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Abstract

Large Language Models (LLMs) are known to001
exhibit a memorization1 phenomenon in code002
generation: instead of truly understanding the003
underlying principles of a programming prob-004
lem, they tend to memorize the original prompt005
and its solution together in the training. Con-006
sequently, when facing variants of the original007
problem, their answers very likely resemble the008
memorized solutions and fail to generalize. In009
this paper, we investigate this phenomenon by010
designing three evolution strategies to create011
variants: mutation, paraphrasing, and code-012
rewriting. By comparing the performance and013
AST similarity of the LLM-generated codes014
before and after these three evolutions, we de-015
velop a memorization score that positively cor-016
relates with the level of memorization. As017
expected, as supervised fine-tuning goes on,018
the memorization score rises before overfit-019
ting, suggesting more severe memorization.020
We demonstrate that common mitigation ap-021
proaches, such as prompt translation and using022
evolved variants as data augmentation in su-023
pervised learning and reinforcement learning,024
either compromise the performance or fail to025
alleviate the memorization issue. Therefore,026
memorization remains a significant challenge027
in LLM code generation, highlighting the need028
for a more effective solution.029

1 Introduction030

Large Language Models (LLMs) have shown re-031

markable versatility in tasks ranging from text gen-032

eration and question answering to automated code033

generation. In the coding domain, models such as034

Qwen-Coder (Hui et al., 2024), CodeLlama (Roz-035

ière et al., 2024), and DeepSeek-Coder (Guo et al.,036

2024) have pushed the boundaries of translating037

natural language into code. However, these mod-038

els often rely on recalling previously seen training039

1In this paper, we focus on memorization before overfitting
because late-stage memorization resembles overftting.

examples rather than genuinely reasoning about 040

new problems (Xia et al., 2024). This over-reliance 041

on memorization can weaken a model’s ability to 042

adapt to novel or slightly varied coding tasks. 043

Recent studies have highlighted this issue 044

through evaluation benchmarks: when minor al- 045

ternations are made to a coding prompt, LLM per- 046

formance can drop significantly, suggesting limited 047

generalization (Xia et al., 2024). Evolved bench- 048

marks such as EvalPlus (Liu et al., 2023) and Evo- 049

Eval (Xia et al., 2024) thus aim to reduce memo- 050

rization biases by introducing subtle modifications 051

to existing tasks. Despite these efforts, the phe- 052

nomenon of memorization in code LLMs remains 053

insufficiently understood. In particular, it is dif- 054

ficult to distinguish true problem-solving ability 055

from simple rote recall of training data. 056

Although prior work has explored memoriza- 057

tion in code (Yang et al., 2024), existing definitions 058

based on natural language (Carlini et al., 2023) may 059

not transfer to code. Unlike typical text, code’s syn- 060

tax is as crucial as its semantics, motivating the use 061

of Abstract Syntax Trees (ASTs) to capture struc- 062

tural similarity. Moreover, researchers frequently 063

evaluate code generation using functional correct- 064

ness metrics such as pass@k (Lyu et al., 2024), 065

indicating that memorization should be assessed 066

with both structural and functional criteria. 067

One might interpret memorization as a form of 068

overfitting, but we distinguish between early-stage 069

and late-stage memorization in Figure 3. Late- 070

stage memorization aligns closely with traditional 071

overfitting—where performance degrades on vali- 072

dation sets while the model repeats patterns learned 073

from the training set. Early-stage memorization, 074

however, arises even when the model is not yet 075

overfitted, yet still reproduces code patterns from 076

seen examples. Our focus in this work is on early- 077

stage memorization, and any further mention of 078

“memorization” refers to this phase. 079

To investigate this phenomenon, we mutate ex- 080
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isting coding tasks with three evolution methods:081

mutation, paraphrasing, and code-rewriting. These082

methods correspond to adding noise in text space,083

semantic space and code space respectively. There-084

fore, we refer to this as multi-level evolution 1.085

Using MBPP-Plus (Liu et al., 2023) as our base,086

we construct three altered datasets and observe the087

performance on these evolved tasks.088

We further propose a memorization score to089

quantify memorization. This score combines090

(i) functional correctness (code accuracy) and091

(ii) structural overlap (AST similarity). In our ex-092

periments, the memorization score correlates pos-093

itively with the extent of memorization, increas-094

ing as fine-tuning proceeds and helping differenti-095

ate early-stage memorization across different mod-096

els. Finally, we explore three mitigation strate-097

gies—supervised fine-tuning, reinforcement learn-098

ing, and problem translation—to reduce memoriza-099

tion scores. While each method partially mitigate100

memorization, we observe a trade-off: mitigating101

memorization can also degrade performance on the102

original tasks. This leaves open the challenge of de-103

signing training methods that limit rote repetition104

without sacrificing overall capabilities.105

Contributions. In summary, our work:106

• Introduces a multi-level evolution framework107

(mutation, paraphrasing, code-rewriting) to eval-108

uate how LLMs handle evolved coding tasks.109

• Proposes a memorization score that integrates110

both functional correctness and AST-based struc-111

tural similarity to measure early-stage memoriza-112

tion in code LLMs.113

• Demonstrates that code-specialized LLMs ex-114

hibit high memorization behaviors, and that115

three mitigation methods reduce memorization116

but often at the cost of performance on the origi-117

nal dataset.118

We hope these findings could offer insights into119

why LLMs experience performance drops when120

presented with minor task mutations and provide121

actionable strategies to quantify and mitigate mem-122

orization in code generation.123

2 Related Work124

2.1 Memorization125

Memorization refers to the ability of neural net-126

work models to memorize and reproduce their train-127

ing data (Carlini et al., 2019),(Bayat et al., 2024).128

In the era of large language models (LLMs), re-129

searchers have proposed several new definitions130

of memorization specific to LLMs (Carlini et al., 131

2023), (Zhang et al., 2023), (Schwarzschild et al., 132

2024). Beyond natural language, studies on memo- 133

rization in logical reasoning (Xie et al., 2024) and 134

code generation (Yang et al., 2024) further under- 135

score the increasing importance of understanding 136

memorization in LLMs. 137

2.2 Data Synthesis in Code Generation 138

To enhance the quality of training data in LLM code 139

generation (Jiang et al., 2024), researchers have de- 140

veloped several human-generated datasets, such 141

as Humaneval (Chen et al., 2021), MBPP (Austin 142

et al., 2021) and so on. However, due to the high 143

cost and limited quantity of handcrafted datasets, 144

data synthesis has emerged as a viable solution, 145

which can be categorized into Self-Instruct (Wang 146

et al., 2023), Evol-Instruct (Luo et al., 2023) and 147

OSS-Instruct (Wei et al., 2024). Furthermore, the 148

evolution idea can be generalized into other code- 149

like domains, such as mathematical problems (Gu- 150

lati et al., 2024) and logical reasoning (Xie et al., 151

2024), suggesting its significant effectiveness. 152

3 Methodology 153

3.1 Multi-level Evolution 154

We denote a professional model that can always 155

get the ground truth of a programming problem as 156

G, the embedding projection layer as E, the text 157

space as T , the semantic space of natural language 158

as S, and the code space as C. 159

Then given a coding problem text as x, the cor- 160

responding embedding vector is y = E(x) and 161

the ground truth solution is z = G[E(x)] = G(y). 162

Therefore, we can formalize the code generation 163

process as a mapping from natural language to code 164

language: 165

y = E(x) : T 7→ S 166

z = G(y) : S 7→ C 167

Figure 1 illustrates our evolution methods. We 168

begin by distinguishing between two scenarios: one 169

in which the ground truth code for the original prob- 170

lem remains unchanged and one in which it does 171

not. Specifically, mutation evolution and paraphras- 172

ing evolution preserve the original ground truth, 173

whereas code-rewriting evolution generates a new 174

ground truth. 175

For mutation evolution, we simply ask LLM to 176

do word scrambling, text shift and random capital- 177

ization to the original prompt. Then it is actually 178
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semantic

text
code

z: def func(s1,s2):

        return(s1&s2)

ypar: Identify same element in two sets

xpar: Develop a function that identifies

the common elements between two
provided sets.

xmut: Wr!ite a functIon to fInd teh

shraed Eelments from teh gVine wto
sEt.

x: Write a function to find the shared
elements from the given two sets.

y: Find shared element in two sets
Paraphrase:  paraphrase
the task in new wording
while preserving its
meaning by adding small
noise ε3.

yrew: Identify common elements in two

sets and sort the result

Code Rewriting:  adding
small noise ε2 to the solution
code to get the a new code,
then update the the task
description accordingly.

xrew: Write a function to identify the

common elements from two provided
sets by ensuring the result is sorted.

Mutation: adding small noise
ε1 to original task description.

zrew: def func(s1,s2):   

return sorted(s1&s2)

Figure 1: The workflow of the multi-level evolution methods in text, semantic, and code spaces. Boxes inside
those spaces with the same color share the same canonical solutions. Mutation (mut), paraphrasing (par) and
code-rewriting (rew) add noise in text space, semantic space and code space respectively. And finally they will be
mapped back to text space as evolved problem xmut, xpar, xrew. The evolution process of adding noise and mapping
are all conducted by the professional model G (GPT-4o), illustrated as the gray robot. We denote this framework as
multi-level evolution.

adding a small noise ϵ1 to original problem text:179

xmut = x+ ϵ1, ϵ1 ∈ T180

s.t. G[E(xmut)] = G[E(x)]181

For paraphrasing evolution, we ask the model to182

paraphrase the original prompt in fresh wording or183

sentence structure. The goal is to keep the same184

meaning but change how it’s phrased—adding a185

small noise ϵ2 in the semantic space of natural186

language S:187

xpar = E−1[E(x) + ϵ2], ϵ2 ∈ S188

s.t. G[E(xpar)] = G[E(x)]189

Additionally, we also suppose a professional
model G that can summarize a prompt from a given
code, then we have:

y = G−1(z) : C 7→ S

For the code-rewriting evolution, we first feed190

the original code solution into the professional191

LLM (like GPT-4o), asking it to do some slight192

modification. Noticed that the modification is not193

simple variable renaming or constant change, but194

logical and structural difference from origin code.195

After that we ask the LLM to change the origin196

problem according to the new code solution while197

maintaining the least editing distance. Therefore,198

code-rewriting can be regarded as adding a small 199

noise ϵ3 in the code space C, and the ground truth 200

won’t be the same: 201

xrew = E−1[G−1[G[E(x)] + ϵ3]], ϵ3 ∈ C 202

s.t. G[E(xrew)] ̸= G[E(x)] 203

The three evolution methods progressively in- 204

crease in complexity, introducing noise in the text 205

space, semantic space, and code space, respectively. 206

Unlike previous code evolution methods, these 207

varying levels of evolution aim to provide deeper 208

insights into an LLM’s true capabilities. Hence, we 209

refer to this framework as multi-level evolution 1. 210

3.2 Evaluation Framework 211

3.2.1 Overall Accuracy 212

Accuracy is defined as the proportion of program- 213

ming tasks for which the model-generated code 214

passed all associated test cases. Specifically, for 215

each task, if the solution correctly produces the ex- 216

pected output for every test case, it is considered a 217

successful pass. The overall accuracy is then cal- 218

culated as the number of successfully passed tasks 219

divided by the total number of tasks evaluated. 220

Formally, let T denote the set of all program-
ming tasks. For each task i ∈ T , define an indicator
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text

code

xtrans : Write a function to find and return the
common elements between two tuples.

x: Write a function to find the shared elements
from the given two sets.

zaug: def func(t1,t2):

    return(set(t1)
       &set(t2))

   

zresp: def func(s1,s2):
        return(s1&s2)

Gen2: write an improved function for    by
analyzing the differences between  
and 

semantic

ytrans: Find common elements
in two tuples

Gen1: write a function to complete the task

y: Find shared element in two
sets

yaug: Identify common elements

in two tuples
x

xtrans
x

Trans: convert the provided
code snippet into a clear,
natural language instruction 

Figure 2: The figure of the problem translation process. The same color of inner boxes inside each space share the
same canonical solutions. We first ask target model M (the blue robot) to generate a code response zresp based on
x (Gen1), then use professional model G (the gray robot) to translate it back into a new code xtrans (Trans); finally,
we ask the tar model G to figure out their difference and generating the final response zaug.

function:

Ii =

{
1, if code passes all tests for task i,

0, otherwise.

Then, the overall accuracy Acc(T ) is defined as:

Acc(T ) =
1

|T |
∑
i∈T

Ii.

3.2.2 Overall AST Similarity221

For each programming task, we obtain the sim-
ilarity score between the canonical solution and
the candidate response by using an AST-Based
Source Code Similarity Detection Tool (Anu-
bisLMS, 2023). Let Si be the AST similarity score
between the candidate response of task i in set T1
and the canonical solution of that in set T2, and
the overall similarity is given by:

simT2(T1) =
1

|T1|
∑
i∈|T1|

Si.

For clarity, we assume that task i in T1 corresponds222

to task i in T2, ensuring a one-to-one pairing be-223

tween the tasks in the two sets.224

3.2.3 Memorization Score225

We proposed a memorization score to quantify226

memorization. Given the set of coding problems227

T , We denote its mutation, paraphrasing and code-228

rewriting problem dataset as Tmut, Tpar, Trew respec-229

tively. Then for a set of given problems T , the230

memorization score can be calculated as below:231

Mem(T ) =
1

3
∗ [(Acc(T )−Acc(Tmut))+ 232

(Acc(T )−Acc(Tpar))+ 233

(Acc(T )−Acc(Trew))] 234

+max(0, simT (Trew)− simTrew(Trew))) 235

The score ranges from 0 to 2, with higher val- 236

ues indicating more severe memorization. We will 237

explain it from two aspects: 238

The first three items measure the accuracy drop 239

between original and evolved problems. An in- 240

creased gap indicates high LLM performance on 241

original problems T but poor performance on 242

evolved ones, suggesting a lack of true reasoning 243

and increased reliance on memorization. We use 244

the factor 1
3 for normalization. 245

The last item compares two AST similarities: 246

between the code response and the canonical so- 247

lution on the code-rewriting dataset, and between 248

that response and the original dataset’s canonical 249

solution. A negative difference indicates that the 250

code response on the code-rewriting dataset closely 251

matches its canonical solution, implying no con- 252

tribution to memorization, so the value is set to 253

0. Conversely, a positive difference suggests that 254

the response aligns more with the original dataset’s 255

solution, indicating reliance on the original data. 256

A higher value indicates that the LLM is relying 257

more on the original data to get the answer. 258

Thus, the accuracy gap highlights memorization 259

from a functionality perspective, while the AST 260

similarity gap does so from a structural angle. High 261
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values in both suggest severe memorization issues.262

We combine these normalized metrics to create263

a memorization score, quantifying memorization264

within LLMs during code generation.265

3.3 Mitigation Methods266

3.3.1 Supervised Fine-Tuning267

Supervised Fine-Tuning adapts a pre-trained model268

to a specific task by training it on a labeled dataset,269

teaching it to predict the correct label for each270

input. In our setup, coding problems are the in-271

puts, and code solutions are the labels. We use two272

dataset combinations: a code-rewriting dataset and273

a half-and-half origin-rewriting dataset, to study the274

impact of varying exposure to the origin dataset.275

Additionally, we also examine early-stage memo-276

rization, selecting the epoch before overfitting to277

assess our mitigation methods.278

3.3.2 Reinforcement Learning279

In the large language model era, Reinforcement280

Learning enhances fine-tuning efficiency. A lead-281

ing method is Direct Preference Optimization282

(DPO)(Rafailov et al., 2024), which optimizes pol-283

icy based on preferences without a defined reward284

model, using a simple classification objective. We285

use the same reference and baseline models to con-286

strain parameters, designating the code solution287

from the code-rewriting dataset as the winner label,288

and the original training dataset’s solution as the289

loser label.290

3.3.3 Problem Translation291

The workflow of problem translation is shown in
Figure 2. We first ask the target model M to gener-
ate the code response z for problem x:

z = M(y) = M [E(x)]

Then we ask the professional model G to trans-
late the response ẑ back to a coding problem x′:

xtrans = E−1[G−1(z)]

After that we have two problems: the origin
problem x and translated problem x′. Now we ask
the target model M to distinguish the differences
between them, and then generate the final code
response z′ again based on the origin problem and
the difference. ⊕ means concatenating prompts
from two sides.

zaug = M [E(x⊕ diff(x, xtrans))]

Because this process includes the inverse map- 292

ping from code space back to text space, we aim 293

for the target model can learn the mapping bias 294

between text space and code space from the trans- 295

lated problem. This understanding is expected to 296

enhance performance on the code-rewriting dataset 297

and ultimately diminish the memorization phe- 298

nomenon. 299

Through these three mitigation methods, we aim 300

to alleviate the performance gap between the orig- 301

inal and evolved datasets while reducing memo- 302

rization by enhancing the model’s reasoning and 303

generalization abilities. 304

4 Experiments 305

4.1 Dataset 306

We use the MBPP-Plus (Liu et al., 2023) as our ori- 307

gin dataset. Rewritten prompts and solutions can 308

alter input formats, making them incompatible with 309

original test cases due to mismatched input types 310

rather than incorrect logic. To ensure integrity, we 311

filtered out such tasks, retaining 283 tasks. To dis- 312

tinguish the early-stage memorization from over- 313

fitting, we split the dataset into a 4:1 train-valid 314

ratio, resulting in 226 training and 57 validation 315

items. For simplicity, we denote the training and 316

validation sets as T and Tvalid, respectively. Then 317

we adopt the evolution methods described in Sec- 318

tion 3.1 and curate three evolved datasets, code- 319

rewriting (Trew), paraphrasing (Tpar), and mutation 320

(Tmut), based on the original training set to explore 321

code memorization in LLMs. Note that the vali- 322

dation set only detects overfitting, and the other 323

three evolved datasets are based on the training set. 324

More details about the MBPP-Plus and our evolved 325

datasets can be found in the appendix B. 326

4.2 Result Analysis 327

4.2.1 Memorization Exists in LLM Code 328

Generation 329

To illustrate the presence of memorization ef- 330

fects in LLM code generation, we compare base- 331

line models with their instruction-tuned counter- 332

parts: Llama-3.1-8B versus Llama-3.1-8B-Instruct, 333

and Qwen2.5-7B versus Qwen2.5-Coder-7B, as 334

shown on Table 1. More details about these 335

models can be found in the appendix C. On all 336

four datasets, Llama-3.1-8B-Instruct substantially 337

outperforms its baseline version, showing an ap- 338

proximate 25% increase in accuracy. In contrast, 339

Qwen2.5-Coder-7B shows large increases around 340
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Model Acc(T ) Acc(Trew) Acc(Tmut) Acc(Tpar) simT (Trew) simTrew(Trew) Mem(T )

Llama-3.1-8B 0.173 0.133 0.159 0.189 0.132 0.151 0.013
Llama-3.1-8B-Instruct 0.407 0.420 0.327 0.425 0.133 0.169 0.016
Qwen2.5-7B 0.465 0.385 0.416 0.469 0.149 0.205 0.041
Qwen2.5-Coder-7B 0.615 0.442 0.473 0.628 0.157 0.230 0.100

Table 1: Evaluation of baseline models on the train set variants. We report accuracy on the original train set (Acc(T ))
and three variants: code-rewriting (Acc(Trew)), mutation (Acc(Tmut)), and paraphrasing (Acc(Tpar)). Similarity
scores between original and rewritten sets (simT (Trew)) and within the rewritten set (simTrew(Trew)) are provided,
along with a memorization score on the original set (Mem(T )). The highest memorization score is highlighted in
red.

Epoch Acc(T ) Acc(Trew) Acc(Tmut) Acc(Tpar) Acc(Tvalid) simT (Trew) simTrew(Trew) Mem(T )

baseline 0.615 0.442 0.473 0.628 0.561 0.157 0.230 0.100
10 0.654 0.367 0.566 0.65 0.561 0.295 0.217 0.200
20 0.823 0.429 0.739 0.814 0.474 0.499 0.234 0.428
30 0.863 0.398 0.805 0.845 0.544 0.571 0.277 0.474
40 0.881 0.416 0.801 0.867 0.509 0.56 0.277 0.469
50 0.938 0.429 0.836 0.907 0.474 0.605 0.275 0.544
60 0.942 0.429 0.841 0.925 0.456 0.612 0.279 0.544

Table 2: Evaluation of Qwen2.5-Coder-7B during supervised fine-tuning. Each row shows performance across
epochs. We report accuracy on the train set (Acc(T )), its code-rewriting (Acc(Trew)), mutation (Acc(Tmut)), para-
phrasing (Acc(Tpar)) variants, and the validation set (Acc(Tvalid)). Also included are similarity scores (simT (Trew),
simTrew(Trew)) and a memorization score (Mem(T )). The red-highlighted epoch marks the onset of overfitting. Full
results are in Table 5 in the appendix.

Figure 3: The loss curve of Qwen2.5-Coder-7B when
fine-tuned on the train dataset. We can find that the
evaluation loss begins to increase significantly at epoch
20 (red line), which stands for the LLM starts to overfit
on the train dataset. Memorization then can be divided
into early-stage (before red line) and late-stage (after
red line) memorization. Considering the similar effects
between late-stage memorization and overfitting, we
explore the early-stage memorization before overfitting.

15% primarily on the origin and paraphrasing sets,341

while improvements on the mutation and code-342

rewriting sets are comparatively lower (around343

5%). We hypothesize that the instruction-tuning344

process in Qwen2.5-Coder-7B may have intro-345

duced unanticipated memorization effects for the346

origin and paraphrasing tasks, potentially stem-347

ming from unknown overlaps in its pretraining348

data. However, these benefits do not extend to 349

the mutation and code-rewriting tasks, for which 350

Qwen2.5-Coder-7B provides only limited accuracy 351

increases. This discrepancy indicates how instruc- 352

tion tuning can lead to task-specific memorization, 353

but fail to generalize across different types of code 354

transformation. 355

We also observe that Qwen2.5-Coder-7B per- 356

forms roughly 20% better on the origin dataset 357

than on the code-rewriting and mutation datasets in 358

the Table 1. Interestingly, the AST similarity shows 359

that, on the code-rewriting dataset, the model’s re- 360

sponses more resemble the canonical solution from 361

rewriting set itself than those from the original set. 362

The notable accuracy drop and largest red memo- 363

rization score in Table 1 indicates that the generated 364

code—despite its plausible code logic and struc- 365

ture—fails to replicate the intended functionality. 366

Consequently, the model appears to rely on memo- 367

rized patterns from the original training data rather 368

than truly understanding the rewriting task. 369

There are also some interesting findings about 370

these baseline models in Table 1. Mutation evolu- 371

tion tasks are particularly challenging for LLMs, 372

likely because this transformation is rarely encoun- 373

tered in code corpora. Such minor textual pertur- 374

bations could confuse the model, resulting in per- 375

formance drop. By contrast, accuracy on the para- 376
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Epoch Acc(T ) Acc(Trew) Acc(Tmut) Acc(Tpar) Acc(Tvalid) simT (Trew) simTrew(Trew) Mem(T )

baseline 0.407 0.420 0.327 0.425 0.351 0.133 0.169 0.016
20 0.393 0.190 0.323 0.376 0.140 0.364 0.176 0.286
40 0.624 0.265 0.509 0.602 0.070 0.639 0.244 0.560
60 0.695 0.274 0.602 0.677 0.088 0.649 0.238 0.588
80 0.717 0.288 0.628 0.708 0.070 0.672 0.258 0.589
100 0.721 0.292 0.633 0.712 0.105 0.670 0.263 0.583
120 0.726 0.301 0.628 0.717 0.105 0.683 0.266 0.594

Table 3: Evaluation of Llama3.1-8B-Instruct during supervised fine-tuning. Each row shows the model’s
performance at different epochs. We report accuracy on the original train set (Acc(T )), and on its code-
rewritting (Acc(Trew)), mutation (Acc(Tmut)), and paraphrasing (Acc(Tpar)) variants, as well as on the validation set
(Acc(Tvalid)). We also include similarity scores between the original and code-rewritting train sets (simT (Trew)),
within the code-rewritting train set (simTrew(Trew)), and a memorization score for the original train set (Mem(T )).
We highlighted (red) the epoch at which the validation loss starts to rise substantially (onset of overfitting)

Methods Acc(T ) Acc(Trew) Acc(Tmut) Acc(Tpar) simT (Trew) simTrew(Trew) Mem(T )

BASELINE 0.615 0.442 0.473 0.628 0.157 0.230 0.100
SFT_W_REWRITING 0.686 0.438 0.624 0.668 0.397 0.301 0.204
SFT_W_HALF&HALF 0.544 0.403 0.438 0.527 0.499 0.234 0.354
DPO 0.465 0.482 0.354 0.491 0.101 0.159 0.022
PROBLEM TRANSLATION 0.447 0.438 0.389 0.465 0.180 0.277 0.016

Table 4: Evaluation of mitigation methods on Qwen2.5-Coder-7B. Each row shows the model’s performance at
different metigation methods. We denote finetuning with code-rewriting dataset as SFT_W_REWRITING, and
finetuning with half-half origin-rewriting dataset as SFT_W_HALF&HALF. We report accuracy on the original train
set (Acc(T )), and on its code-rewritting (Acc(Trew)), mutation (Acc(Tmut)), and paraphrasing (Acc(Tpar)) variants,
as well as on the validation set (Acc(Tvalid)). In addition, we include similarity scores between the original and
code-rewritting train sets (simT (Trew)), within the code-rewritting train set (simTrew(Trew)), and a memorization
score for the original train set (Mem(T )). For the two sft methods, we also choose the results of early-stage
memorization before overfitting.

phrasing dataset remains stable or even increases377

for both Qwen2.5 and Llama3.1. This result in-378

dicates that rephrasings do not hamper—and may379

even facilitate—comprehension.380

Taken together, these findings shows a diver-381

gence in how LLMs handle different types of data382

perturbation: purely semantic transformations can383

be more accessible, whereas structural or syntactic384

modifications may expose the models’ reliance on385

memorization rather than deeper code understand-386

ing.387

4.2.2 Memorization Becomes Stronger during388

Fine-tuning Process389

In Figure 3, we plot the training and evaluation loss390

curves, from which we define our method to dis-391

tinguish early-stage and late-stage memorization.392

Specifically, we designate the point at which the393

validation loss starts to rise substantially (epoch 20)394

as the onset of overfitting, and then we track sub-395

sequent changes in accuracy, AST similarity, and396

our proposed memorization score to assess how397

severely the model relies on training examples.398

Tables 2 and 3 present the supervised fine-tuning399

results of Qwen2.5-Coder-7B and Llama-3.1-8B- 400

Instruct, respectively. Focusing on the epoch before 401

which overfitting occurs in both tables (highlighted 402

on red), we observe a wide accuracy gap between 403

the original training set and the code-rewriting 404

set. Meanwhile, the AST-similarity gap transitions 405

from negative to positive, implying that the model 406

outputs for the rewritten inputs begin to resemble 407

the original training solutions more closely than 408

those of the rewritten dataset. This indicates a de- 409

pendence on memorized training patterns, which 410

could be further supported by a significant increase 411

in the memorization score. 412

In contrast, the accuracies on the mutation and 413

paraphrasing datasets (Tables 2 and 3) continue 414

to rise. Because the canonical solution of muta- 415

tion and paraphrasing dataset stays the same as 416

train dataset, fine-tuning can help model memorize 417

more on the train dataset, finally improve other 418

two accuracies. However, an enduring accuracy 419

gap between the training set and the mutation set 420

reflects the model’s limited problem-solving capa- 421

bility and its reliance on memorization rather than 422
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solid comprehension.423

Furthermore, we propose using the memoriza-424

tion score as a novel metric for detecting overfitting425

without the need for a validation dataset. By ex-426

amining the performance after overfitting (epoch427

20 in Table 2 and epoch 40 in Table 3), we ob-428

serve that the score of late-stage memorization in-429

creases much slower than it does before overfit-430

ting. Two factors could explain this slowdown: (1)431

the accuracy gap between the training and muta-432

tion/paraphrasing datasets narrows, restricting fur-433

ther expansion in the accuracy-based portion of the434

memorization score; and (2) once overfitting sets435

in, the model cannot recover strong performance436

on the validation set, thus capping additional gains437

in the AST-similarity gap. Consequently, the mem-438

orization score’s increment remains significantly439

lower than it was before overfitting.440

4.2.3 RL and Problem Translation Help to441

Mitigate Memorization but Compromise442

the Performance443

We first choose DPO among the RL-based method444

in Table 4. After the DPO process, we find the445

memorization score drops to a quite small num-446

ber (0.022). While this indicates a mitigation of447

the memorization phenomenon, it’s important to448

note that this improvement comes at the cost of the449

model’s overall capabilities. Although the accu-450

racy on the code-rewriting dataset remains stable,451

performance on the other three datasets declines452

significantly, particularly for the original training453

dataset, which sees a drop of about 20%. We set454

the origin dataset as the loser in DPO process, lead-455

ing DPO to prefer the code-rewriting dataset to the456

origin one. This accounts for the performance drop457

on the original dataset. However, the performance458

improvement on the code-rewriting dataset is mod-459

est, suggesting that we should not treat the original460

and evolved datasets as entirely separate entities,461

as DPO does.462

For the problem translation method, we observe463

similar results as DPO: lower memorization score464

and lower accuracy on origin dataset in Table 4.465

We suppose two situations: First, sometimes there466

is no difference between origin and translated prob-467

lem, but the target model still tries to distinguish468

difference. Second, the professional model is not469

always correct in fact, so the translated problem470

and difference may be wrong. Therefore, the ad-471

ditional difference may make the origin problem472

more complex, and even mislead the target LLM.473

Consequently, both DPO and problem translation 474

have their drawbacks, and they are not perfect meth- 475

ods to mitigate memorization in code generation. 476

Besides, we can find supervised fine-tuning is 477

not be able to decrease the memorization score. As 478

is shown in Table 4, we choose two combinations 479

of dataset to fine-tune on: the full code-rewriting 480

dataset (SFT_W_REWRITING) and the half-half 481

origin-rewriting dataset (SFT_W_HALF&HALF). 482

No matter which dataset we choose, the accuracy 483

on the code-rewriting dataset all drops while the 484

accuracy on the origin train dataset rises. This will 485

obviously increase the accuracy gap. At the same 486

time, the AST similarity gap becomes positive and 487

even higher after fine-tuning, which means the gen- 488

erated code are more similar to the canonical solu- 489

tion of origin dataset. Moreover, the memorization 490

score of half-half origin-rewriting dataset is higher 491

than that of total code-rewriting dataset, which sug- 492

gests that the more exposure of origin train data in 493

fine-tuning, the more serious memorization will be. 494

5 Contributions 495

In this work, we investigated memorization in LLM 496

code generation, where models generate correct 497

solutions for training tasks but struggle with vari- 498

ant tasks. We introduced a multi-level evolution 499

framework, transforming programming problems 500

through mutation, paraphrasing, and code rewrit- 501

ing to test if models grasp problem-solving logic 502

instead of recalling training examples. We pro- 503

posed a memorization score based on accuracy dif- 504

ferences and AST similarity gaps to gauge code 505

memorization. Our experiments show that code- 506

specialized LLMs (e.g., Qwen2.5-Coder-7B) tend 507

to memorize more, scoring well on original datasets 508

but dropping in performance on rewritten tasks. 509

We explored mitigation strategies—supervised fine- 510

tuning, reinforcement learning, and problem trans- 511

lation—finding they reduce memorization at the 512

cost of lower performance on the original dataset. 513

We hope our research sheds light on the reasons for 514

performance drops on evolved datasets. 515

6 Limitation 516

While our multi-level evolution framework and 517

memorization score offer an effective evaluation 518

of memorization in LLM code generation, several 519

limitations require further exploration: 520

(1) Memorization Solution: We try three com- 521

mon mitigation methods, but they either compro- 522

8



mise the performance or fail to alleviate the memo-523

rization issue. And it suggests that a better solution524

is needed to mitigate memorization without com-525

promising the performance.526

(2) Score Threshold for Overfitting: The rate of527

increase in our memorization score can approxi-528

mately indicate the onset of overfitting, but it lacks529

accuracy and reliability. Establishing a specific530

score threshold would be more effective in detect-531

ing overfitting without the need for a validation532

dataset.533

(3) Code Complexity: The code solutions in the534

MBPP-Plus dataset are relatively short and simple,535

making them easier for LLMs to memorize. Us-536

ing a dataset with more complex code could yield537

different results.538

These limitations highlight the importance of on-539

going research and development efforts aimed at540

addressing the challenges associated with memo-541

rization in LLM code generation.542

7 Ethnic Statement543

The development of our multi-level evolution and544

memorization are guided by ethical principles to545

ensure responsible and beneficial outcomes.546

(1) Data: Our dataset is constructed from MBPP-547

Plus dataset, which guarantees ethnic fairness. We548

actively work to eliminate any harmful or offen-549

sive content from the evolved datasets to mitigate550

potential risks.551

(2) Responsible Usage and License: The use552

of these prompts and codes is intended solely for553

evaluating memorization in large language model554

(LLM) code generation tasks, with the aim of ad-555

vancing scientific knowledge in the field. We en-556

courage the responsible use of the evolved dataset557

for educational, scientific, and creative purposes,558

while strongly discouraging any harmful or mali-559

cious activities.560

(3) AI Usage: Apart from the evolution process,561

during paper writing, we only use AI agents like562

GPT-4o to correct semantic errors in specific sen-563

tences.564
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Appendix692

A Case Study693

The result of case study comes from Qwen2.5-694

Coder-7B. We first focus on this problem, which is695

calculating the area of a rectangle:696

• origin problem: Write a function to find the697

area of a rectangle.698

• mutation problem: wrITE a fUnCTIon T0 fnid699

teh area oF A R3cT4nglE.700

• paraphrasing problem: Create a function that701

calculates the area of a rectangle.702

• code-rewriting problem: Write a function to703

find the area of a rectangle, where the cal-704

culation uses the perimeter and one side to705

determine the area.706

As is shown in Figure 4, the original code solu-707

tion takes the lengths of two sides as input, while708

the rewriting code solution uses the perimeter and709

one side as input.710

A.1 Baseline and SFT Models Encounter711

Severe Memorization712

For the origin, mutation, and paraphrasing datasets,713

we observe that all models can answer correctly,714

with responses are even the same as the solution715

to the original problem. We attribute this to the716

simple structure of the original problem’s solution,717

which makes it easy to memorize and thus achieve718

high performance as is shown in Table 1, 2.719

In contrast, for the code-rewriting problem, as720

shown in Figure 5, the baseline and supervised721

fine-tuning models mistakenly assume that the dif-722

ference between the perimeter and twice the side723

length equals the length of the other side. In fact,724

the correct length should be half of this difference.725

Consequently, while the model can solve the origi-726

nal problem correctly, it fails to provide the correct727

answer for the code-rewriting problem, illustrating728

a memorization phenomenon in the context of the729

original problem.730

A.2 RL and Problem Translation Help731

Mitigate Memorization732

We first notice that supervised fine-tuning with733

both code-rewriting dataset and half-half origin-734

rewriting dataset still provide a wrong code re-735

sponse in Figure 5. They even multiply the perime-736

ter and side together, which is meaningless in math-737

ematics. Thus we argue the supervised fine-tuning738

methods can’t help mitigate the memorization phe- 739

nomenon, which is also proved by their higher 740

memorization score in Table 4. 741

When it comes to the translation and DPO, their 742

responses are actually correct. Therefore, we sug- 743

gest both translation and DPO can help mitigate 744

this memorization phenomenon. This result is 745

highly aligned with their lower memorization score 746

in Table 4. 747

B Dataset 748

The MBPP-Plus dataset (Liu et al., 2023) is based 749

on the MBPP dataset (Austin et al., 2021), with 750

378 selected programming tasks. Each task has 751

approximately 35 times more test cases than the 752

original MBPP, so it offers a more rigorous eval- 753

uation of code robustness. And when it comes to 754

the generation part, we set the random seed as 0, 755

the max_token as 1024 to enable greedy sampling 756

with enough context length. 757

B.1 Code-Rewriting Dataset 758

For each task in the MBPP-Plus dataset, we gener- 759

ated a corresponding rew version. We used GPT-4o 760

to perform the rewrite process. First, as illustrate in 761

Figure 1, we guide GPT-4o to rewrite the logic and 762

structure of the original code z such as altering con- 763

ditional statements or changing loop iterations. The 764

rewritten code must differ semantically from the 765

original to avoid superficial changes like variable 766

renaming. Then, we input the original prompt xrew 767

and solution into GPT-4o, then the model generates 768

a new prompt based on the rules defined above. An 769

example of this rewritten process is illustrated in 770

Figure 1. 771

B.2 Mutation Dataset 772

We created a mutation version by introducing con- 773

trolled textual noise. Unlike the rewriting approach, 774

which alters the code logic and structure, the mu- 775

tation strategy focuses on surface-level transfor- 776

mations that preserve the original meaning while 777

changing the textual appearance. Specifically, For 778

task description x, as illustrated in Figure 1, we in- 779

struct GPT-4o to reorder its characters or fragments 780

within words, capitalize letters at unpredictable po- 781

sitions, and inject or substituting characters (e.g., 782

adding punctuation marks or swapping letters) to 783

simulate noisy text input. An example of this muta- 784

tion process is illustrated in Figure 1. 785
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Epoch Acc(T ) Acc(Trew) Acc(Tmut) Acc(Tpar) Acc(Tvalid) simT (Trew) simTrew(Trew) Mem(T )

baseline 0.615 0.442 0.473 0.628 0.561 0.157 0.230 0.100
10 0.654 0.367 0.566 0.65 0.561 0.295 0.217 0.200
20 0.823 0.429 0.739 0.814 0.474 0.499 0.234 0.428
30 0.863 0.398 0.805 0.845 0.544 0.571 0.277 0.474
40 0.881 0.416 0.801 0.867 0.509 0.56 0.277 0.469
50 0.938 0.429 0.836 0.907 0.474 0.605 0.275 0.544
60 0.942 0.429 0.841 0.925 0.456 0.612 0.279 0.544
70 0.951 0.447 0.858 0.947 0.509 0.624 0.287 0.538
80 0.947 0.442 0.858 0.947 0.509 0.623 0.285 0.540
90 0.947 0.447 0.858 0.947 0.509 0.624 0.286 0.534
100 0.947 0.447 0.863 0.951 0.526 0.623 0.284 0.532
110 0.951 0.447 0.863 0.951 0.509 0.62 0.285 0.533
120 0.947 0.447 0.863 0.951 0.526 0.62 0.283 0.530

Table 5: Full results of evaluation of Qwen2.5-Coder-7B during supervised fine-tuning. Each row shows the
model’s performance at different fine-tuning epochs. We report accuracy on the original train set (Acc(T )), and
on its code-rewritting (Acc(Trew)), mutation (Acc(Tmut)), and paraphrasing (Acc(Tpar)) variants, as well as on the
validation set (Acc(Tvalid)). In addition, we include similarity scores between the original and code-rewritting train
sets (simT (Trew)), within the code-rewritting train set (simTrew(Trew)), and a memorization score for the original
train set (Mem(T )). We highlighted (red) the epoch at which the validation loss starts to rise substantially (onset of
overfitting)

Figure 4: The canonical solution on one origin dataset and three evolution datasets. The left blue box is the solution
of origin, mutation and paraphrasing dataset, while the right yellow box is the solution of code-rewriting dataset.
And the red arrow stands for the code-rewriting evolution.

B.3 Paraphrasing Dataset786

In addition to code rewriting and mutation, we787

further expanded our dataset with a paraphrase788

version of each prompt. As illustrated in Figure 1,789

we prompt GPT-4o to rephrase the original input790

using new wording or sentence structures. The aim791

is to preserve the original meaning while altering792

its expression, effectively introducing a small noise793

ϵ2 within the semantic space of natural language S.794

An example of this paraphrase process is illustrated795

in Figure 1.796

C Model797

We choose two series of LLM to conduct our798

research: Qwen2.5-7B and Qwen2.5-Coder-7B,799

along with Llama-3.1-8B and Llama-3.1-8B-800

Instruct. In order to conduct our experiments on801

8*NVIDIA A100 GPUs, we choose the model size802

of 7B and 8B.803

During the evolution process, we choose GPT-4o804

to conduct our evolution methods due to its strong805

capability and high performance on code-related806

tasks. In order to preserve its creativity, we set the 807

temperature as 1 to better evolve our origin dataset. 808

However, when it comes to response generation 809

(inference), we set the temperature as 0 to ensure 810

greedy sampling for certainty. 811
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Figure 5: The response of code-rewriting problem. The red box stands for the wrong response, and the green box
stands for the correct response. The top-left box is the response of baseline model and supervised fine-tuned model
with origin dataset, while the top-right box is the response of supervised fine-tuned model with code-rewriting and
half&half dataset in the mitigation process. The bottom box is the response of translation and DPO models.
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