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ABSTRACT

The interpretability of Deep Neural Networks (DNNs) is crucial when designing
reliable and trustworthy models. However, there is a lack of interpretability meth-
ods for DNNs applied to tabular data. In this short paper, we propose a novel
feature importance method based on activation maximization, applicable to any
Tabular Network. It allows for discarding unimportant features without a signifi-
cant performance drop. We present some preliminary results for one of the largest-
scale architecture in tabular data. In addition, we suggest how it can be applied to
Large Language Models (LLM) to systematically study their biases too.

1 INTRODUCTION

Understanding the ’black boxes’ that are DNNs is essential for building failproof, trustworthy, and
unbiased tools. This is especially important in Large Scale Models when it becomes harder to
systematically study the architecture and training dataset due to their size. Whilst interpretability
methods for image and text networks have attracted a lot of interest, research for the tabular setting
lags behind. This might be due to the reason that tree-based methods still outperform DNNs in
most tabular learning problems. Nevertheless, the gap has been closing as larger-scale models with
self-attention mechanisms started to emerge lately. Therefore, the need for novel tabular-specific
interpretability methods is growing.

In this paper, we focus on finding the input that maximally activates a neuron of interest (e.g. the
output neuron). This approach, known as activation maximization (AM), is well established in the
image domain, but not sufficiently explored for tabular data. Furthermore, we identify uninforma-
tive features, by adding regularization to the optimization problem. We present preliminary results
for the most large-scale architectures that exist for tabular data and make a proposal on how our
methodology can be adapted to large language models to systematically study their biases.

2 LITERATURE OVERVIEW

Deep Learning is outperforming classical machine learning methods in many applications, yet, its
competitiveness on tabular data remains unclear (Gorishniy et al.,2021aj Yel [2022; |Grinsztajn et al.,
2022). New models based on transformers like SAINT (Kossen et al., 2022) or FT Transformer
(Gorishniy et al.l [2021b) have closed this gap. Interpretability methods might deliver new insights
for this debate. [Sahakyan et al|(2021) have created a comprehensive overview of interpretability
methods tailored for tabular data. They differentiate between model-specific and model-agnostic
techniques. We are specifically interested in the inner workings of DNNs and fall into the category
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of model-specific inspection techniques. So far, only limited research has been done in this area and
the proposed methods mainly try to infer feature importance from the neuron weights (Grisci et al.}
2021} |Shrikumar et al.| [2017; [Shwartz-Ziv & Tishbyl [2017;|Olden & Jackson, 2002).

For image data, in contrast, there already exist well-established methods to visualize the input that
specific layers or neurons respond most strongly to (Molnar, 2022} |Olah et al., [2017). [Erhan et al.
(2009) proposed this class of activation maximization methods first. However, simply maximizing
the activation of a neuron does not necessarily lead to interpretable results. Therefore, the literature
following this initial proposal evolves around several different forms of regularization, such as gaus-
sian priors, and hand-designed priors (Nguyen et al., 2019} [Hada & Carreira-Perpinan, [2021). The
most realistic-looking feature visualizations were produced when adding a GAN in front of the in-
spected model, as proposed by Nguyen et al.|(2016ajb). Nevertheless, these kinds of regularization
are image-specific and not all are applicable to tabular data or text.

To the best of our knowledge, the transfer of these techniques to tables is still lacking. The closest
being [Karpathy et al.|(2015)), who transferred an early version of AM to text data, but only analyzed
RNN and LSTM networks.

3 METHODOLOGY

3.1 DATASETS AND MODEL

The experiments are conducted on the recently proposed benchmark for DNNs on tabular datasets
by |Grinsztajn et al.| (2022). We restrict our AM study to binary classification on numerical features,
selecting 14 corresponding datasets (we omit 1 dataset because all features were dropped in one of
the experiments). For a more detailed description of the data preprocessing and training protocol,
the reader is referred to |Grinsztajn et al.| (2022)). By replicating this procedure, we achieve similar
accuracy scores as reported by their work.

We conduct an in-depth analysis of the best-performing architecture, the FT Transformer (Gorishniy
et al.,[2021b)). To our knowledge, this is one of the largest models in the field. Its architecture is based
on transformers, similar to the ones used for large-scale models applied to images and language. For
comparison, we additionally analyze the RESNET and MLP models, which are also described in the
benchmark. Potentially, our method can be applied to bigger models and datasets when they emerge.

3.2 ACTIVATION MAXIMIZATION. REGULARIZATION

In its simplest form, activation maximization can be formulated as:

x* = argmax hy ,(x) (D

where x is any input to the network and h, ,,(x) is the log softmax activation of the neuron n in
layer [ (utility function of the optimization problem). In this paper, we focus our analysis on the
activations at the output layer, i.e., the aim is to study the inputs that maximize the activation for
either of both classes. This can give key insights into what the model bases its decisions on.

Equation[I]has no closed-form solution and therefore a gradient method must be used. In particular,
we implemented gradient ascent. Moreover, as the objective function is non-convex, it is challenging
to find the global maximum. To address this issue, we produce a set of x* (local maxima) with
different initializations (Erhan et al.; 2009) and use their average if the standard deviation within the
set is low.

By adding a regularizer to the utility function of equation |l the search space is constrained.
Thereby, the solution can be tailored to a specific task. Particularly, we propose the following
L1-regularisation term to obtain sparse solutions.

x* = arg max hy, (x) + A|x|1 )

When using this penalty, features drop to zero if they do not contribute significantly to the activation
of the neuron of interest.
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In simpler models as logistic regression, a popular method to assess feature importance is to add
sparsity to the model (Fonti & Belitser, 2017). However, if one enforces sparsity to the weights of
a DNN, the activations of some neurons would become negligible, yet it is highly improbable that
certain paths inside the network are always 0. Consequently, it is hard to directly assess feature
importance in DNNs by enforcing sparsity in the model. Our method aims to tackle this problem
by applying L1 regularization to the features of the input when performing AM rather than to the
neurons, and dropping the features that present values close to 0.

To verify the effectiveness of this approach, we train models on the following three sets of features:
1) the full set (i.e. original model), 2) a subset identified through the proposed method, and 3) a set
generated when dropping randomly the same number of features as in case 2). In section we
compare the accuracy of each model for the 14 chosen datasets.

4 RESULTS AND DISCUSSION

4.1 ACTIVATION MAXIMIZATION (AM)

For a given model trained on a specific dataset, we run the AM n times for each neuron in the output
layer to produce a set of maxima. For our experiments, we choose n = 100. The obtained set of
samples maximizes the log softmax activation of the neuron of interest. The feature-wise standard
deviation of this set is found to be low in general. [B.I|shows a boxplot of such a set of samples. For
a full list of mean and max standard deviations per model, refer to tables Q] andE} We conclude that
our AM method finds roughly the same sample in each run, independently of its initialization. For
the subsequent analysis, the mean of the set of samples is considered.

In Fig|l| we show two such averaged samples, each corresponding to a neuron in the output layer.
An interpretation of them can give insights into what features the model bases its decision on.

AveRooms
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Figure 1: Mean of 100 samples maximizing the activation of the target neuron. The FT Transformer
model trained on the california housing dataset (Pace & Barry,|1997) is used. Features are normally
quantile transformed.

4.2 AM RESULTS ACROSS DIFFERENT DL ARCHITECTURES

When comparing the output of our AM method across different DL architectures, we find that they
do not necessarily lead to the same sample. Figure |2| shows that the result of the FT Transformer
model differs from the MLP and RESNET model. It should be noted that the architectures of the
latter two models are more closely related. Consequently, the produced results are more similar.
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Figure 2: AM with no regularization for FT Transformer, MLP and RESNET models (from left to
right), trained on the california housing dataset.
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4.3  APPLICATION: FEATURE SELECTION

As outlined in section [3.2]and shown in[B.3] adding L1 regularization to the AM draws uninforma-
tive features to zero. We propose to use this result to perform feature selection. In particular, we
drop all features whose obtained sample value (z*, as determined by the AM method) is below a
given threshold for both output neurons. We run our experiments with a threshold of 0.1 and 0.005.
Table ] presents a summary of the accuracy on the test set for the FT Transformer when retraining
the model with and without the identified features. The accuracy of the model stays approximately
constant when omitting the identified features. A significantly larger decrease is seen when dropping
a random set of features. This argues in strong favor of the effectiveness of our proposed approach.
Particularly interesting are cases such as the california housing dataset, where with a 50% feature
drop the accuracy decrease is < 1%.

Table 1: Comparison of FT Transformer accuracies: trained on full set of features, omitting our
identified features and omitting the same number of random features. Results are shown for both
thresholds. The percentage of features dropped is given in the omit column. When choosing a low
threshold (0.005) fewer features are dropped. Explicitly mentioned results are highlighted in bold.

Dataset Full Threshold 0.1 Threshold 0.005
Omit ‘ Ours ‘ Random | Omit ‘ Ours ‘ Random

jannis 0.8014 72% | 0.7816 | 0.7588 70% | 0.7827 | 0.7628
Higgs 0.7280 67% | 0.7217 | 0.6505 50% | 0.7278 | 0.6765
pol 0.9906 58% | 0.9703 | 0.8919 54% | 0.9745 | 0.8867
california 0.8917 50% | 0.8846 | 0.7914 50% | 0.8850 | 0.7912
house_16H 0.8853 44% | 0.8602 | 0.8588 44% | 0.8652 | 0.8613
MiniBooNE 0.9509 38% | 0.9432 | 0.9355 32% | 0.9426 | 0.9369

kdd_ipums_la_97 || 0.8908 35% | 0.8890 | 0.8908 30% | 0.8927 | 0.8936
MagicTelescope | 0.8694 || 20% | 0.8388 | 0.7680 0% | 0.8619 | 0.8619

covertype 0.9040 || 20% | 0.9006 | 0.8933 0% | 0.9024 | 0.9024
credit 0.7785 10% | 0.7789 | 0.7400 0% | 0.7798 | 0.7798
phoneme 0.8921 0% | 0.8441 | 0.8441 0% | 0.8351 | 0.8351
electricity 0.8132 0% | 0.8078 | 0.8078 0% | 0.8094 | 0.8094

bank-marketing | 0.7984 0% | 0.7916 | 0.7916 0% | 0.7912 | 0.7912
eye_movements 0.5847 0% | 0.5879 | 0.5879 0% | 0.5829 | 0.5829

When the datasets are of bigger size (i.e. high number of features and samples such as in the Higgs
dataset), more features can be removed without a significant accuracy difference. This is due to
the fact that even though a high percentage of features is omitted, the remaining ones still account
for most of the variability present in the data and thus the accuracy remains unchanged. In these
scenarios, there is a more noticeable difference in performance with respect to the random case.

For a more detailed presentation of the results and a comparison to the RESNET and MLP architec-
tures, the reader is referred to Tables [ and [5]in the appendix. The two more complex architectures
(i.e. RESNET and FT Transformer) show a lower decrease in accuracy when dropping the identi-
fied features than the MLP architecture. Their complexity allows them to learn successfully with
less amount of data. In smaller datasets, such as bank-marketing or covertype, this effect does not
come to play, as a classifier requires a minimum of variability in its features to achieve reasonable
accuracy.

5 CONCLUSION

Through this work, we successfully transfer the activation maximization method to one of the largest
models applied to tabular data. Moreover, we present a promising application by designing a novel
feature selection method. It analyzes feature importance in DNNs based on the activation maxi-
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mization results. We demonstrate that when retraining a model without the identified uninformative
features, the model accuracy decreases only slightly. However, when dropping the same number
of random features, we can report a much more significant performance decrease. This difference
highlights the relevance of our proposed feature selection method.

So far we have focused on binary classification for the sake of coherence but this method could be
easily applied to multi-class classification or regression problems. Also, as demonstrated throughout
the paper, our approach is model- and dataset-independent. It could, therefore, be used to study
even more complex and larger DNNs once they are applied to tabular data. While we focused on
the output layer, the inner workings of such a model can be analyzed as well. Doing so could lead
to new insights into the interplay of DNNs and tabular data and might allow the development of
sounder model architectures.

5.1 POTENTIAL FUTURE WORK: TRANSFER TO LARGE LANGUAGE MODELS

Previous work has explored how tabular data can be converted into text (Borisov et alJ, 2022) by
describing the table as a sentence e.g. a row is represented by "Featurel is x, Feature2 is y...”. A
pretrained LLM with a classification head can easily be finetuned to perform classification on the
presented datasets. Nevertheless, we the AM method would have to be adapted: instead of using
lasso, group lasso has to be applied, where one group is a sentence describing the value of one
feature. In addition to that, direct gradient ascent cannot be performed due to the discrete nature of
tokens, therefore, group lasso has to be applied to a mask that encodes the importance of the tokens.

Transferring the methodology to text could be useful for discovering biases of the large language
model. LLM embody their own knowledge of the world and biases on the features description. We
could assess what kind of features the model does not take into account when making a predic-
tion. Our method transferred to LLM can be used to study their biases in a more systematic and
automatized way.
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A APPENDIX

A.1 MAXIMIZING SAMPLE WITHIN THE DATASET

As a comparison, we also find the samples within the dataset that maximize the activation of each
of the neurons in the output layer. In that case, the optimization objective is given by:

X = argmax hy (%) 3)
XEXtrain

The reader is referred to figure for a visualization of the maximizing samples within the cali-
fornia housing dataset. The samples show similarity to the ones obtained through AM (see Figure
[[pGi.e. high value in the MedInc, HouseAge, and AveRooms features for neuron 1 and negative
values for the MedInc and HouseAge for neuron 0). Nonetheless, to enforce the generation of in-
distribution data points, one could potentially add a GAN to the AM method.
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A.2 EFFECT OF LASSO REGULARIZATION PARAMETER

When running AM with lasso regularization, the parameter A has to be chosen. We show that
increasing A pulls the feature values to 0 as expected. Refer to[B.3|for a visualization of that effect.
Adding some regularization makes it easier to spot the more relevant features, however, adding too
much will force all features to 0. We use a value of A = 0.001 for our experiments.
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Figure B.1: Boxplot showing the 100 obtained samples maximizing the activation of the target
neurons. Here we show the results for the FT Transformer model trained on the california housing
dataset Pace & Barry| (1997). Features are normally quantile transformed.
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Figure B.2: Samples within the training california housing dataset that maximize the last layer of
the FT Transformer model. Features are normally quantile transformed.
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Table 2: Mean standard deviation across features (per neuron), shown for each dataset, model, and
form of regularization.

FT Transformer MLP RESNET

Dataset no reg lasso no reg ‘ lasso | noreg | lasso

bank-marketing | 0.0133 | 0.0345 | 0.2898 | 0.3109 | 0.0134 | 0.0095
california 0.0301 | 0.0299 | 0.027 | 0.0079 | 0.035 | 0.0288
credit 0.0189 | 0.0062 | 0.019 | 0.0117 | 0.8012 | 0.5355
electricity 0.025 | 0.0064 | 0.1830 | 0.0906 | 0.1130 | 0.0846
eye_movements | 0.0148 | 0.0066 | 0.6935 | 0.1935 | 0.2270 | 0.1196
house_16H 0.0146 | 0.0050 | 0.0711 | 0.0338 | 0.0136 | 0.0073
jannis 0.0406 | 0.0053 | 0.1164 | 0.0271 | 0.0556 | 0.0087

kdd_ipums_la 97 | 0.0212 | 0.0148 | 0.3562 | 0.1678 | 0.0638 | 0.0237
MagicTelescope | 0.1274 | 0.03315 | 0.1123 | 0.1013 | 0.1123 | 0.1126

phoneme 0.0207 | 0.0424 | 0.0887 | 0.0589 | 0.2367 | 0.2111
pol 0.0673 | 0.0097 | 0.0426 | 0.0055 | 0.1873 | 0.1448
wine 0.0127 | 0.0132 | 0.0100 | 0.0060 | 0.0192 | 0.0112
covertype 0.1764 | 0.0944 | 0.0513 | 0.0747 | 0.1376 | 0.0455
Higgs 0.0641 | 0.0169 | 0.1164 | 0.047 | 0.3002 | 0.0757
MiniBooNE 0.0384 | 0.0093 | 0.0410 | 0.0302 | 0.0375 | 0.0238

Table 3: Max standard deviation across features (per neuron), shown for each dataset, model, and
form of regularization.

FT Transformer MLP RESNET

Dataset no reg ‘ lasso | noreg ‘ lasso | noreg | lasso

bank-marketing | 0.0427 | 0.1810 | 1.1990 | 0.7403 | 0.0304 | 0.0231
california 0.0687 | 0.1631 | 0.0506 | 0.0152 | 0.0850 | 0.0839
credit 0.1914 | 0.0340 | 0.1128 | 0.0213 | 2.7217 | 1.9119
electricity 0.1984 | 0.0238 | 0.6851 | 0.3919 | 0.2387 | 0.2171
eye_movements 0.1399 | 0.0644 | 2.6373 | 0.7949 | 0.5978 | 0.4863
house_16H 0.0414 | 0.0238 | 0.5527 | 0.1066 | 0.0499 | 0.0216
Jjannis 0.4650 | 0.0240 | 0.4629 | 0.1735 | 0.2623 | 0.0779

kdd_ipums_la_ 97 | 0.1358 | 0.1451 | 2.9366 | 1.6144 | 0.2169 | 0.1152
MagicTelescope | 1.8802 | 0.2519 | 0.3178 | 0.5808 | 0.7629 | 0.5379

phoneme 0.0427 | 0.1147 | 0.2393 | 0.1661 | 1.3351 | 0.8926
pol 0.5152 | 0.0593 | 0.1876 | 0.0494 | 0.3214 | 0.3123
wine 0.0666 | 0.0688 | 0.0111 | 0.0080 | 0.0520 | 0.0195
covertype 0.3095 | 0.2268 | 0.2574 | 0.1795 | 0.5036 | 0.2858
Higgs 0.4786 | 0.2210 | 0.6019 | 0.1979 | 1.4085 | 0.9185
MiniBooNE 0.5711 | 0.0361 | 0.2654 | 0.5728 | 0.5762 | 0.5509
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Table 4: Comparison of RESNET accuracies: trained on full set of features, omitting our identified
features and omitting the same number of random features. Results are shown for both thresholds.
The percentage of features dropped is given in the omit column. When choosing a low threshold
(0.005) fewer features are dropped.

Dataset Full Threshold 0.1 Threshold 0.005
Omit ‘ Ours ‘ Random | Omit ‘ Ours ‘ Random

jannis 0.8081 76% | 0.7737 | 0.7406 74% | 0.7802 | 0.7412
Higgs 0.7295 58% | 0.7273 | 0.6749 49% | 0.7300 | 0.6770
MiniBooNE 0.9483 52% | 0.9401 | 0.9312 40% | 0.9421 | 0.9361
kdd_ipums_a_ 97 | 0.8963 50% | 0.8789 | 0.8807 20% | 0.8798 | 0.8798
house_16H 0.8934 31% | 0.8761 | 0.8662 31% | 0.8761 | 0.8662
california 0.8873 25% | 0.8873 | 0.8342 0% | 0.8771 | 0.8771
pol 0.9490 11% | 0.9533 | 0.9315 0% | 0.9504 | 0.9504
covertype 0.8904 10% | 0.8907 | 0.8865 0% | 0.8842 | 0.8842
MagicTelescope | 0.8712 10% | 0.8641 | 0.8338 0% | 0.8648 | 0.8648
eye_movements 0.5616 5% | 0.5704 | 0.5353 0% | 0.5566 | 0.5566
phoneme 0.9085 0% | 0.8426 | 0.8426 0% | 0.8426 | 0.8426
electricity 0.8114 0% | 0.8026 | 0.8026 0% | 0.8026 | 0.8026
bank-marketing | 0.7871 0% | 0.7858 | 0.7858 0% | 0.7858 | 0.7858
credit 0.7770 0% | 0.7723 | 0.7723 0% | 0.7723 | 0.7723

Table 5: Comparison of MLP accuracies: trained on full set of features, omitting our identified
features and omitting the same number of random features. Results are shown for both thresholds.
The percentage of features dropped is given in the omit column. When choosing a low threshold
(0.005) fewer features are dropped.

Dataset Full Threshold 0.1 Threshold 0.005
Omit \ Ours \ Random || Omit \ Ours \ Random
wine - 100% - - 100% - -
jannis 0.8004 83% | 0.7354 | 0.7213 19% | 0.7655 | 0.7718
pol 0.9533 77% | 0.9381 | 0.8423 69% | 0.9429 | 0.8593
MiniBooNE 0.9504 56% | 0.9344 | 0.9286 34% | 0.9406 | 0.9353
Higgs 0.7095 54% | 0.7016 | 0.6716 13% | 0.7106 | 0.6968
covertype 0.8522 50% | 0.4984 | 0.4984 50% | 0.4984 | 0.4984
credit 0.7768 20% | 0.5104 | 0.5104 0% | 0.7809 | 0.7809
kdd_ipums_la 97 || 0.8917 15% | 0.8624 | 0.8881 10% | 0.8817 | 0.8780
eye_movements 0.5960 15% | 0.5666 | 0.5385 5% | 0.5785 | 0.5735
california 0.8768 13% | 0.8736 | 0.8411 13% | 0.8736 | 0.8411
MagicTelescope 0.8591 10% | 0.8527 | 0.8196 10% | 0.8527 | 0.8196
house_16H 0.8761 6% | 0.8659 | 0.8659 6% | 0.8659 | 0.8659
phoneme 0.8606 0% | 0.8276 | 0.8276 0% | 0.8276 | 0.8276
electricity 0.8136 0% | 0.8056 | 0.8056 0% | 0.8056 | 0.8056
bank-marketing || 0.7916 0% | 0.7862 | 0.7862 0% | 0.7862 | 0.7862
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