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Figure 1: Top: Synthesized sketches from a specific-style exemplar by our proposed method. Bottom:
Multi-style sketches generated by our framework. η is used to control style tendency. As η increases,
the result’s style becomes more aligned with the referenced style 2, and vice versa.

Abstract

Recent advances in vision-language models have facilitated progress in sketch
generation. However, existing specialized methods primarily focus on generic
synthesis and lack mechanisms for precise control over sketch styles. In this work,
we propose a training-free framework based on diffusion models that enables
explicit style guidance via textual prompts and referenced style sketches. Unlike
previous style transfer methods that overwrite key and value matrices in self-
attention, we incorporate the reference features as auxiliary information with
linear smoothing and leverage a style-content guidance mechanism. This design
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effectively reduces content leakage from reference sketches and enhances synthesis
quality, especially in cases with low structural similarity between reference and
target sketches. Furthermore, we extend our framework to support controllable
multi-style generation by integrating features from multiple reference sketches,
coordinated via a joint AdaIN module. Extensive experiments demonstrate that our
approach achieves high-quality sketch generation with accurate style alignment
and improved flexibility in style control. The official implementation of M3S is
available at https://github.com/CMACH508/M3S.

1 Introduction

Sketching, as a universal visual medium with historical roots spanning millennia, demonstrates
remarkable accessibility by transcending age and cultural barriers [54]. This unique capacity to
convey complex concepts through minimal strokes enables effective cross-linguistic communication,
establishing it as a potent tool for ideation and conceptualization. Through historical development,
sketching has evolved into a multidisciplinary practice permeating diverse domains ranging from
industrial prototyping and artistic expression to educational visualization and recreational applications.
This stylistic diversity, amplified by modern digital tools, introduces significant challenges for
automated sketch generation systems to capture and reproduce specific artistic styles accurately.

A fundamental challenge in advancing sketch generation methods originates from the inherent
difficulties in data acquisition. Unlike natural images that can be readily obtained through web
scraping, high-quality sketch datasets necessitate specialized artistic expertise and substantial time
investment for creation, resulting in constrained dataset scales [37, 50, 57]. While freehand sketches
with rough strokes exhibit greater accessibility [7, 28, 35], including large-scale collections like
QuickDraw [11], their abstract and sparse representations pose inherent limitations for training models
to generate high-fidelity sketches with fine-grained details [4, 58]. Furthermore, this representational
gap significantly impedes the effectiveness of captioning models [22] in producing accurate textual
descriptions for sketches, thereby creating a critical bottleneck for text-conditioned sketch generation.

Recent work has explored leveraging pretrained vision-language models for sketch generation.
CLIPasso [46] utilizes CLIP’s cross-modal embedding space [32] to optimize Bézier curve parameters
by minimizing a semantic consistency loss between rasterized sketches and natural images. Building
on this idea, CLIPascene [45] introduces explicit scene decomposition to separate foreground and
background elements. However, both methods depend heavily on existing image references for
supervision. DiffSketcher [53] takes a step further by incorporating text-driven guidance. It combines
Stable Diffusion [33] with Bézier curve optimization through score distillation sampling, enabling
free-form sketch synthesis from textual prompts. Despite this advancement, existing methods [53, 18]
suffer from limited control over stylistic attributes. In particular, text-based style conditioning often
lacks the expressiveness and specificity needed to capture fine-grained visual traits, making it difficult
to match exemplar styles precisely.

In exemplar-based style transfer, a prominent technical direction involves injecting visual features
through the diffusion model’s self-attention mechanisms. Representative works [3, 1, 5] propose
swapping the K/V matrices derived from the reference images’ denoising process into target
generation. However, this direct replacement strategy proves suboptimal when handling cross-domain
scenarios: The inherent discrepancy between reference and target domains induces misalignment
between generated queries Q and substituted K/V features [1], leading to both content leakage and
deteriorated generation quality. [63] addresses this by introducing attention distillation to align target
K/V features with reference characteristics. However, this approach still suffers from excessive
feature alignment that compromises output authenticity.

We propose Multi-Style Sketch Synthesis (M3S), a training-free framework for generating sketches
with diverse and controllable styles. To balance stylistic fidelity and content preservation, we
introduce a K/V injection scheme composed of three components: (1) Hybrid attention fusion,
which injects reference style features (Kref /Vref ) with target features (Ktar/Vtar) in self-attention
layers to integrate style while retaining content semantics; (2) Linear feature blending to mitigate
content leakage from the reference; and (3) Separated guidance control, which divides classifier-free
sampling into style and content directions, allowing flexible trade-offs between expression and
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structure. This coordinated design enables high-quality, style-specific synthesis, as illustrated in the
upper portion of Fig. 1.

We further investigate the feasibility of multi-style sketch generation. Sketch stylistic expression fun-
damentally manifests through stroke geometry and sparse texture patterns, contrasting with the dense
pixel representations of natural images. Capitalizing on this characteristic, we extend M3S’s feature
injection to multi-style synthesis by integrating K/V features from diverse references. Additionally,
drawing inspiration from [1, 15], we implement a joint AdaIN modulation on intermediate denoising
steps to regulate stylistic dominance. This allows users to adjust the blending weights η between
styles, for example, controlling the clown texture density in the second last row of Fig. 1.

In summary, our main contributions are as follows: (1) We propose a training-free framework
for multi-style sketch generation. Key and value features from the referenced style sketches are
considered auxiliary information, combined with linear smoothing and a style-content guidance
mechanism, enabling the balance between style consistency and fidelity. (2) We investigate the
potential of leveraging pre-trained diffusion models’ prior knowledge for sketch generation with
mixed styles. By introducing a joint AdaIN modulation mechanism, our approach provides users with
flexible control over style generation tendencies. (3) We implement our method on Stable Diffusion
v1.5 [33] and SDXL [29], with extensive experiments demonstrating the method’s effectiveness,
outperforming state-of-the-art approaches.

2 Related Work

Sketch Synthesis The field of sketch generation has evolved through distinct methodological
paradigms. Early breakthroughs like SketchRNN [11] established sequential modeling using RNN-
based encoder-decoders for single-category sketch synthesis. Subsequent work enhanced multi-
category generation through structured representations: pixel-space modeling [60, 25, 41], graph-
based architectures [43, 31, 59], and stroke-level analysis [24, 51]. Recent diffusion-based approaches
[49, 6] improved output quality but remain constrained to coarse category-level control. Although
SketchAgent [47] exploits the powerful text comprehension capability of Large Language Models
(LLMs) to guide LLMs to generate sketches by using drawing rules and reference drawing sequences
as prompts, the generalizability of such approaches still needs to be further explored. Parallel
image-to-sketch extraction research progressed from CNN-based methods [17, 23] (requiring paired
training data) to training-free techniques leveraging vision-language priors [46, 45, 53, 55]. While
existing solutions address specific aspects of sketch generation, they exhibit critical limitations in
simultaneous style-text controllability.

Image Style Transfer Style transfer has evolved significantly since the seminal work of Gatys et al.
[10], who first demonstrated neural style transfer using Gram matrix-based feature statistics from pre-
trained CNNs. Subsequent approaches improved efficiency by replacing iterative optimization with
feed-forward networks [19, 44], while AdaIN [15] and WCT [26] enabled real-time arbitrary style
transfer through feature statistics alignment. However, these frameworks [2, 8] are less generalizable
for arbitrary style transfer. Different interesting methods are proposed with the progress of the text-to-
image diffusion model. InST [62] inverses a painting into corresponding textual embeddings to guide
the text-to-image generative model in creating images of specific artistic appearance. B-LoRA [9] and
DEADiff [30] achieve style-content separation by LoRA weight optimization and joint text-image
cross-attention layers, respectively. IP-adapter [56] trained a light-weight network to incorporate
style embeddings via a cross-attention mechanism. InstantStyle [48] improves the performance by
injecting style features into the selective layers of the denoising UNet. CSGO [52] enhances the
capacity of the style adapter by training on a curated style dataset. Based on CSGO, StyleStudio
[21] proposes the cross-modal AdaIN for harmonizing style and text features. Another method is to
perform K/V feature injection [1, 5] or distillation [63] of the reference image at the self-attention
layers. Notably, StyleAligned [12] also leverages referenced features as auxiliary information, similar
to M3S, it differs in methodology. Their method enforces distributional alignment between target and
referenced features through statistical constraints. Such rigid matching can degrade performance and
cause content leakage when handling sketches with large structural variance (see Section 4).
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Figure 2: Pipeline of the proposed M3S. Given the referenced style sketches Iref1 and Iref2 , we
invert the two images into the latent space, resulting in latents zref1t and zref2t . The referenced K/V
features are extracted from these latents and employed as auxiliary information in self-attention layers
(Section 3.1) for generating target images Itar. A style-content guidance (Section 3.3) is applied
to balance the fidelity and style consistency. We apply a joint AdaIN module to control the style
tendency (Section 3.2). Generating a single style sketch is a special case in the figure, i.e., blocking
out the top or bottom branches.

3 Methodology

M3S is a training-free framework for multi-style sketch synthesis that integrates textual prompts with
reference style sketches through a pre-trained diffusion backbone. As illustrated in Fig. 2, our method
supports single- and multi-style generation by blending style features. The single-style scenario is
achieved by disabling one of the branches (lower path in Fig. 2) and setting joint AdaIN coefficients
η = 1. Below, we detail the core components and additional counter-based regular guidance for
sparse and abstract freehand sketches.

3.1 Style Features Injection

Given referenced sketches Iref1 and Iref2 , our framework aims to synthesize the target sketch
Itar through controlled feature injection. We first formalize single-style generation by integrating
reference features into the denoising steps. At each timestep t ∈ (T, ..., 0), we extract key-value
pairs (Kref1 , Vref1), from the self-attention layer l of the reference sketch’s denoising path, while
computing target features (Qtar,Ktar, Vtar) in the corresponding layer. The standard attention
mechanism operates as:

Attention(Qtar,Ktar, Vtar) = softmax(
QtarK

T
tar√

dk
)Vtar. (1)

Limitations of previous work. Existing approaches [1, 3, 5] achieve specified-style image gen-
eration (or style transfer) through direct feature substitution: Attention(Qref ,Ktar, Vtar) →
Attention(Qtar,Kref1 , Vref1). However, this substitution paradigm encounters critical limita-
tions when handling structurally divergent reference-target pairs, particularly for sketches where
sparse representations amplify domain gaps. As visualized in column 2 of Fig. 3(a), such methods
erroneously focus on local texture replication rather than coherent stroke synthesis, resulting in
structural incoherence and artifactual patterns.

Proposed feature injection approach. As evidenced in column 4 of Fig. 3(a), our simple yet effective
feature concatenation strategy alleviates these limitations. The revised attention computation is

mathematically formulated as Attention

(
Qtar,

[
Ktar

Kref1

]
,

[
Vtar

Vref1

])
. However, this approach

still introduces localized chaotic strokes in certain regions. For natural image synthesis, StyleAligned
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Figure 3: (a) Examples of generated results by different K/V injection method. Direct K/V
substitution and AdaIN constraints (i.e., StyleAligned [12]) introduce visual artifacts (chaotic strokes),
whereas our feature concatenation strategy improves line quality. Further incorporating linear blending
enhances structural coherence by mitigating content leakage. (b) Counter-based regulation guidance
(Section 3.4) achieves effective artifact suppression with a controlled trade-off in stroke fidelity.

[12] takes this strategy and attempts to enhance output quality through statistical alignment by
modulating: Qtar = AdaIN(Qtar, Qref1) and Ktar = AdaIN(Ktar,Kref1), where the AdaIN is

AdaIN(x, y) = σ(y)

(
x− µ(x)

σ(x)

)
+ µ(y). (2)

Unfortunately, different from the scenario of natural images, our experiments (see Fig. 3(a), column
3) demonstrate that such rigid statistical constraints harm sketch generation quality. Instead of this
constraint, the key insight underlying M3S is blending deep features from the target content into the
reference K/V features, strategically trading style consistency for enhanced visual plausibility. This
is realized through a linear smoothing operation with the hyperparameter λ ∈ [0, 1]:

Attention

(
Qtar,

[
Ktar

K̂ref1

]
,

[
Vtar

V̂ref1

])
,

K̂ref1 = λKtar + (1− λ)Kref1 ,

V̂ref1 = λVtar + (1− λ)Vref1 .
(3)

Increasing λ generally enhances aesthetic quality and text alignment. However, as our base model is
trained on natural images, excessively high λ risks style degradation and naturalistic outputs over
sketches. To synthesize sketches combining styles from both Iref1 and Iref2 , we extend Eq.(3) by sim-
ply concatenate additional features K̂ref2 = λKtar+(1−λ)Kref2 and V̂ref2 = λVtar+(1−λ)Vref2 .
The attention can be written as Attention(Qtar, [Ktar, K̂ref1 , K̂ref2 , ]

T , [Vtar, V̂ref1 , V̂ref2 , ]
T ).

3.2 Control the Style Tendency

Inspired by [1], we introduce AdaIN modulation for latent noise images to address the color distribu-
tion shift problem. This process for single style can be formalized as ztart = AdaIN(ztart , zref1t ),
where ztart is the latent target image in denoising time step t and zref1t is obtained by the null-text
inversion technology [16]. Next, we discuss the impact of the modulation on sketch style. Assuming a
sketch is represented in a bitmap way (0 for strokes, 1 for background), referenced style sketches with
dense strokes (e.g., >50% black pixels) exhibit low mean values. AdaIN modulation consequently bi-
ases generated sketches toward a lower mean value µ, yielding detailed outputs. Conversely, abstract
sketches with sparse strokes demonstrate higher µ, producing more minimalist results. Motivated by
this analysis, we introduce a Joint AdaIN module for multi-style tendency control:

ztart = η ·AdaIN(ztart , zref1t ) + (1− η) ·AdaIN(ztart , zref2t ), (4)

where η ∈ [0, 1] is the tendency parameter. Notably, the synthesized results maintain multi-style
characteristics even at parameter extremes (η = 0 or η = 1), as the self-attention calculation
incorporates more than a single stylistic feature.
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3.3 Style-Content Guidance

While text-to-image diffusion models excel at natural image synthesis, their inherent bias toward
photorealistic outputs poses challenges for stylized sketch generation. Conventional classifier-free
guidance (CFG) [14] combined with feature injection (Section 3.1) and AdaIN modulation (Section
3.2) struggles to maintain stylistic consistency due to fundamental domain discrepancies between
natural images and sketches. To address this, we introduce a null-text conditioned style guidance
term that establishes dual control pathways:

ϵ̃t = ϵθ(ztart , t, ∅) + ω1 (ϵ
×
θ (z

tar
t , t, text,Kref , Vref )− ϵθ(ztart , t, ∅))︸ ︷︷ ︸

content guidance direction

+ ω2 (ϵ
×
θ (z

tar
t , t, ∅,Kref , Vref )− ϵθ(ztart , t, ∅))︸ ︷︷ ︸

style guidance direction

,
(5)

where ϵ×θ (·) denotes the noise predicted with feature injection (Section 3.1), ω1 and ω2 are the content
and style guidance scales, respectively. The parameters ω1 and ω2 require careful calibration in
practice to achieve an optimal balance between style and content. Excessively high values of ω2 may
compromise text-image alignment, while insufficiently low values result in uncontrollable stylistic
expression in synthesized sketches.

3.4 Counter-based Regulation Guidance

To mitigate potential artifacts in abstract sketch generation with SD v1.5 [33] (Fig. 3(b)), we first
apply Tweedie’s formula [20] to estimate the denoised latent representation ztar0|t =

ztar
t −

√
1−ᾱt ϵ̃t√
ᾱt

[13, 40], which is decoded to image I0|ttar. Subsequently, we extract directional gradients through
Sobel operators [39]: gradx = Sx ∗ I0|ttar, grady = Sy ∗ I0|ttar, where ∗ denotes convolution. Then,
we calculate the regular term loss and optimize the latent representations as

Ledge = −|gradx| − |grady|, ztar0|t = ztar0|t − γ∇Ledge

ztar0|t
. (6)

The updated ztar0|t is subsequently applied to calculate ztart−1 with DDIM step [40]. In practice, we
empirically set γ = 60 as the default and clamp gradx and grady within [−0.001, 0.001] to prevent
over-amplification of gradient magnitudes that could degrade generation quality.

4 Experiments

Dataset and Metrics We evaluate different methods for single-style referenced generation on six
diverse sketch datasets encompassing professional, amateur, and abstract styles: four professional
styles from 4skst [37] (Styles 1-4, artist-drawn with referenced images), a web-collected diverse
style set (Style 5, 20 sketches from open-source platforms), and 50 abstract freehand sketches from
Sketchy [35] (Style 6). For systematic testing, we generate 50 textual prompts via DeepSeek [27]
using the template "A sketch of ...", pairing each prompt with a randomly selected referenced sketch.
To evaluate the performance of M3S and baselines, CLIP-T [32] is used to measure the alignment
between generated sketches and prompts. For style consistency, we use the similarity between
referenced and target images with the extracted features from DINO [61]. Similar to [1], the distance
of Gram matrices calculated from VGG [38] is also considered.

Implementation Details We implement M3S on both Stable Diffusion v1.5 [33] and SDXL [29],
with all visual results in this paper generated by M3S (SD v1.5) unless otherwise specified (more
M3S (SDXL)’s results are in the Appendix). For M3S (SD v1.5), we configure ω1 = 15, ω2 = 15
and λ = 0.1 Styles 1-5, while using ω1 = 15, ω2 = 25 and λ = 0.05 for Style 6. Similar to [1],
feature injection is applied to self-attention layers in the UNet decoder where feature map resolutions
are 32× 32 and 64× 64. For M3S (SDXL), we set ω1 = 15, ω2 = 15 and λ = 0.1 for Styles 1-5,
adjusting to ω1 = 7.5, ω2 = 20 and λ = 0.05 for Style 6. The specific injection layers are detailed in
the Appendix. The ω2 parameter linearly increases from ω2/3 to ω2 throughout the denoising process
in both implementations. We applied DDIM [40] to sample the target sketches with 100 steps.
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Figure 4: Qualitative comparison of different methods. Most evaluation cases are challenging
cross-domain synthesis scenarios. The referenced images in columns 1-4 are from Style 1-4, columns
5-6 are from Style 5, and columns 7-8 are from Style 6.

Baselines We compare with state-of-the-art (SOTA) methods spanning diverse technical paradigms:
StyleAligned [12] (self-attention feature injection), RB-Modulation [34] (multi-attention aggregation),
AttentionDisillation [63], and methods leveraging specialized style adapters — InstantStyle [48],
CSGO [52], and StyleStudio [21]. These methods are primarily designed for single-reference
scenarios. All baselines are implemented with their open-source codes.

4.1 Qualitative Analysis

In Fig. 4, we illustrated the qualitative synthesized results in various styles with different methods.
Our method effectively captures referenced style sketch attributes, including stroke thickness, pixel
density, and luminance levels, to achieve zero-shot text-aligned sketch synthesis. Compared to
StyleAligned [12] and AttentionDistillation [63], which preserve stylistic fidelity at the cost of
content leakage (e.g., the fox erroneously positioned on a car in the third to last column) and
chaotic stroke patterns (visible in AttentionDistillation’s first three columns), our M3S framework
maintains strict content-semantic consistency while eliminating structural artifacts. These results
demonstrate that excessive feature constraints may degrade sketch quality, particularly in artist-style
sketches. Although methods like InstantStyle [48] and CSGO [52] generate aesthetically plausible
results aligned with textual prompts, they exhibit discernible deviations from referenced styles and
constrained style diversity compared to our approach. This phenomenon likely stems from these
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Figure 5: Examples of generated sketches with two referenced style images. Top: Same prompts are
used in each row, and the prompts are in the Appendix. We set the style tendency η = 0.5 in these
cases. Bottom: Results of different η to control the style tendency.

methods’ primary focus on natural image style transfer, where their feature injection mechanisms
predominantly operate in text space rather than visual space.

The multi-style fusion capability is partially illustrated through specific examples in Fig. 5, and there
are some interesting cases: (1) The apple sketch (top-left) fuses distinct stylistic attributes, clear black
contours from one reference, and localized texturing patterns from another. (2) The birthday cake
synthesis (top-right). When fusing an abstract freehand butterfly sketch and a precisely structured car
drawing, the result inherits the butterfly’s stroke coloration and the car’s orderly linework. Conversely,
the cake’s contours exhibit amateurish characteristics when substituting the car reference with other
sketches. These examples illustrate our framework’s capacity to selectively blend stylistic elements
across references while preserving domain-appropriate stroke characteristics. Our method also
enables flexible style interpolation through the Joint AdaIN module, as shown at the bottom of Fig. 5.
These interpolated results may be able to stimulate the user’s creativity. For instance, increasing η
progressively enhances the definition of Messi’s beard strokes.

4.2 Quantitative Analysis

Table 1 reports the quantitative results of different methods. Under default parameter settings, our
M3S (SDXL) achieves the best average CLIP score of 0.3514, demonstrating superior text alignment.
While the DINO score and VGG style loss slightly trail AttentionDistillation [63], this reflects our
method’s balanced style-content trade-off. To validate flexibility, we provide additional results with
style-oriented parameters (denoted as Ours (SDXL∗) in the table), where reducing content-guidance
ω1 and increasing style-guidance ω2 yields style metrics comparable to AttentionDistillation while
slightly retaining CLIP score advantages. This highlights M3S’s user-adjustable controllability for
subjective style-content balancing. Notably, methods like StyleStudio [21] produce high-quality
images but exhibit lower CLIP scores, likely due to their outputs resembling natural images over
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Table 1: Sketch-text alignment and style consistency performance comparison across styles. ’Ours
(SDXL∗)’ denotes that the parameters of our method are set to ω1 = 7.5, ω2 = 20, and λ = 0.0.

Method Style1 Style2 Style3

CLIP-T(↑) DINO(↑) VGG(↓) CLIP-T(↑) DINO(↑) VGG(↓) CLIP-T(↑) DINO(↑) VGG(↓)

StyleAligned [12] 0.3130 0.6691 0.0308 0.3095 0.7064 0.0684 0.3013 0.6309 0.0621
AttentionDistillation [63] 0.3305 0.7738 0.0930 0.3320 0.7724 0.0320 0.3225 0.7132 0.0305
CSGO [52] 0.3336 0.5276 0.0571 0.3257 0.5409 0.1370 0.3232 0.5154 0.1018
StyleStudio [21] 0.3395 0.5164 0.1873 0.3351 0.5601 0.1954 0.3349 0.5337 0.1790
RB-Modulation [34] 0.3298 0.3624 0.0592 0.3300 0.3429 0.2085 0.3279 0.3453 0.1733
InstantStyle [48] 0.3512 0.4934 0.0417 0.3508 0.4929 0.1577 0.3455 0.4394 0.1321
Ours (SDXL) 0.3607 0.6545 0.0165 0.3556 0.6531 0.0674 0.3422 0.6041 0.0534
Ours (SD v1.5) 0.3507 0.6383 0.0200 0.3452 0.6846 0.0616 0.3416 0.6269 0.0571
Ours (SDXL∗) 0.3480 0.7344 0.0122 0.3340 0.7356 0.0464 0.3319 0.6870 0.0371

Style4 Style5 Style6

CLIP-T(↑) DINO(↑) VGG(↓) CLIP-T(↑) DINO(↑) VGG(↓) CLIP-T(↑) DINO(↑) VGG(↓)

StyleAligned [12] 0.3137 0.6407 0.0244 0.3004 0.5428 0.0445 0.2879 0.4445 0.0300
AttentionDistillation [63] 0.3222 0.7572 0.0061 0.3377 0.6221 0.0173 0.3289 0.7027 0.0190
CSGO [52] 0.3321 0.5134 0.0526 0.3298 0.4288 0.0972 0.3241 0.5012 0.0716
StyleStudio [21] 0.3402 0.5100 0.1595 0.3377 0.3539 0.1215 0.3338 0.3612 0.1434
RB-Modulation [34] 0.3178 0.3373 0.0465 0.3247 0.3233 0.0972 0.3221 0.2737 0.0780
InstantStyle [48] 0.3513 0.4494 0.0262 0.3480 0.4408 0.0601 0.3417 0.5130 0.0421
Ours (SDXL) 0.3612 0.6493 0.0115 0.3467 0.5332 0.0304 0.3420 0.6922 0.0259
Ours (SD v1.5) 0.3518 0.6337 0.0136 0.3494 0.5777 0.0272 0.3405 0.7653 0.0170
Ours (SDXL∗) 0.3506 0.7212 0.0085 0.3383 0.6328 0.0191 - - -

Table 2: The average rating of different methods by the human preference assessment.

StyleAligned [12] AttentionDistillation [63] CSGO [52] StyleStudio [21]
Rating 2.77 4.28 3.83 4.22

RB-Modulation [34] InstantStyle [48] Ours(SD v1.5) Ours (SDXL)
Rating 4.20 5.08 5.44 6.19

sketches. Similarly, lower CLIP scores in Style 3 may stem from dense black patches in references,
whereas Style 4 shows the opposite trend. Each sketch takes about 40 seconds (M3S (SD v1.5)) and
70 seconds (M3S (SDXL)) on an A100 40GB GPU.

We conducted a human preference assessment via structured questionnaires to evaluate text-to-
sketch synthesis performance. Each questionnaire contained: 1) Six randomly selected sets of
generated sketches. 2) Eight anonymized outputs per set from different models under identical
prompts and reference styles. 3) Evaluation criteria: Comprehensive assessment across three di-
mensions—text alignment, style consistency, and generation quality. Participants ranked results
on a scale of 1-8 (8=optimal). From 58 submissions (avg. completion: 4m16s), we excluded 14
invalid responses (<60s completion/missing rankings), retaining 44 validated questionnaires. The
results are shown on Table 2. M3S (SDXL) achieved the highest average score (6.19), and M3S
(SD v1.5) secured a strong performance (5.44). We evaluate the statistical significance by rank tests,
revealing that M3S (SD v1.5) significantly outperforms all baseline methods except InstantStyle
(p-value=0.26). When we align the backbone with InstantStyle (i.e., SDXL), our M3S (SDXL)
demonstrates superiority over it (p-value=1.06× 10−5).

The quantitative results of multi-style generation are shown in Table 3. We generate outputs
for each prompt by randomly selecting two reference sketches from the Style 5 (S5) dataset. To
specifically validate generation performance with significantly distinct reference styles, we conducted
an additional experiment set pairing one randomly selected S5 image with one randomly chosen image
from the QuickDraw (QD) dataset [11] per prompt. When the references exclusively originate from
S5, M3S maintains text alignment comparable to single-style generation. For style consistency, DINO-
ref1 exhibits a positive correlation, while DINO-ref2 shows a negative correlation. At boundary
conditions (η = 0 or 1) of multi-style sketch generation, only one style participates in AdaIN
modulation for image generation. For the two reference styles, replacing the pair of S5-S5 with
QD-S5 reduces style consistency for both implementations (i.e., SD v1.5 and SDXL), though M3S
(SD v1.5) demonstrates superior robustness. Crucially, M3S (SDXL) struggles to effectively utilize
QD’s abstract features, evidenced by significantly lower scores of DINO-ref1 than DINO-ref2 in
QD-S5 pairs. This limitation stems from SDXL’s high-fidelity optimization [29] - its user-tested
superiority over SD v1.5 creates inherent incompatibility with low-quality, abstract datasets like QD.

9



Table 3: Multi-style sketch generation performance under different η values.

M3S Imp. Ref. style η = 0 η = 0.25 η = 0.5

CLIP-T(↑) DINO-ref1(↑) DINO-ref2(↑) CLIP-T(↑) DINO-ref1(↑) DINO-ref2(↑) CLIP-T(↑) DINO-ref1(↑) DINO-ref2(↑)

SDXL S5-S5 0.3442 0.3936 0.4944 0.3514 0.4180 0.4821 0.3495 0.4408 0.4556
SD v1.5 S5-S5 0.3465 0.3850 0.4776 0.3453 0.4215 0.4597 0.3499 0.4469 0.4509
SDXL QD-S5 0.3426 0.3051 0.4724 0.3455 0.3266 0.4622 0.3457 0.3330 0.4397
SD v1.5 QD-S5 0.3434 0.3630 0.4339 0.3417 0.3948 0.4236 0.3452 0.4102 0.4057

η = 0.75 η = 1

CLIP-T(↑) DINO-ref1(↑) DINO-ref2(↑) CLIP-T(↑) DINO-ref1(↑) DINO-ref2(↑)

SDXL S5-S5 0.3499 0.4578 0.4221 0.3470 0.4693 0.3975
SD v1.5 S5-S5 0.3478 0.4528 0.4257 0.3528 0.4626 0.3825
SDXL QD-S5 0.3447 0.3409 0.4209 0.3396 0.3617 0.3916
SD v1.5 QD-S5 0.3440 0.4250 0.3938 0.3468 0.4381 0.3766

Table 4: Results of ablation experiments with different levels of feature injection.

K/V Swap λ = 0 λ = 0.05 λ = 0.1 λ = 0.15 λ = 0.2 λ = 0.25 λ = 1
CLIP-T(↑) 0.3120 0.3409 0.3443 0.3473 0.3457 0.3468 0.3458 0.3382
DINO(↑) 0.8109 0.7437 0.6978 0.6459 0.6161 0.5904 0.5719 0.3707
aesthetic 4.5750 4.7952 4.8892 4.9488 4.9577 4.9843 5.0057 5.0493

4.3 Ablation Study

We conduct the ablation study on styles 1-4 with SD V1.5 as the backbone. To evaluate the
effectiveness of our feature injection approach, Table 4 reports the average scores across these styles.
Aesthetic metric [36] is included to reflect the effect more comprehensively. When employing
basic K/V Swap, the output maintains excellent style consistency with a DINO score of 0.8109,
but its low CLIP score reflects poor alignment between generated sketches and textual prompts.
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Figure 6: The generated results with
different content control scale ω1 and
style control scale ω2.

By incorporating reference features as auxiliary inputs
(i.e., λ = 0), the CLIP metric improves by 9.26%, ac-
companied by an acceptable reduction in DINO. However,
the aesthetic score of generated images under this con-
figuration drops to 4.7952, significantly lower than the
reference style average of 5.0549. Increasing λ mitigates
aesthetic degradation and improves text alignment, but fur-
ther erodes style fidelity. Beyond a critical λ, CLIP gains
diminish while style loss intensifies, leading to our exper-
imentally determined default of λ = 0.1 as an optimal
compromise. Fig. 6 demonstrates the impact of content
guidance (ω1) and style guidance (ω2) on generation re-
sults. When ω1 is fixed, increasing ω2 reduces the number
of intersections in curvilinear textures on the deer’s body,
driving the output closer to the reference style. Conversely, enhancing ω1 under a fixed ω2 improves
the visual quality of the generated deer. More ablation results are in the Appendix.

5 Conclusions

We propose a novel training-free framework named M3S for zero-shot sketch synthesis blending
different styles. The key insight in our method is to take the referenced features as auxiliary
information and modulate the latent noise images with the joint AdaIN module. This modulated
approach enables the user to control the style tendency. Additionally, the style-content direction
guidance provides the flexibility to balance the fidelity and style consistency. A direction for future
research and the functionality not included for now is achieving localized style control, where users
can explicitly assign specific styles to particular regions rather than relying on the model’s automatic
style assignment. This capability would further assist and inspire artistic creation.
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Appendix

The appendix is organized into several sections, including more analysis and additional details. These
topics are as follows:

• In Section A, we provide preliminaries about diffusion model.

• In Section B, more implementation details of our M3S are provided.

• In Section C, we analyze the effectiveness of the regular term for abstract and sparse sketch
generation.

• In Section D, we present the influence of the content guidance ω1 and the style guidance ω2.

• In Section E, we discuss the effectiveness of linear smoothing for style injection.

• In Section F, we compare other generative model for sketch synthesis.

• In Section G, we provide more synthesized results of M3S (SDXL).

• In Section H, we discuss the limitations of M3s.

• In Section I, we discuss the potential social impact of our method.

• In Section J, we show the selected images of Style 5.

• In Section K, we provide the prompts used for qualitative analysis.

• In Section L, we present the prompts for Fig. 5’s multi-style generation.

A Preliminaries

A.1 Denoising Diffusion Probabilistic Models (DDPM)

Denoising Diffusion Probabilistic Models (DDPMs) [13] establish a generative framework that learns
to model the data distribution qdata(x0) through two complementary phases:

Forward Diffusion Process. The forward process systematically perturbs data samples through
progressive noise injection. Given initial data x0 ∼ qdata(x0), it constructs a Markov chain of
latent variables {xt}Tt=1 by gradually adding Gaussian noise according to a predefined schedule
{βt}Tt=1 ∈ (0, 1):

q(x1:T |x0) =

T∏
t=1

N
(
xt;

√
1− βtxt−1, βtI

)
(7)

This transforms the complex data distribution into an isotropic Gaussian distribution q(xT ) ≈
N (0, I).

Reverse Denoising Process. The reverse process learns to invert the diffusion trajectory by it-
eratively denoising from xT ∼ N (0, I). Since the true reverse transition q(xt−1|xt) depends on
the intractable data distribution qdata(x0), DDPMs approximate it through a learned conditional
Gaussian:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (8)

Training Objective. Instead of direct mean prediction, DDPMs adopt a noise prediction parameter-
ization. For timestep t uniformly sampled from {1, ..., T}, the network ϵθ predicts the injected noise
through:

Lsimple = Ex0,ϵ,t∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2 (9)

where αt := 1− βt and ᾱt :=
∏t

s=1 αs. The denoised mean is then derived as:

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
(10)

During inference, DDPMs sample from pθ(xt−1|xt) iteratively from t = T to t = 1. The complete
derivation and connections to stochastic differential equations are detailed in [42].
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DefaultDefault without layer 71Default without layer 69Layers [69, 71]All layers Layers [65,67,69, 71]Referenced styles

A sketch of a pine tree on a hill

A sketch of a sailboat floating on calm water

Figure 7: Examples of generated sketches with different settings of feature-injection layers.

B More Implementation Details

To eliminate the possible localized shadows in the generated sketches, we followed the practice of
[55] and performed a brightening operation on the images. Specifically, we set pixels with values
exceeding 0.7 to 1, where the pixel value range is normalized between -1 and 1.

Our M3S (SDXL) selects some self-attention layers from the upsample UNet branch to perform the
feature injection. We first enumerate all attention layers in the decoder, where odd-numbered indices
correspond to self-attention layers. In practice, layers with indices [1,9,17,25,33,41,49,57,69,71] are
selected for reference style information injection. The examples in Fig. 7 demonstrate the critical
role of the final self-attention layer in style control. When feature injection is disabled at layer
71, the generated images overemphasize textual prompts, resulting in excessive color patches that
deviate from the reference style. Conversely, injecting features across all self-attention layers achieves
exceptional style consistency but compromises text alignment (e.g., excessive folds in generated
sailboat sails). This indicates our layer selection strategy inherently balances style-content trade-offs.
Users can adopt the default configuration or customize layer choices based on visual examples to
meet specific needs.

C Analysis of the Regular Term

The regularization term in Eq. (6) primarily serves to suppress shadows and enhance stroke definition.
As demonstrated in Fig. 8, increasing hyperparameter γ progressively diminishes shadow regions
while accentuating strokes, albeit with unintended over-sharpening that introduces stroke unevenness.
Empirical analysis reveals optimal performance when γ resides within [40, 60], balancing shadow
removal and stroke smoothness. Applying this technique to enhance abstract sketches introduces
approximately 5 seconds of additional processing time per image.

D Analysis of the Style-Content guidance

Fig. 9 demonstrates the effects of content guidance (ω1) and style guidance (ω2) through professional
and abstract style examples. For the professional style (left): (1) All configurations yield text-
compliant sketches. (2) High ω1 values (20/25) introduce extraneous pens, likely due to insufficient
style guidance during early denoising (note ω2’s linear scheduling in Paragraph Implementation
Details). (3) Consistent with Fig. 6, we observe that higher ω1 enhances aesthetics (e.g., streamlined
deer faces) and increased ω2 improves style adherence (rule-based non-intersecting fur strokes). (4)
Balancing trade-offs: At ω1 = 5, elevating ω2 causes structural distortion (deer torso deformation at
ω2 = 20). This is mitigated by increasing ω1, motivating our default ω1 = 15, ω2 = 15.

For abstract styles (right): (1) ω1 = 5, ω2 = 5 produces over-detailed faces inconsistent with the
referenced style sketch. (2) Higher ω2 eliminates excessive details but weakens "yoga" characteristics.
We therefore set ω1 = 15, ω2 = 25 for abstract cases, accepting marginal quality degradation to
prevent artifacts like striped pants (visible at ω1 = 15, ω2 = 15).
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A sketch of a monkey 
eating a peach

A sketch of a rabbit 
eating a burger

A sketch of James 
Bond in a tuxedo and 

holding a gun

A sketch of Trump 
playing guitar

γ= 0 γ= 20 γ= 40 γ= 60 γ= 80

Figure 8: The effectiveness of different γ of eq. (6). Areas demarcated in red signify regions of
substantial shading or lines that are less clearly defined.

𝜔1 = 5 

𝜔2 = 5 

𝜔2 = 10 

𝜔2 = 15 

𝜔2 = 20 

𝜔2 = 25 

𝜔1 = 10 𝜔1 = 15 𝜔1 = 20 𝜔1 = 25 
Style Style

𝜔2 = 5 

𝜔2 = 10 

𝜔2 = 15 

𝜔2 = 20 

𝜔2 = 25 

𝜔1 = 5 𝜔1 = 10 𝜔1 = 15 𝜔1 = 20 𝜔1 = 25 

Figure 9: The generated results with different content guidance scale ω1 and style guidance scale ω2.
Left: "a sketch of a deer". Right: "a sketch of a person doing yoga".

E Analysis of Linear Smoothing for Feature Injection

To further analyze the impact of linear smoothing parameter λ, Fig. 10 visualizes generation results
under varying λ values, while Table 5 extends the quantitative analysis from Table 4 with complete
metrics. Key observations include: (1) λ = 0: Excessive focus on reference style introduces chaotic
strokes that compromise text alignment (e.g., window artifacts in row 2). (2) λ ∈ (0, 0.25): Progres-
sive artifact reduction improves visual cleanliness (row 3 fox torso refinement) while retaining core
style attributes. (3) λ = 0.25: Incipient style degradation manifests as faint roof lines contradicting
reference patterns (row 2). (4) λ = 1: Complete style disengagement yields naturalistic images
lacking artistic stylization. Table 5 quantitatively corroborates these findings: decreasing DINO

17



λ= 0Styles λ= 0.05 λ= 0.1 λ= 0.15 λ= 0.2 λ= 0.25 λ= 1

A sketch of a bridge over a narrow river

A sketch of a small house with two windows

A sketch of a fox standing on a log

A sketch of a vintage camera on a tripod

Figure 10: Examples of different linear smoothing parameter λ for feature injection.

Table 5: Results of ablation experiments with different levels of feature injection. This Table reports
the source data of Table 4.

Method Style1 Style2 Style3 Style4

CLIP-T(↑) DINO(↑) aesthetic CLIP-T(↑) DINO(↑) aesthetic CLIP-T(↑) DINO(↑) aesthetic CLIP-T(↑) DINO(↑) aesthetic

K/V swap 0.3103 0.8132 4.5519 0.3123 0.8474 4.4587 0.3029 0.7854 4.6793 0.3225 0.7977 4.6101
λ = 0 0.3437 0.7452 4.7498 0.3390 0.7707 4.7506 0.3343 0.7315 4.8840 0.3467 0.7273 4.7962
λ = 0.05 0.3474 0.6876 4.8609 0.3449 0.7297 4.8636 0.3360 0.6816 4.9494 0.3487 0.6923 4.8829
λ = 0.1 0.3507 0.6383 4.9555 0.3452 0.6846 4.9043 0.3416 0.6269 4.9877 0.3518 0.6337 4.9476
λ = 0.15 0.3486 0.6153 4.9473 0.3463 0.6396 4.9113 0.3382 0.6005 5.0179 0.3497 0.6090 4.9544
λ = 0.2 0.3501 0.5971 5.0359 0.3463 0.6170 4.9240 0.3404 0.5735 4.9915 0.3503 0.5741 4.9856
λ = 0.25 0.3482 0.5746 5.0194 0.3443 0.6015 4.9610 0.3400 0.5516 5.0153 0.3506 0.5597 5.0269
λ = 1 0.3398 0.3702 5.0199 0.3382 0.3694 5.0608 0.3352 0.3870 5.0736 0.3396 0.3563 5.0428

scores and improving aesthetic metrics with increasing λ, reflecting the inherent trade-off between
style preservation and content alignment.

F Comparisons with More Methods

While the main text focuses on style-specific generation methods, Fig. 11 provides a comparative anal-
ysis with broader sketch synthesis approaches. Implementations of CLIPasso [46] and DiffSketcher
[53] follow their official codebases, requiring over 3 minutes per sketch generation. We observe that
CLIPasso, DiffSketcher, and SketchRNN [11] produce stylistically homogeneous outputs. Notably,
CLIPasso’s reliance on foreground extraction networks leads to chaotic strokes when segmentation
fails (e.g., indistinguishable floral patterns). Although Stable Diffusion v1.5 [33] exhibits style
diversity, its outputs demonstrate uncontrolled style variation and struggle to produce sketches with
white backgrounds and black strokes. Our method effectively addresses these limitations through
controlled style injection while maintaining superior visual quality. When using DiffSketcher’s
outputs as reference styles, M3S successfully emulates this style (Fig.11-bottom), demonstrating
seamless integration with specialized models.

G Generated Sketches by M3S (SDXL)

Compared to SD v1.5, SDXL employs a significantly larger denoising network architecture and
enhances the dimensionality of text-conditioning embeddings. In the main text, we provide several
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CLIPasso DiffSketcher

Content images for CLIPasso and DiffSketcher

Stable Diffusion v1.5 SketchRNN

Ours

Referenced styles

Figure 11: Examples with different methods to generate cats and flowers. CLIPasso [46] and
DiffSketcher [53] require the content image to extract sketches. The prompt ‘a sketch of a cat/flower’
is used for Stable Diffusion V1.5 [33] and our method. In the last column of our method, we use one
of the synthesized sketches of DiffSketcher as the referenced style.

results synthesized by M3S (SD v1.5), and we illustrate generated sketches by the more powerful
M3S (SDXL).

Benefiting from SDXL’s superior text-to-image synthesis capabilities, our M3S framework achieves
precise text-aligned sketch generation across diverse artistic styles, even for complex com-
positional prompts like "A sketch of a cyberpunk-style cat with mechanical limbs",
while maintaining strict adherence to reference style characteristics, as shown in Fig. 12. Fig. 13
illustrates the results of multi-style generation.

M3S (SDXL) effectively integrates styles from dual reference images through its joint AdaIN modula-
tion mechanism for style tendency control. The mirror downside is that the M3S (SDXL) is less than
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perfect in the style migration of local details. For instance, the elephant contour in row 2 demonstrates
insufficient adoption of the left reference’s segmented-line style, where discrete strokes appear less
pronounced. This discrepancy likely stems from SDXL’s architectural advancements: deeper network
layers, augmented attention modules, and heightened model complexity. Notably, these modifications
simultaneously enhance text-alignment precision, particularly for prompts requiring fine-grained
semantic grounding.

M3S (SDXL) preserves the intrinsic diversity of diffusion models — generating distinct sketches
from identical textual prompts and reference styles through stochastic initial noise sampling, as
demonstrated in Fig. 14. This stochasticity manifests across multiple dimensions: (1) Form variation.
Divergent animal pose. (2) Facial Articulation. Unique combinations of facial features and hairstyles.
(3) Compositional novelty. Alternative spatial arrangements of scene elements. Such multi-faceted
diversity provides artists with rich creative inspiration to create sketches.

H Limitation

Fig. 15 Although our M3S demonstrates superior performance in most scenarios, certain limitations
persist. As shown in the left panel of Fig. 15, when reference sketches are excessively sparse with
content concentrated in small image regions, M3S struggles to generate complete and clear sketches.
This stems from two factors: (1) Extreme sparsity hinders effective style feature extraction for guiding
generation, and (2) Higher pixel intensity averages in such references disrupt AdaIN modulation,
limiting pixel availability for text-aligned sketch synthesis. We propose a potential mitigation strategy
(Fig.15-right): Enhancing reference images via zooming and replication-based padding to increase
pixel density. While this alleviates the issue partially, the augmentation process inevitably alters
original stylistic attributes (e.g., sparsity distribution and stroke thickness). Consequently, fully
resolving this limitation necessitates further investigation into non-destructive reference adaptation
methods.

I Social Impact

As illustrated in Fig. 4 and Fig. 12, M3S enables high-quality artist-style sketch generation with
an exemplar. It takes only a few tens of seconds to produce work that would take a human hours.
Meanwhile, as shown in Fig. 5 and Fig. 13, our novel multi-style sketch generation technology and
style preference control can provide users with more creative inspiration.

J Selected Style Images of Style 5

As illustrated in Fig. 16, we curated sketches spanning diverse artistic styles, including portraiture,
scalar vector graphics, meticulous brushwork (gongbi), minimalist aesthetics, and detailed rendering
styles, among others.

K Prompts for Quantitative Experiments

The textual prompts for quantitative evaluation cover a wide range of common real-life scenarios and
categories, including animals, landscapes, vehicles, and daily objects etc. Specific prompts are as
follows:

1. a sketch of a sailboat floating on calm water
2. a sketch of a pine tree on a small hill
3. a sketch of a cat sitting inside a teacup
4. a sketch of a hot air balloon high over mountains
5. a sketch of a dragon flying in the sky, full body
6. a sketch of a bicycle leaning against a brick wall
7. a sketch of a small house with two windows
8. a sketch of a fruit basket with fruits

20



Referenced

Styles
A sketch of a bunny

A sketch of a boy 

holding an umbrella

A sketch of a 

cyberpunk-style cat 

with mechanical 

limbs

A sketch of a fox 

sitting on the sofa

A sketch of a small 

house on the 

mountain

A sketch of a church

Figure 12: Sketches generated by the proposed M3S (SDXL). The results in each column are obtained
using the same prompts and different referenced styles.

9. a sketch of a portrait of naruto
10. a sketch of enchanted forest with glowing mushrooms
11. a sketch of James Bond in a tuxedo and holding a gun
12. a sketch of a man performing tai chi
13. a sketch of a butterfly with plain wings
14. a sketch of a campfire under starry sky
15. a sketch of sydney opera house
16. a sketch of a bridge over a narrow river
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A sketch of a modern city

A sketch of an elephant

A sketch of Taylor Swift

A sketch of a coffee mug

A sketch of a knight holding a sword

A sketch of a frog

A sketch of spiderman

η = 0 η = 0.25 η = 0.5 η = 0.75 η = 1
Referenced 

Style 1

Referenced 

Style 2

Figure 13: Generated sketches by M3S (SDXL) with multi-styles. The parameter η is used for
controlling the style tendency.

17. a sketch of a robot holding a flower
18. a sketch of two white bunnies
19. a sketch of a lighthouse by the ocean
20. a sketch of an owl perched on a car
21. a sketch of a single feather falling through air
22. a sketch of a pair of glasses on an open book
23. a sketch of a steaming coffee cup on a saucer
24. a sketch of a crescent moon with one star

22



Referenced 

Styles

Figure 14: Generated sketches of the same styles and the same prompts in each row. We set different
seeds to synthesize various sketches by M3S (SDXL).

25. a sketch of a fox standing on a log

26. a sketch of an empty swing hanging from a tree

27. a sketch of a vintage camera on a tripod

28. a sketch of a seashell on smooth sand

29. a sketch of a paper airplane mid-flight

30. a sketch of a single rose in a slim vase

31. a sketch of a mountain peak piercing clouds

32. a sketch of a deer standing in a meadow
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A sketch of 

Sydney Opera 

House

A sketch of a 

winding 

staircase in a 

tower

Referenced 

styles

Generated

results

Augmented 

referenced styles

Generated

results

Figure 15: Left: Failure cases of M3S. When the referenced sketches are too small or sparse, M3S is
difficult to produce meaningful results. Right: A potential resolution through image augmentation.

Figure 16: The selected images of style 5.

33. a sketch of a hanging lantern at night

34. a sketch of a winding road through a desert

35. a sketch of a penguin on an ice floe

36. a sketch of a key lying on a wooden table

37. a sketch of a waterfall cascading down rocks

38. a sketch of a pair of scissors cutting paper
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39. a sketch of a street lamp in light fog
40. a sketch of a cactus in a clay pot
41. a sketch of a violin leaning on a chair
42. a sketch of a squirrel holding an acorn
43. a sketch of a single leaf floating on water
44. a sketch of an open umbrella against wind
45. a sketch of a stone arch bridge at dawn
46. a sketch of a chess piece on a board
47. a sketch of a crow perched on a fence
48. a sketch of a winding staircase in a tower
49. a sketch of a person doing yoga pose
50. a sketch of a winding river through hills

L Text Prompts for Fig. 5

The textual prompts for the top-right of Fig. 5 in each row:

1. a sketch of an apple
2. a sketch of a teddy bear
3. a sketch of iron man
4. a sketch of Albert Einstein

Top-left:

1. a sketch of Eiffel Tower
2. a sketch of a dog wearing a hat
3. a sketch of a birthday cake
4. a sketch of a coconut tree
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have provided the details of the proposed module and extensive experiment
results to support our claim.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss that the balance between style consistency and content alignment
is a tradeoff problem in Quantitative Analysis. In the Conclusions section, we point out the
features that our approach currently leaves unimplemented. We also include a Limitation
section in the Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We propose a novel framework for sketch generation, but not a general theory.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the implementation details in the main text. The code is in
the supplementary materials, and more details are in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We attach the code in the Supplementary materials. The dataset 4skst used in
our paper is public, and we provide the selected data of style 5 in the Appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In the Section Experiments, we provide the implementation details, and more
information is in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The commonly used CLIP-T score and DINO score are used to measure the
image-text alignment and style consistency.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The experiments compute resources of our method are included in the last
sentence of Quantitative Analysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We meet the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In the qualitative analysis, we explained why our method can assist artist
creation. We also include a social imapact section in the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The models compared in this paper are open-source.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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