Theorem 4.2 since the mappings we construct are not in-
verses of each other on those “bad-behaved” strategy profiles. How-
ever, concerning buyers’ utilities and the seller’s revenue, we can
employ the “lifting” technique to filter out these profiles by show-
ing their equivalence with well-behaved ones. Led by the observa-
tion, we can further derive the following important theorem.

Theorem 4.3. When each buyer’s virtual bidding qf is restricted to
be strictly increasing and differentiable, BROA and eBDFPA have the
same set of Nash equilibrium utility-revenue profiles in the unassured
prior game. This result also holds when each buyer’s bidding qf and
virtual bidding qf are both inverse Lipschitz continuous.

At a high level, Theorems 4.2 and 4.3 extend the results in Deng
et al. [15], Tang and Zeng [39] to budget-constrained stochastic
auctions.These two theorems are significant results indicating that
when buyers’ strategic bidding behaviors affect the learning behav-
ior of the seller and, therefore, the parameter vector, the optimal
mechanism and budget-extracting BDFPA are strongly strategic-
equivalent, and they yield the identical set of Nash equilibrium
outcomes. It is worth noting that while BROA may be a complex
auction form in practice, budget-extracting BDFPA is easier to com-
prehend and implement in ad platforms.Therefore, it is reasonable
for platforms to favor accessible mechanisms, as they perform just
as robust in the face of buyer uncertainty. Moreover, these results
provide further justification for major platforms to transition to
first-price auctions in the current auto-bidding environment [26],
as they can behave as satisfying as the optimal auction.

4.2 Symmetric Case
We also consider the symmetric case, where all buyers’ budgets,
value qfs, and bidding qfs are correspondingly identical. In this
case, we naturally examine the budget-extracting case when the
parameter vector is symmetric. Under such circumstances, we pro-
vide broad weak strategic equivalence results, which bridge two
variants of the first-price auction and two variants of the second-
price auction.

Theorem 4.4. In the symmetric case, when all buyers’ identical bid-
ding qf is inverse Lipschitz continuous, under the symmetric budget-
extracting parameter vector, eBDFPA, ePFPA, eBDSPA, and ePSPA are
all weakly strategic-equivalent in the unassured prior game.

Therefore, these four mechanisms have the same outcome space
in symmetry. Combining with Theorem 4.2, we further have the
following two corollaries:

Corollary 4.5. Under the conditions ofTheorem 4.4, eBDFPA, ePFPA,
eBDSPA, and ePSPA have the same set of utility-revenue profiles in
the unassured prior game.

Corollary 4.6. Under the conditions of Theorems 4.2 and 4.4, BROA,
eBDSPA, ePFPA, eBDSPA, and ePSPA are all weakly strategical-equivalent
and have the same set of utility-revenue profiles in the unassured
prior game.

The proof of Theorem 4.4 primarily involves constructing map-
pings between the bidding functions under different budget-constrained
auction mechanisms. A crucial point in the proof is that eBDFPA
and ePFPA exhibit a symmetric parameter vector in the symmetric
setting.This observation is a corollary of their properties described
in Appendix A.1, and greatly aids the mapping construction.

Together, Theorem 4.4 and Corollary 4.6 demonstrate the exten-
sive strategic equivalence of various budget-constrained mecha-
nisms in the symmetric sense. We should mention the distinction
between these results and the celebrated revenue equivalence the-
orem for a better understanding. First, the five mechanisms we dis-
cuss do not always lead to the same allocation with a fixed quan-
tile profile due to the existence of the opportunity cost as a reserve
price. Second, revenue equivalence results assume that the com-
mon value prior is known advance to the seller, whereas we do
not make such an assumption in this work. At last, the revenue
equivalence theorem focuses on the symmetric equilibrium out-
come, while our result is not limited to symmetric equilibria but
gives a broad strategic equivalence result regardless of the specific
strategy.

5 STRUCTURAL PROPERTIES OF
MECHANISMS

With the strategic equivalence results we have already given in
Section 4, we proceed to analyze the structural properties of these
mechanisms. The analysis consists of two parts. To start with, we
will exploit the computational properties of BDFPA and PFPA. Fur-
ther, we will reveal the revenue dominance relationships among
these five mechanisms on the seller’s side when buyers do not
adopt strategic bidding. However, due to the space limit, we defer
the results and details to Appendix A.

6 CONCLUDING REMARKS
This work considers the scenario where the seller lacks knowledge
of the value priors of budget-constrained buyers. We investigate
fivemechanisms in this context: the Bayesian revenue-optimal auc-
tion, as well as the bid-discount and pacing variations of the first-
price and second-price auctions. We characterize the unassured
prior game between the seller and buyers under these auction forms
and focus on budget-extracting mechanisms, which maximizes the
seller’s revenue. We give a strong strategic equivalence result be-
tween the bid-discount first-price auction and Bayesian revenue-
optimal auction from the view of Nash equilibria, indicating that
simple mechanisms can be as robust as optimal ones in the pres-
ence of unassured priors. This result sheds light on the valuation
of first-price auctions in the auto-bidding world. We further es-
tablish vast outcome equivalence results among first-price/second-
price auctions with budget constraints. In terms of structural prop-
erties, we explore the characteristics of bid-discount/pacing first-
price auctions under the budget-extracting condition. Moreover,
we compare the seller’s revenue under these mechanisms when
there is no strategic behavior. Overall, our work contributes to a
comprehensive understanding of budget-constrained auctionmech-
anisms, particularly first-price ones, from a stochastic perspective.
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A DETAILS FOR STRUCTURAL PROPERTIES OF MECHANISMS IN SECTION 5
This section complements the discussions in Section 5 by providing the results and details. We refer readers to Appendix E for missing
proofs in this section.

A.1 Properties of Variants of First-Price Auctions
A.1.1 Properties of BDFPA. We first present properties of (budget-extracting) BDFPA, which we aggregate in the following theorem.

Theorem A.1. Given buyers’ bidding qf profile (�̃�𝑖 )𝑖∈[𝑛] and budget profile (𝜌𝑖 )𝑖∈[𝑛] , if each buyer 1 ≤ 𝑖 ≤ 𝑛’s bidding qf �̃�𝑖 (·) is inverse
Lipschitz continuous, then the following statements hold:

1. There exists a maximum tuple of bid-discount multipliers 𝛼max, i.e., for any feasible tuple of bid-discount multipliers 𝛼 , 𝛼max
𝑖 ≥ 𝛼𝑖 for

any 1 ≤ 𝑖 ≤ 𝑛.
2. 𝛼max is a budget-extracting tuple of bid-discount multipliers.
3. For any budget-extracting bid-discount multiplier tuple 𝛼e, the following two conditions establish:

(a) There exists some 𝜈 ≤ 1, such that for any 1 ≤ 𝑖 ≤ 𝑛 satisfying 𝑝max
𝑖 (buyer 𝑖’s expected payment in MBDFPA (𝛼max)) is positive,

𝛼e𝑖 /𝛼
max
𝑖 = 𝜈 ;

(b) For any 1 ≤ 𝑖 ≤ 𝑛 satisfying 𝑝max
𝑖 = 0, 𝑝e𝑖 = 0 (buyer 𝑖 never wins in MBDFPA (𝛼e)) and 𝛼e𝑖 = 𝛼max

𝑖 = 1.
4. All budget-extracting BDFPAs bring the same payment for each buyer.
5. 𝛼max is the unique budget-extracting tuple of bid-discount multipliers if and only if either one of the following two conditions is satisfied:

(a) max𝑖∈I1 𝛼
max
𝑖 �̃�𝑖 (0) ≤ max𝑖∈I2 {𝛼max

𝑖 �̃�𝑖 (1), 𝜆}, where I1 = {𝑖 | 𝑝max
𝑖 > 0} and I2 = [𝑛] \ I1, or

(b) there exists 𝑖 ∈ I1 such that 𝑝max
𝑖 < 𝜌𝑖 .

Wewould like to emphasize once again that the inverse Lipschitz continuity assumption on �̃�𝑖 (·) is a relatively weak one and is commonly
adopted in previous works [3, 22, 30]. In the proof ofTheoremA.1, this assumption guarantees that a small increase in a buyer’s bid-discount
multiplier does not significantly change her payment. This continuity property indicates that the budget-feasible tuples form a closed set,
and serves as a key lemma in proving the first two statements of the theorem. As for characterizing the set of budget-extracting multiplier
tuples, we observe that the budget-extracting condition imposes a much tight restriction. Specifically, for any buyer, her payment should
be the same across all budget-extracting BDFPA mechanisms. This essential observation helps with the remaining three statements.

We highlight that Theorem A.1 provides a comprehensive depiction of the behavior of budget-extracting BDFPA(s) under minor restric-
tions. As revealed, all budget-extracting BDFPAs share similar structures. We further demonstrate that a budget-extracting BDFPA can be
efficiently computed with convex optimization techniques.

Theorem A.2. A budget-extracting BDFPA can be computed by solving the global minimum of a convex function.

For interested readers, we mention that the underlying convex function mentioned in Theorem A.2 is given by 𝜒BDF (𝝉 ) as given in (6)
for 𝝉 ∈ [0, 1]𝑛 , and a budget-extracting tuple is given by 𝜶 = 1𝑛 − 𝝉∗ with 𝝉∗ the global minimum of 𝜒BDF (𝝉 ).

A.1.2 Properties of PFPA. For PFPA, we also derive a counterpart of Theorem A.1, as in the following theorem.

Theorem A.3. Given buyers’ bidding qf profile (�̃�𝑖 )𝑖∈[𝑛] and budget profile (𝜌𝑖 )𝑖∈[𝑛] , if each buyer 1 ≤ 𝑖 ≤ 𝑛’s bidding qf �̃�𝑖 (·) is inverse
Lipschitz continuous, then:

1. There exists a maximum tuple of pacing multipliers 𝛽max, i.e., for any feasible tuple of pacing multipliers 𝛽 , 𝛽max
𝑖 ≥ 𝛽𝑖 for any 1 ≤ 𝑖 ≤ 𝑛.

2. 𝛽max is the unique budget-extracting tuple of pacing multipliers.
3. 𝛽max maximizes seller’s revenue among all feasible tuples of pacing multipliers, i.e., 𝛽max is the optimal solution of the following

programming:

max
𝛽∈[0,1]𝑛

∫
𝒒
max
𝑖

{𝛽𝑖 �̃�𝑖 (𝑞𝑖 ) − 𝜆}+ d𝒒,

s.t.
∫ 1

0
𝛽𝑖 �̃�𝑖 (𝑞𝑖 ) ·

(∫
𝒒−𝑖

𝐼

[
𝛽𝑖 �̃�𝑖 (𝑞𝑖 ) ≥ max

𝑖′≠𝑖
{𝛽𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆}

]
d𝒒−𝑖

)
d𝑞𝑖 ≤ 𝜌𝑖 ,

∀1 ≤ 𝑖 ≤ 𝑛.

(4)

An interesting point here is that, unlike in the case of BDFPA, there is only one budget-extracting PFPA under minor restrictions. The
main reason here is that in PFPA, a buyer’s payment is correlated with her multiplier, while this is not the case for BDFPA as long as she
wins.

A.2 Dominance Relationships on the Seller’s Revenue
Now let us compare these five mechanisms in terms of the seller’s revenue when all buyers bid truthfully. In other words, we do not
consider buyers’ strategic behaviors and write the value/bidding qf profile as (�̃�𝑖 )𝑖∈[𝑛] . This assumption allows for a better understanding
of the intrinsic allocation/payment properties of budget-constrained mechanisms. Here, we should notice that such comparisons are not
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Table 2: Summary of Example A.1.

eBDFPA ePFPA BROA eBDSPA ePSPA
Each buyer’s payment 0.312 0.312 0.207 0.171 0.171

Seller’s revenue 0.54 0.525 0.344 0.243 0.243
Budget exhausted? Yes Yes No No No

straightforward since the mechanism should ensure each buyer’s budget constraint is satisfied, leading to potentially different parameter
tuples for different mechanisms. This complicates the analysis of the seller’s revenue.

In particular, we consider these mechanisms under the budget-extracting condition. The dominance relationships are presented in the
following theorem. Here, we say 𝐴 ⪰ 𝐵 if the seller’s revenue in A is higher than his revenue in B when all buyers bid truthfully.

Theorem A.4. The following dominance relationships hold with respect to the seller’s revenue:
1. When each buyer’s bidding qf is strictly increasing and strictly regular, eBDFPA ⪰ BROA.
2. When each buyer’s bidding qf is strictly increasing, eBDFPA ⪰ ePSPA.
3. When each buyer’s bidding qf is strictly regular, BROA ⪰ eBDSPA, and BROA ⪰ ePSPA.

We derive this theorem through two key observations. For the first and second results, we identify the inherent relationships among the
programming of eBDFPA, BROA, and ePFPA. For the third part, we employed the budget-constrained incentive compatibility methodology
introduced in Balseiro et al. [3]. A corollary of Theorem A.4 is that under mild assumptions, eBDFPA dominates the other four mechanisms
when buyers truthfully bid.

Corollary A.5. When each buyer’s bidding qf is strictly increasing and strictly regular, eBDFPA ⪰ {BROA, ePSPA, eBDSPA, ePSPA}.

We now use an example further to illustrate Theorem A.4 and corollary A.5.

Example A.1. Now consider a symmetric scenario with 𝑛 = 2 buyers. Either buyer’s value/bidding pdf is a uniform distribution on [0, 1],
and either buyer’s budget is 𝜌0 = 39/125 = 0.312. Let the opportunity cost of the seller be 𝜆 = 0.1. Then, the value/bidding qf of each buyer
is �̃�0 (·) with �̃�0 (𝑥) = 𝑥 on [0, 1], and the virtual value/bidding qf𝜓0 (·) satisfies𝜓0 (𝑥) = 2𝑥−1 on [0, 1]. Consequently, we have the following
for eBDFPA, ePFPA, BROA, eBDSPA, and ePSPA, respectively:

• For eBDFPA, the maximum budget-extracting multiplier tuple 𝜶max = (1/4, 1/4). Both buyers exhaust their budgets in expectation,
and the seller’s expected revenue equals 0.54.

• For ePFPA, the maximum budget-extracting multiplier 𝜷max = (𝛽0, 𝛽0), where 𝛽0 ≈ 0.937 is the solution to 1000𝛽3 − 936𝛽2 − 1 = 0.
Both buyers also exhaust their budget in expectation, and the seller’s expected revenue is approximately 0.525.

• For BROA, the solution to programming (3) is 𝜸∗ = (0, 0). Either buyer’s expected payment is 0.207, and the seller’s expected
revenue equals 1377/4000 ≈ 0.344.

• For eBDSPA, the budget-extracting multiplier tuple is 𝝁∗ = (1, 1). Either buyer’s payment is 0.171, and the seller’s expected revenue
equals 0.243.

• For ePSPA, the budget-extracting multiplier tuple is also 𝝃 ∗ = (1, 1), and therefore, either buyer’s payment is 0.171, and the seller’s
expected revenue equals 0.243 as well.

For a better view, we list the above numerical results in Table 2.

B PROOF OF LEMMA 2.1
In accordance with the notation, we let 𝑏𝑖 = �̃�𝑖 (𝑞𝑖 ), and it suffices for us to prove that the best choice of �̃�𝑖 is an increasing function since
𝑣𝑖 is also increasing of 𝑞𝑖 . With the other buyers’ bidding strategies fixed, write out the buyer 𝑖’s expected utility as∫ 1

0
(𝑥𝑖 (𝜽 , 𝑞𝑖 , �̃�) · 𝑣𝑖 (𝑞𝑖 ) − 𝑝𝑖 (𝜽 , 𝑞𝑖 , �̃�)) d𝑞𝑖 .

Now, for a non-negative function 𝑓 , as given in Bennett and Sharpley [9], we define its distribution function as

𝜇𝑓 (𝑠) B 𝜇{𝑥 : 𝑓 (𝑥) ≥ 𝑠},
and therefore, the decreasing rearrangement of 𝑓 is given as

𝑓 ∗ (𝑡) B inf{𝑠 : 𝜇𝑓 (𝑠) ≤ 𝑡}.
For the function on [0, 1], we further define its increasing rearrangement as

(𝑓 )+ (𝑡) B (𝑓 )∗ (1 − 𝑡) .
11
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Apparently, (�̃�𝑖 )+ is an increasing function. Notice that 𝑝𝑖 (𝜽 , 𝑞𝑖 , �̃�) is in fact a function of �̃�𝑖 (𝑞𝑖 ). Now, since the increasing rearrangement
�̃�𝑖 → (�̃�𝑖 )+ is a uniform function preserving function, by Porubskỳ et al. [36], we have∫ 1

0
𝑝𝑖 (𝜽 , 𝑞𝑖 , �̃�) d𝑞𝑖 =

∫ 1

0
𝑝𝑖 (𝜽 , 𝑞𝑖 , ((�̃�𝑖 )+, �̃�−𝑖 )) d𝑞𝑖 .

Therefore, we only need to consider 𝑥𝑖 (𝜽 , 𝑞𝑖 , �̃�) · 𝑣𝑖 (𝑞𝑖 ). Since the allocation function is monotone, 𝑥𝑖 (𝜽 , 𝑞𝑖 , �̃�) is an increasing function
of �̃�𝑖 (𝑞𝑖 ). Meanwhile, notice that 𝑣𝑖 is increasing as well. By Lieb and Loss [32]2, we have

(𝑥𝑖 )+ (𝜽 , 𝑞𝑖 , �̃�) = 𝑥𝑖 (𝜽 , 𝑞𝑖 , ((�̃�𝑖 )+, �̃�−𝑖 )), (𝑣𝑖 )+ (𝑞𝑖 ) = 𝑣𝑖 (𝑞𝑖 ).
Therefore, by the Hardy–Littlewood inequality with the version given in Bennett and Sharpley [9], we have∫ 1

0
𝑥𝑖 (𝜽 , 𝑞𝑖 , �̃�) · 𝑣𝑖 (𝑞𝑖 ) d𝑞𝑖 ≤

∫ 1

0
(𝑥𝑖 )∗ (𝜽 , 𝑞𝑖 , �̃�) · (𝑣𝑖 )∗ (𝑞𝑖 ) d𝑞𝑖

=
∫ 1

0
(𝑥𝑖 )+ (𝜽 , 𝑞𝑖 , �̃�) · (𝑣𝑖 )+ (𝑞𝑖 ) d𝑞𝑖

=
∫ 1

0
𝑥𝑖 (𝜽 , 𝑞𝑖 , ((�̃�𝑖 )+, �̃�−𝑖 )) · 𝑣𝑖 (𝑞𝑖 ) d𝑞𝑖 .

Consequently, concerning her expected utility, a buyer’s bidding qf �̃�𝑖 is dominated by its increasing rearrangement (�̃�𝑖 )+. This finishes
the proof of the lemma.

C PROOF OF THEOREM 3.1
In the theorem, the first result for BDFPA is presented in Theorem A.1, the results for PFPA are given in Theorem A.3, and the results for
symmetric BDSPA and symmetric PSPA are deferred to Lemma D.5, in the context when we concentrate on symmetric cases. We now prove
the second result for BDFPA, which states that the seller’s revenue is maximized under the budget-extracting condition. In fact, we can
relax the inverse Lipschitz continuity condition to strict monotonicity. Specifically, we formally prove the following theorem.

Theorem C.1. When each buyer’s bidding qf is strictly increasing, the budget-extracting condition implies the seller’s revenue maximization
for BDFPA, if it is feasible.

We devote the remaining to prove Theorem C.1, which follows three steps. First, we give an upper bound on the Lagrangian dual of the
revenue-maximizing problem, which happens to be similar to programming (3). Next, we characterize the optimality of the dual problem via
a pair of equivalent conditions. With these conditions, we show that strong duality holds. Finally, we relate the above optimality conditions
to the budget-extracting condition of BDFPA to prove the theorem.

For briefness, we writeΦ𝑖 (𝜶 , �̃�, 𝒒) B 𝐼 [𝛼𝑖 �̃�𝑖 (𝑞𝑖 ) ≥ max𝑖′≠𝑖 {𝛼𝑖 �̃�𝑖 (𝑞𝑖′ ), 𝜆}] for any 1 ≤ 𝑖 ≤ 𝑛 through the whole appendix, which describes
whether 𝑖 has the largest value𝛼𝑖 �̃�𝑖 (𝑞𝑖 ) no less than 𝜆 among all buyers.This function is seen as a choice function and fits all fivemechanisms’
allocation functions with the suitable parameter notation and quantile function (bidding qf or virtual bidding qf).

We now formalize the seller’s revenue-maximizing problem in BDFPA as follows and denote the optimal objective as OPTBDF:

max
𝜶 ∈[0,1]𝑛

𝑛∑
𝑖=1

∫ 1

0
(�̃�𝑖 (𝑞𝑖 ) − 𝜆) ·

(∫
𝒒−𝑖

Φ𝑖 (𝜶 , �̃�, 𝒒) d𝒒−𝑖
)
d𝑞𝑖 ,

s.t.
∫ 1

0
�̃�𝑖 (𝑞𝑖 ) ·

(∫
𝒒−𝑖

Φ𝑖 (𝜶 , �̃�, 𝒒) d𝒒−𝑖
)
d𝑞𝑖 ≤ 𝜌𝑖 , ∀1 ≤ 𝑖 ≤ 𝑛. (5)

Now we consider the Lagrangian dual problem of (5), which is as follows:

𝜒BDF (𝝉 ) B max
𝜶 ∈[0,1]𝑛

𝑛∑
𝑖=1

∫ 1

0
((1 − 𝜏𝑖 )�̃�𝑖 (𝑞𝑖 ) − 𝜆) ·

(∫
𝒒−𝑖

Φ𝑖 (𝜶 , �̃�, 𝒒) d𝒒−𝑖
)
d𝑞𝑖 +

𝑛∑
𝑖=1

𝜏𝑖𝜌𝑖 . (6)

Here, 𝜏𝑖 ≥ 0 is the dual variable for the restriction on buyer 𝑖’s payment. For brevity, we reorganize the integral part of 𝜒BDF (𝝉 ) as the
following:

𝑛∑
𝑖=1

∫ 1

0
((1 − 𝜏𝑖 )�̃�𝑖 (𝑞𝑖 ) − 𝜆) ·

(∫
𝒒−𝑖

Φ𝑖 (𝜶 , �̃�, 𝒒) d𝒒−𝑖
)
d𝑞𝑖 = E𝒒 [(1 − 𝜏𝑖∗ )�̃�𝑖∗ (𝑞𝑖∗ ) − 𝜆] ,

where for any quantile profile 𝒒, 𝑖∗ is defined as the buyer 0 ≤ 𝑖 ≤ 𝑛 with the highest value 𝛼𝑖 �̃�𝑖 (𝑞𝑖 ). Here, we involve a phantom buyer 0
with 𝛼0 = 1, 𝜏0 = 0 and �̃�0 (𝑞0) = 𝜆 for all 𝑞0 ∈ [0, 1].3 Intuitively, the equation is based on the fact that when 𝒒 is fixed, functions {Φ1≤𝑖≤𝑛}
collaboratively act as a choice function to pick a buyer 0 ≤ 𝑖∗ ≤ 𝑛with the highest discounted bid. Rigorously, the above equation establishes
2Although Lieb and Loss [32] considers the symmetric decreasing rearrangement, these results can be naturally extended to our scenario.
3Involving the phantom buyer is only for the succinctness of writing and does not matter with all the restrictions on buyers 1 to 𝑛.
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due to the strict monotonicity condition, as the Lebesgue measure that at least two buyers share the same highest discounted bid is zero.
With the equation, we can rewrite 𝜒BDF (𝝉 ) as:

𝜒BDF (𝝉 ) = max
𝛼∈[0,1]𝑛

E𝒒 [(1 − 𝜏𝑖∗ )�̃�𝑖∗ (𝑞𝑖∗ ) − 𝜆] +
𝑛∑
𝑖=1

𝜏𝑖𝜌𝑖 . (7)

Now, for fixed 𝝉 ∈ [0, 1]𝑛 , since 𝑖∗ represents a specific buyer from 0 to 𝑛, we have

𝜒BDF (𝝉 ) ≤ E𝒒
[
max
1≤𝑖≤𝑛

{(1 − 𝜏𝑖 )�̃�𝑖 (𝑞𝑖 ) − 𝜆}+
]
+

𝑛∑
𝑖=1

𝜏𝑖𝜌𝑖 ,

and further, we can see that the equality holds if𝝉 ∈ [0, 1]𝑛 andwe take𝜶 = 1𝑛−𝝉 in (7), where 𝑖∗ is subsequently argmax0≤𝑖≤𝑛 {(1 − 𝜏𝑖 )�̃�𝑖 (𝑞𝑖 ) − 𝜆}.
Now by weak duality, we have

OPTBDF ≤ min
𝝉≥0

𝜒BDF (𝝉 ) ≤ min
𝝉 ∈[0,1]𝑛

𝜒BDF (𝝉 ) = min
𝝉 ∈[0,1]𝑛

E𝒒

[
max
1≤𝑖≤𝑛

{(1 − 𝜏𝑖 )�̃�𝑖 (𝑞𝑖 ) − 𝜆}+
]
+

𝑛∑
𝑖=1

𝜏𝑖𝜌𝑖 . (8)

We now characterize the optimal solution of the program via the following lemma.

Lemma C.2. When each buyer 1 ≤ 𝑖 ≤ 𝑛’s bidding qf �̃�𝑖 is strictly increasing, 𝝉 is a solution of min𝝉 ∈[0,1]𝑛 𝜒BDF (𝝉 ) if and only if for each
1 ≤ 𝑖 ≤ 𝑛:

1.
∫ 1
0 �̃�𝑖 (𝑞𝑖 ) ·

(∫
𝒒−𝑖

Φ𝑖 (1𝑛 − 𝝉 , �̃�, 𝒒) d𝒒−𝑖
)
d𝑞𝑖 ≤ 𝜌𝑖 , and

2. 𝜏𝑖 ·
(∫ 1
0 �̃�𝑖 (𝑞𝑖 ) ·

(∫
𝒒−𝑖

Φ𝑖 (1𝑛 − 𝝉 , �̃�, 𝒒) d𝒒−𝑖
)
d𝑞𝑖 − 𝜌𝑖

)
= 0.

PRoof of Lemma C.2. Wefirst give some temporary notations to ease the description.We let 𝑝𝑖 B
∫ 1
0 �̃�𝑖 (𝑞𝑖 )·

(∫
𝒒−𝑖

Φ𝑖 (1𝑛 − 𝝉 , �̃�, 𝒒) d𝒒−𝑖
)
d𝑞𝑖

be buyer 𝑖’s expected payment. We further write 𝑦0 (𝝉 , 𝒒) B 0 and 𝑦𝑖 (𝝉 , 𝒒) B (1 − 𝜏𝑖 )�̃�𝑖 (𝑞𝑖 ) − 𝜆 for 1 ≤ 𝑖 ≤ 𝑛. At last, we let 𝑦 (𝝉 , 𝒒) =
max0≤𝑖≤𝑛 𝑦𝑖 (𝝉 , 𝒒). We now have

𝜒BDF (𝝉 ) = E𝒒 [𝑦 (𝝉 , 𝒒)] +
𝑛∑
𝑖=1

𝜏𝑖𝜌𝑖 .

Note that for any 0 ≤ 𝑖 ≤ 𝑛,𝑦𝑖 (𝝉 , 𝒒) is convex on𝝉 . As a result,𝑦 (𝝉 , 𝒒) is also convex on𝝉 . Meanwhile, letJ (𝝉 , 𝒒) = argmax0≤𝑖≤𝑛 𝑦𝑖 (𝝉 , 𝒒),
then with probability 1, |J (𝝉 , 𝒒) | = 1 when 𝒒 is chosen uniformly from [0, 1]𝑛 , and therefore, 𝑦 (𝝉 , 𝒒) is differentiable with probability 1.
By Theorem 7.46 from Shapiro et al. [37], 𝜒BDF (𝝉 ) is convex and differentiable. Further by Theorem 7.44 from Shapiro et al. [37],

𝜕

𝜕𝜏𝑖
𝜒BDF (𝝉 ) = E𝑞

[
𝜕

𝜕𝜏𝑖
𝑦 (𝝉 , 𝒒)

]
+ 𝜌𝑖

= E𝑞 [−�̃�𝑖 (𝑞𝑖 )𝐼 [𝑖 ∈ J (𝝉 , 𝒒)]] + 𝜌𝑖

= −𝑝𝑖 + 𝜌𝑖 .

Therefore, ∇𝜒BDF (𝝉 ) = (−𝑝𝑖 + 𝜌𝑖 )1≤𝑖≤𝑛 . As 𝜒BDF (𝝉 ) is convex, 𝝉 is optimal if and only if for any 𝜏 ′ ∈ [0, 1]𝑛 ,

∇𝜒BDF (𝝉 ) · (𝝉 ′ − 𝝉 ) ≥ 0. (9)

We now finish the proof of the lemma.

“If” side. Suppose the given two conditions are satisfied. Let K(𝝉 ) = {𝑖 | 𝜏𝑖 = 0}. For any 𝝉 ′ ∈ [0, 1]𝑛 , if 𝑖 ∉ K(𝝉 ), then −𝑝𝑖 + 𝜌𝑖 = 0, and
∇𝑖 𝜒BDF (𝝉 ) · (𝜏 ′𝑖 −𝜏𝑖 ) = 0 holds. Otherwise,−𝑝𝑖+𝜌𝑖 ≤ 0 and 𝜏 ′𝑖 ≥ 𝜏𝑖 , which leads to∇𝑖 𝜒BDF (𝝉 ) · (𝜏 ′𝑖 −𝜏𝑖 ) ≥ 0. As a result,∇𝜒BDF (𝝉 ) · (𝝉 ′−𝝉 ) ≥ 0
and 𝝉 is optimal.

“Only if” side. To start with, we claim that all entries of any optimal solution 𝝉∗ of the programming are strictly smaller than 1. To
see this, counterfactually suppose 𝜏∗𝑖 = 1, then (1 − 𝜏∗𝑖 )�̃�𝑖 (𝑞𝑖 ) − 𝜆 < 0 holds for any 𝑞𝑖 as 𝜆 > 0. Therefore, since �̃�𝑖 (·) is bounded (by 1),
subtracting 𝜏∗𝑖 by a small amount does not affect the expectation part of 𝜒BDF (𝝉∗), but will strictly lessen the latter sum part

∑𝑛
𝑖=1 𝜏𝑖𝜌𝑖 ,

contradicting the optimality.
Now, for some optimal 𝝉∗, let K(𝝉∗) = {𝑖 | 𝜏∗𝑖 = 0}. For 𝑖 ∈ K(𝝉∗), let 𝝉 ′ = 𝝉∗ + 𝛿𝒆𝑖 for some 𝛿 ∈ (0, 1], where 𝒆𝑖 is the vector with the

𝑖-th entry one and all other entries zero. Plugging in (9), we derive that 𝑝∗𝑖 ≤ 𝜌𝑖 . For 𝑖 ∉ K(𝝉∗), we take 𝝉 ′ = 𝝉∗ ± 𝛿𝒆𝑖 in order for some
small 𝛿 > 0 satisfying 𝜏∗𝑖 ± 𝛿 ∈ [0, 1]. Such 𝛿 exists since 0 < 𝜏∗𝑖 < 1. Taking into (9) respectively, we derive that 𝑝∗𝑖 − 𝜌𝑖 = 0. Lemma C.2 is
proved. □
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We show that strong duality holds with Lemma C.2. For the solution 𝝉∗ which minimizes 𝜒BDF (𝝉 ) in [0, 1]𝑛 , we have

𝜒BDF (𝝉∗) = E𝒒
[
max
1≤𝑖≤𝑛

{
(1 − 𝜏∗𝑖 )�̃�𝑖 (𝑞𝑖 ) − 𝜆

}+] + 𝑛∑
𝑖=1

𝜏∗𝑖 𝜌𝑖

=
∫ 1

0

(
(1 − 𝜏∗𝑖 )�̃�𝑖 (𝑞𝑖 ) − 𝜆

)
·
(∫

𝒒−𝑖
Φ𝑖 (1𝑛 − 𝝉∗, �̃�, 𝒒) d𝒒−𝑖

)
d𝑞𝑖 +

𝑛∑
𝑖=1

𝜏∗𝑖 𝜌𝑖

=
∫ 1

0
(�̃�𝑖 (𝑞𝑖 ) − 𝜆) ·

(∫
𝒒−𝑖

Φ𝑖 (1𝑛 − 𝝉∗, �̃�, 𝒒) d𝒒−𝑖
)
d𝑞𝑖 .

Here, the first equation is by definition and 𝝉∗ ∈ [0, 1]𝑛 , and the last equation is by the first condition in Lemma C.2. Let 𝜶 ∗ = 1𝑛 − 𝝉∗.
Now by the second condition in Lemma C.2, 𝜶 ∗ satisfies all budget constraints in (5), with the objective value 𝜒BDF (𝝉∗). As a result, strong
duality holds, and 𝜶 ∗ is the revenue-maximizing tuple of bid-discount multipliers.

Finally, we come to prove the theorem. For a budget-extracting bid-discount multiplier tuple 𝜶 e, by definition, the following two groups
of constraints hold: ∫ 1

0
�̃�𝑖 (𝑞𝑖 ) ·

(∫
𝒒−𝑖

Φ𝑖 (𝜶 e, �̃�, 𝒒) d𝒒−𝑖
)
d𝑞𝑖 ≤ 𝜌𝑖 , ∀1 ≤ 𝑖 ≤ 𝑛.

𝛼e𝑖 ·
(
𝜌𝑖 −

∫ 1

0
�̃�𝑖 (𝑞𝑖 ) ·

(∫
𝒒−𝑖

Φ𝑖 (𝜶 e, �̃�, 𝒒) d𝒒−𝑖
)
d𝑞𝑖

)
= 0, ∀1 ≤ 𝑖 ≤ 𝑛. (10)

By Lemma C.2, 𝝉∗ = 1𝑛 − 𝜶 e is an optimal solution of min𝝉 ∈[0,1]𝑛 𝜒BDF (𝝉 ), and by strong duality, 𝜶 e = 1𝑛 − 𝝉∗ is revenue-maximizing,
which finishes the proof of Theorem C.1.

D PROOFS IN SECTION 4
D.1 Proof of Lemma 4.1
If �̃� = (�̃�𝑖 )𝑖∈[𝑛] is a Nash equilibrium strategy profile for M1 (𝜽 ), then we argue that (𝑔(�̃�𝑖 ))𝑖∈[𝑛] forms a Nash equilibrium for M2 (𝜽 ).
Or else, if a buyer 𝑖 can strictly increase her utility from 𝑢𝑖 to 𝑢′𝑖 by switching 𝑔(�̃�𝑖 ) to �̃� ′𝑖 , then since ℎ = 𝑔−1 and the property of the
mapping, we derive that her utility with (𝑔−1 (�̃� ′𝑖 ), �̃�−𝑖 ) under M1 (𝜽 ) is 𝑢′𝑖 . Meanwhile, buyer 𝑖’s utility with (�̃� ′𝑖 , �̃�−𝑖 ) under M1 (𝜽 ) is
𝑢𝑖 < 𝑢′𝑖 , contradicting that (�̃�𝑖 )𝑖∈[𝑛] implies a Nash equilibrium. The reverse direction from M2 (𝜽 ) to M1 (𝜽 ) is similar. This finishes the
proof of the lemma.

D.2 Proof of Theorem 4.2
We will make some preparations before we come to the main part of the proof.

We first discuss on the optimal tuple 𝜸∗ in BROA. By Lemma C.2, since the virtual bidding qf is strictly increasing, programming (3) is
equivalent to the following conditions: ∫ 1

0
𝜓𝑖 (𝑞𝑖 ) ·

(∫
𝒒−𝑖

Φ𝑖 (𝜸 , �̃�, 𝒒) d𝒒−𝑖
)
d𝑞𝑖 ≤ 𝜌𝑖 , ∀1 ≤ 𝑖 ≤ 𝑛.

(1 − 𝛾𝑖 ) ·
(
𝜌𝑖 −

∫ 1

0
𝜓𝑖 (𝑞𝑖 ) ·

(∫
𝒒−𝑖

Φ𝑖 (𝜸 , �̃�, 𝒒) d𝒒−𝑖
)
d𝑞𝑖

)
= 0, ∀1 ≤ 𝑖 ≤ 𝑛. (11)

Note that the second multiplying term in the second set of constraints represents the expected remaining budget of each buyer. Therefore,
Lemma C.2 shows that as long as buyer 𝑖’s budget is not binding, 𝛾∗𝑖 = 0 establishes.

Meanwhile, for a better look, we restate here the equivalence conditions of the multiplier tuple of the budget-extracting BDFPA according
to Theorem C.1: ∫ 1

0
�̃�𝑖 (𝑞𝑖 ) ·

(∫
𝒒−𝑖

Φ𝑖 (𝜶 , �̃�, 𝒒) d𝒒−𝑖
)
d𝑞𝑖 ≤ 𝜌𝑖 , ∀1 ≤ 𝑖 ≤ 𝑛.

(1 − 𝛼𝑖 ) ·
(
𝜌𝑖 −

∫ 1

0
�̃�𝑖 (𝑞𝑖 ) ·

(∫
𝒒−𝑖

Φ𝑖 (𝜶 , �̃�, 𝑞) d𝒒−𝑖
)
d𝑞𝑖

)
= 0, ∀1 ≤ 𝑖 ≤ 𝑛. (12)

We are now ready to prove our main theorem. We suppose that the bidding qf profile in BROA is �̃� (1) , while the counterpart in eBDFPA
is �̃� (2) . Balseiro et al. [3] characterizes any buyer’s expected payment in BROA in the following proposition:

Proposition D.1 (in Balseiro et al. [3]). For BROA, any buyer 𝑖’s expected payment satisfies:

E𝑞𝑖
[
𝑝𝑖 (𝜸∗, 𝑞𝑖 , �̃�)

]
= E𝑞𝑖

[
𝜓𝑖 (𝑞𝑖 ) · 𝑥𝑖 (𝜸∗, 𝑞𝑖 , �̃�)

]
.
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𝑂

𝜆/2

𝑞0𝑖

𝜓
(1)
𝑖 (·)

1

𝜓

𝑞𝑖

“Lifting”

𝑂

𝜆/2

𝑞0𝑖

�̃�
(2)
𝑖 (·)

1

𝑣

𝑞𝑖

Figure 4: The “lifting” process, which is adopted to construct �̃� (2)𝑖 when𝜓
(1)
𝑖 has negative parts.

With the help of Proposition D.1, we give the expected utility of any buyer 1 ≤ 𝑖 ≤ 𝑛 under both auction mechanisms in the following:

𝑢BRO𝑖 (𝜸∗, �̃� (1) , 𝑣𝑖 ) =
∫ 1

0

(
𝑣𝑖 (𝑞𝑖 ) −𝜓

(1)
𝑖 (𝑞𝑖 )

)
·
(∫

𝒒−𝑖
Φ𝑖 (𝜸∗, �̃� (1) , 𝒒) d𝒒−𝑖

)
d𝑞𝑖 . (13)

𝑢eBDF𝑖 (𝜶 e, �̃� (2) , 𝑣𝑖 ) =
∫ 1

0

(
𝑣𝑖 (𝑞𝑖 ) − �̃�

(2)
𝑖 (𝑞𝑖 )

)
·
(∫

𝒒−𝑖
Φ𝑖 (𝜶 e, �̃� (2) , 𝒒) d𝒒−𝑖

)
d𝑞𝑖 . (14)

Further, the seller’s expected revenue in these two mechanisms are correspondingly the following:

𝑤BRO (𝜸∗, �̃� (1) ) =
𝑛∑
𝑖=1

(∫ 1

0

(
𝜓
(1)
𝑖 (𝑞𝑖 ) − 𝜆

)
·
(∫

𝒒−𝑖
Φ𝑖 (𝜸∗, �̃� (1) , 𝒒) d𝒒−𝑖

)
d𝑞𝑖

)
. (15)

𝑤eBDF (𝜶 e, �̃� (2) ) =
𝑛∑
𝑖=1

(∫ 1

0

(
�̃�
(2)
𝑖 (𝑞𝑖 ) − 𝜆

)
·
(∫

𝒒−𝑖
Φ𝑖 (𝜶 e, �̃� (2) , 𝒒) d𝒒−𝑖

)
d𝑞𝑖

)
. (16)

We now start our main part of the proof.

From BROA to eBDFPA. In this part, recall that the virtual bidding qf 𝜓 (1)
𝑖 is strictly increasing, differentiable, and inverse Lipschitz

continuous for any 1 ≤ 𝑖 ≤ 𝑛. Without loss of generality, we suppose that 𝜓 (1)
𝑖 (1) ≥ 𝜆 holds for any 1 ≤ 𝑖 ≤ 𝑛, or that the corresponding

buyer has no chance to win any item at all. For the injective mapping, we let �̃� (2)𝑖 to be a modification of𝜓 (1)
𝑖 for any 1 ≤ 𝑖 ≤ 𝑛. Specifically,

if𝜓 (1)
𝑖 (0) ≥ 0, we easily let �̃� (2)𝑖 = 𝜓

(1)
𝑖 . Otherwise, we will “lift” the negative part𝜓 (1)

𝑖 so that the resulting function is non-negative, with
no loss on other required properties.

In particular, we construct �̃� (2)𝑖 by replacing the head part of 𝜓 (1)
𝑖 with an exponential function or a trigonometric function, depending

on whether 𝜓 (1)
𝑖 is flat at the joint point. More specifically, let 𝑞0𝑖 ∈ (0, 1) be the point satisfying 𝜓 (1)

𝑖 (𝑞0𝑖 ) = 𝜆/2 (we will argue later that
such 𝑞0𝑖 exists in the proof of Lemma D.2), and 𝑘 :=

(
𝜓
(1)
𝑖

)′
(𝑞0𝑖 ) ≥ 0. If 𝑘 > 0, let �̃� (2)𝑖 be as follows:

�̃�
(2)
𝑖 (𝑞𝑖 ) B

{
𝑎1 · exp{𝑎2𝑞𝑖 } 0 ≤ 𝑞𝑖 < 𝑞0𝑖
𝜓
(1)
𝑖 (𝑞𝑖 ) 𝑞0𝑖 ≤ 𝑞𝑖 ≤ 1,

where 𝑎1 = 𝜆 · exp{−2𝑘𝑞0𝑖 /𝜆}/2 and 𝑎2 = 2𝑘/𝜆. Such “lifting” process is plotted in Figure 4. Otherwise when 𝑘 = 0, we use a trigonometric
function instead to ”lift” the negative part and define �̃� (2)𝑖 as:

�̃�
(2)
𝑖 (𝑞𝑖 ) B

{
(𝜆/4) · sin(𝑎3𝑞𝑖 + 𝜋/4) + 𝜆/4 0 ≤ 𝑞𝑖 < 𝑞0𝑖
𝜓
(1)
𝑖 (𝑞𝑖 ) 𝑞0𝑖 ≤ 𝑞𝑖 ≤ 1,

where 𝑎3 = 𝜋/(4𝑞0𝑖 ).
Apparently, the vale range of �̃� (2)𝑖 as constructed above lies within [0, 1]. In the following lemma, we show that the above injective

mapping guarantees that �̃� (2)𝑖 is non-negative, strictly increasing, and differentiable. Inverse Lipschitz continuity also remains after the
mapping for any 1 ≤ 𝑖 ≤ 𝑛.

Lemma D.2. Suppose that𝜓 (1)
𝑖 is strictly increasing and differentiable for some 𝑖 , then under the mapping given above, �̃� (2)𝑖 also satisfies these

properties, and is further non-negative. Meanwhile, inverse Lipschitz continuity is also kept under the mapping.
15
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PRoof of Lemma D.2. In the first case when𝜓 (1)
𝑖 (𝑥) is non-negative on [0, 1], the lemma trivially holds. For the second case, by continu-

ity and that𝜓 (1)
𝑖 (0) < 0,𝜓 (1)

𝑖 (1) ≥ 𝜆, the point𝑞0𝑖 ∈ (0, 1) such that𝜓 (1)
𝑖 (𝑞0𝑖 ) = 𝜆/2 exists. By construction, �̃� (2)𝑖 (𝑥) is certainly non-negative

and continuous. We further show that �̃� (2)𝑖 (𝑥) is differentiable, which clearly, reduces to demonstrate the function is differentiable at 𝑞0𝑖 .
We can verify this by direct computation that

(
�̃�
(2)
𝑖

)′
(𝑞0𝑖 ) = 𝑘 whether 𝑘 > 0 or 𝑘 = 0. Strictly increasing monotonicity follows from that

𝜓
(1)
𝑖 (𝑥) is strictly increasing, and 𝑎1 exp{𝑎2𝑥} (when 𝑘 > 0) and (𝜆/4) sin(𝑎3𝑥 + 𝜋/4) + 𝜆/4 (when 𝑘 = 0) are both strictly increasing on
[0, 𝑞0𝑖 ].

Furthermore, when inverse Lipschitz continuity holds for 𝜓 (1)
𝑖 , then

(
𝜓
(1)
𝑖

)′
has an upper bound strictly higher than 0 by definition,

which leads to 𝑘 > 0. In this case, 𝑎1 exp{𝑎2𝑥} is also inverse Lipschitz continuous on [0, 𝑞0𝑖 ] as 𝑎1, 𝑎2 are both constants. As a result,
�̃�
(2)
𝑖 (𝑥) is inverse Lipschitz continuous as well. □

By Lemma D.2, �̃� (2) is a valid qf profile. We now let 𝜶 = 𝜸∗, and argue that 𝜶 is a budget-extracting tuple for BDFPA.
In fact, noticing that under the injective mapping we give above, �̃� (2)𝑖 (𝑞𝑖 ) = 𝜓

(1)
𝑖 (𝑞𝑖 ) always holds when the value is above 𝜆/2. At the

same time, due to the threshold effect brought by the opportunity cost 𝜆 and that 𝜶 ≤ 1𝑛 , we derive that for any quantile profile 𝒒, we have∫
𝒒−𝑖

Φ𝑖 (𝜸∗, �̃� (1) , 𝒒) d𝒒−𝑖 =
∫
𝒒−𝑖

Φ𝑖 (𝜶 , �̃� (2) , 𝒒) d𝒒−𝑖

holds for any 1 ≤ 𝑖 ≤ 𝑛 and 𝑞𝑖 ∈ [0, 1]. Meanwhile, the above equals 0 when 𝑞𝑖 ≤ 𝑞0𝑖 . Hence, 𝜶 = 𝜸∗ leads to a budget-extracting BDFPA.
Note that buyers’ utility and the seller’s revenue in BROA and budget-extracting BDFPA are given by (13), (14), (15), and (16) respectively.
Therefore, in any BROA with �̃� (1) , there is some budget-extracting BDFPA with �̃� (2) , such that for the any buyer’s utilities and the seller’s
revenues are the same in the two auctions.

From eBDFPA to BROA. In this part, we show that for any budget-extracting BDFPA with �̃� (2) , there is some BROA with �̃� (1) , such that
every buyer’s revenue is identical in the two auctions.

For the mapping from �̃� (2) to �̃� (1) , we hope to have 𝜓 (1)
𝑖 = �̃�

(2)
𝑖 for any 1 ≤ 𝑖 ≤ 𝑛. In other words, we carefully pick �̃�

(1)
𝑖 such that for

any 𝑞𝑖 ∈ [0, 1], �̃� (1)𝑖 (𝑞𝑖 ) − (1 − 𝑞𝑖 )
(
�̃�
(1)
𝑖

)′
(𝑞𝑖 ) = �̃�

(2)
𝑖 (𝑞𝑖 ). The following lemma shows that such a function �̃�

(1)
𝑖 exists.

Lemma D.3. For each strictly increasing and differentiable function 𝑟 (𝑥) on [0, 1] that satisfies 0 < 𝑟 (1) ≤ 1 and
∫ 1
0 𝑟 (𝑥) d𝑥 ≥ 0, there exists

a non-negative, strictly increasing and differentiable function 𝑠 (𝑥) on [0, 1] such that 𝑟 (𝑥) = 𝑠 (𝑥) − (1 − 𝑥)𝑠′ (𝑥) and 𝑠 (𝑥) ≤ 1 hold for any
𝑥 ∈ [0, 1]. Meanwhile, inverse Lipschitz continuity is also kept under the mapping.

PRoof of Lemma D.3. We define the function 𝑠 (𝑥) as follows: 𝑠 (1) = 𝑟 (1), and when 𝑥 < 1, 𝑠 (𝑥) = (
∫ 1
𝑥 𝑟 (𝑧) d𝑧)/(1 − 𝑥). Since 𝑟 (𝑧) ≤ 1

for 𝑡 ∈ [0, 1], 𝑠 (𝑥) ≤ 1 for each 𝑥 . Further, differentiability of 𝑠 holds naturally. We now show that 𝑠 satisfies that 𝑟 (𝑥) = 𝑠 (𝑥) − (1− 𝑥)𝑠′ (𝑥)
for any 𝑥 ∈ [0, 1]. In fact, the equality obviously holds when 𝑥 = 1, and when 𝑥 < 1, we have

𝑠 (𝑥) − (1 − 𝑥)𝑠′ (𝑥) =
∫ 1
𝑥 𝑟 (𝑧) d𝑧
1 − 𝑥

− (1 − 𝑥) ©«
∫ 1
𝑥 𝑟 (𝑧) d𝑧
1 − 𝑥

ª®¬
′

=

∫ 1
𝑥 𝑟 (𝑧) d𝑧
1 − 𝑥

− (1 − 𝑥) ©«
−𝑟 (𝑥)(1 − 𝑥) +

∫ 1
𝑥 𝑟 (𝑧) d𝑧

(1 − 𝑥)2
ª®¬ = 𝑟 (𝑥) .

Further, 𝑠 (𝑥) = (
∫ 1
𝑥 𝑟 (𝑧) d𝑧)/(1 − 𝑥) is non-negative and strictly increasing on [0, 1], which establishes as 𝑟 (𝑧) is strictly increasing and∫ 1

0 𝑟 (𝑥) d𝑥 ≥ 0.
It remains to show that 𝑠 is inverse Lipschitz continuous when 𝑟 is. To see this, we do a derivation on 𝑠 ,

𝑠′ (𝑥) = ©«
∫ 1
𝑥 𝑟 (𝑧) d𝑧
1 − 𝑥

ª®¬
′

=
−𝑟 (𝑥) (1 − 𝑥) +

∫ 1
𝑥 𝑟 (𝑧) d𝑧

(1 − 𝑥)2
=

∫ 1
𝑥

(𝑟 (𝑧) − 𝑟 (𝑥)) d𝑧
(1 − 𝑥)2

.

By strict monotonicity and inverse Lipschitz continuity of 𝑟 , there exists a positive constant 𝐿, such that 𝑟 (𝑧) − 𝑟 (𝑥) ≥ 𝐿(𝑡 − 𝑥) for any
0 ≤ 𝑧 < 𝑥 ≤ 1. Therefore,

𝑠′ (𝑥) =
∫ 1
𝑥

(𝑟 (𝑧) − 𝑟 (𝑥)) d𝑧
(1 − 𝑥)2

≥ 𝐿 ·
∫ 1
𝑥

(𝑧 − 𝑥) d𝑧
(1 − 𝑥)2

= 𝐿/2 > 0,

which indicates that 𝑠 is inverse Lipschitz continuous as well. □
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Lemma D.3 demonstrates the feasibility of �̃� (1)𝑖 . Now we let𝜸 = 𝜶 e with the latter a budget-extracting tuple for BDFPA. By the mapping,
we have ∫

𝒒−𝑖
Φ𝑖 (𝜸 , �̃� (1) , 𝒒) d𝒒−𝑖 =

∫
𝒒−𝑖

Φ𝑖 (𝜶 e, �̃� (2) , 𝒒) d𝒒−𝑖 .

Further, since 𝜓 (1)
𝑖 = �̃�

(2)
𝑖 , 𝜸 is feasible for (11). Therefore, by Lemma C.2, 𝜸 is optimal for programming (3). As a result, by (13), (14), (15),

and (16), the proof of this direction is finished.
Synthesizing the above two parts, we finish the proof of the essential theorem.

D.3 Proof of Theorem 4.3
To prove the theorem, we first show that for BROA, any buyer 𝑖’s bidding strategy is equivalent to one with non-negative virtual values on
[0, 1]. Hence, we can reduce our discussion to “well-behaved” BROA instances and apply Lemma 4.1 to finish the proof. On this side, we
have the following lemma.

Lemma D.4. In BROA, given that each buyer’s virtual bidding function is strictly increasing and differentiable, then each buyer 𝑖’s bidding
strategy is equivalent to a bidding strategy with non-negative virtual values on [0, 1] regardless of other buyers’ strategies. The same result also
holds when the virtual bidding function is further constrained to be inverse Lipschitz continuous.

PRoof of Lemma D.4. We only need to consider the case when a buyer’s virtual bidding strategy is negative at some interval. In this case,
we use the “lifting” technique as considered in Lemma D.2 to map her virtual bidding function to another non-negative function, keeping
the properties of strict monotonicity, differentiability, and inverse Lipschitz continuity. As shown in Lemma D.3, the constructed function
is a valid virtual bidding function. Clearly, these two functions are equivalent to the buyer in BROA since they coincide when the virtual
value is above 𝜆/2. □

With Lemma D.4, we can only consider BROA instances with positive virtual valuations. Consequently, we can construct the mappings
for strong strategic equivalence as follows:

• For a bidding strategy �̃� in BROA, let 𝑔(�̃�) (𝑥) = �̃� (𝑥) − (1 − 𝑥)�̃� ′ (𝑥).
• For a bidding strategy �̃� in eBDFPA, let ℎ(�̃�) (𝑥) = (

∫ 1
𝑥 �̃� (𝑧) d𝑧)/(1 − 𝑥).

By the proof of Theorem 4.2, we can derive that 𝑔 and ℎ construct the strong strategic equivalence mappings under the assumptions.
In addition, by Lemma D.3 and Newton-Leibniz theorem, we obtain that 𝑔 and ℎ are inverse functions of each other. Therefore, applying
Lemma 4.1, we finish the proof of the theorem.

D.4 Proof of Theorem 4.4
To start the proof, we first show that in the symmetric case, each of the four auction mechanisms we consider admits a symmetric budget-
extracting tuple.This result, given in Lemma D.5, sets a preliminary for the theorem.We also notice the cases for BDSPA and PSPA complete
the last part of Theorem 3.1.

LemmaD.5. In the symmetric case, and when each buyer’s bidding qf is inverse Lipschitz continuous, there is a corresponding symmetric budget-
extracting multiplier tuple for BDFPA, PFPA, BDSPA, and PSPA. Further, for PSPA, committing to a budget-extracting mechanism maximizes the
seller’s revenue among all symmetric PSPA mechanisms.

PRoof of Lemma D.5. We prove the results for these four mechanisms one by one. For simplicity, we suppose that all buyers’ common
bidding qf is �̃�0, and their common budget is 𝝆0.

For BDFPA and PFPA. We prove this by contradiction. ByTheorem A.1, there exists a maximum budget-extracting tuple 𝜶max for BDFPA.
Suppose otherwise 𝜶max is not symmetric. Then again by Theorem A.1 and symmetry, (max(𝜶max))𝑛 is also budget-extracting, which
contradicts the optimality of 𝜶max. The case for PFPA is similar concerning Theorem A.3.

For BDSPA. Under the given conditions, when the multiplier tuple is symmetric (suppose, to be (𝜇0)𝑛), the payment of each buyer is the
following:

𝑝BDS ((𝜇0)𝑛, �̃�0) =
∫
[0,1]𝑛

max
𝑖′≠𝑖

{
�̃�0 (𝑞𝑖′ ),

𝜆

𝜇0

}
· Φ𝑖 ((𝜇0)𝑛, �̃�0, 𝒒) d𝒒,

which certainly, is an increasing Lipschitz continuous function of 𝜇0 when 𝜇0 > 𝜆/�̃�0 (1) > 0. Therefore, if sup{𝑝BDS ((𝜇0)𝑛, �̃�0) | 𝜇0 ∈
[0, 1]} < 𝜌0, then by definition, 1𝑛 is the unique symmetric budget-extracting tuple. Otherwise, there exists some 0 < 𝜇∗0 < 1 such that
𝑝BDS ((𝜇0)𝑛, �̃�0) = 𝜌0 by continuity, from which we derive that (𝜇∗0)

𝑛 is a symmetric budget-extracting tuple.
17
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For PSPA. At last, for PSPA, we notice that with symmetric multipliers (𝜉0)𝑛 , the payment of each buyer is

𝑝PS ((𝜉0)𝑛, �̃�0) =
∫
[0,1]𝑛

max
𝑖′≠𝑖

{𝜉0�̃�0 (𝑞𝑖′ ), 𝜆} · Φ𝑖 ((𝜉0)𝑛, �̃�0, 𝒒) d𝒒,

and is increasingly Lipschitz continuous on 𝜉0. Therefore, if 𝑝PS (1) < 𝜌0, then by definition, 1𝑛 is the unique symmetric budget-extracting
tuple. Otherwise, there exists some 0 < 𝜉∗0 < 1 such that 𝑝PS (𝜉∗0 , �̃�0) = 𝜌0 by continuity, which indicates that (𝜉∗0)

𝑛 is a budget-extracting
tuple.

Further, the seller’s expected revenue under PSPA is:

𝑤PS ((𝜉0)𝑛, �̃�0) =
𝑛∑
𝑖=1

(∫ 1

0

(
max
𝑖′≠𝑖

{𝜉0�̃�0 (𝑞𝑖′ ), 𝜆} − 𝜆

)
·
(∫

𝒒−𝑖
Φ𝑖 ((𝜉0)𝑛, �̃�0, 𝒒) d𝒒−𝑖

)
d𝑞𝑖

)
. (17)

Clearly, this is an increasing function of 𝜉0. Combining that the payment function is also increasing of 𝜉0, we derive that a budget-extracting
symmetric PSPA maximizes the seller’s revenue among all symmetric PSPAs.

Here, we should mention that the results for PFPA are also given in Balseiro et al. [3]. □

For the rest of the proof, we mainly focus on two parts, respectively, on the strategic equivalence between eBDFPA and ePFPA, and
between eBDFPA and eBDSPA. The case between ePFPA and ePSPA is similar to the latter, which we omit. Therefore, we are reduced to the
following two theorems.

Theorem D.6. In the symmetric case, when all buyers’ identical bidding qf is inverse Lipschitz continuous, under the symmetric budget-
extracting parameter vector, eBDFPA and ePFPA are strategically equivalent.

Theorem D.7. In the symmetric case, when all buyers’ identical bidding qf is inverse Lipschitz continuous, under the symmetric budget-
extracting parameter vector, eBDFPA and eBDSPA are strategically equivalent.

We prove the above two theorems in sequence.

PRoof of TheoRem D.6. We let the common bidding qf in eBDFPA be �̃� (2)0 , and the counterpart of PFPA be �̃� (3)0 . Meanwhile, we let some
budget-extracting tuple of BDFPA and PFPA be respectively 𝜶 e = (𝛼0)𝑛 and 𝜷e = (𝛽0)𝑛 . Further, let the common value qf be 𝑣0. Similar to
the proof of Theorem 4.2, we give the expected utility of any buyer under both auction mechanisms in the following:

𝑢eBDF ((𝛼0)𝑛, �̃� (2)0 , 𝑣0) =
∫ 1

0

(
𝑣0 (𝑞𝑖 ) − �̃�

(2)
0 (𝑞𝑖 )

)
·
(∫

𝒒−𝑖
Φ𝑖 ((𝛼0)𝑛, �̃� (2)0 , 𝒒) d𝒒−𝑖

)
d𝑞𝑖 . (18)

𝑢ePF ((𝛽0)𝑛, �̃� (3)0 , 𝑣0) =
∫ 1

0

(
𝑣0 (𝑞𝑖 ) − 𝛽0�̃�

(3)
0 (𝑞𝑖 )

)
·
(∫

𝒒−𝑖
Φ𝑖 ((𝛽0)𝑛, �̃� (3)0 , 𝒒) d𝒒−𝑖

)
d𝑞𝑖 . (19)

Further, the seller’s expected revenue in these two mechanisms are correspondingly the following:

𝑤eBDF ((𝛼0)𝑛, �̃� (2)0 ) =
𝑛∑
𝑖=1

(∫ 1

0

(
�̃�
(2)
0 (𝑞𝑖 ) − 𝜆

)
·
(∫

𝒒−𝑖
Φ𝑖 ((𝛼0)𝑛, �̃� (2)0 , 𝒒) d𝒒−𝑖

)
d𝑞𝑖

)
. (20)

𝑤ePF ((𝛽0)𝑛, �̃� (3)0 ) =
𝑛∑
𝑖=1

(∫ 1

0

(
𝛽0�̃�

(3)
0 (𝑞𝑖 ) − 𝜆

)
·
(∫

𝒒−𝑖
Φ𝑖 ((𝛽0)𝑛, �̃� (3)0 , 𝒒) d𝒒−𝑖

)
d𝑞𝑖

)
. (21)

From eBDFPA to ePFPA. For this part, if 𝛼0 = 1, then by the budget constraints of BDFPA and PFPA, 𝜷 = 1𝑛 is also feasible for PFPA with
�̃� (3)0 = �̃� (2)0 . As a result, under the identical mapping from �̃� (2)0 to �̃� (3)0 , we have 𝛽0 = 1, and the two mechanisms are essentially the same.
Buyers’ expected utility and the seller’s expected revenue face no change naturally under the mapping.

We now consider the more general case with 𝛼0 < 1. Our intuition is to “raise” the right part of �̃� (2)0 to construct �̃� (3)0 . However, we have
to maintain that �̃� (3)0 (1) ≤ 1, therefore, it could be impossible to keep 𝛽0 = 𝛼0, but rather have 𝛽0 close to 1.

By definition of budget-extracting, each buyer exhausts her budget under (𝛼0)𝑛 . Therefore, we can define 𝑞0 ∈ [0, 1] as 𝑞0 B inf{𝑥 ∈
[0, 1] | �̃� (2)0 (𝑥) ≥ 𝜆/𝛼0}.

Thus, the expected payment of any buyer 𝑖 satisfies that

𝑝eBDF ((𝛼0)𝑛, �̃� (2)0 ) =
∫ 1

0
�̃�
(2)
0 (𝑞𝑖 ) ·

(∫
𝒒−𝑖

Φ𝑖 ((𝛼0)𝑛, �̃� (2)0 , 𝒒) d𝒒−𝑖
)
d𝑞𝑖

=
∫ 1

𝑞0
�̃�
(2)
0 (𝑥) · 𝑥𝑛−1 d𝑥 = 𝜌0 . (22)

Since 𝜆 < 𝜆/𝛼0 ≤ �̃�0 (𝑥) ≤ 1 on [𝑞0, 1], we directly derive by strict monotonicity and inverse Lipschitz continuity that

𝜆 ·
1 − 𝑞𝑛0
𝑛

< 𝜌0 <
1 − 𝑞𝑛0
𝑛

.
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Now, we take 𝜆 < 𝛽0 < 1 such that 𝜌0/𝛽0 < (1 − 𝑞𝑛0 )/𝑛, and we use different ways to construct the function basing on the value of 𝜌0.
Concretely, we let

𝑡0 (𝛽0, 𝑞0) B 𝛽0 ·
∫ 1

𝑞0

(
1 − 𝜆/𝛽0
1 − 𝑞0

· 𝑥 + 𝜆/𝛽0 − 𝑞0
1 − 𝑞0

)
𝑥𝑛−1 d𝑥 .

Case 1: 𝑡0 (𝛽0, 𝑞0) < 𝜌0 < 𝛽0 (1 − 𝑞𝑛0 )/𝑛. For this case, for 𝑎 ∈ [0, 1], we let

𝑦0 (𝑎) B 𝛽0 ·
∫ 1

𝑞0

((
1 − 𝜆

𝛽0

) (
𝑥 − 𝑞0
1 − 𝑞0

)𝑎
+ 𝜆

𝛽0

)
𝑥𝑛−1 d𝑥,

which is a continuous and strictly decreasing function on [0, 1]. Notice that 𝑦0 (0) = 𝛽0 · (1 − 𝑞𝑛0 )/𝑛 and 𝑦0 (1) = 𝑡0 (𝛽0, 𝑞0), then by
intermediate value theorem, there exists 𝑎∗ ∈ (0, 1) such that 𝑦0 (𝑎∗) = 𝜌0. And we define

�̃�
(3)
0 (𝑥) =

{
𝑎1 · exp{𝑎2𝑥} 0 ≤ 𝑥 < 𝑞0,

(1 − 𝜆/𝛽0) · ((𝑥 − 𝑞0)/(1 − 𝑞0))𝑎
∗ + 𝜆/𝛽0 𝑞0 ≤ 𝑥 ≤ 1,

where 𝑎1 = 𝜆/𝛽0 · exp{−𝑘∗𝛽0𝑞0/𝜆}, 𝑎2 = 𝑘∗𝛽0/𝜆, and 𝑘∗ > 0 is the right derivative of (1 − 𝜆/𝛽0) · ((𝑥 − 𝑞0)/(1 − 𝑞0))𝑎
∗ + 𝜆/𝛽0 on 𝑥 = 𝑞0.

Feasibility, strict monotonicity, differentiability, and inverse Lipschitz continuity naturally follow. Further, we note that �̃� (3)0 (𝑞0) = 𝜆/𝛽0,
and ∫ 1

𝑞0
𝛽0�̃�

(3)
0 (𝑥)𝑥𝑛−1 d𝑥 = 𝑦0 (𝑎∗) = 𝜌0 .

Case 2: 𝜆(1 − 𝑞𝑛0 )/𝑛 < 𝜌0 ≤ 𝑡0 (𝛽0, 𝑞0). For this case, for 𝑘∈ [0, (1 − 𝜆/𝛽0)/(1 − 𝑞0)], we let

𝑧0 (𝑘) B 𝛽0

∫ 1

𝑞0

(
𝑘 (𝑥 − 𝑞0) +

𝜆

𝛽0

)
𝑥𝑛−1 d𝑥,

which is continuous and strictly increasing on [0, (1−𝜆/𝛽0)/(1−𝑞0)]. Since 𝑧0 (0) = 𝜆(1−𝑞𝑛0 ) and 𝑧0 (1−𝜆/𝛽0)/(1−𝑞0) = 𝑡0 (𝛽0, 𝑞0), there
exists 𝑘∗ ∈ (0, (1 − 𝜆/𝛽0)/(1 − 𝑞0)] such that 𝑧0 (𝑘∗) = 𝜌0. We therefore let

�̃�
(3)
0 (𝑥) =

{
𝑎1 · exp{𝑎2𝑥} 0 ≤ 𝑥 < 𝑞0,

𝑘∗ (𝑥 − 𝑞0) + 𝜆/𝛽0 𝑞0 ≤ 𝑥 ≤ 1,

where 𝑎1 = 𝜆/𝛽0 · exp{−𝑘∗𝛽0𝑞0/𝜆}, 𝑎2 = 𝑘∗𝛽0/𝜆. Similarly, feasibility, strict monotonicity, differentiability, and inverse Lipschitz continuity
hold. Further, we still have �̃� (3)0 (𝑞0) = 𝜆/𝛽0, and ∫ 1

𝑞0
𝛽0�̃�

(3)
0 (𝑥)𝑥𝑛−1 d𝑥 = 𝑦0 (𝑎∗) = 𝜌0 .

For both two cases, we derive that 𝛽0 is the budget-extractingmultiplier for PFPA under �̃� (3)0 , and each buyer exhausts her budget. Further,
notice that for each 1 ≤ 𝑖 ≤ 𝑛,

Φ𝑖 ((𝛼0)𝑛, �̃� (2)0 , 𝒒) = Φ𝑖 ((𝛽0)𝑛, �̃� (3)0 , 𝒒),
since either of them equals 1 if and only if 𝑞𝑖 = max 𝒒 and 𝑞𝑖 ≥ 𝑞0. Combining with (18), (19), (20), and (21), the proof of this side is finished.

From ePFPA to eBDFPA. The proof of this side is similar. To start with, the case of 𝛽0 = 1 is almost the same to the other side we have
already discussed, and we now suppose 𝛽0 < 1. Let 𝑞0 B inf{𝑥 ∈ [0, 1] | �̃� (3)0 (𝑥) ≥ 𝜆/𝛽0} ∈ [0, 1], which should not be confused with the
𝑞0 defined in the previous part. Since 𝛽0 < 1 and every buyer’s budget is binding, the expected payment of each buyer satisfies

𝑝ePF ((𝛽0)𝑛, �̃� (3)0 ) =
∫ 1

0
𝛽0�̃�

(3)
0 (𝑞𝑖 ) ·

(∫
𝒒−𝑖

Φ𝑖 (𝛽e, �̃� (3)0 , 𝑞) d𝒒−𝑖
)
d𝑞𝑖

=
∫ 1

𝑞0
𝛽0�̃�

(3)
0 (𝑥) · 𝑥𝑛−1 d𝑥 = 𝜌0 . (23)

By strict monotonicity and inverse Lipschitz continuity, we have

𝜆 ·
1 − 𝑞𝑛0
𝑛

= 𝜆

∫ 1

𝑞0
𝑥𝑛−1 d𝑥 < 𝜌0 <

∫ 1

𝑞0
𝑥𝑛−1 d𝑥 =

1 − 𝑞𝑛0
𝑛

.

We now let

𝑡1 (𝛽0, 𝑞0) B
∫ 1

𝑞0

(
1 − 𝜆/𝛽0
1 − 𝑞0

· 𝑥 + 𝜆/𝛽0 − 𝑞0
1 − 𝑞0

)
𝑥𝑛−1 d𝑥,
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which sets the threshold for 𝜌0, and we similarly construct function �̃�
(2)
0 for two different cases like the previous part, with

𝑦1 (𝑎) B
∫ 1

𝑞0

((
1 − 𝜆

𝛽0

) (
𝑥 − 𝑞0
1 − 𝑞0

)𝑎
+ 𝜆

𝛽0

)
𝑥𝑛−1 d𝑥,

and

𝑧1 (𝑘) B
∫ 1

𝑞0

(
𝑘 (𝑥 − 𝑞0) +

𝜆

𝛽0

)
𝑥𝑛−1 d𝑥 .

Under a similar reasoning, we can derive that 𝛽0 makes an eBDFPA, i.e., 𝛼0 = 𝛽0, and the interim allocation function is the same for these
two auctions. Again by (18), (19), (20), and (21), the proof of this part is also done.

By combining the two directions, we finish the proof of the theorem. □

PRoof of TheoRem D.7. Following previous notations, we let the identical bidding qf of all buyers in BDFPA be �̃� (2)0 , and the counterpart
for BDSPA be �̃� (4)0 . Further, for BDFPA, let the maximum symmetric budget-extracting parameter tuple be 𝜶 e = (𝛼0)𝑛 ; while for BDSPA,
let the symmetric budget-extracting multiplier vector be 𝝁e = (𝜇0)𝑛 . Further, let the common value qf be 𝑣0. We now present any buyer’s
expected utility and the seller’s expected revenue under eBDSPA in the following. Note that (18) and (20) already gave these two values for
eBDFPA.

𝑢eBDS ((𝜇0)𝑛, �̃� (4)0 , 𝑣0) =
∫ 1

0

(
𝑣0 (𝑞𝑖 ) −max

𝑖′≠𝑖

{
�̃�
(4)
0 (𝑞𝑖′ ),

𝜆

𝜇0

})
·
(∫

𝒒−𝑖
Φ𝑖 ((𝜇0)𝑛, �̃� (4)0 , 𝒒) d𝒒−𝑖

)
d𝑞𝑖 . (24)

𝑤eBDS ((𝜇0)𝑛, �̃� (4)0 ) =
𝑛∑
𝑖=1

(∫ 1

0

(
max
𝑖′≠𝑖

{
�̃�
(4)
0 (𝑞𝑖′ ),

𝜆

𝜇0

}
− 𝜆

)
·
(∫

𝒒−𝑖
Φ𝑖 ((𝜇0)𝑛, �̃� (4)0 , 𝒒) d𝒒−𝑖

)
d𝑞𝑖

)
. (25)

The rest of the proof, i.e., the construction part, largely simulates the proof of Theorem D.6.

From eBDSPA to eBDFPA. For this part, we will give a mapping from �̃�
(4)
0 to �̃� (2)0 meanwhile guaranteeing that 𝛼0 = 𝜇0. Nevertheless, we

first deal with extreme cases when 𝜇0 = 1 and �̃�
(4)
0 (1) ≤ 𝜆, which means that the item is never allocated. In this scenario, let �̃� (2)0 = �̃�

(4)
0

suffices, as any buyer’s utility and the seller’s revenue in both auctions are always zero.
Now we let 𝑞0 := inf{𝑥 ∈ [0, 1] | �̃� (4)0 (𝑥) ≥ 𝜆/𝜇0} ∈ [0, 1]. Such 𝑞0 exists since the payment of each buyer is non-zero by the definition

of budget-extracting. We first write the payment of buyers in BDSPA, which is

𝑝eBDS ((𝜇0)𝑛, �̃� (4)0 ) =
∫
[0,1]𝑛

max
𝑖′≠𝑖

{
�̃�
(4)
0 (𝑞𝑖′ ),

𝜆

𝜇0

}
· Φ𝑖 ((𝜇0)𝑛, �̃� (4) , 𝒒) d𝒒

=
∫ 1

𝑞0

(
𝜆

𝜇0
𝑞𝑛−10 +

∫ 𝑥

𝑞0
�̃�
(4)
0 (𝑧) (𝑛 − 1)𝑧𝑛−2 d𝑧

)
d𝑥 (26)

>

∫ 1

𝑞0

(
𝜆

𝜇0
𝑞𝑛−10 +

∫ 𝑥

𝑞0

𝜆

𝜇0
(𝑛 − 1)𝑧𝑛−2 d𝑧

)
d𝑥

=
∫ 1

𝑞0

𝜆

𝜇0
𝑥𝑛−1 d𝑥 =

𝜆

𝜇0
·
1 − 𝑞𝑛0
𝑛

> 𝜆 ·
1 − 𝑞𝑛0
𝑛

.

Here, the second equality follows by considering the second-max discounted value when the max value is fixed. The inequality holds since
�̃�
(4)
0 is strictly increasing and inverse Lipschitz continuous. Further, we have

𝑝eBDS ((𝜇0)𝑛, �̃� (4)0 ) =
∫ 1

𝑞0

(
𝜆

𝜇0
𝑞𝑛−10 +

∫ 𝑥

𝑞0
�̃�
(4)
0 (𝑧) (𝑛 − 1)𝑧𝑛−2 d𝑧

)
d𝑥

<

∫ 1

𝑞0

(
𝑞𝑛−10 +

∫ 𝑥

𝑞0
(𝑛 − 1)𝑧𝑛−2 d𝑧

)
d𝑥

=
1 − 𝑞𝑛0
𝑛

.

The inequality is due to 𝜇0 ≥ 𝜆. Therefore,

𝜆 ·
1 − 𝑞𝑛0
𝑛

< 𝑝eBDS ((𝜇0)𝑛, �̃� (4)0 ) <
1 − 𝑞𝑛0
𝑛

.

With the above inequality, we can now construct �̃� (2)0 as the construction from ePFPA to eBDFPA in the proof of Theorem D.6 by replacing
𝛽0 there with 𝜇0 and 𝜌0 with 𝑝eBDS ((𝜇0)𝑛, �̃� (4)0 ). We should notice here that 𝑝eBDS ((𝜇0)𝑛, �̃� (4)0 ) = 𝜌0 may not establish as it is possible that
each buyer does not exhaust her budget even with 𝜇0 = 1. The reasoning part also inherits from the previous proof by showing 𝛼0 = 𝜇0 and
considering (18), (24), (20), and (25).
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From eBDFPA to eBDSPA. For this part, we also first deal with the special case that 𝛼0 = 1 and �̃�
(2)
0 (1) ≤ 𝜆. Under this case, we take

�̃�
(4)
0 = �̃�

(2)
0 , therefore, the expected payment of any buyer in either BDSPA or BDFPA is zero. As a result, the revenue of the seller stays at

zero as well.
In the more general case, we let 𝑞0 := inf{𝑥 ∈ [0, 1] | �̃� (2)0 (𝑥) ≥ 𝜆/𝛼0} ∈ [0, 1], which exists by the definition of budget-extracting.

Therefore, we have

𝑝eBDF ((𝛼0)𝑛, �̃� (2)0 ) =
∫ 1

𝑞0
�̃�
(2)
0 (𝑥) · 𝑥𝑛−1 d𝑥,

and

𝜆 ·
1 − 𝑞𝑛0
𝑛

< 𝑝eBDF ((𝛼0)𝑛, �̃� (2)0 ) <
1 − 𝑞𝑛0
𝑛

.

Thus, we let the threshold be

𝑡2 (𝛼0, 𝑞0) B
∫ 1

𝑞0

(
𝜆

𝛼0
𝑞𝑛−10 +

∫ 𝑥

𝑞0

(
1 − 𝜆/𝛼0
1 − 𝑞0

· 𝑧 + 𝜆/𝛼0 − 𝑞0
1 − 𝑞0

)
(𝑛 − 1)𝑧𝑛−1 d𝑧

)
d𝑥,

and for two cases, the functions used for construction become

𝑦2 (𝑎) B
∫ 1

𝑞0

(
𝜆

𝛼0
𝑞𝑛−10 +

∫ 𝑥

𝑞0

((
1 − 𝜆

𝛼0

) (
𝑧 − 𝑞0
1 − 𝑞0

)𝑎
+ 𝜆

𝛼0

)
(𝑛 − 1)𝑧𝑛−1 d𝑧

)
d𝑥,

and

𝑧2 (𝑘) B
∫ 1

𝑞0

(
𝜆

𝛼0
𝑞𝑛−10 +

∫ 𝑥

𝑞0

(
𝑘 (𝑥 − 𝑞0) +

𝜆

𝛼0

)
(𝑛 − 1)𝑧𝑛−1 d𝑧

)
d𝑥 .

Under similar constructions, we see that (𝛼0)𝑛 is a budget-extracting multiplier for BDSPA with �̃� (4)0 . In fact, when 𝛼0 = 1, the budget-
extracting condition naturally holds. When 𝛼0 < 1, (𝛼0)𝑛 exhausts each buyer’s budget. Therefore, the proof for this side is done, and we
finish the proof of the theorem. □

Remark D.1. By comparing the expected payment of a buyer in BDFPA and BDSPA, an appealing approach to prove the theorem is to take
𝛼0 = 𝜇0, the effective quantile of both auctions start at an identical 𝑞0, and to have when 𝑥 ≥ 𝑞0,

�̃�
(2)
0 (𝑥) · 𝑥𝑛−1 = 𝜆

𝜇0
𝑞𝑛−10 +

∫ 𝑥

𝑞0
�̃�
(4)
0 (𝑧) (𝑛 − 1)𝑧𝑛−2 d𝑧.

This seems to be an elegant solution, with �̃�
(2)
0 being a continuous weighted average of �̃� (4)0 . However, this idea does not work. The

reason is that the above mapping from �̃�
(4)
0 to �̃� (2)0 would lose the inverse Lipschitz continuity, as the derivative of �̃� (2)0 at 𝑞0 would be zero.

On the other side, the mapping from �̃�
(2)
0 to �̃�

(4)
0 would even lose the strict monotonicity. As a result, we have to adopt the methodology

we use in the proof of Theorem D.7.

E PROOFS IN SECTION A.1
E.1 Proof of Theorem A.1
The theorem is proved in steps. First, we characterize some essential properties of bid-discount in the first-price auction. Then we prove the
five statements in the theorem in order.

We come to some basic features of the bid-discount method in first-price auctions. To start with, obviously, given buyers’ bidding qf
profile �̃� = (�̃�𝑖 )1≤𝑖≤𝑛 and budget profile (𝜌𝑖 )1≤𝑖≤𝑛 , notice that MBDF (0) must be a feasible bid-discount mechanism, in which the item is
never assigned and each buyer’s payment is zero. Thus there exists a tuple of bid-discount multipliers 𝜶 such that MBDF (𝜶 ) is a feasible
bid-discount mechanism.

We now show that when a buyer’s bid-discount multiplier slightly increases, her expected payment does not increase too much.

Lemma E.1. There exists a constant𝐶 which satisfies the following: For any 𝜶 = (𝛼1, . . . , 𝛼𝑛) and 1 ≤ 𝑖 ≤ 𝑛 such that 𝛼𝑖 < 1, let 𝜶 ′ = 𝜶 +𝛿𝒆𝑖
where 0 < 𝛿 ≤ 1 − 𝛼𝑖 and 𝒆𝑖 is the vector with the 𝑖-th entry one and all other entries zero. Then the expected payment of buyer 𝑖 in MBDF (𝜶 ′)
is at most the expected payment of buyer 𝑖 in MBDF (𝜶 ) plus 𝐶𝛿 .

Beforewe prove the lemma, some preparations are required.We define𝐺𝜶 ,𝑖 be the cumulative distribution function ofmax𝑖′≠𝑖 {𝛼𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆}
when 𝒒−𝑖 is chosen uniformly in [0, 1]𝑛−1. Then,

Lemma E.2. For any 𝜶 ∈ [0, 1]𝑛 , we have:
• 𝐺𝜶 ,𝑖 (·) is zero on [0, 𝜆).
• 𝜆 is the only possible discontinuous point of 𝐺𝜶 ,𝑖 (·).
• If 𝐺𝜶 ,𝑖 (𝜆) < 1, then 𝐺𝜶 ,𝑖 (·) is Lipschitz continuous on [𝜆, +∞).
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PRoof of Lemma E.2. Let �̂� B max𝑖′≠𝑖 {𝛼𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆} be a random variable when 𝒒−𝑖 is uniformly drawn from [0, 1]𝑛−1. The only non-
trivial part is the third part, which is to show the Lipschitz continuity when �̂� ≥ 𝜆. For any buyer 𝑖′ ≠ 𝑖 , since her bidding cdf 𝐹𝑖′ (·) is
Lipschitz continuous, there exists a constant 𝐶𝑖′ such that for any �̃�

(1)
𝑖′ and �̃� (2)𝑖′ , we have���𝐹𝑖′ (�̃� (1)𝑖′ ) − 𝐹𝑖′ (�̃� (2)𝑖′ )

��� ≤ 𝐶𝑖′
���̃𝑣 (1)𝑖′ − �̃�

(2)
𝑖′

��� .
Since �̃�𝑖′ (𝑞𝑖′ ) is upper bounded (say, by 𝑣𝑖′ ) for any 1 ≤ 𝑖′ ≤ 𝑛, there exists a constant 𝛿𝑖′ > 0 for each 𝑖′ such that 𝛿𝑖′ · 𝑣𝑖′ < 𝜆. Now let

𝜆 ≤ �̂� (1) < �̂� (2) . Clearly, since 𝐺𝜶 ,𝑖 (𝜆) < 1, there exists at least one 𝑖′ ≠ 𝑖 such that 𝛼𝑖′ > 𝛿𝑖′ . Then we have���𝐺𝜶 ,𝑖 (�̂� (1) ) −𝐺𝜶 ,𝑖 (�̂� (2) )
��� = ������ ∏

𝑖′≠𝑖,𝛼𝑖′>𝛿𝑖′

𝐹𝑖′ (�̂� (1)/𝛼𝑖′ ) −
∏

𝑖′≠𝑖,𝛼𝑖′>𝛿𝑖′

𝐹𝑖′ (�̂� (2)/𝛼𝑖′ )

������
≤

∑
𝑖′≠𝑖,𝛼𝑖′>𝛿𝑖′

���𝐹𝑖′ (�̂� (1)/𝛼𝑖′ ) − 𝐹𝑖′ (�̂� (2)/𝛼𝑖′ )
���

≤ ©«
∑

𝑖′≠𝑖,𝛼𝑖′>𝛿𝑖′

𝐶𝑖′/𝛼𝑖′ª®¬ ·
���̂𝑣 (1) − �̂� (2)

���
≤

(∑
𝑖′≠𝑖

𝐶𝑖′/𝛿𝑖′
)
·
���̂𝑣 (1) − �̂� (2)

���
Here, the first inequality is because of 𝐹𝑖′ is no greater than 1 for any 𝑖′ ≠ 𝑖 . This shows that 𝐺𝜶 ,𝑖 is continuous with Lipschitz constant
𝐶𝑖 B

∑
𝑖′≠𝑖 𝐶𝑖′/𝛿𝑖′ on the right side of 𝜆, and the proof is finished. □

Now, we come back to prove Lemma E.1.

PRoof of Lemma E.1. Recall that by definition, the expected payment of buyer 𝑖 in MBDF (𝜶 ) is∫ 1

0
�̃�𝑖 (𝑞𝑖 ) ·

(∫
𝒒−𝑖

𝐼

[
𝛼𝑖 �̃�𝑖 (𝑞𝑖 ) ≥ max

𝑖′≠𝑖
{𝛼𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆}

]
d𝒒−𝑖

)
d𝑞𝑖 .

Similarly, the expected payment of buyer 𝑖 in MBDF (𝜶 ′) is∫ 1

0
�̃�𝑖 (𝑞𝑖 ) ·

(∫
𝒒−𝑖

𝐼

[
(𝛼𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 ) ≥ max

𝑖′≠𝑖
{𝛼𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆}

]
d𝒒−𝑖

)
d𝑞𝑖 .

Note that

𝐼

[
(𝛼𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 ) ≥ max

𝑖′≠𝑖
{𝛼𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆}

]
= 𝐼

[
𝛼𝑖 �̃�𝑖 (𝑞𝑖 ) ≥ max

𝑖′≠𝑖
{𝛼𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆}

]
+ 𝐼

[
𝛼𝑖 �̃�𝑖 (𝑞𝑖 ) < max

𝑖′≠𝑖
{𝛼𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆} ≤ (𝛼𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 )

]
.

(27)

Thus the increment of buyer 𝑖’s expected payment after replacing 𝜶 with 𝜶 ′ is∫ 1

0
�̃�𝑖 (𝑞𝑖 ) ·

(∫
𝒒−𝑖

𝐼

[
𝛼𝑖 �̃�𝑖 (𝑞𝑖 ) < max

𝑖′≠𝑖
{𝛼𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆} ≤ (𝛼𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 )

]
d𝒒−𝑖

)
d𝑞𝑖 .

=
∫ 1

0
�̃�𝑖 (𝑞𝑖 ) ·

(
𝐺𝜶 ,𝑖 ((𝛼𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 )) −𝐺𝜶 ,𝑖 (𝛼𝑖 �̃�𝑖 (𝑞𝑖 ))

)
d𝑞𝑖 . (28)

By Lemma E.2, 𝐺𝜶 ,𝑖 (𝛿𝑖 �̃�𝑖 (𝑞𝑖 )) = 0 always holds for any 𝑞𝑖 ∈ [0, 1], where we recall that 𝛿𝑖 is defined as a constant such that 𝛿𝑖 · 𝑣𝑖 < 𝜆.
We use 𝛿𝑖 as a threshold to analyze the formula (28).

When 𝛼𝑖 ≥ 𝛿𝑖 , there are three parts which we analyze correspondingly, depending on whether 𝜆 lies in (𝛼𝑖 �̃�𝑖 (𝑞𝑖 ), (𝛼𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 )).
• (𝛼𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 ) ≤ 𝜆. Let 𝑞 be the minimum 𝑞𝑖 ≤ 1 such that (𝛼𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 ) ≤ 𝜆, if there exists, and 𝑞 B 1 otherwise. By monotonicity,

(𝛼𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 ) ≤ 𝜆 holds for any 𝑞 < 𝑞𝑖 ≤ 1. By Lemma E.2, we have
∫ 1
𝑞 �̃�𝑖 (𝑞𝑖 ) ·

(
𝐺𝜶 ,𝑖 ((𝛼𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 )) −𝐺𝜶 ,𝑖 (𝛼𝑖 �̃�𝑖 (𝑞𝑖 ))

)
d𝑞𝑖 = 0.

• 𝛼𝑖 �̃�𝑖 (𝑞𝑖 ) < 𝜆 < (𝛼𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 ). Let 𝑞 be the maximum 𝑞𝑖 ≥ 0 such that 𝛼𝑖 �̃�𝑖 (𝑞𝑖 ) ≥ 𝜆, if there exists, and 𝑞 B 0 otherwise. By
monotonicity, 𝛼𝑖 �̃�𝑖 (𝑞𝑖 ) ≤ 𝜆 holds for any 𝑞 ≤ 𝑞𝑖 < 1. Now, since �̃�𝑖 is upper bounded by 𝑣𝑖 and that 𝐹𝑖 (·) is continuous with
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Lipschitz constant 𝐶𝑖 , we derive that∫ 𝑞

𝑞
�̃�𝑖 (𝑞𝑖 ) ·

(
𝐺𝜶 ,𝑖 ((𝛼𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 )) −𝐺𝜶 ,𝑖 (𝛼𝑖 �̃�𝑖 (𝑞𝑖 ))

)
d𝑞𝑖 ≤ 𝑣𝑖 ·

(
𝑞 − 𝑞

)
≤ 𝑣𝑖 ·

(
𝐹𝑖 (𝜆/𝛼𝑖 ) − 𝐹𝑖 (𝜆/(𝛼𝑖 + 𝛿))

)
≤ 𝑣𝑖 ·𝐶𝑖 · (𝜆/𝛼𝑖 − 𝜆/(𝛼𝑖 + 𝛿))

≤ 𝑣𝑖 ·𝐶𝑖 ·
𝜆

𝛼2𝑖
· 𝛿.

Here, the first inequality holds since 𝐺𝜶 ,𝑖 is bounded by 1.
• 𝛼𝑖 �̃�𝑖 (𝑞𝑖 ) ≥ 𝜆. By monotonicity, 𝛼𝑖 �̃�𝑖 (𝑞𝑖 ) ≥ 𝜆 holds for any 0 ≤ 𝑞𝑖 < 𝑞. By Lemma E.2, we have∫ 𝑞

0
�̃�𝑖 (𝑞𝑖 ) ·

(
𝐺𝜶 ,𝑖 ((𝛼𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 )) −𝐺𝜶 ,𝑖 (𝛼𝑖 �̃�𝑖 (𝑞𝑖 ))

)
d𝑞𝑖

≤
∫ 𝑞

0
�̃�2𝑖 (𝑞𝑖 ) ·𝐶𝑖 · 𝛿 d𝑞𝑖 ≤ 𝑣2𝑖 ·𝐶𝑖 · 𝛿.

As a result, in this scenario, we have∫ 1

0
�̃�𝑖 (𝑞𝑖 ) ·

(
𝐺𝜶 ,𝑖 ((𝛼𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 )) −𝐺𝜶 ,𝑖 (𝛼𝑖 �̃�𝑖 (𝑞𝑖 ))

)
d𝑞𝑖

=

(∫ 𝑞

0
+
∫ 𝑞

𝑞
+
∫ 1

𝑞

) (̃
𝑣𝑖 (𝑞𝑖 ) ·

(
𝐺𝜶 ,𝑖 ((𝛼𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 )) −𝐺𝜶 ,𝑖 (𝛼𝑖 �̃�𝑖 (𝑞𝑖 ))

) )
d𝑞𝑖

≤ max

{
𝑣𝑖 ·𝐶𝑖 ·

𝜆

𝛼2𝑖
, 𝑣2𝑖 ·𝐶𝑖

}
· 𝛿 ≤ max

{
𝑣𝑖 ·𝐶𝑖 ·

𝜆

𝛿2𝑖
, 𝑣2𝑖 ·𝐶𝑖

}
· 𝛿.

In the case that 𝛼𝑖 < 𝛿𝑖 , since 𝛿𝑖 · 𝑣𝑖 < 𝜆, by Lemma E.2,𝐺𝜶 ,𝑖 (𝛿𝑖 �̃�𝑖 (𝑞𝑖 )) = 𝐺𝜶 ,𝑖 (𝛼𝑖 �̃�𝑖 (𝑞𝑖 )) always holds for any 𝑞𝑖 ∈ [0, 1]. Therefore, when
𝛿 ≤ 𝛿𝑖 , then the proof is finished, otherwise, notice that∫ 1

0
�̃�𝑖 (𝑞𝑖 ) ·

(
𝐺𝜶 ,𝑖 ((𝛼𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 )) −𝐺𝜶 ,𝑖 (𝛼𝑖 �̃�𝑖 (𝑞𝑖 ))

)
d𝑞𝑖

=
∫ 1

0
�̃�𝑖 (𝑞𝑖 ) ·

(
𝐺𝜶 ,𝑖

(
(𝛼𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 )) −𝐺𝜶 ,𝑖 (𝛿𝑖 �̃�𝑖 (𝑞𝑖 )

) )
d𝑞𝑖

≤ max

{
𝑣𝑖 ·𝐶𝑖 ·

𝜆

𝛿2𝑖
, 𝑣2𝑖 ·𝐶𝑖

}
· (𝛼𝑖 + 𝛿 − 𝛿𝑖 ) ≤ max

{
𝑣𝑖 ·𝐶𝑖 ·

𝜆

𝛿2𝑖
, 𝑣2𝑖 ·𝐶𝑖

}
· 𝛿.

Now, we conclude the proof of Lemma E.1 by having 𝐶 B max1≤𝑖≤𝑛{𝑣𝑖 ·𝐶𝑖 · 𝜆/𝛿2𝑖 , 𝑣
2
𝑖 ·𝐶𝑖 }. □

From Lemma E.1, we derive an essential property that the set of all feasible tuples of bid-discount multipliers is compact, which is given
in the following lemma.

Lemma E.3. Let A be the set of all 𝜶 such that MBDF (𝜶 ) is a feasible bid-discount mechanism. Then A is compact.

PRoof of Lemma E.3. It suffices to show that all 𝜶 s satisfying the budget-feasible constraints form a closed set.
Define 𝜑 : [0, 1]𝑛 → R𝑛 to be the mapping from the tuple of multipliers 𝜶 to the expected payment vector of all buyers when the

quantile profile is uniformly distributed in [0, 1]𝑛 . By Lemma E.1 we know that 𝜑 is Lipschitz continuous, which implies that the pre-image
of every closed set under 𝜑 is also closed. Since A = {𝜶 : 𝜑 (𝜶 ) ∈ ∏

𝑖 [0, 𝜌𝑖 ]} is the pre-image of
∏

𝑖 [0, 𝜌𝑖 ], which is apparently a closed set,
A is closed as well. Moreover, A ⊆ [0, 1]𝑛 is apparently bounded. Therefore, A is a compact set. □

Now, we are ready to show that the maximum tuple of bid-discount multipliers exists by reasoning that a buyer’s payment decreases
when other buyers’ discount multiplier increases and then applying Lemma E.3.

LemmaE.4. There exists a maximum tuple of bid-discount multipliers𝜶max, i.e., for any feasible tuple of bid-discount multipliers 𝜶 , 𝛼max
𝑖 ≥ 𝛼𝑖

for any 1 ≤ 𝑖 ≤ 𝑛.

PRoof of Lemma E.4. First, for any givenMBDF (𝜶 (1) ) andMBDF (𝜶 (2) ), define 𝜶 h be the entry-wise maximum of 𝜶 (1) and 𝜶 (2) . We
will show that 𝜶 h is also a feasible tuple of bid-discount multipliers.

We only need to verify that the budget-feasible constraint is met for any buyer, and we prove this by showing that a buyer’s expected
payment in MBDF (𝜶 h) is no more than her expected payment in the higher of MBDF (𝜶 (1) ) and MBDF (𝜶 (2) ). For some buyer 𝑖 , assume
that 𝛼h𝑖 = 𝛼

(1)
𝑖 without loss of generality. Note that the payment is irrelevant with the discount multipliers given the allocation. Thus it

suffices to show that when 𝑞1, . . . , 𝑞𝑛 are fixed, if buyer 𝑖 does not win in MBDF (𝜶 (1) ), she does not win in MBDF (𝜶 h) as well. Now that
23
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buyer 𝑖 does not win in MBDF (𝜶 (1) ), the highest discounted bid in MBDF (𝜶 (1) ) must be higher than the discounted bid of buyer 𝑖 . Since
buyer 𝑖’s discounted bid in MBDF (𝜶 h) is the same as in MBDF (𝜶 (1) ), and the highest discounted bid in MBDF (𝜶 h) is no less than the
highest discounted bid in MBDF (𝜶 (1) ), we conclude that buyer 𝑖 does not win in MBDF (𝜶 h).

We now complete the proof of the lemma. Let 𝛼max
𝑖 = sup{𝛼𝑖 | 𝜶 is budget-feasible}. We will show that 𝜶max = (𝛼max

𝑖 )1≤𝑖≤𝑛 is also a
feasible tuple of multipliers. In fact, for any 𝜖 > 0 and any 1 ≤ 𝑖 ≤ 𝑛, there exists a feasible 𝜶 such that 𝛼𝑖 > 𝛼max

𝑖 − 𝜖 . By repeatedly taking
the component-wise maximum for all 𝑖 , there is a feasible 𝜶𝜖 such that for every 𝑖 , 𝛼𝜖𝑖 > 𝛼max

𝑖 − 𝜖 . Thus the sequence 𝜶𝜖 (as 𝜖 → 0) has a
limit point 𝜶max. By Lemma E.3, this limit point is also a feasible tuple of multipliers. □

Next, We demonstrate that the bid-discount mechanism induced by the maximum tuple of multipliers is budget-extracting.

Lemma E.5. MBDF (𝜶max) is budget-extracting.

PRoof of Lemma E.5. Prove by contradiction. Now supposeMBDF (𝜶max) is not budget-extracting, which means there is a buyer 𝑖 such
that 𝛼max

𝑖 < 1 and her budget is not binding, i.e., her expected payment is strictly less than her budget. By Lemma E.1, we can slightly
increase 𝛼max

𝑖 while buyer 𝑖’s budget is still not binding. Note that when buyer 𝑖’s multiplier increases, the payment of any other buyer does
not increase. Hence the budget-feasible constraint is still met for all buyers, and we obtain a feasible tuple with a strictly larger component,
which contradicts the assumption that 𝜶max is the maximum feasible tuple of multipliers. □

Wehave now already proved the first two statements, which claim that themaximum tuple of bid-discount multipliers𝜶max exists as well
as its budget-extracting. Before proving the remaining statements, we present a critical observation in Lemma E.6. That is, given a budget-
extracting bid-discount multiplier tuple 𝜶 e and another feasible tuple 𝜶 , if there is some buyer 𝑙 with minimum 𝛼𝑙/𝛼e𝑙 that satisfies 𝛼𝑙 < 1,
and another buyer 𝑘 with a larger 𝛼𝑘/𝛼e𝑘 that has a positive payment inMBDF (𝜶 e), thenMBDF (𝜶 ) is not budget-extracting. The insight of
this observation is that for any quantile profile 𝒒, buyer 𝑙 does not win in MBDF (𝜶 ) as long as she does not get allocated in MBDFPA (𝜶 e).
Moreover, buyer 𝑘 overbids buyer 𝑙 in MBDF (𝜶 ) on some quantile profiles with positive measure on which buyer 𝑙 wins in MBDF (𝜶 e).
Therefore, buyer 𝑙 strictly pays less in MBDF (𝜶 ) than in MBDF (𝜶 e) in expectation, rendering that MBDF (𝜶 ) is not budget-extracting.

Lemma E.6. Let 𝜶 e be a budget-extracting feasible tuple of bid-discount multipliers, and 𝜶 ′ ≤ 𝜶 e be another feasible one. Let I =
argmin𝑖 𝛼 ′𝑖 /𝛼

e
𝑖 . If there is some 𝑙 ∈ I such that 𝛼 ′

𝑙
< 1, and 𝑘 ∉ I such that the payment of buyer 𝑘 in MBDF (𝜶 e) is positive, then 𝜶 ′

is not budget-extracting.

PRoof of Lemma E.6. Prove by contradiction. Suppose 𝜶 ′ is budget-extracting instead. Since buyer 𝑙 ’s bid-discount multiplier is cut the
most fraction from 𝜶 e to 𝜶 ′, when she does not win inMBDF (𝜶 e) with quantile profile 𝒒, she does not win the item inMBDF (𝜶 ′) as well.
Thereby 𝑝e

𝑙
≥ 𝑝′

𝑙
, where 𝑝′

𝑙
and 𝑝e

𝑙
denote buyer 𝑙 ’s expected payment in MBDF (𝜶 ′) and MBDF (𝜶 e) respectively. Now it suffices to show

that 𝑝′
𝑙
< 𝑝e

𝑙
, which, combining 𝛼𝑙 < 1, is inconsistent with the fact that 𝜶 ′ is budget-extracting.

By definition, we have

𝑝e𝑙 − 𝑝′𝑙 =
∫ 1

0
�̃�𝑙 (𝑞𝑙 )

(∫
𝑞−𝑙

(
Φ𝑙 (𝜶 e, �̃�, 𝒒) − Φ𝑙 (𝜶 ′, �̃�, 𝒒)

)
d𝑞−𝑙

)
d𝑞𝑙

=
∫ 1

0
�̃�𝑙 (𝑞𝑙 )

(∫ 1

0

(
Φ𝑙>𝑘 (𝜶 e, 𝑞𝑙 , 𝑞𝑘 ) − Φ𝑙>𝑘 (𝜶 ′, 𝑞𝑙 , 𝑞𝑘 )

)
d𝑞𝑘

)
d𝑞𝑙 .

Here, Φ𝑙>𝑘 (𝜶 , 𝑞𝑙 , 𝑞𝑘 ) is defined as
∫
𝒒−{𝑙,𝑘}

Φ𝑙 (𝜶 , �̃�, 𝒒) d𝒒−{𝑙,𝑘 } , which represents the probability that buyer 𝑙 wins the item given 𝑞𝑙 and 𝑞𝑘 .
We implicitly take �̃� as fixed. Further, define

𝐻 (𝜶 , 𝜂, 𝜂, 𝜃, 𝜃 ) B
∫ 𝜂

𝜂
�̃�𝑙 (𝑞𝑙 )

(∫ 𝜃

𝜃
Φ𝑙>𝑘 (𝜶 , 𝑞𝑙 , 𝑞𝑘 ) d𝑞𝑘

)
d𝑞𝑙

as the expected payment of buyer 𝑙 in MBDF (𝜶 ) when 𝑞𝑙 and 𝑞𝑘 range from [𝜂, 𝜂] and [𝜃, 𝜃 ] respectively. Notice that for any 𝜶 , 0 ≤ 𝜂1 ≤
𝜂3 ≤ 𝜂2 ≤ 1 and 0 ≤ 𝜃1 ≤ 𝜃3 ≤ 𝜃2 ≤ 1,

𝐻 (𝜶 , 𝜂1, 𝜂2, 𝜃1, 𝜃2) = 𝐻 (𝜶 , 𝜂1, 𝜂3, 𝜃1, 𝜃2) + 𝐻 (𝜶 , 𝜂3, 𝜂2, 𝜃1, 𝜃2)
= 𝐻 (𝜶 , 𝜂1, 𝜂2, 𝜃1, 𝜃3) + 𝐻 (𝜶 , 𝜂1, 𝜂2, 𝜃3, 𝜃2) .

The remaining proof of Lemma E.6 is divided into two parts. We first demonstrate that for any 0 ≤ 𝜂1 ≤ 𝜂2 ≤ 1 and 0 ≤ 𝜃1 ≤ 𝜃2 ≤ 1, we
have 𝐻 (𝜶 e, 𝜂1, 𝜂2, 𝜃1, 𝜃2) −𝐻 (𝜶 ′, 𝜂1, 𝜂2, 𝜃1, 𝜃2) ≥ 0. Then we find 𝜂01, 𝜂

0
2, 𝜃

0
1 , 𝜃

0
2 such that 𝐻 (𝜶 e, 𝜂01, 𝜂

0
2, 𝜃

0
1 , 𝜃

0
2 ) −𝐻 (𝜶 ′, 𝜂01, 𝜂

0
2, 𝜃

0
1 , 𝜃

0
2 ) > 0. The

above collaboratively implies that

𝑝e𝑙 − 𝑝′𝑙 = 𝐻 (𝜶 e, 0, 1, 0, 1) − 𝐻 (𝜶 ′, 0, 1, 0, 1) ≥ 𝐻 (𝜶 e, 𝜂01, 𝜂
0
2, 𝜃

0
1 , 𝜃

0
2 ) − 𝐻 (𝜶 ′, 𝜂01, 𝜂

0
2, 𝜃

0
1 , 𝜃

0
2 ) > 0,

which concludes the proof of Lemma E.6.
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For the first part, with the observation that
𝐻 (𝜶 e, 𝜂1, 𝜂2, 𝜃1, 𝜃2) − 𝐻 (𝜶 ′, 𝜂1, 𝜂2, 𝜃1, 𝜃2)

=
∫ 𝜂2

𝜂1
�̃�𝑙 (𝑞𝑙 )

(∫ 𝜃2

𝜃1

(
Φ𝑙>𝑘 (𝜶 e, 𝑞𝑙 , 𝑞𝑘 ) − Φ𝑙>𝑘 (𝜶 ′, 𝑞𝑙 , 𝑞𝑘 )

)
d𝑞𝑘

)
d𝑞𝑙 ,

it suffices to prove for any 𝑞𝑙 ∈ [0, 1], 𝑞𝑘 ∈ [0, 1],
Φ𝑙>𝑘 (𝜶 e, 𝑞𝑙 , 𝑞𝑘 ) − Φ𝑙>𝑘 (𝜶 ′, 𝑞𝑙 , 𝑞𝑘 ) ≥ 0. (29)

Recall that the two terms in (29) are the probability that buyer 𝑙 wins the item in MBDF (𝜶 e) and MBDF (𝜶 ) when 𝑞𝑘 and 𝑞𝑙 are fixed,
respectively. Given quantile profile 𝒒, since 𝑙 ∈ I = argmin𝑖 𝛼 ′𝑖 /𝛼

e
𝑖 and 𝜶 ′ ≤ 𝜶 e, then by the allocation rule, if 𝑙 wins in MBDF (𝜶 ), she

wins inMBDF (𝜶 e) as well. As a result, when 𝑞𝑘 and 𝑞𝑙 are fixed, buyer 𝑙 certainly does not have less probability to win inMBDF (𝜶 e) than
in MBDF (𝜶 ).

Now we establish the existence of 𝜂01 < 𝜂02 and 𝜃01 < 𝜃02 such that 𝐻 (𝜶 e, 𝜂01, 𝜂
0
2, 𝜃

0
1 , 𝜃

0
2 ) > 𝐻 (𝜶 ′, 𝜂01, 𝜂

0
2, 𝜃

0
1 , 𝜃

0
2 ).

The budget-extracting property of 𝜶 ′ and that 𝛼 ′
𝑙
< 1 in together imply 𝑝′

𝑙
= 𝐵𝑙 > 0. Since 𝑝e

𝑙
≥ 𝑝′

𝑙
, we have 𝑝e

𝑙
= 𝐵𝑙 > 0. As a result,

there are 𝑞 (1)
𝑙

< 1 and 𝑞
(1)
𝑘

> 0 such that Φ𝑙>𝑘 (𝜶 e, 𝑞
(1)
𝑙

, 𝑞
(1)
𝑘

) > 0.4 Symmetrically, since 𝑝e
𝑘
is positive as well, there are 𝑞 (2)

𝑘
< 1 and

𝑞
(2)
𝑙

> 0 such that Φ𝑘>𝑙 (𝜶 e, 𝑞
(2)
𝑘

, 𝑞
(2)
𝑙

) > 0. We can further assume that 0 < 𝑞
(2)
𝑙

≤ 𝑞
(1)
𝑙

< 1 and 0 < 𝑞
(1)
𝑘

≤ 𝑞
(2)
𝑘

< 1, or else, we can swap
𝑞
(1)
𝑙

and 𝑞 (2)
𝑙

or 𝑞 (1)
𝑘

and 𝑞 (2)
𝑘

without breaking the above statements. We want to find 𝑞 (3)
𝑘

and 𝑞 (3)
𝑙

such that 𝛼e
𝑙
�̃�𝑙 (𝑞

(3)
𝑙

) = 𝛼e
𝑘
�̃�𝑘 (𝑞

(3)
𝑘

), and
the probability that 𝑙 wins with 𝑞

(3)
𝑙

under 𝜶 e is positive. We construct as follows:

• If 𝛼e
𝑘
�̃�𝑘 (𝑞

(2)
𝑘

) ≥ 𝛼e
𝑙
�̃�𝑙 (𝑞

(1)
𝑙

), let 𝑞 (3)
𝑙

= 𝑞
(1)
𝑙

, and there exists 𝑞 (3)
𝑘

∈ [𝑞 (1)
𝑘

, 𝑞
(2)
𝑘

] such that 𝛼e
𝑘
�̃�𝑘 (𝑞

(3)
𝑘

) = 𝛼e
𝑙
�̃�𝑙 (𝑞

(3)
𝑙

) due to the
continuity of �̃�𝑘 (𝑞𝑘 ) and that 𝛼e

𝑙
�̃�𝑙 (𝑞

(1)
𝑙

) ≥ 𝛼e
𝑘
�̃�𝑘 (𝑞

(1)
𝑘

). 𝑙 wins with positive probability with 𝑞
(3)
𝑙

since 𝑞 (3)
𝑙

= 𝑞
(1)
𝑙

.
• If 𝛼e

𝑘
�̃�𝑘 (𝑞

(2)
𝑘

) < 𝛼e
𝑙
�̃�𝑙 (𝑞

(1)
𝑙

), let 𝑞 (3)
𝑘

= 𝑞
(2)
𝑘

, and there exists 𝑞 (3)
𝑙

∈ [𝑞 (2)
𝑙

, 𝑞
(1)
𝑙

] such that 𝛼e
𝑙
�̃�𝑙 (𝑞

(3)
𝑙

) = 𝛼e
𝑘
�̃�𝑘 (𝑞

(3)
𝑘

) due to the conti-
nuity of �̃�𝑙 (𝑞𝑙 ) and that 𝛼e

𝑘
�̃�𝑘 (𝑞

(2)
𝑘

) ≥ 𝛼e
𝑙
�̃�𝑙 (𝑞

(2)
𝑙

). 𝑙 wins with positive probability with 𝑞
(3)
𝑙

since 𝑘 wins with positive probability
with 𝑞

(3)
𝑘

= 𝑞
(2)
𝑘

.

Moreover, as 𝛼 ′
𝑙
/𝛼e

𝑙
< 𝛼 ′

𝑘
/𝛼e

𝑘
, there exists a sufficiently small 𝛿 > 0 such that for any 𝑞𝑘 ∈ [𝑞 (3)

𝑘
− 𝛿, 𝑞

(3)
𝑘

] and 𝑞𝑙 ∈ [𝑞 (3)
𝑙

, 𝑞
(3)
𝑙

+ 𝛿] (note
that 𝑞 (3)

𝑘
< 1 and 𝑞 (3)

𝑙
> 0), the probability that 𝑙 wins with 𝑞𝑙 under 𝜶 e is no less than a positive constant, and

𝛼e𝑘 �̃�𝑘 (𝑞𝑘 ) ·
𝛼 ′
𝑘

𝛼e
𝑘

> 𝛼e𝑙 �̃�𝑙 (𝑞𝑙 ) ·
𝛼 ′
𝑙

𝛼e
𝑙

,

that is, 𝛼 ′
𝑘
�̃�𝑘 (𝑞𝑘 ) > 𝛼 ′

𝑙
�̃�𝑙 (𝑞𝑙 ). Moreover, for any 𝑞𝑘 ∈ [𝑞 (3)

𝑘
− 𝛿, 𝑞

(3)
𝑘

], 𝑞𝑙 ∈ [𝑞 (3)
𝑙

, 𝑞
(3)
𝑙

+ 𝛿], we have 𝛼e
𝑙
�̃�𝑙 (𝑞𝑙 ) ≥ 𝛼e

𝑙
�̃�𝑙 (𝑞

(3)
𝑙

) = 𝛼e
𝑘
�̃�𝑘 (𝑞

(3)
𝑘

) ≥
𝛼e
𝑘
�̃�𝑘 (𝑞𝑘 ). Therefore,

𝐻 (𝜶 e, 𝑞
(3)
𝑙

, 𝑞
(3)
𝑙

+ 𝛿, 𝑞
(3)
𝑘

− 𝛿, 𝑞
(3)
𝑘

) =
∫ 𝑞 (3)

𝑙
+𝛿

𝑞 (3)
𝑙

�̃�𝑙 (𝑞𝑙 )
(∫ 𝑞 (3)

𝑘

𝑞 (3)
𝑘

−𝛿
Φ𝑙>𝑘 (𝜶 e, 𝑞𝑙 , 𝑞𝑘 ) d𝑞𝑘

)
d𝑞𝑙 > 0,

𝐻 (𝜶 ′, 𝑞 (3)
𝑙

, 𝑞
(3)
𝑙

+ 𝛿, 𝑞
(3)
𝑘

− 𝛿, 𝑞
(3)
𝑘

) =
∫ 𝑞 (3)

𝑙
+𝛿

𝑞 (3)
𝑙

�̃�𝑙 (𝑞𝑙 )
(∫ 𝑞 (3)

𝑘

𝑞 (3)
𝑘

−𝛿
Φ𝑙>𝑘 (𝜶 ′, 𝑞𝑙 , 𝑞𝑘 ) d𝑞𝑘

)
d𝑞𝑙 = 0.

Taking 𝜂01 = 𝑞
(3)
𝑙

, 𝜂02 = 𝑞
(3)
𝑙

+ 𝛿, 𝜃01 = 𝑞
(3)
𝑘

− 𝛿, 𝜃02 = 𝑞
(3)
𝑘

finishes this part, and the above collaboratively concludes the proof of
Lemma E.6. □

With the help of Lemma E.6, we can characterize a budget-extracting bid-discount multiplier tuple by comparing it with the maximum
tuple 𝜶max.

Lemma E.7. For any budget-extracting bid-discount multiplier tuple 𝜶 e, the following two conditions are satisfied:
• There exists some 𝜈 ≤ 1, such that for any 1 ≤ 𝑖 ≤ 𝑛 satisfying 𝑝max

𝑖 (buyer 𝑖’s expected payment in MBDF (𝜶max)) is positive,
𝛼e𝑖 /𝛼

max
𝑖 = 𝜈 ;

• For any 1 ≤ 𝑖 ≤ 𝑛 satisfying 𝑝max
𝑖 = 0, 𝑝e𝑖 = 0 (buyer 𝑖 never wins in MBDF (𝜶 e)) and 𝛼e𝑖 = 𝛼max

𝑖 = 1.

PRoof of Lemma E.7. LetI1 = {1 ≤ 𝑖 ≤ 𝑛 | 𝑝max
𝑖 > 0} be the set of buyers whose payment inMBDF (𝜶max) are positive, andI2 = [𝑛]\I1

be the set of buyers whose payment inMBDF (𝜶max) are 0. For a budget-extracting tuple of bid-discount multipliers 𝜶 e different from 𝜶max,
we have 𝛼e𝑖 ≤ 𝛼max

𝑖 for all 𝑖 , with the inequality holds for at least one buyer. Define I B argmin𝑖 𝛼e𝑖 /𝛼
max
𝑖 as the set of buyers whose

4Otherwise, the Lebesgue measure of quantile profiles that 𝑙 wins is zero, contradicting that the expected payment of 𝑙 is positive.
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bid-discount multipliers are cut the most from 𝜶max to 𝜶 e. Note that min𝑖 𝛼e𝑖 /𝛼
max
𝑖 < 1. Then we have I2 ∩ I = ∅, since otherwise every

buyer in I2 ∩ I has smaller bid-discount multiplier in MBDF (𝜶 e) than in MBDF (𝜶max), whereas her payment remains 0 in MBDF (𝜶 e),
contradicting that 𝜶 e is budget-extracting.

If I1 ≠ I, let 𝑙 ∈ I and 𝑘 ∈ I1 \ I. Since 𝛼e
𝑙
< 𝛼max

𝑙
≤ 1, 𝑝max

𝑘
> 0 and 𝛼e

𝑙
/𝛼max

𝑙
< 𝛼e

𝑘
/𝛼max

𝑘
, by Lemma E.6 we derive a contradiction

that 𝜶 e is not budget-extracting. Thus I1 = I must hold, which gives the first statement.
Moreover, if there exists 𝑘 ∈ I2 such that 𝑝e

𝑘
> 0, let 𝑙 be an arbitrary buyer in I1. Applying Lemma E.6, we conclude that 𝜶max is not

budget-extracting, which contradicts the assumption. Hence 𝑝e𝑖 = 0 for every 𝑖 ∈ I2. This implies the second statement. □

The properties of budget-extracting BDFPA presented in Lemma E.7 are sufficient to show that all budget-extracting BDFPAs bring the
same payment for each buyer.

Lemma E.8. All budget-extracting BDFPAs bring the same payment for each buyer.

PRoof of Lemma E.8. Suppose 𝜶 e is a budget-extracting bid-discount tuple different from 𝜶max. Now by Lemma E.7, we know that the
buyers with payment 0 inMBDF (𝜶max) have payment 0 inMBDF (𝜶 e) as well. As for those buyers with positive payment inMBDF (𝜶max)
(i.e., in I1), the corresponding ratios 𝛼e𝑖 /𝛼

max
𝑖 are identical, which are strictly less than 1. This indicates that these buyers’ budgets are all

binding in MBDF (𝜶 e) since 𝜶 e is budget-extracting. Meanwhile, we claim that for any buyer in I1, her payment in MBDF (𝜶 e) is no more
than her payment in MBDF (𝜶max). In fact, any buyer in I1 cannot win on more quantile profiles in MBDF (𝜶 e) than in MBDF (𝜶max).
Therefore, buyers in I1 also exhaust their budgets in MBDF (𝜶max). □

Finally, we present the proof of the last statement, which gives the necessary and sufficient conditions for the uniqueness of a budget-
extracting bid-discount multiplier tuple.

Lemma E.9. 𝜶max is the unique budget-extracting tuple of bid-discount multipliers if and only if either one of the following two conditions is
satisfied:

1. max𝑖∈I1 𝛼
max
𝑖 �̃�𝑖 (0) ≤ max𝑖∈I2 {𝛼max

𝑖 �̃�𝑖 (1), 𝜆}, where I1 = {𝑖 | 𝑝max
𝑖 > 0} and I2 = [𝑛] \ I1, or

2. there exists 𝑖 ∈ I1 such that 𝑝max
𝑖 < 𝜌𝑖 .

PRoof of Lemma E.9. We prove the two sides respectively.

“If” side. The proof of Lemma E.8 implies that if there is a budget-extracting tuple other than 𝜶max, then the budgets of the buyers with
positive payments in MBDF (𝜶max) are binding. In other words, if there exists 𝑖 ∈ I1 such that 𝑝max

𝑖 < 𝜌𝑖 (which is the second condition),
then 𝜶max must be the unique budget-extracting tuple.

Furthermore, if max𝑖∈I1 𝛼
max
𝑖 �̃�𝑖 (0) ≤ max𝑖∈I2 {𝛼max

𝑖 �̃�𝑖 (1), 𝜆}, suppose there is another budget-extracting tuple 𝜶 e different from 𝜶max.
By Lemma E.7, for any 𝑖 ∈ I2, we have 𝑝max

𝑖 = 𝑝e𝑖 = 0 and 𝛼max
𝑖 = 𝛼e𝑖 = 1. Also, there exists 0 < 𝜈 < 1 such that for any 𝑖 ∈ I1, we have

𝛼e𝑖 = 𝜈𝛼max
𝑖 . Note that since the payment of each buyer in I1 is non-zero, we have max𝑖∈I1 𝛼

max
𝑖 �̃�𝑖 (1) > max𝑖∈I2 {𝛼max

𝑖 �̃�𝑖 (1), 𝜆}. Therefore,
by the continuity and strict monotonicity of quantile functions, as well as noticing that max𝑖∈I2 {𝛼max

𝑖 �̃�𝑖 (1), 𝜆} ≥ 𝜆 > 0, we derive that for
some 𝑟 ∈ (0, 1],

max
𝑖∈I1

𝛼e𝑖 �̃�𝑖 (𝑟 ) < max
𝑖∈I2

{𝛼e𝑖 �̃�𝑖 (1), 𝜆} = max
𝑖∈I2

{𝛼max
𝑖 �̃�𝑖 (1), 𝜆} < max

𝑖∈I1
𝛼max
𝑖 �̃�𝑖 (𝑟 ).

Therefore, we state that under some quantile profiles with positive measure, no buyer in I1 wins when the multiplier tuple is 𝜶 e but some
buyer in I1 wins with 𝜶max. Meanwhile, the reverse case never happens since 𝛼e𝑖 = 𝛼max

𝑖 when 𝑖 ∈ I2 while 𝛼e𝑖 < 𝛼max
𝑖 when 𝑖 ∈ I1. This

indicates that the total payment of buyers in I1 is strictly cut fromMBDF (𝜶max) toMBDF (𝜶 e), contradicting that 𝜶 e is budget-extracting,
as the budget of at least one buyer in I1 is not binding.

“Only if” side. We prove by contradiction for this part. We suppose that max𝑖∈I1 𝛼
max
𝑖 �̃�𝑖 (0) > max𝑖∈I2 {𝛼max

𝑖 �̃�𝑖 (1), 𝜆}, 𝑝max
𝑖 = 𝜌𝑖 for any

𝑖 ∈ I1, and 𝑝max
𝑖 = 0 for any 𝑖 ∈ I2 reversely. As a result, there exists some 0 < 𝜈 < 1 such that𝜈 ·max𝑖∈I1 𝛼

max
𝑖 �̃�𝑖 (0) > max𝑖∈I2 {𝛼max

𝑖 �̃�𝑖 (1), 𝜆}.
Define 𝜶 = (𝛼𝑖 )1≤𝑖≤𝑛 as

𝛼𝑖 =

{
𝜈𝛼max

𝑖 𝑖 ∈ I1
0 𝑖 ∈ I2 .

Now we show that 𝜶 is budget-extracting. On the one hand, for MBDF (𝜶 ), the maximum discounted bid of buyers in I2 is less than the
minimum discounted bid of buyers in I1, therefore, any buyer in I2 does not win at all in all quantile profiles. Meanwhile, the item is
always allocated as 𝜈 · max𝑖∈I1 𝛼

max
𝑖 �̃�𝑖 (0) > 𝜆. On the other hand, the bid-discount multipliers of buyers in I1 are scaled by the same

constant from 𝜶max to 𝜶 , thus the ordering of buyers in I1 remains unchanged in all quantile profiles from MBDF (𝜶max) to MBDF (𝜶 ).
This reasoning implies that payments of all buyers stay the same, and budget-extracting still holds for 𝜶 . Therefore, 𝜶max is not the unique
budget-extracting tuple. □

The proof of Theorem A.1 is finished by putting Lemmas E.4, E.5, E.7, E.8 and E.9 together.
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E.2 Proof of Theorem A.2
Notice that 𝜒BDF (𝝉 ), which defined in the proof ofTheorem C.1 is a convex function byTheorem 7.46 from Shapiro et al. [37]. Now consider
the optimal solution of min𝝉 ∈[0,1]𝑛 𝜒BD (𝝉 ), 𝝉∗. By Lemma C.2, 𝜶 = 1𝑛 − 𝝉∗ is a budget-extracting tuple of multipliers for BDFPA. This
concludes the proof.

E.3 Proof of Theorem A.3
We will adopt a similar methodology as in the proof of Theorem A.1. Let 𝜷 = (𝛽1, . . . , 𝛽𝑛) be pacing multipliers and define 𝐺𝜷,𝑖 as the
cumulative distribution function ofmax𝑖′≠𝑖 {𝛽𝑖′ �̃�𝑖′ (𝑞′𝑖 ), 𝜆} where 𝑞−𝑖 is chosen uniformly in [0, 1]𝑛−1. Then𝐺𝜷,𝑖 (·) has the properties stated
in Lemma E.2. Next, we prove an analog of Lemma E.1.

Lemma E.10. There exists a constant𝐶 which satisfies the following: For any 𝜷 = (𝛽1, . . . , 𝛽𝑛) and 1 ≤ 𝑖 ≤ 𝑛 such that 𝛽𝑖 < 1, let 𝛽′ = 𝛽 + 𝛿𝑒𝑖
where 0 < 𝛿 ≤ 1 − 𝛽𝑖 and 𝑒𝑖 is the vector with the 𝑖-th entry one and all other entries zero. Then the expected payment of buyer 𝑖 in MPF (𝜷 ′) is
at most the expected payment of buyer 𝑖 in MPF (𝜷) plus 𝐶𝛿 .

PRoof of Lemma E.10. By definition, the expected payment of buyer 𝑖 in MPF (𝜷) is∫ 1

0
𝛽𝑖 �̃�𝑖 (𝑞𝑖 ) ·

(∫
𝑞−𝑖

𝐼

[
𝛽𝑖 �̃�𝑖 (𝑞𝑖 ) ≥ max

𝑖′≠𝑖
{𝛽𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆}

]
d𝑞−𝑖

)
d𝑞𝑖 .

Using the technique in (27) and (28), we upper bound the increment of buyer 𝑖’s expected payment after replacing 𝜷 with 𝜷 ′ = 𝜷 + 𝛿𝒆𝑖 as∫ 1

0
(𝛽𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 ) ·

(
𝐺𝜷,𝑖 ((𝛽𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 )) −𝐺𝜷,𝑖 (𝛽𝑖 �̃�𝑖 (𝑞𝑖 ))

)
d𝑞𝑖

≤
∫ 1

0
�̃�𝑖 (𝑞𝑖 ) ·

(
𝐺𝜷,𝑖 ((𝛽𝑖 + 𝛿)�̃�𝑖 (𝑞𝑖 )) −𝐺𝜷,𝑖 (𝛽𝑖 �̃�𝑖 (𝑞𝑖 ))

)
d𝑞𝑖 .

The conclusion now follows directly from the same case analysis as in the proof of Lemma E.1. □

We then show that the set of budget feasible pacing multipliers is compact.

Lemma E.11. Let B be the set of all 𝜷 such that MPF (𝜷) is a feasible pacing mechanism. Then B is compact.

PRoof of Lemma E.11. Let 𝜑 : [0, 1]𝑛 → R𝑛 be defined as the map from the tuple of multipliers 𝜷 to the expected payment vector of all
buyers. Then by Lemma E.10, 𝜑 is Lipschitz continuous. Since B = {𝜷 : 𝜑 (𝜷) ∈ ∏

𝑖 [0, 𝜌𝑖 ]} is the pre-image of
∏

𝑖 [0, 𝜌𝑖 ] (which is certainly
closed) under 𝜑 , B is closed. B is also bounded for B ⊆ [0, 1]𝑛 . This concludes the proof of the Lemma. □

We are now able to establish the existence of a maximum tuple of pacing multipliers 𝜷max.

Lemma E.12. There exists a maximum tuple of pacing multipliers 𝜷max, i.e., for any feasible tuple of pacing multipliers 𝜷 , 𝛽max
𝑖 ≥ 𝛽𝑖 , for any

1 ≤ 𝑖 ≤ 𝑛.

PRoof of Lemma E.12. We first show that given any feasible multipliers 𝜷 (1) , 𝜷 (2) , the element-wise maximum 𝜷h = max(𝜷 (1) , 𝜷 (2) )
is still feasible.

We need to show that budget feasibility is met for each buyer. For any buyer 1 ≤ 𝑖 ≤ 𝑛, without loss generality, assume 𝛽h𝑖 = 𝛽
(1)
𝑖 , and

we claim that buyer 𝑖’s payment in MPF (𝜷h) is no more than her payment in MPF (𝜷 (1) ). Note that for any quantile profile 𝑞, if buyer 𝑖
wins in MPF (𝜷h), she definitely wins in MPF (𝜷 (1) ) since 𝜷h ≥ 𝜷 (1) , and her payment would be identical in these two auctions as her
multipliers are the same in these two tuples. Therefore the claim is shown.

Now let 𝛽max
𝑖 = sup{𝛽𝑖 | 𝜷 is budget-feasible} for each 1 ≤ 𝑖 ≤ 𝑛. Resembling the argument in the proof of Lemma E.5, 𝜷max =

(𝛽max
𝑖 )1≤𝑖≤𝑛 is also a feasible tuple of multipliers. This concludes the proof of the lemma. □

Now that we have established the existence of maximummultipliers, we show that it is the unique budget-extracting tuple. We first show
it is budget-extracting in the proceeding lemma.

Lemma E.13. MPF (𝜷max) is budget-extracting.

PRoof of Lemma E.13. We prove the lemma by contradiction. Suppose MPF (𝜷max) is not budget-extracting, then there is some buyer 𝑖
such that 𝛽max

𝑖 < 1 and her budget is not binding. By Lemma E.10, we can increase 𝛽max
𝑖 slightly so that buyer 𝑖’s budget is still not binding.

Note that other buyers’ payments will not increase when only buyer 𝑖’s multiplier increases. Therefore, this new tuple of multipliers is still
feasible, which contradicts our definition of 𝜷max that it is the entry-wise supremum over all feasible 𝜷 . □

It remains to show that 𝜷max is the unique budget-extracting tuple of multipliers.

Lemma E.14. MPF (𝜷max) is the unique budget-extracting tuple of multipliers.
27
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PRoof of Lemma E.14. Let 𝜷 ≠ 𝜷max be a feasible tuple of multipliers. We show that 𝜷 is not budget-extracting by contradiction.
Suppose 𝜷 is budget-extracting otherwise. Let I be the set of buyers such that for any 𝑖 ∈ I, 𝛽𝑖 < 𝛽max

𝑖 , i.e., any buyer in I has a strictly
smaller pacing multiplier in 𝜷 than in 𝜷max. Since for 𝑖 ∈ I, 𝛽𝑖 < 𝛽max

𝑖 ≤ 1, the expected payment of buyer 𝑖 equals to her budget inMPF (𝜷)
by the definition of budget-extracting. Hence, the Lebesguemeasure of quantile profiles won by buyers inI is positive. Now consider buyers
in I in MPF (𝜷max). For any quantile profile won by some buyer in I in MPF (𝜷), the quantile profile is also won by I in MPF (𝜷max), as
buyers outside I see no change in the paced bid from MPF (𝜷) to MPF (𝜷max). However, on these quantile profiles, buyers in I pay more
in MPF (𝜷max) than in MPF (𝜷) with strictly higher pacing multipliers. Therefore the total payment of buyers in I strictly increases from
MPF (𝜷) to MPF (𝜷max), and as a result,MPF (𝜷max) is not budget-feasible. A contradiction. Hence 𝜷 is not budget-extracting, and 𝜷max is
the unique budget-extracting pacing multiplier tuple. □

Finally, we establish that 𝜷max maximizes the seller’s revenue among all feasible tuples of pacing multipliers.

Lemma E.15. 𝜷max maximizes the seller’s revenue among all feasible tuples of pacing multipliers.

PRoof of Lemma E.15. Note that for PFPA, the seller’s revenue in MPF (𝜷) equals to∫
𝑞
max
𝑖

{𝛽𝑖 �̃�𝑖 (𝑞𝑖 ) − 𝜆}+ d𝑞,

by definition, which, increases with any entry of 𝜷 . Now that 𝜷max is defined as the supremum over all feasible tuples, it extracts no lower
revenue for the seller than any other feasible tuple. □

Synthesizing Lemmas E.12, E.13, E.14 and E.15, we conclude the proof of Theorem A.3.

F PROOF OF THEOREM A.4
We prove the three statements in the theorem in order.

eBDPFA ⪰ BROA. Note that when (�̃�𝑖 )1≤𝑖≤𝑛 is strictly regular, by Balseiro et al. [3], the seller’s expected revenue in BROA is the value
of programming (3), or

min
𝜸 ∈[0,1]𝑛

𝜒BRO (𝜸 ) B
{
E𝒒

[
max
𝑖

{
𝛾𝑖𝜓𝑖 (𝑞𝑖 ) − 𝜆

}+]
+

𝑛∑
𝑖=1

(1 − 𝛾𝑖 )𝜌𝑖

}
.

On the other side, by the strong duality result that we give in the proof of Theorem C.1, when (�̃�𝑖 )1≤𝑖≤𝑛 is strictly increasing, the seller’s
revenue in eBDFPA equals to

min
𝝉 ∈[0,1]𝑛

𝜒BDF (𝝉 ) =
{
E𝒒

[
max
𝑖

{(1 − 𝜏𝑖 )�̃�𝑖 (𝑞𝑖 ) − 𝜆}+
]
+

𝑛∑
𝑖=1

𝜏𝑖𝜌𝑖

}
.

Notice that �̃�𝑖 (𝑞𝑖 ) ≥ 𝜓𝑖 (𝑞𝑖 ) for any 1 ≤ 𝑖 ≤ 𝑛 and 𝑞𝑖 ∈ [0, 1] by definition. Then for any 𝝉 ∈ [0, 1]𝑛 , 𝜒BDF (𝝉 ) ≥ 𝜒BRO (1𝑛 −𝝉 ). As a result,
min𝝉 ∈[0,1]𝑛 𝜒BDF (𝝉 ) ≥ min𝜸 ∈[0,1]𝑛 𝜒BRO (𝜸 ), which finishes the proof.

eBDPFA ⪰ ePFPA. The theorem follows a duality argument. To start with, as we provide in the proof of Theorem C.1, we have a strong
duality result for BDFPA when each buyer’s bidding qf is strictly increasing. In other words, given (�̃�𝑖 )1≤𝑖≤𝑛 and (𝜌𝑖 )1≤𝑖≤𝑛 , the seller’s
revenue in eBDFPA, or OPTBDF, equals to min𝝉 ∈[0,1]𝑛 𝜒BDF (𝝉 ), with 𝜒BDF (𝝉 ) defined as:

𝜒BDF (𝝉 ) B E𝒒
[
max
1≤𝑖≤𝑛

{(1 − 𝜏𝑖 )�̃�𝑖 (𝑞𝑖 ) − 𝜆}+
]
+

𝑛∑
𝑖=1

𝜏𝑖𝜌𝑖 .

Now, the revenue of any budget-extracting pacingmechanism is no larger than the value of the following programming, which represents
the optimal revenue of any feasible (no requirement for budget-extracting) pacing first-price auction. Note that such reasoning does not
depend on Theorem A.3, which demands that the bidding qfs are inverse Lipschitz continuous.

max
𝜷∈[0,1]𝑛

∫
𝒒
max
𝑖

{𝛽𝑖 �̃�𝑖 (𝑞𝑖 ) − 𝜆}+ d𝒒,

s.t.
∫ 1

0
𝛽𝑖 �̃�𝑖 (𝑞𝑖 ) ·

(∫
𝒒−𝑖

Φ𝑖 (𝜷, �̃�, 𝒒) d𝒒−𝑖
)
d𝑞𝑖 ≤ 𝜌𝑖 , ∀1 ≤ 𝑖 ≤ 𝑛.

Denote the optimal value of the above programming by OPTPF. We consider the Lagrangian dual 𝜒PF of the above programming, with
dual variables {𝜅𝑖 }1≤𝑖≤𝑛 :

𝜒PF (𝜿) B max
𝜷∈[0,1]𝑛

𝑛∑
𝑖=1

∫ 1

0
((1 − 𝜅𝑖 )𝛽𝑖 �̃�𝑖 (𝑞𝑖 ) − 𝜆) ·

(∫
𝒒−𝑖

Φ𝑖 (𝜷, �̃�, 𝒒) d𝒒−𝑖
)
d𝑞𝑖 +

𝑛∑
𝑖=1

𝜅𝑖𝜌𝑖 . (30)
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By weak duality, we have
OPTPF ≤ min

𝜿≥0
𝜒PF (𝜿) ≤ min

𝜿 ∈[0,1]𝑛
𝜒PF (𝜿)

= min
𝜿 ∈[0,1]𝑛

max
𝜷∈[0,1]𝑛

𝑛∑
𝑖=1

∫ 1

0
((1 − 𝜅𝑖 )𝛽𝑖 �̃�𝑖 (𝑞𝑖 ) − 𝜆) ·

(∫
𝒒−𝑖

Φ𝑖 (𝜷, �̃�, 𝒒) d𝒒−𝑖
)
d𝑞𝑖 +

𝑛∑
𝑖=1

𝜅𝑖𝜌𝑖

≤ min
𝜿 ∈[0,1]𝑛

max
𝜷∈[0,1]𝑛

𝑛∑
𝑖=1

∫ 1

0
((1 − 𝜅𝑖 )�̃�𝑖 (𝑞𝑖 ) − 𝜆) ·

(∫
𝒒−𝑖

Φ𝑖 (𝜷, �̃�, 𝒒) d𝒒−𝑖
)
d𝑞𝑖 +

𝑛∑
𝑖=1

𝜅𝑖𝜌𝑖

= min
𝜿 ∈[0,1]𝑛

E𝒒

[
max
1≤𝑖≤𝑛

{(1 − 𝜅𝑖 )�̃�𝑖 (𝑞𝑖 ) − 𝜆}+
]
+

𝑛∑
𝑖=1

𝜅𝑖𝜌𝑖

= min
𝜿 ∈[0,1]𝑛

𝜒BDF (𝜿) = OPTBDF .

Here the third line is due to 𝛽𝑖 ≤ 1. The fourth line follows a similar argument used when we prove Theorem C.1, specifically (7) and (8).
As a result, we have OPTPF ≤ OPTBDF. Since OPTPF is no less than the revenue of any budget-extracting PFPA, the theorem is proved.

BROA ⪰ eBDSPA, BROA ⪰ ePSPA. At last, for this result, by the terminology in Balseiro et al. [3], we only need to show that eBDSPA
is budget-constrained incentive-compatible (BCIC). In fact, as already proved by Balseiro et al. [3], ePSPA is BCIC, and when each buyer’s
bidding qf is strictly regular, BROA dominates all other BCIC mechanisms.

In fact, we can show that BDSPA is BCIC in general. To see this, we fix some bid-discount multiplier tuple 𝝉 and quantile profile 𝒒. We
consider two cases for any buyer 1 ≤ 𝑖 ≤ 𝑛.

• If 𝜏𝑖 �̃�𝑖 (𝑞𝑖 ) ≥ max𝑖′≥𝑖 {𝜏𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆}, thenmax𝑖′≥𝑖 {𝜏𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆}/𝜏𝑖 ≤ �̃�𝑖 (𝑞𝑖 ). For 𝑖 , as long as she wins, her actual bid does not affect
her payment, and her revenue remains unchanged at a non-negative value. If 𝑖 cuts her bid to lose, then her revenue becomes zero,
which is no better than winning the item.

• If 𝜏𝑖 �̃�𝑖 (𝑞𝑖 ) < max𝑖′≥𝑖 {𝜏𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆}, then max𝑖′≥𝑖 {𝜏𝑖′ �̃�𝑖′ (𝑞𝑖′ ), 𝜆}/𝜏𝑖 > �̃�𝑖 (𝑞𝑖 ). For 𝑖 , as long as she loses, her revenue remains zero.
On the other hand, if she raises her bid to win the item, then her payment becomes strictly larger than the value she receives, and
𝑖 will get a negative revenue, which is worse than losing.

As a result, BDSPA is unconditionally BCIC.
Combining all three parts together, the proof of Theorem A.4 is finished.
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