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Abstract

Machine learning (ML) models require protection against various risks to security, privacy,
and fairness. Real-life ML models need simultaneous protection against multiple risks, ne-
cessitating combining multiple defenses effectively, without incurring significant drop in the
effectiveness of the constituent defenses. We present a systematization of existing work
based on how defenses are combined, and how they interact. We then identify unexplored
combinations, and evaluate combination techniques to identify their limitations. Using these
insights, we present, Def\Con, a combination technique which is (a) accurate (correctly
identifies whether a combination is effective or not), (b) scalable (allows combining multiple
defenses), (c) non-invasive (allows combining existing defenses without modification), and
(d) general (is applicable to different types of defenses). We show that Def\Con achieves
90% accuracy on eight combinations from prior work, and 86% in 30 unexplored combina-
tions which we empirically evaluated.

1 Introduction

Machine learning (ML) models are susceptible to a wide range of risks to security (Papernot et al., 2018;
Tian et al., 2022), privacy (De Cristofaro, 2020; Hu et al., 2022), and fairness (Mehrabi et al., 2021; Pes-
sach & Shmueli, 2022). Several defenses have been proposed to mitigate them. Real-life models require
simultaneous protection against multiple risks. But defenses designed to protect against one risk (Li et al.,
2023a; Machado et al., 2021; De Cristofaro, 2020; Mehrabi et al., 2021) may impact susceptibility to other
unrelated risks (Duddu et al., 2024). This raises the question of how to combine defenses effectively, with-
out incurring a significant drop in the protection provided by each constituent defense. Practitioners need
effective combination techniques, either by modifying existing defenses (invasive), or by identifying whether
existing defenses can be combined without modification (non-invasive). Prior work is either limited to specific
defenses (e.g., (Szyller & Asokan, 2023; Chen et al., 2023; Fioretto et al., 2022; Noppel & Wressnegger,
2024)), or study interactions among defenses with risks (Duddu et al., 2024; Gittens et al., 2022). No prior
work provides a way to quickly determine if defenses can be combined effectively.

We first systematically survey existing work on combining defenses based on: (a) how defenses are combined
(i.e., what combination technique was used), and (b) how they interact (i.e., whether they conflict or align).
We then identify previously unexplored combinations, and evaluate prior combination techniques to identify
their limitations.

Non-invasive combination techniques are easier to deploy as they do not require expert knowledge from
practitioners. Therefore, we identify “mutually exclusive placement” (Yaghini et al., 2023) as a promising
technique. It presumes that two defenses can be effectively combined iff they operate on different stages in the
ML pipeline: pre-, in-, and post-training. However, it can result in ineffective combinations: (a) later-stage
defenses can conflict with earlier ones (e.g., model or dataset watermarking with adversarial training or
differential privacy (Szyller & Asokan, 2023)), and (b) same-stage defenses may still be compatible (see §7).

Based on these insights, we present Def\Con, a technique which is (i) accurate (correctly identifies whether
a combination is effective or not), (ii) scalable (allows two or more defenses to be combined), (iii) non-invasive
(does not require changes to the defenses being combined), and (iv) general (applicable to different types of
defenses). Def\Con is inspired by mutually exclusive placement (aka naïve technique), but overcomes its
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limitations by explicitly addressing the reasons that underlie conflicts among defenses: a later-stage defense
either (a) mitigates a risk re-purposed as a defense by an early-stage defense, or (b) overrides changes made
by an early-stage defense (Szyller & Asokan, 2023). We claim the following contributions:

1. a systematization of prior work based on combination techniques, and types of resulting interactions; (§4)
2. identifying unexplored combinations, and evaluating prior techniques for limitations.; (§5.1 and §5.2)
3. Def\Con1, a scalable, non-invasive, and general combination technique (§5.3), which is more accurate

than the naïve technique, with a balanced accuracy of
• 90% (Def\Con) vs. 40% (naïve) using eight combinations from prior work as ground truth, (§7.2),
• 86% (Def\Con) vs. 36% (naïve) via empirical evaluation of 30 unexplored combinations (§7.3 and 7.4).
Def\Con constitutes an inexpensive and fast technique for practitioners to determine if a combination
of existing defenses without modification can be effective, without using expensive empirical evaluation.

2 Background: ML Notations

Consider X as the space of all possible input data records (e.g., images, text prompts) and Y as the space of
corresponding outputs (e.g., classification labels for classifiers, predicted next tokens for generative models).
An ML model is a function fθ which maps x to y, i.e., fθ : X → Y where θ indicates the model’s parameters.
Hereafter, we denote fθ by simply writing f . We consider two datasets of the form (x, y), where x is the
input data record and y is the output, for training an ML model using training dataset (Dtr) and evaluate
the model on test dataset (Dte). We focus our evaluation (§7) on classifier models, and describe the training
and inference for classifiers.

Training. We iteratively update θ using (x, y) ∈ Dtr over multiple epochs to minimize some objective
function C: min

θ
l(f(x), y; θ) + λ R(θ) where l(f(x), y) is the prediction error on x for the ground truth y.

R(θ) is the regularization function which restricts θ from taking large values and λ is a hyperparameter to
control regularization. The parameters are updated as: θ := θ − α ∂C

∂θ where α is the learning rate.

Inference. We measure the utility of f using its accuracy on Dte computed as

ϕu(f, Dtest) = 1
|Dtest|

∑
(x,y)∈Dtest

I
{

f̂(x) = y
}

where f̂(x) is the most likely class. If ϕu is acceptable, f is deployed to provide predictions for input x,
represented by f(x) for the probability vector across different classes.

3 Framework for Systematization

Given a list of defenses whose combinations are explored (§3.1), we present a framework to systematize prior
work based on how the defenses are combined (§3.2), and how they interact (§3.3). We then discuss the
completeness of our framework and how to extend it (§3.4).

3.1 Defenses being Combined

We describe various defenses proposed to mitigate risks to ML models in the presence of an adversary
(Adv). As part of our systematization (§4), we will later enumerate all possible pairwise combination of
these defenses.

Evasion robustness (EvsnRob) protects against evasion, which forces f to misclassify an input x by
adding perturbation δrob (aka adversarial examples) (Machado et al., 2021; Madry et al., 2018). Here,
δrob = argmaxδrob

l(f(x + δrob, y) and ||δrob|| < ϵrob, where ϵrob is a perturbation budget.

Poison robustness (PoisnRob) protects against poisoning which involves training f on poisons which
are obtained by either tampering existing data records in Dtr or adding manipulated data records to Dtr to
1Code will be publicly available upon publication.
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degrade ϕu (Tian et al., 2022). Alternatively, poisoning for backdoors forces f to incorrectly learn a mapping
of some pattern in the poisons, to a target class chosen by Adv. During inference, any data record with that
pattern is then misclassified to the target class (Li et al., 2022).

Model Watermarking (MdlWM) checks for unauthorized model ownership, including model extraction
attacks where Adv trains a local surrogate model to mimic the functionality of f (Orekondy et al., 2019).
MdlWM embeds watermarks in f that transfer to the surrogate model during extraction. If a suspect
model’s watermark accuracy is above some pre-defined threshold, it is identified as a surrogate.

Fingerprinting (Fngrprnt) also checks for unauthorized model ownership by generating unique identifiers
or fingerprints (e.g., adversarial examples, embeddings), for f . These fingerprints transfer from f to any
surrogate model that are derived from it but are distinct from the fingerprints of independently trained
models (Cao et al., 2021; Peng et al., 2022; Lukas et al., 2021; Zheng et al., 2022c; Maini et al., 2021).

Data watermarking (DtWM) checks for unauthorized data use where f is trained on datasets collected
without consent (e.g., face images for facial recognition) (Sablayrolles et al., 2020; Huang et al., 2021;
Wenger et al., 2023). DtWM either augments Dtr with watermarks (e.g., backdoors) (Tekgul & Asokan,
2022; Sablayrolles et al., 2020), or selects high-influence samples from Dtr as watermarks (Liu et al., 2022a).
For verification, we check whether watermarks were in Dtr using statistical tests (Sablayrolles et al., 2020)
or membership inference (Liu et al., 2022a). The difference between MdlWM and DtWM is how a model
trained from scratch on Dtr is classified: DtWM flags it for unauthorized data use while MdlWM classifies
it as independently trained.

Differential privacy (DiffPriv) protects against membership inference (whether a data record was in
Dtr) (Hu et al., 2022) and data reconstruction (reconstructing data records in Dtr) (Fredrikson et al., 2015)
by hiding whether an individual’s data record was used to train f (Abadi et al., 2016). Given two models
trained on neighboring datasets differing by one record, DiffPriv bounds the privacy loss (distinguishability
in predictions between the two models) by eϵ

dp + δ. Here, eϵ
dp is the privacy budget and δdp is probability

where the privacy loss is > eϵ
dp.

Group fairness (GpFair) minimizes discriminatory behavior to ensure equitable behavior across demo-
graphic groups identified by a sensitive attribute in x (e.g., race or sex) (Mehrabi et al., 2021; Pessach &
Shmueli, 2022). GpFair is measured using various metrics like accuracy parity, demographic parity (Zafar
et al., 2019), equalized odds and equality of opportunity (Hardt et al., 2016).

Explanations (Expl) give insights into f ’s incomprehensible behavior (Guidotti et al., 2018) which can be
used to detect discriminatory behavior (Selvaraju et al., 2017; Kim et al., 2018). Explanations γ(x) indicate
the influence of different input attributes in x on f(x). There are three main categories: Attribution-
based (Ismail et al., 2021; Smilkov et al., 2017; Sundararajan et al., 2017); influence-based (Koh & Liang,
2017); and recourse-based (Wachter et al., 2017). We focus on attribution-based explanations which are
popular in prior work on combining defenses, and applicable to various domains (e.g., tabular, image).
These explanations require training a linear model in a region around a point of interest x (Ismail et al.,
2021; Smilkov et al., 2017; Sundararajan et al., 2017). The coefficients of the linear model for an input
x = (x1, · · · xn) with n attributes, constitutes γ(x).

We summarize the defenses and their impact on ϕu in Table 3.

3.2 Combination Techniques

Based on our survey described later in §4, we identify two combination techniques which either modify
existing defenses, or identify whether existing defenses can be combined without modification. We mark them
as T1 and T2 respectively, and describe them as follows:

T1 (Optimization) includes game-theoretic formalization, regularization, or constrained equation solving.
T1 incorporates defenses into the objective function (e.g., regularization terms) so that the corresponding
defense constraints can be satisfied during training for an effective combination (Xin et al., 2023; Hu et al.,
2023a; Bu et al., 2022; Wu et al., 2023; Zhang & Bu, 2022; He et al., 2020; Tran et al., 2022; Ali Mousavi
et al., 2023; Benz et al., 2021; Ma et al., 2022; Nanda et al., 2021; Xu et al., 2021b; Sun et al., 2022; Li
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& Liu, 2023; Lee et al., 2024; Wei et al., 2023; P & Abraham, 2021; Liu et al., 2021; Shekhar et al., 2021;
Zhang & Davidson, 2021; Tran et al., 2021b; Liu et al., 2022b; Lowy et al., 2023; Jagielski et al., 2019; Tran
et al., 2021a; Yaghini et al., 2024; Ding et al., 2020; Xu et al., 2019a; Zhang et al., 2021; Esipova et al.,
2023; Xu et al., 2020; Tran et al., 2023; Lakkaraju et al., 2020; Chen et al., 2019; Li et al., 2023b). This also
includes using variants of standard model architectures and algorithms, specifically catered for a particular
combination to give better trade-offs among the defenses (Ding et al., 2020; Xu et al., 2019a; Yang et al.,
2022; Phan et al., 2019; 2020).
T2 (Mutually Exclusive Placement) consists of applying defenses at different stages of the ML
pipeline— i) pre-training (modifies Dtr), ii) in-training (modifies training configuration such as objective func-
tion), iii) post-training (modifies inputs or outputs of trained f during inference)—to avoid conflicts (Yaghini
et al., 2023; Patel et al., 2022). We later refer to T2 as the naïve technique and use it as a baseline to compare
with our proposed technique Def\Con (§5.3 and §7).

3.3 Type of Interactions

Consider two defenses D1 and D2 which protect against risks Rk1 and Rk2 respectively, with D2 is applied
after D1. The can interact in one of two ways:

• Alignment. D1 and D2 are aligned if any of these hold: (i) D1 and D2 do not impact Rk2 and Rk1,
respectively; (ii) D1 reduces Rk2, increasing D2’s effectiveness; (iii) D1 generalizes D2, so its effectiveness
implies that of D2. Alignment leads to an effective defense combination. When one defense implies the
other (case (iii)), applying the first may be sufficient since we get the second for free (e.g., attribute
privacy and group fairness (Aalmoes et al., 2022)).

• Conflict. D1 and D2 conflict if any of the following hold: (i) D1 uses risk Rk (protected by D2), making D1
ineffective; (ii) D2 overrides D1’s changes, making D1 ineffective. Conflict leads to an ineffective combination
of the defenses. To avoid conflicts, we need accurate combination techniques.

3.4 Completeness of Framework

In §3.1, we identify some ML defenses for analysis. We do not claim that this list is complete. For instance,
there are other defenses (e.g., individual fairness (Dwork et al., 2012), and interpretability (Kleinberg &
Mullainathan, 2019)), or defenses specific to models other than classifiers (e.g., language and diffusion mod-
els), and settings (e.g., federated learning). We can update the framework (§3.1) to add new defenses and
enumerate all its combinations with other defenses (as shown later in Table 1). Similarly, in §3.2, we do
not claim that the list of combination techniques is complete, but it covers all the techniques seen in our
systematization (§4). New combination techniques can be easily added into our framework, and later used
for systematization as shown in §4.1.

4 Systematizing Interactions among Defenses

We now use our framework to categorize existing literature. We present our methodology (§4.1), and show
the systematization of prior work (§4.2).

4.1 Methodology

We enumerate all defense combinations from §3.1, in Table 1. Each combination is represented as a cell in
Table 1, for which we indicate related work, combination technique used, and the type of resulting interaction.

For each prior work, we identify the following:
Combination Technique: We mark the technique to combine defenses as T1 or T2.
Type of Interaction: We mark the interactions as a conflict (Ξ), alignment (Ξ), or unexplored (Ξ).

Justification. Prior surveys are limited to specific defenses (e.g., (Chen et al., 2023; Fioretto et al., 2022;
Noppel & Wressnegger, 2024)), or do not cover sufficient details to about combination techniques (e.g.,
(Gittens et al., 2022; Ferry et al., 2023)). This makes it challenging to design better combination techniques,
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and systematically compare with prior works. Our systematization addresses these limitations by (a) covering
multiple defenses and their combinations, and (b) explicitly mapping them to the combination techniques
and the type of resulting interactions. As shown later in §5, our systematization helps to identify gaps in
existing literature (e.g., unexplored combinations, and limitations of prior techniques). Using the insights
from our systematization, we can design and evaluate a new combination technique (§5.3 and §7).

Selecting Papers for Analysis. We started surveying papers in Google Scholar using keywords (e.g,
“combining <defense 1> and <defense 2>”). We selected all papers including those published in top-tier
ML and security/privacy venues (e.g., NeurIPS, ICML, ICLR, AAAI, CCS, S&P), related workshop papers,
and unpublished papers on ArXiv. We examined their citations and related work to find other papers.
Finally, we used papers from related surveys (e.g., (Gittens et al., 2022; Chen et al., 2023; Fioretto et al.,
2022; Noppel & Wressnegger, 2024; Ferry et al., 2023)) to ensure a comprehensive coverage.

Table 1: Overview of Pairwise Combinations among Defenses: For each combination cell, we citep
related work and indicate the “interaction type” (Ξ → alignment, Ξ → conflict, Ξ → unexplored), and
“combination technique” used (T1-T2).

EvsnRob PoisnRob MdlWM Fngrprnt DtWM DiffPriv GpFair

PoisnRob Ξ→ T1: (Xin
et al., 2023; Hu
et al., 2023a)

MdlWM
Ξ→ T2: (Szyller
& Asokan, 2023)

Ξ

Ξ→T2: (Thakkar
et al., 2023)

Fngrprnt
Ξ→ T2: (Szyller
& Asokan, 2023)

Ξ Ξ

Ξ→ T2: (Lukas
et al., 2021)

DtWM Ξ→ T2: (Szyller
& Asokan, 2023)

Ξ Ξ Ξ

DiffPriv Ξ→ T1: (Bu
et al., 2022; Wu
et al., 2023; Phan
et al., 2019; 2020;
Zhang & Bu, 2022;
He et al., 2020)

Ξ→ T2: (Xu
et al., 2021a; Vos
et al., 2023; Ma
et al., 2019)

Ξ→ T2:
(Szyller &
Asokan, 2023)

Ξ→ T2:
(Szyller &
Asokan, 2023)

Ξ→ T2:
(Szyller &
Asokan, 2023)

GpFair
Ξ: T1: (Tran
et al., 2022;
Ali Mousavi et al.,
2023; Benz et al.,
2021; Ma et al.,
2022; Nanda
et al., 2021; Xu
et al., 2021b; Sun
et al., 2022; Li &
Liu, 2023; Lee
et al., 2024; Wei
et al., 2023)

Ξ→T1: (P &
Abraham, 2021;
Liu et al., 2021;
Shekhar et al.,
2021; Zhang &
Davidson, 2021)

Ξ Ξ Ξ Ξ→ T1: (Tran
et al., 2021b; Liu
et al., 2022b;
Lowy et al., 2023;
Jagielski et al.,
2019; Tran et al.,
2021a; Yaghini
et al., 2024; Ding
et al., 2020; Xu
et al., 2019a;
Zhang et al.,
2021; Esipova
et al., 2023; Xu
et al., 2020; Tran
et al., 2023)

Ξ→ T2: (Sun
et al., 2022)

Ξ→ T2: (Yaghini
et al., 2023)

Expl Ξ→ T1:
(Lakkaraju et al.,
2020; Chen et al.,
2019; Li et al.,
2023b)

Ξ Ξ Ξ Ξ Ξ→ T1: (Yang
et al., 2022); T2:
(Patel et al.,
2022)

Ξ
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4.2 Survey of Prior Work

We describe the defense combinations in the order of appearance along the columns in Table 1.

EvsnRob + PoisnRob. EvsnRob suppresses adversarial examples (as outliers) while PoisnRob sup-
presses poisons (as outliers) in Dtr. Hence, their objectives are aligned. Viewing PoisnRob as out-of-
distribution (OOD) generalization, we can modify adversarial training by incorporating noise from the new
domain to improve domain generalization (Xin et al., 2023). This allows the model to learning robust fea-
tures for OOD generalization, thereby aligning with PoisnRob (Ξ: T1). Hu et al. (2023a) defend against
both poisons and evasion using a bi-level optimization (Ξ: T1).

EvsnRob + MdlWM. Adversarial training, as EvsnRob.In, suppresses the influence of backdoors
which are used for MdlWM.Pre (Ξ: T2) (Szyller & Asokan, 2023). However, generating adversarial-
example based watermarks with a higher ϵrob than EvsnRob.In, can result in an effective combination (Ξ:
T2) (Thakkar et al., 2023).

EvsnRob + DtWM. Radioactive data (Sablayrolles et al., 2020), as DtWM.Pre, adds backdoors as
watermarks to Dtr by perturbing the inputs (similar to adversarial examples). Hence, adversarial training
will suppress the influence of watermarks used for DtWM (Ξ: T2) (Szyller & Asokan, 2023).

EvsnRob + Fngrprnt. Dataset inference (Maini et al., 2021) (as Fngrprnt) is effective with EvsnRob
and incurs an acceptable performance drop (Ξ: T2) (Szyller & Asokan, 2023). We attribute this to the
defenses being applied at different stages (in-training vs. post-training), which reduces conflict between them.
On the other hand, a variant of Fngrprnt based on adversarial examples (i.e., “conferrable examples”),
are ineffective when EvsnRob is applied for the target or the surrogate model (Ξ: T2) (Lukas et al., 2021).
We mark them both separately in Table 1.

EvsnRob + DiffPriv. Hayes et al. (2022) show that the generalization is worse on combining the objectives
of adversarial training (as EvsnRob.In) and DPSGD (as DiffPriv.In), suggesting a conflict (Ξ: T1).

Bu et al. (2022) modify the minimax objective function of adversarial training to include DPSGD without
violating its guarantees (Ξ: T1). Wu et al. (2023) combine randomized smoothing with DPSGD by averaging
the gradients of multiple training sample augmentations before clipping to account for the privacy budget
of adversarial examples. Both techniques modify the objective function (Ξ: T1).

Training f on some public data along with the choice of DiffPriv hyperparameters followed by task specific
fine-tuning can result in better trade-off (Ξ: T1) (Zhang & Bu, 2022; He et al., 2020). Other works have
considered different optimizations: add DiffPriv noise to both input and hidden layers, ensemble adversarial
training to add adversarial examples to private Dtr, or modify objective function for DiffPriv guarantees
on adversarial examples (Ξ: T1) (Phan et al., 2020; 2019).

EvsnRob + GpFair. Adversarial training (as EvsnRob.In) and group fairness (as GpFair.In) have con-
flicting objectives: EvsnRob.In pushes the decision boundary away from Dtr while GpFair.In brings it
closer (Tran et al., 2022). Also, EvsnRob.In increases the disparity among demographic subgroups due to
class imbalance in Dtr (Hu et al., 2023c) and long-tailed distribution (Lee et al., 2024; Benz et al., 2021;
Nanda et al., 2021; Hu et al., 2023c). Several works modify EvsnRob.In’s objective function to ensure
equitable model behavior across demographic subgroups by assigning higher weight to minority subgroup
(Ξ: T1) (Ali Mousavi et al., 2023; Benz et al., 2021; Ma et al., 2022; Nanda et al., 2021; Xu et al., 2021b;
Sun et al., 2022; Lee et al., 2024; Li & Liu, 2023). Wei et al. (2023) use different training configurations and
assigning different weights to different classes to improve class-wise robustness (Ξ: T1).

EvsnRob + Expl. Adversarial training (as EvsnRob.In) improves the interpretability of the gradi-
ents (Tsipras et al., 2019). This suggesting an alignment with explanations (Chalasani et al., 2020). Also,
both defenses can be combined using a minimax objective to construct high fidelity explanations while
resisting adversarial examples (Ξ: T1) (Lakkaraju et al., 2020; Chen et al., 2019; Li et al., 2023b).

PoisnRob + DiffPriv. DiffPriv reduces the influence of outliers thereby improving robustness against
poisons as shown in several works (Xu et al., 2021a; Vos et al., 2023; Ma et al., 2019; Jagielski & Oprea,
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2021). Hence, DPSGD mitigates poisons and the defenses have aligned objective, resulting in an effective
combination (Ξ: T2).

PoisnRob + GpFair. PoisnRob may overly flag data records from the minority groups as outliers for
removal, which increases the bias (Shekhar et al., 2021). This can be corrected by reweighing the scores
assigned to outliers to account for sensitive attributes (Ξ: T1) (P & Abraham, 2021; Liu et al., 2021). Also,
an outlier detector can be trained to minimize the correlation between outlier scores and sensitive attributes
(Ξ: T1) (Shekhar et al., 2021; Zhang & Davidson, 2021).

MdlWM + DiffPriv. DPSGD (as DiffPriv.In) reduces memorization of data records in Dtr and reduces
the impact of backdoors for watermarking (MdlWM). Hence, MdlWM conflicts with DiffPriv (Ξ:
T2) (Szyller & Asokan, 2023).

DtWM + DiffPriv. Ideally, DPSGD (as DiffPriv.In) suppresses watermarks (in DtWM), suggesting
a conflict. However, empirically, DtWM was effective when combined with DPSGD (Szyller & Asokan,
2023). The adversarial example-based watermarks radioactive watermarking (Sablayrolles et al., 2020), were
relatively inliers and not suppressed by DPSGD (Ξ: T2) (Szyller & Asokan, 2023).

Fngrprnt + DiffPriv. Szyller and Asokan (Szyller & Asokan, 2023) found that DPSGD (as DiffPriv.In)
and dataset inference (Fngrprnt) do not conflict, though no reason was provided. We attribute this to
defenses being applied in different stages, reducing conflict (Ξ: T2).

DiffPriv + GpFair. DPSGD (as DiffPriv.In) shows disparate behavior over demographic sub-
groups (Bagdasaryan et al., 2019). Theoretically, it is impossible to design a high utility binary classifier
that is private and fair (Cummings et al., 2019; Agarwal, 2021). Several works modify the objective function
by using fairness constraints, regularization, and game theoretic optimization (Ξ: T1) (Tran et al., 2021b;
Liu et al., 2022b; Lowy et al., 2023; Tran et al., 2021a; Jagielski et al., 2019; Yaghini et al., 2024; Mozannar
et al., 2020). Yaghini et al. (2023) combine demographic parity regularization with DPSGD, and estimate
fairness on a public dataset to avoid consuming extra privacy budget (Ξ: T1). Also, functional mechanism
adds Laplace noise to the objective function, along with varied noise levels for different subgroups, which
reduces discrimination (Ξ: T1) (Ding et al., 2020; Xu et al., 2019a). However, this is limited to the convex
objective functions (e.g., logistic regression). Esipova et al. (2023) attribute unfairness in DPSGD to the
differences in unclipped and clipped gradient directions. Subsequently, several works have used proposed
variable gradient clipping to minimize discriminatory behavior while maintaining utility (Ξ: T1) (Xu et al.,
2020; Tran et al., 2023; Zhang et al., 2021). Yaghini et al. (2023) use PATE framework to apply fairness
constraints and DiffPriv noise in the aggregated votes from the teacher’s ensemble. Both fairness and
privacy are applied in pre-training (Ξ: T2).

DiffPriv + Expl. The objectives of these defenses are inherently conflicting: DiffPriv hides information
to minimize leakage while Expl releases additional information to improve comprehensibility (Banisar, 2011).
Yang et al. (2022) train an autoencoder with DiffPriv (functional mechanism). This autoencoder is used to
generate data records and compute counterfactuals that satisfy DiffPriv via the post-processing property
(Ξ: T1). Patel et al. (2022) propose an adaptive DPSGD algorithm to generate high-quality explanations
without consuming ϵdp, by reusing past explanations for similar data records (Ξ: T2).

5 Insights from Systematization

We identify unexplored combinations (§5.1), requirements for an ideal technique, limitations of prior tech-
niques (§5.2), and design a new technique (§5.3).

5.1 Unexplored Combinations

We identify 14 unexplored combinations (Ξ in Table 1): (i) PoisnRob with {MdlWM, DtWM,
Fngrprnt, Expl}; (ii) MdlWM with {DtWM, Fngrprnt, GpFair, Expl}; (iii) DtWM with
{Fngrprnt,GpFair,Expl}; (iv) Fngrprnt with {GpFair, Expl}; (v) GpFair with Expl.
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Takeaway: Unexplored combinations reveal research gaps and opportunities for effective technique design.

We revisit these combinations in our evaluation (§6 and §7).

5.2 Evaluating Combination Techniques

Our systematization reveals that some techniques may lead to ineffective combinations. We outline require-
ments for an ideal technique, and identify limitations in prior work.

Requirements. A combination technique should alow practitioner to quickly determine whether a combina-
tion can be effective combined. Empirical evaluation to determine the effectiveness of a combination, while
definitive, can be expensive, especially when multiple defenses are involved. An ideal combination technique
should be: R1 (Accurate) correctly identifies whether a combination is effective or not; R2 (Scalable)
allows two or more to be combined simultaneously; R3 (Non-invasive) does not require modifying defenses,
easing adoption and removing the need for expert knowledge; R4 (General) applicable to various defenses.

Takeaway: Combination techniques, including newly proposed ones, should be evaluated for R1-R4.

Limitations of Prior Techniques. We summarize the limitations of existing techniques (T1-T2) as per
the requirements (R1-R4) in Table 1. We use # for requirement not satisfied, G# for partially satisfied, and
 for fully satisfied.

T1 (Optimization) where modifying the objec- Figure 1: Requirements satisfied by various tech-
niques: # → Not satisfied; G# → Partially satisfied;
 → fully satisfied.

Technique R1 R2 R3 R4
(Accurate) (Scalable) (Non-Invasive) (General)

T1 G# # # #
T2 G#    

tive function for training, followed by hyperparam-
eter tuning, can result in an effective combination.
However, this often results in a trade-off between
effectiveness of constituent defenses and model util-
ity. Hence, we mark T1 as partially accurate (R1
→ G#). This trade-off also explains why prior works
have struggled to scale beyond two defenses (R2 →
#). Furthermore, some defenses are not applicable
for T1 (e.g., Expl and Fngrprnt), and require modifications or non-standard variants (R3 → #). Finally,
these optimizations are tailored to specific defenses being combined, and do not apply to other defenses.
They are also specific to some models (e.g., logistic regression with DiffPriv), and do not translate to other
models (e.g., neural networks). Hence, T1 has limited applicability (R4 → #).

T2 (Mutually Exclusive Placement) can apply up to one defense in each of the three stages, thus,
making it scalable (R2 →  ). Defenses do not need any modification (R3 →  ), and the combination
technique is applicable to all types of defenses (R4 →  ). However, the combinations may not be effective:
(i) a defense in a later stage of the pipeline can conflict with earlier ones (false negatives) (Szyller & Asokan,
2023), and (ii) it rules out defenses in the same stage that do not conflict (false positives see §7). Hence,
this may incorrectly identify effective combinations (partially accurate R1 → G#).

Takeaway. Neither technique satisfies all the requirements. T2 is promising as it satisfies R2, R3, and
R4, but not R1 (incurs false positives and false negatives).

5.3 Def\Con: Design

From our systematization, we identify that T2 overlooks underlying causes for conflicts, leading to false
positives/negatives. Can we address the limitations of T2 and improve R1? Recall from §3 that conflicts
arise when (i) an early-stage defense uses a risk which is mitigated by a later-stage defense, or (ii) changes
by an early-stage defense is overridden by a later-stage defense. We conjecture that by accounting for these
underlying causes, we can meet R1. We present Def\Con, a principled technique to identify effective
defense combinations, by accounting for the reasons underlying conflicts
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S1: Same Stage?

S2: D2 → local/no change? S3: D1 uses Rk?

∆ ∆

no yes

yes no

S4: D2 protects
against Rk?

∆

yes

yes

∆

no

no

Figure 2: Flowchart depicting various steps in
Def\Con to identify conflict between D1 and D2 (D2
is applied after D1).

Methodology to Derive Def\Con. We start
with the naïve technique and modify it to include
the underlying causes for conflicts among defenses.
We iterate over the design of Def\Con using prior
work from §4, and evaluate the final design on
unexplored combinations (see §7).

Def\Con Description. We describe Def\Con us-
ing the example of combining two defenses, D1 and
D2 which protect against Rk1 and Rk2 respectively,
and later discuss how to extend to more than two de-
fenses. Following prior work (Duddu et al., 2024),
we refer to unintended interactions between a de-
fense and a risk if the defense either increases or de-
creases the susceptibility to an unrelated risk (e.g.,
D1 and Rk2).

We start by identifying variants of each of the defenses across pre-, in-, and post-training stages (see Table 3).
We compare each variant of D1 with that of D2, and use ∆ for alignment, and ∆ for conflict. Assuming D1
is applied first and then D2, we follow the steps below in sequence:

S1 Are D1 and D2 applied in the same stage?
• If yes, go to S2 • Else, go to S3
S2 The type of changes made by the defenses determines whether there is a conflict. We classify the changes
as global, local, and none. Global changes modify f (e.g., training with a regularization term, pruning) or
transform all records in Dtr (e.g., synthetic data generation for DP or fairness during pre-training). Local
changes affect specific data records (e.g., adding watermarks in pre-training or modifying certain predictions
in post-training). Fngrprnt.Post and Expl.Post make no changes to f and Dtr.
• If D1 makes global/local/no changes while D2 makes local/no changes, we mark this as ∆.

Rationale: Changes by D1 will not interfere with local/no changes by D2, as D1 is applied first. Hence,
no conflict.

• If D1 makes global/local/no changes while D2 makes global changes, mark as ∆.
Rationale: Global changes by D2 will override changes by D1, thereby reducing its effectiveness. This is
called catastrophic forgetting when the defenses are applied sequentially during training (Kemker et al.,
2018; Szyller & Asokan, 2023). This is a conflict.

S3 D1 and D2 are in different stages. Does D1 use a risk Rk as part of the defense (e.g., watermarking uses
backdoors)?
• If yes, go to S4.
• If no, mark as ∆.

Rationale: If D1 does not use Rk, the susceptibility to Rk will not be impacted after applying D2. Hence,
D1 and D2 are unlikely to interfere with each other.

S4 Does D2 protect against Rk either explicitly or via unintended interaction?
• If yes, mark as ∆.

Rationale: Since D1 uses Rk (either explicitly or via unintended interaction), D2 will reduce susceptibility
to Rk making D1 less effective. Hence, there is a conflict.

• If no, mark as ∆.
Rationale: D1 and D2 are unlikely to interfere with each other. Hence, there is no conflict.

We summarize the steps in Def\Con in Figure 2. Def\Con evaluates combination effectiveness based
solely on the effectiveness of the constituent defenses, without considering the model utility. We revisit
model utility in §8.

Note on DiffPriv. Combining DiffPriv with other defenses does not consume additional privacy budget.
Any modification to Dtr (e.g., adding watermarks) is done within the privacy boundary, and does not consume
privacy budget. Any defense applied after DiffPriv is “free” (DiffPriv’s post-processing property).

9



Under review as submission to TMLR

Extending Beyond Two Defenses. To extend Def\Con to more defenses, we first identify a non-
conflicting combination of D1 and D2 (marked as ∆). To augment this with an additional defense D3, we
check for conflicts with existing defenses from S1. If it conflicts with D1 or D2, we mark the combination as
∆; otherwise, ∆.

Having discussed the Def\Con’s design, we comprehensively evaluate Def\Con across R1-R4.

6 Experimental Setup

To evaluate Def\Con across different requirements (R1-R4), we present the dataset and metrics used
(§6.1), identify defenses in different stages of ML pipeline (§6.2), select defenses for evaluation (§6.3), and
present evaluation metrics and our implementation (§6.4).

6.1 Datasets and Models

We use two image datasets: FMNIST and UTKFACE. FMNIST consists of 28x28 grayscale images of ten clothing
types, with 60,000 training and 10,000 testing images. We classify these using a two layer CNN with 16 and
32 filters, ReLU activation, and a fully connected layer for ten-class classification. UTKFACE includes 48x48
RGB images, classifying individuals as young (under 30), with 11,852 training and 10,667 testing images.
It also includes the sex of the individuals as a sensitive attribute. We use a VGG16 model with a fully
connected layer for binary classification.

We choose FMNIST since all of the defenses we consider for evaluation (§6.3) have used it for evaluation. We
selected UTKFACE because many defenses effective for FMNIST are likely to be applicable to it as well, given
that both are image datasets. Also, UTKFACE includes sensitive attributes, making it suitable for GpFair.

6.2 Revisiting Defenses

Since the naïve technique and Def\Con apply defenses at different ML pipeline stages, we revisit and
categorize defenses in §3.1 by the stage they are applied in. For each defense from §3.1, we specify the variants
in pre-training (“<defense>.Pre”), in-training (“<defense>.In”), and post-training (“<defense>.Post”).
For additional context, we indicate the impact of applying a defense on ϕu compared to a “no defense”
baseline, where “∨” is a decrease, “∼” is no effect, and “∧” is an increase.

Evasion robustness (EvsnRob)

• EvsnRob.Pre (Data Augmentation) where adding transformations of training data records improves
robustness (Yun et al., 2019; Zhang et al., 2018b; DeVries & Taylor, 2017; Rebuffi et al., 2021) (but see
§6.3). This improves ϕu (∧) by acting as regularization (Yun et al., 2019; Zhang et al., 2018b; DeVries &
Taylor, 2017; Rebuffi et al., 2021).

• EvsnRob.In (Adversarial Training) modifies the objective function to minimize the max-
imum loss from adversarial examples (Madry et al., 2018; Zhang et al., 2019): Ladvtr =
minθ

1
|Dtr|

∑
x,y∈Dtr

max∥δ∥≤ϵrob
ℓ(f(x+δ), y). Alternatively, randomized smoothing modifies the training

and inference to obtain certified robustness of f (Cohen et al., 2019; Lecuyer et al., 2019). These defenses
decrease ϕu (∨) (Zhang et al., 2019; Tsipras et al., 2019).

• EvsnRob.Post (Input Processing) removes adversarial perturbations before passing them to f (e.g.,
using generative models (Nie et al., 2022; Song et al., 2018) or input encoding (Buckman et al., 2018;
Guo et al., 2018; Das et al., 2017)) or checks for adversarial examples using statistical tests (Grosse et al.,
2017). Defenses which modify input images using generative models decrease ϕu (∨) (Nie et al., 2022;
Song et al., 2018; Guo et al., 2018; Das et al., 2017). If the input transformation is small, the decrease in
ϕu is negligible (∼) (Buckman et al., 2018; Grosse et al., 2017).

Poison robustness (PoisnRob)

• PoisnRob.Pre (Data Sanitization) includes detecting and removing outliers in Dtr (e.g., using Shapley
values (Jia et al., 2021b; 2019; Doan et al., 2020) or anomaly detection (Cretu et al., 2008; Paudice et al.,
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2018; Tran et al., 2018; Barreno et al., 2010; Chen et al., 2018)), followed by retraining. As the outliers
are memorized and contribute to ϕu, their removal degrades ϕu (∨) (Jia et al., 2021b; 2019).

• PoisnRob.In (Fine-tuning) updates f to minimize outlier influence. This includes distillation to reduce
the influence of poisons (Li et al., 2017) or fine-tuning on a poison-free dataset (Diakonikolas et al., 2019;
Zhu et al., 2023; Xu et al., 2019b; Liu & Guo, 2020; Patrini et al., 2017). These do not impact ϕu (∼).

• PoisnRob.Post (Pruning) reduces the effectiveness of backdoors by removing some model parameters
based on the observation that poisoned and clean samples have different activations (Liu et al., 2018; Wu
& Wang, 2021; Zheng et al., 2022b;a; Li et al., 2023c). This degrades ϕu (∨).

Model Watermarking (MdlWM)

• MdlWM.Pre (Backdoors) uses backdoor watermarks in Dtr (Adi et al., 2018; Zhang et al., 2018c; Jia
et al., 2021a; Uchida et al., 2017). These are designed to maintain ϕu (∼).

• MdlWM.In (Optimization) updates the original objective function to include watermark behav-
ior (Bansal et al., 2022; Bagdasaryan & Shmatikov, 2021). For instance, certified watermarking adds
Gaussian noise to watermarks (added to Dtr) to get certification on watermark accuracy (Bansal et al.,
2022). Also, backdoors can be introduced through regularization, which can be repurposed for water-
marking (Bagdasaryan & Shmatikov, 2021). This degrades ϕu (∨).

• MdlWM.Post (API) modifies predictions to embed watermarks (Szyller et al., 2021) which are used
by Adv to train the surrogate model. These are designed to maintain ϕu (∼).

Fingerprinting (Fngrprnt). All fingerprints are post-training schemes (denoted as Fngrprnt.Post). No
retraining or modification of f is required and hence, Fngrprnt has no effect on ϕu (∼).

Data watermarking (DtWM). All the current schemes are during pre-training (DtWM.Pre), and
are designed to maintain ϕu (∼). The difference between MdlWM and DtWM is how a model trained
from scratch on Dtr is classified: DtWM flags it for unauthorized data use while MdlWM classifies it as
independently trained.

Differential privacy (DiffPriv)

• DiffPriv.Pre (Private Data) from generative models with DiffPriv constraints, that can be used for
downstream tasks instead of Dtr (Hu et al., 2023b; Xie et al., 2018; Torkzadehmahani et al., 2019; Zheng
& Li, 2023). This decreases ϕu (∨).

• DiffPriv.In (DPSGD) trains f by adding carefully computed noise to the gradients to minimize the
influence of individual data records on f (Abadi et al., 2016). Private aggregation of teacher’s ensembles
(PATE) (Papernot et al., 2017) is another framework for DP where multiple teacher models are trained
on disjoint private datasets, while a student model is trained on a public dataset with labels annotated
via noisy voting from the teacher models. These defenses decrease ϕu (∨) (Jayaraman & Evans, 2019).

• DiffPriv.Post (Output Perturbation) includes adding calibrated noise to the output of empirical risk
minimization objective (Chaudhuri et al., 2011). This decreases ϕu (∨). The theoretical guarantees are
poorer than other DP defenses and DiffPriv.Post requires the objective function to be convex. We
omit this since it does not cover neural networks.

Group fairness (GpFair)

• GpFair.Pre (Fair Data) modifies Dtr to reduce bias in the downstream model (Kamiran & Calders,
2011; Calmon et al., 2017; Zemel et al., 2013; Feldman et al., 2015). This degrades ϕu (∨).

• GpFair.In (Regularization) penalizes violating fairness constraints (Agarwal et al., 2018; 2019; Celis
et al., 2019; Kamishima et al., 2012). This degrades ϕu (∨) (Zhang et al., 2018a; Louppe et al., 2017;
Pinzón et al., 2023).

• GpFair.Post (Calibration) adjusts the threshold over the predictions to ensure that the prediction
probabilities accurately reflect the true likelihood across each demographic group (Pleiss et al., 2017;
Hardt et al., 2016; Kamiran et al., 2012; Geyik et al., 2019; Salvador et al., 2022; Kull et al., 2017;
Hebert-Johnson et al., 2018) This degrades ϕu (∨) (Pleiss et al., 2017).

Explanations (Expl). Expl are post-training defenses (Expl.Post) which does not require retraining,
and hence does not degrade ϕu (∼).
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We summarize the defenses in Appendix A: Table 3.

6.3 Choosing Defenses for Evaluation

To select defenses for our evaluation, we began with those in §6.2 (summarized in Appendix A: Table 3).
We remove defenses which are not robust: EvsnRob.Post (Input Processing) and PoisnRob.Pre (Data
Sanitization) (Kang et al., 2024; Koh et al., 2022). We then evaluate the remaining defenses and exclude
those which were ineffective on our datasets: EvsnRob.Pre (Data Augmentation) (Yun et al., 2019; Zhang
et al., 2018b; DeVries & Taylor, 2017), DiffPriv.Pre (Private Data) (Zheng & Li, 2023), GpFair.Pre
(Fair Data) (Zemel et al., 2013), and GpFair.Post (Calibration) (Pleiss et al., 2017). DiffPriv.Pre,
GpFair.Pre, and GpFair.Post, were designed for tabular datasets but ineffective on our image datasets.
We speculate about these defenses in §8.

We are left with eleven defenses: (i) EvsnRob.In (adversarial training), (ii) PoisnRob.In (fine-tuning),
(iii) PoisnRob.Post (model pruning), (iv) MdlWM.Pre (backdoor watermarks), (v) MdlWM.In (wa-
termarks via objective function), (vi) MdlWM.Post (API-based watermarks), (vii) DtWM.Pre (back-
door watermarks), (viii) Fngrprnt.Post (dataset inference), (ix) DiffPriv.In (DPSGD), (x) GpFair.In
(regularization), (xi) Expl.Post (attribution). We get 55 pairwise combinations from them but we
remove combinations among defenses with the same objective: three combinations among watermark-
ing (MdlWM.Pre, MdlWM.In, MdlWM.Post), three for Fngrprnt.Post with MdlWM.Pre,
MdlWM.In, MdlWM.Post, and one for PoisnRob.In and PoisnRob.Post. This leaves us with 48
combinations.

6.4 Metrics and Implementations

We describe the metrics for evaluating the effectiveness of each defense, and the implementations taken from
publicly available code from prior work. We measure ϕu on Dte for all defenses. Our implementations for
defenses are based on the state-of-the-art (Fngrprnt, PoisnRob), standard libraries (DiffPriv, GpFair,
Expl), or seminal work (EvsnRob, DtWM, MdlWM). We use the standard hyperparameters which
are either from the literature or the library documentation, such that the resulting individual defenses are
effective (Table 3). When combining defenses, we use the same hyperparameters, but revisit hyperparameter
tuning for defenses in combination (see §7.4). We report the mean and standard deviation across five runs.

Evasion Robustness (EvsnRob.In). We use the accuracy on Drob which is obtained by replacing data
records in Dte with the adversarial variants:

ϕrobacc(fEvsnRob, Drob) = 1
|Drob|

∑
(x,y)∈Drob

I
{

f̂EvsnRob(x) = y
}

Ideally, ϕEvsnRob
robacc should be close to ϕu. We use the original implementation of TRADES (Zhang et al., 2019)

and an implementation of AutoAttack (Croce & Hein, 2020) in SecML library (Pintor et al., 2022b) from
Pintor et al. (2022a). As we evaluate effectiveness of EvsnRob.In using attacks, poorly optimized attacks
can falsely suggest defense effectiveness (Carlini et al., 2019; Carlini & Wagner, 2017; Tramer et al., 2020).
We individually optimize these attacks for evaluation with defenses and their combinations, following Pintor
et al. (2022a) to address failures identified by various indicators (e.g., poor optimization). We evaluate
across various AutoAttack variants by (a) modifying the loss function: cross entropy (CE) and difference of
logits ratio (DLR), (b) applying expectation over transformations (EoT), and (c) using random starts. For
FMNIST, we use DLR, CE, DLR+EoT, and CE+EoT. For UTKFACE, we use CE and CE+EoT, as DLR is not
applicable for binary classification. We report the best attack (least ϕrobacc).

Outlier Removal (PoisnRob). We compute accuracy on Dbd (from adding backdoors to records in Dte):

ϕASR(fPoisnRob, Dbd) = 1
|Dbd|

∑
(x,y)∈Dbd

I
{

f̂PoisnRob(x) = y
}

where yt is the target label chosen by Adv. Ideally, ϕASR should be zero. We use BadNets (Gu et al.,
2017) to generate poisons by adding a white patch of size 5x5 to the images, applied to 10% of Dtr. For
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PoisnRob.In (Fine-tuning), we fine-tune the last layers of f using random sample of 10% of Dtr without
poisons (Sha et al., 2022). For PoisnRob.Post (Pruning), we use the implementation from Zheng et al.
(2022b). We sweep pruning thresholds from 0.6 to 1.5, in increments of 0.05, to get a model with highest ϕu
and lowest ϕASR.

Model-Watermarking (MdlWM). We use the accuracy on DwmM which is obtained by adding water-
marks to data records in Dte. We compute this watermark accuracy as:

ϕwmacc(fMdlWM, DwmM) = 1
|DwmM|

∑
(x,y)∈DwmM

I
{

f̂MdlWM(x) = y
}

where ym represents the target labels for watermarked records. Ideally, ϕwmacc should be 100% if the model
is successfully watermarked. For MdlWM.Pre (Backdoor), we use BadNets (Gu et al., 2017), similar to
Szyller and Asokan (Szyller & Asokan, 2023), by adding a white patch of size 5x5 to 10% of the images in
Dtr. For MdlWM.In (Modifying Loss), we use the certified neural network watermarking implementation
by Bansal et al. (2022). For MdlWM.Post (API), we use DAWN (Szyller et al., 2021), which flips a
fraction of the predictions from target model as watermarks, which is later used to train the surrogate
model. Following the original work (Szyller et al., 2021), we apply the watermark to 0.2% of the predictions.
Unlike other watermarking schemes, we compute ϕwmacc on the surrogate model and not the target model.

Fingerprinting (Fngrprnt.Post). We use dataset inference (Maini et al., 2021) as our fingerprinting
scheme which extracts feature embeddings from f , and trains a classifier to distinguish between Dtr and Dte.
A model is considered stolen if the distance of its embeddings is similar to f with high confidence, and veri-
fication is successful if the p-value < 0.05. We use ϕpval as the metric following Szyller and Asokan (Szyller
& Asokan, 2023). We use the step size of 1.0 for L1 attack, 0.01 for L2 attack, and 0.001 for Linf , and 50
samples for computing p-value from the confidence regressor model.

Data-Watermarking (DtWM.Pre). To determine if a dataset was used to train a model, we compare
the posterior probability of 100 watermarked testing samples against 100 benign ones using a pairwise t-
test (Li et al., 2020). We then calculate the rate of successful detection (ϕrsd), which reflects the percentage
of correctly identified watermarked samples from DwmD (Dte with watermarks). Watermarks are generated
using BadNets (Gu et al., 2017) where 10% of Dtr is watermarked, and we use verification code from Li
et al. (2020) to compute ϕrsd. Ideally, ϕrsd should be 100% for watermarked models.

Differential Privacy (DiffPriv.In). We use ϕdp = ϵdp, following Szyller and Asokan (Szyller & Asokan,
2023), where ideally, we want a low ϵdp. We use the implementation from Opacus library (Yousefpour et al.,
2021) with a noise multiplier of 1.0 and gradient norm clipping of 1.0 as used in their tutorial for MNIST.

Group Fairness (GpFair.In). We measure fairness using the equalized odds gap on Dte for sensitive at-
tributes S and model predictions Ŷ , given by:

ϕeqodd = P (Ŷ = ŷ | S = 0, Y = y) − P (Ŷ = ŷ | S = 1, Y = y)

∀(ŷ, y) ∈ {0, 1}2 where an ideal value of zero indicates perfect fairness. For GpFair.In (Regularization),
we use code from the fair fairness benchmark that adds a regularization term to penalize equalized odds
violations (Han et al., 2023). We set the regularization hyperparameter λ = 1 which was sufficient to reduce
ϕeqodds with ∼ 2% drop in ϕu.

Explanations (Expl.Post). We assess the quality fo explanations using convergence delta, measures the
error between the explanation for a data records and a baseline (Kokhlikyan et al., 2020). We report the
average convergence delta across all Dte records as ϕerr. We use DeepLift (Shrikumar et al., 2017) from
Captum library which recommends using a zero vector as a baseline.

7 Evaluation

We evaluate individual defenses (§7.1), compare Def\Con to naïve technique (§7.2 and §7.3), study the
impact of hyperparameter tuning (§7.4), and confirm that Def\Con meets all requirements (§7.5).
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7.1 Evaluating Individual Defenses

Figure 3: Effectiveness of defenses. For metrics,
we use ↑ (resp. ↓) where higher (lower) value is better.
"x" in the Metric column is shorthand for ϕ(.)

(x). (ϕu

is for context).
Defense Metric FMNIST UTKFACE

No Defense

u (↑) 90.97 ± 0.18 80.28 ± 1.26
robacc (↑) 7.96 ± 1.24 0.00 ± 0.00
ASR (↓) 99.95 ± 0.04 99.98 ± 0.05
wmacc.Pre (↑) 9.98 ± 0.28 0.00 ± 0.00
wmacc.In (↑) 6.28 ± 1.20 62.21 ± 6.03
wmacc.Post (↑) 0.00 ± 0.00 13.33 ± 6.32
RSD (↑) 0.00 ± 0.00 0.00 ± 0.00
eqodds (↓) 28.10 ± 6.34
dp (↓) ∞ ∞

EvsnRob.In u (↑) 86.93 ± 0.23 73.38 ± 1.15
robacc (↑) 76.59 ± 0.28 37.38 ± 1.30

PoisnRob.In u (↑) 89.38 ± 0.28 79.02 ± 0.30
ASR (↓) 9.94 ± 0.24 56.62 ± 37.83

PoisnRob.Post u (↑) 86.48 ± 2.35 65.42 ± 3.27
ASR (↓) 66.44 ± 21.30 8.59 ± 16.41

MdlWM.Pre u (↑) 90.15 ± 0.27 79.79 ± 0.39
wmacc (↑) 99.91 ± 0.05 100.00 ± 0.00

MdlWM.In u (↑) 80.87 ± 0.88 66.71 ± 10.19
wmacc (↑) 85.61 ± 2.50 93.74 ± 11.00

MdlWM.Post u (↑) 90.56 ± 0.34 80.82 ± 0.45
wmacc (↑) 100.00 ± 0.00 78.10 ± 9.33

DtWM.Pre u (↑) 90.31 ± 0.27 79.93 ± 0.37
RSD (↑) 100.00 ± 0.00 100.00 ± 0.00

Fngrprnt.Post u (↑) No change No change
pval (↓) < 0.05 < 0.05

DiffPriv.In u (↑) 86.82 ± 0.11 74.07 ± 0.28
dp (↓) ϵdp = 1.36 ϵdp = 2.89

GpFair.In u (↑) 76.85 ± 1.99
eqodds (↓) 10.89 ± 2.84

Expl.Post u (↑) No change No change
err (↓) 0.12 ± 0.03 0.59 ± 0.05

We evaluate the effectiveness of each defense by
comparing the metrics ϕD

(.) to a “no defense” base-
line. We report the results in Table 3. We also
report ϕu to provide context but do not use it to
evaluate accuracy of the technique.

We find that all the defense effectiveness metrics are
better than the “no defense” baseline. Once the de-
fenses are applied, we use their respective ϕD

(.) as the
“single defense” baseline to compare the effective-
ness of the defense combinations later in §7.3. For
ϕExpl.Post

err , we do not have a “no defense” baseline
to compare with. Assuming ϕExpl.Post

err is effective,
we use it as the “single defense” baseline.

7.2 Accuracy: using Prior Work

Before empirically evaluating 48 defense combina-
tions, we first identify the combinations which have
been empirically evaluated in prior work (§4 and
Table 2). We identify eight combinations (C1-C8)
whose results can be used as ground truth to com-
pare the predictions of Def\Con and the naïve
technique (marked as Ξ or Ξ in Table 2). We use
green and red to indicate alignment and conflict
among defenses, respectively. The prediction from a
technique is accurate when ∆ (or ∆) for Def\Con,
or Ψ (or Ψ) for naïve technique, match Ξ (or Ξ)
taken from prior work (§4) as ground truth. We
present additional details to make predictions in S2,
S3, and S4 using Def\Con in Table 4.

• C1 (GpFair.Pre + DiffPriv.Pre) can be combined effectively in the pre-training stage (Ξ) (Yaghini
et al., 2023). Naïve technique predicts Ψ (same stage) while Def\Con predicts ∆ (defenses make local
changes in S2).

• C2 (EvsnRob.In +Fngrprnt.Post) can be effectively combined (Ξ) (Szyller & Asokan, 2023). Naïve
technique predicts Ψ (different stages) while Def\Con predicts ∆ (S3=no).

• C3 (DiffPriv.In + Fngrprnt.Post) can be effectively combined (Ξ) (Szyller & Asokan, 2023). Naïve
technique predicts Ψ (different stages) while Def\Con predicts ∆ (S3=no).

• C4 (MdlWM.Pre +EvsnRob.In) are not effectively combined (Ξ) (Szyller & Asokan, 2023). Naïve
technique predicts Ψ (different stages) while Def\Con predicts ∆ (EvsnRob.In makes poisons ineffective
via unintended interaction in S4).

• C5 (DtWM.Pre +EvsnRob.In) cannot be effectively combined (Ξ) (Szyller & Asokan, 2023). Naïve
technique predicts Ψ (different stages) while Def\Con predicts ∆ (EvsnRob.In makes poisons ineffective
via unintended interaction in S4).

• C6 (MdlWM.Pre + DiffPriv.In) cannot be effectively combined (Ξ) (Szyller & Asokan, 2023). Similar
to C5, Def\Con predictions this as ∆ while the naïve technique predicts Ψ.

• C7 (DtWM.Pre + DiffPriv.In) can be effectively combined (Ξ) (Szyller & Asokan, 2023). Naïve
technique predicts Ψ (different stages) while Def\Con predicts ∆ (DiffPriv.In reduces effectiveness
of poisons via unintended interaction in S4). Unlike backdoor-based watermarks used in our work,
adversarial example-based watermarks used by Szyller and Asokan (Szyller & Asokan, 2023), are inliers
which are not suppressed by DiffPriv.In. Hence, Def\Con’s prediction differs.
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• C8 (DiffPriv.In + Expl.Post) can be effectively combined (Ξ) (Patel et al., 2022). Naïve technique
predicts Ψ (different stages) and Def\Con predicts ∆ (S3=no).

Figure 4: For each defense, we identify key parame-
ters used in evaluating combination effectiveness (Fig-
ure 2): type of change in S2 (Global, Local, or None);
if defense uses a risk in S3 ("Yes" for backdoors or
adversarial examples); and if defense protects against
risk in S4.

Defense S2 S3 S4

EvsnRob.In Global No Yes
PoisnRob.In Global No Yes
PoisnRob.Post Global No Yes
MdlWM.Pre Local Yes No
MdlWM.In Global Yes No
MdlWM.Post Local No No
DtWM.Pre Local Yes No
Fngrprnt.Post None No No
DiffPriv.In Global No Yes
GpFair.In Global No No
Expl.Post None No No

Of the eight combinations, Def\Con predicts
seven correctly, while naïve technique pre-
dicts four. This gives a balanced accuracy
of 90% (TP=4, TN=3, FP=0, FN=1) for
Def\Con, and 40% (TP=4, TN=0, FP=3,
FN=1) for the naïve technique.

7.3 Accuracy: via Empirical Evaluation

We now empirically evaluate the remaining, pre-
viously unexplored, combinations to obtain the
ground truth and then compute the accuracy of the
predictions from both techniques. After removing
the eight combinations from prior work, we are left
with 40 combinations. We also remove ten combi-
nations where both defenses are applied during in-
training. Here, both Def\Con and the naïve technique predict ∆ and Ψ respectively. To apply both defenses
in the in-training phase, they can be modified for an effective combination (marked as T1 in §3). However,
this makes it invasive (violates R3). Alternatively, defenses can be combined sequentially (e.g., pre-training
on the first defense, then fine-tuning on the second), or by alternating the training of both defenses every
few epochs. Since, these are non-standard approaches to apply existing defenses, we leave a comprehensive
evaluation of ten combinations as future work. Hence, we are left with 30 combinations (C9-C38) for
empirical evaluation.

Predictions from Techniques. Before evaluating 30 combinations, we denote the defenses as D1 and D2
based on the order in which they are applied. We obtain predictions from Def\Con and the naïve techniques,
and indicate them as a tuple: (Naïve prediction, Def\Con prediction). These are indicated in Table 2. We
use the information in Table 4 to make predictions in S2-S4 for Def\Con.

• For defenses applied in the same stage (S1=yes), the naïve technique predicts Ψ. We have the following
cases to determine the prediction from Def\Con:
1. D2 makes local/no changes (S2=no), Def\Con predicts this as Ψ. We mark them as (Ψ, ∆) which

include C11, C20, C28, C29, C33, and C34.
2. D2 makes global changes (S2=yes), and Def\Con predicts this as ∆. We mark them as (Ψ, ∆) but

we did not observe any such combinations.
• For defenses applied in different stages (S1=no), the naïve technique predicts Ψ. We have the following

cases to determine the prediction from Def\Con:
1. D1 does not use a risk (S3=no) and hence, D1 and D2 do not conflict. We mark them as (Ψ, ∆): C9,

C10, C12, C13, C15, C17-C19, C27, C31, and C35.
2. D1, such as MdlWM.Pre and DtWM.Pre, uses a risk (S3=yes), but D2 does not protect against

this risk (S4=no). Hence, there is no conflict and we mark such combinations as (Ψ, ∆) which include
C14, C16, C22, C24-C26, C30, and C32.

3. D1, such as MdlWM.Pre and DtWM.Pre, uses a risk (S3=yes), and D2 mitigates these risks (e.g.,
PoisnRob). There is a conflict and we mark them as (Ψ, ∆) which include C21, C23, C36-C38.

We evaluate the 30 combinations on FMNIST and UTKFACE (Table 2). For each combination, we compare
the effectiveness metrics for each defense to “single defense” from Table 3. We use green to indicate that
the metrics are better or similar to “single defense”; orange for worse than single defense but better than
“no defense”; and red for similar or worse than “no defense”. Metrics marked as orange can still be useful
since it provides some protection compared to “no defense”. We consider the worst case by a treating a
combination as a conflict if atleast one dataset has atleast one metric marked as orange or red .
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Table 2: Evaluating combinations (D̂): For brevity, "x" in Metric column is shorthand for ϕD̂
(x). We use

↑ (resp. ↓) to indicate if a higher (lower) value is better. For defense effectiveness, we use green when ϕD̂
(.)

is better or equal to “single defense” baseline; orange for better or equal to “single defense” but worse than
“no defense”; red for worse than “no defense”. For technique predictions, we use symbol ∆ (resp. Ψ) to refer
to Def\Con (naïve technique) and a color code green (resp. red) to indicate alignment (conflict) among
defenses. D1 and D2 indicate order of applying defenses. (ϕu is for context).

Combinations Metric FMNIST UTKFACE Combinations Metric FMNIST UTKFACE

C9
D1: EvsnRob.In u (↑) 90.38 ± 0.22 72.79 ± 0.53

C24
D1: MdlWM.Pre u (↑) 90.18 ± 0.21 79.76 ± 0.63

D2: MdlWM.Post wmacc (↑) 100.00 ± 0.00 80.95 ± 7.13 D2: Expl.Post err (↓) 0.14 ± 0.04 0.02 ± 0.03
(Ψ, ∆) robacc (↓) 80.43±0.85 42.00 ± 0.49 (Ψ, ∆) wmacc (↑) 99.93 ± 0.06 99.96 ± 0.08

C10
D1: PoisnRob.In u (↑) 89.50 ± 0.21 79.25 ± 1.06

C25
D1: MdlWM.In u (↑) 86.94 ± 0.50 72.16 ± 5.13

D2: Fngrprnt.Post ASR (↓) 9.94 ± 0.22 56.09 ± 12.98 D2: Expl.Post err (↓) 0.19 ± 0.07 0.37 ± 0.18
(Ψ, ∆) pval (↓) <0.05 <0.05 (Ψ, ∆) wmacc (↑) 98.24 ± 0.66 97.60 ± 3.54

C11
D1: PoisnRob.Post u (↑) 84.73 ± 1.72 63.70 ± 3.87

C26
D1: DtWM.Pre u (↑) 90.04 ± 0.60 79.03 ± 1.10

D2: Fngrprnt.Post ASR (↓) 61.36 ± 23.96 0.02 ± 0.03 D2: Expl.Post err (↓) 0.10 ± 0.04 0.54 ± 0.01
(Ψ, ∆) pval (↓) <0.05 <0.05 (Ψ, ∆) RSD (↑) 100.00 ± 0.00 100.00 ± 0.00

C12
D1: EvsnRob.In u (↑) 87.10 ± 0.21 73.65 ± 1.21

C27
D1: PoisnRob.In u (↑) 89.39 ± 0.24 78.71 ± 0.20

D2: Expl.Post err (↓) 0.22 ± 0.01 0.15 ± 0.04 D2: Expl.Post ASR (↓) 9.79 ± 0.15 44.35 ± 30.07
(Ψ, ∆) robacc (↑) 79.00 ± 0.21 39.27 ± 0.68 (Ψ, ∆) err (↓) 0.06 ± 0.02 0.47 ± 0.02

C13
D1: GpFair.In u (↑) 66.73 ± 3.24

C28
D1: PoisnRob.Post u (↑) 84.62 ± 3.56 63.80 ± 3.37

D2: PoisnRob.Post ASR (↓) 20.21 ± 39.90 D2: Expl.Post ASR (↓) 76.11 ± 15.85 0.00 ± 0.00
(Ψ, ∆) eqodds (↓) 2.72 ± 3.20 (Ψ, ∆) err (↓) 0.08 ± 0.01 0.15 ± 0.06

C14
D1: MdlWM.Pre u (↑) 79.02 ± 0.40

C29
D1: Fngrprnt.Post u (↑) 90.56 ± 0.16 80.42 ± 0.59

D2: GpFair.In wmacc (↑) 98.88 ± 2.13 D2: Expl.Post pval (↓) <0.05 <0.05
(Ψ, ∆) eqodds (↓) 0.00 ± 0.00 (Ψ, ∆) err (↓) 0.11 ± 0.02 0.50 ± 0.03

C15
D1: GpFair.In u (↑) 76.95 ± 1.94

C30
D1: DtWM.Pre u (↑) 90.19 ± 0.59 79.80 ± 0.48

D2: MdlWM.Post wmacc (↑) 80.95 ± 0.00 D2: Fngrprnt.Post pval (↓) <0.05 <0.05
(Ψ, ∆) eqodds (↓) 7.87 ± 4.72 (Ψ, ∆) RSD (↑) 100.00 ± 0.00 100.00 ± 0.00

C16
D1: DtWM.Pre u (↑) 78.97 ± 1.21

C31
D1: DiffPriv.In u (↑) 86.83 ± 0.20 74.62 ± 0.49

D2: GpFair.In RSD (↑) 100.00 ± 0.00 D2: MdlWM.Post wmacc (↑) 100.00 ± 0.00 79.05 ± 3.81
(Ψ, ∆) eqodds (↓) 0.00 ± 0.00 (Ψ, ∆) dp (↓) ϵ = 1.36 ϵ = 2.89

C17
D1: GpFair.In u (↑) 78.67 ± 1.46

C32
D1: DtWM.Pre u (↑) 90.24 ± 0.29 78.94 ± 0.95

D2: Fngrprnt.Post pval (↓) 0.68 ± 0.21 D2: MdlWM.Post RSD (↑) 100.00 ± 0.00 100.00 ± 0.00
(Ψ, ∆) eqodds (↓) 7.46 ± 5.43 (Ψ, ∆) wmacc (↑) 100.00 ± 0.00 62.26 ± 3.77

C18
D1: GpFair.In u (↑) 80.52 ± 0.44

C33
D1: PoisnRob.Post u (↑) 85.09 ± 1.94 67.09 ± 2.81

D2: Expl.Post err (↓) 0.16 ± 0.06 D2: MdlWM.Post wmacc (↑) 100.00 ± 0.00 73.33 ± 8.83
(Ψ, ∆) eqodds (↓) 12.62 ± 4.20 (Ψ, ∆) ASR (↓) 59.48 ± 24.91 40.20 ± 28.82

C19
D1: PoisnRob.In u (↑) 89.53 ± 0.36 79.00 ± 0.56

C34
D1: DtWM.Pre u (↑) 90.31 ± 0.27 78.53 ± 1.75

D2: MdlWM.Post wmacc (↑) 100.00 ± 0.00 69.52 ± 6.46 D2: MdlWM.Pre wmacc (↑) 99.96 ± 0.0 100.00 ± 0.00
(Ψ, ∆) ASR (↓) 10.48 ± 0.46 38.90 ± 38.73 (Ψ, ∆) RSD (↑) 100.00 ± 0.00 100.00 ± 0.00

C20
D1: MdlWM.Post u (↑) 90.93 ± 0.18 80.53 ± 0.23

C35
D1: EvsnRob.In u (↑) 90.39 ± 0.63 80.28 ± 0.39

D2: Expl.Post wmacc (↑) 100.00 ± 0.00 72.38 ± 3.56 D2: PoisnRob.Post robacc (↑) 46.00 ± 1.02 0.00 ± 0.00
(Ψ, ∆) err (↓) 0.11 ± 0.02 0.55 ± 0.02 (Ψ, ∆) ASR (↓) 79.68 ± 10.25 0.00 ± 0.00

C21
D1: DtWM.Pre u (↑) 89.46 ± 0.32 79.00 ± 0.67

C36
D1: MdlWM.Pre u (↑) 89.48 ± 0.15 79.20 ± 0.60

D2: PoisnRob.In ASR (↓) 10.18 ± 0.40 77.39 ± 35.23 D2: PoisnRob.In ASR (↓) 10.18 ± 0.46 46.92 ± 36.92
(Ψ, ∆) RSD (↑) 0.00 ± 0.00 80.00 ± 40.00 (Ψ, ∆) wmacc (↑) 10.18 ± 0.46 46.92 ± 36.92

C22
D1: DtWM.Pre u (↑) 84.45 ± 0.56 79.88 ± 0.27

C37
D1: MdlWM.Pre u (↑) 82.86 ± 4.16 64.09 ± 3.09

D2: MdlWM.In wmacc (↑) 89.25 ± 3.48 99.98 ± 0.03 D2: PoisnRob.Post ASR (↓) 71.32 ± 14.11 0.00 ± 0.00
(Ψ, ∆) RSD (↑) 100.00 ± 0.00 100.00 ± 0.00 (Ψ, ∆) wmacc (↑) 71.31 ± 14.10 0.00 ± 0.00

C23
D1: DtWM.Pre u (↑) 82.90 ± 2.06 69.02 ± 1.96

C38
D1: MdlWM.In u (↑) 66.68 ± 9.80 73.69 ± 3.01

D2: PoisnRob.Post ASR (↓) 64.55 ± 21.23 0.01 ± 0.01 D2: PoisnRob.Post ASR (↓) 58.59 ± 19.22 99.60 ± 0.37
(Ψ, ∆) RSD (↑) 80.00 ± 40.00 20.00 ± 40.00 (Ψ, ∆) wmacc (↑) 58.65 ± 19.23 99.73 ± 0.29

Of the 30 combinations, Def\Con predicts 27 correctly, while the naïve method predicts only
18. This gives a balanced accuracy of 81% (TP=22, TN=5, FP=3, and FN=0) for Def\Con
compared to 36% (TP=16, TN=0, FP=8, and FN=6) for the naïve technique.

Takeaway: By explicitly accounting for reasons underlying conflicts among defenses, Def\Con achieves
higher accuracy than the naïve technique (satisfies R1).
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7.4 Hyperparameter Tuning for Combinations

Figure 5: Configurations for hyperparameter tuning of
defenses in conflicting combinations.

Defense Hyperparameter Values

EvsnRob.In Regularization {2, 4, 6 (default), 8}

PoisnRob.Post Pruning threshold 0.6–1.5 (step 0.05)

MdlWM.Pre Trigger size {3×3, 5×5 (default)}
Watermark fraction {0.1 (default), 0.2, 0.3}

MdlWM.In
Watermark fraction {0.1, 0.2, 0.3}
Training noise {0.5, 0.75, 1.0 (default), 1.25}
Noise step size {0.05 (default), 0.10, 0.15}

MdlWM.Post Watermark fraction {0.002 (default), 0.01, 0.02}

DtWM.Pre Trigger size {3×3, 5×5 (default)}
Watermark fraction {0.1 (default), 0.2, 0.3}

GpFair.In Regularization {0.5, 1 (default), 1.5, 2}

Fngrprnt.Post Iterations {25, 50 (default), 75, 100}
# Fingerprints {100 (default), 150, 200}

We check if hyperparameter tuning can resolve con-
flicts to see if it can turn (i) false positives (pre-
dicted as aligned, but empirically conflicting) into
true positives, and (ii) true negatives (predicted
and confirmed as conflict) into false negatives. We
exclude false negatives (not observed in our evalu-
ation), and true positives, correctly predicted and
confirmed as aligned (cannot be improved further
with hyperparameter tuning). We use grid search
and identify various hyperparameter configurations
for defenses in conflicting combinations (Table 5).

Do False Positives turn to True Positives?
This includes three combinations (C17, C32,
C35), and helps investigate Def\Con errors.

• C17 (GpFair.In + Fngrprnt.Post). We empirically observe a conflict as Fngrprnt.Post is in-
effective (ϕpval > 0.05), and Def\Con incorrectly predicts the combination as ∆ in S3. We explore
the following hyperparameters: regularization for GpFair.In, iterations, and number of fingerprints for
Fngrprnt.Post. For each dataset, we have 36 experiments (= 4 × 4 × 3). None of the experiments alle-
viated the conflict. Following prior work (Szyller & Asokan, 2023), we speculate that Fngrprnt.Post is
ineffective because it relies on the decision boundary, which shifts significantly after applying GpFair.In.

• C32 (DtWM.Pre + MdlWM.Post). The combination is empirically effective for FMNIST but not
for UTKFACE where ϕwmacc is less than the “single defense” baseline. Def\Con incorrectly predicts this
combination as ∆ in S4. We explore the following hyperparameters: (i) trigger size and watermark
fraction for DtWM.Pre; (ii) watermark fraction for MdlWM.Post. For UTKFACE, we evaluate 18
experiments (= 2 × 3 × 3). One experiment with 3×3 trigger size (DtWM.Pre), 30% watermarks
(DtWM.Pre), and 2% watermarks (MdlWM.Post), we get ϕu = 75.98 ± 0.61, ϕRSD = 100.00 ± 0.00
( green ), and ϕwmacc = 70.19 ± 4.61 ( green ). Hence, we remove the conflict and the false positive.

• C35 (EvsnRob.In + PoisnRob.Post). Empirically, there is a conflict as EvsnRob.In is ineffective
(poor ϕrobacc), and Def\Con incorrectly predicts as ∆ in S4. We vary the regularization hyperparameter
(EvsnRob.In), and pruning thresholds (PoisnRob.Post). None of the experiments removed the conflict.
We speculate that the model parameters memorizing poisons and adversarial examples overlap. Thus,
pruning a model (to reduce ϕASR) trained with EvsnRob.In, also reduces ϕrobacc, resulting in a conflict.

Do True Negatives turn to False Negatives? We evaluate hyperparameter tuning for five combinations
(C21, C23, C36, C37, and C38).

• C21 (DtWM.Pre + PoisnRob.In). We consider trigger size, and watermark fraction for DtWM.Pre.
For each dataset, we get six experiments (=2×3). None of them removed the conflict since PoisnRob.In
mitigates backdoors for DtWM.Pre.

• C23 (DtWM.Pre + PoisnRob.Post). We tune the same hyperparameters for DtWM.Pre as in
C21. For PoisnRob.Post, we sweep across various pruning thresholds. For each dataset, we get six
experiments (= 2 × 3). For FMNIST, trigger size of 3×3 and 30% watermarks, gives ϕu =82.00 ± 5.50;
ϕRSD= 100.00 ± 0.00; ϕASR= 59.90 ± 12.81. This is marked as no conflict ( green ). However, there is a
conflict for UTKFACE, making the overall combination a conflict.

• C36 (MdlWM.Pre + PoisnRob.In). We tune the same hyperparameters for MdlWM.Pre, as
DtWM.Pre in C21. For each dataset, we have six experiments (=2×3). None of them removed the
conflict since PoisnRob.In mitigates backdoors for MdlWM.Pre.

• C37 (MdlWM.Pre + PoisnRob.Post). We tune the same hyperparameters for MdlWM.Pre, as
DtWM.Pre in C21. For PoisnRob.Post, we sweep across various pruning thresholds. For each
dataset, we get six experiments (=2×3). None of them removed the conflict since PoisnRob.Post
mitigates backdoors for MdlWM.Pre.
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• C38 (MdlWM.In + PoisnRob.Post). We tune the fraction of watermarks, training noise, and step
size for MdlWM.In. For PoisnRob.Post, we sweep across various pruning thresholds. For each dataset,
we have 36 experiments (=3×4×3). None of them removed the conflict since PoisnRob.Post mitigates
the backdoors for MdlWM.In.

Summary. We find that hyperparameter tuning is useful in two combinations (C23 and C32). For C32,
we removed the false positive, thereby increasing Def\Con’s balanced accuracy to 86% (from 81%). For
C23, we could remove conflict for one of the two datasets, but the combination was still marked as a conflict
(no additional false negatives).

Takeaway: Hyperparameter tuning for conflicting combinations is important to check if it turns (a) false
positives to true positives, or (b) true negatives to false negatives.

7.5 Other Requirements

Having shown that the naïve technique does not perform as well as Def\Con, we discuss how Def\Con
meets the remaining requirements. , non-invasiveness (R3) and generality (R4).

Figure 6: Scalability (R2) of Def\Con to D1, D2,
and D3 (in order). Color coding and notations are
same as in Table 2.

Combinations Metric FMNIST UTKFACE

C39

D1: EvsnRob.In u (↑) 87.38 ± 0.15 74.34 ± 0.72
D2: Expl.Post robacc (↑) 79.37 ± 0.29 39.21 ± 0.32
D3: MdlWM.Post err (↓) 0.96 ± 0.14 0.17 ± 0.05

wmacc (↑) 100.00 ± 0.00 73.33 ± 8.83

C40

D1: PoisnRob.In u (↑) 89.47 ± 0.24 79.42 ± 0.51
D2: Expl.Post ASR (↓) 9.81 ± 0.12 66.74 ± 12.11
D3: MdlWM.Post err (↓) 0.06 ± 0.02 0.52 ± 0.04

wmacc (↑) 100.00 ± 0.00 77.14 ± 11.82

C41

D1: PoisnRob.Post u (↑) 89.47 ± 0.24 67.04 ± 3.35
D2: Expl.Post ASR (↓) 9.81 ± 0.12 1.85 ± 3.39
D3: MdlWM.Post err (↓) 0.06 ± 0.02 0.17 ± 0.10

wmacc (↑) 100.00 ± 0.00 81.90 ± 7.00

C42

D1: DtWM.Pre u (↑) 77.53 ± 1.75
D2: GpFair.In wmacc (↑) 100.00 ± 0.00
D3: Expl.Post eqodds (↓) 0.00 ± 0.00

err (↓) 0.01 ± 0.00

C43

D1: DtWM.Pre u (↑) 79.17 ± 0.93
D2: GpFair.In RSD (↑) 100.00 ± 0.00
D3: MdlWM.Post eqodds (↓) 0.00 ± 0.00

wmacc (↑) 73.33 ± 7.12

C44

D1: GpFair.In u (↑) 69.42 ± 2.09
D2: PoisnRob.Post eqodds (↓) 8.12 ± 4.49
D3: Expl.Post ASR (↓) 0.13 ± 0.25

err (↓) 0.05 ± 0.02

Scalability (R2). None of the prior works have
considered more than two defenses. Since Def\Con
allows for applying defenses in three stages of the
ML pipeline, it should theoretically support at least
three defenses. To illustrate this, we follow the in-
structions in §5.3 to extend Def\Con beyond two
defenses. We begin with pairwise combinations pre-
dicted as effective (marked as ∆ in Table 2), which
align with empirical evaluation, and then include
additional defenses. We consider five combinations
with three defenses each, which should be effectively
combines (marked as ∆). These are illustrative ex-
amples to show that Def\Con is scalable to more
than two defenses. We report the results in Ta-
ble 6 and find that it is indeed possible to effectively
combine three defenses using Def\Con. Overall,
Def\Con scales to more than two defenses (R2).

Non-Invasive (R3). Def\Con extends T2 and
hence, inherits the non-invasive requirement. We
use existing defenses proposed in the literature with-
out modifying them, and only adapting them to our
datasets. In summary, Def\Con satisfies R3.

General (R4). Def\Con (described in §5.3) is not dependent on specific defenses. It only uses the position
of the defenses and changes made by them, to determine a conflict. We select specific defenses implementa-
tions for illustration based on their availability (see §6.4), but other implementations can be used and should
not effect our conclusions.

Takeaway: Def\Con scales beyond two defenses (R2), is non-invasive (R3), and general (R4).

8 Discussion and Conclusions

Note on Model Utility. So far, we have focused only on effectiveness, examining how combining defenses
impacts the effectiveness of each individual defense. An additional pre-requisite for deploying a defense
combination is whether it negatively impacts model utility. We can define a defense combination to be viable
if it is (a) effective and (b) incurs only a minimal utility drop compared to lowest of the “single defense”
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baseline. In Table 2, we observe that all the combinations which Def\Con predicted as effective are also
viable. For C15, C27, and C30, the utility is worse than the “single defense” baseline. These were already
flagged as ineffective. We did not observe any combinations which are effective but not viable.

Extending Def\Con to predict the viability of the combinations is challenging, since it is unclear how a
defense impacts model utility. This is an area of active research (e.g., adversarial training (Zhang et al.,
2019; Tsipras et al., 2019; Yang et al., 2020; Pang et al., 2022; Raghunathan et al., 2020) and differential
privacy (Jayaraman & Evans, 2019; Ye et al., 2023; Papernot et al., 2021; Tramèr & Boneh, 2020)). Viability
can be included as a requirement in §5.2. Extending Def\Con for viable combinations is left as future work.

Other Causes Underlying Conflicts. While we identify two possible reasons underlying conflicts among
defenses (3.3), we do not claim this to be complete. There could be other underlying reasons which can
be included in Def\Con to make it more accurate. One possible reasons could be the a choice of different
lp-norm distances for some defenses (e.g., EvsnRob.In, and adversarial example-based MdlWM.Pre and
DtWM.Pre). Prior works have shown that the objectives of obtaining robustness to different lp-norm
bounds are conflicting (Tramèr & Boneh, 2019). In case of combinations, Thakkar et al. (2023) show that
choosing different amount of noise for watermarking and adversarial training can remove a conflict. We leave
the exploration of additional reasons underlying conflicts as future work.

Other Combination Techniques. Duddu et al. (2024) (Table 3) systematize unintended interactions
among defenses and risks, categorizing them as increasing, decreasing, or unexplored. An alternative naïve
technique could reject combinations where one defense increases the risks mitigated by another. How-
ever, this is restrictive and discards several non-conflicting combinations (e.g., Expl.Post and MdlWM,
EvsnRob.In and Fngrprnt.Post). Since there are several unexplored interactions in their systematiza-
tion, it is challenging to applying this naïve technique in our context. Hence, this technique is limited to
some combinations, and not applicable to all combinations in the current state.

Speculating Combinations with Omitted Defenses. We speculate on the omitted defense combina-
tions from §6: EvsnRob.Pre, DiffPriv.Pre, GpFair.Pre, and GpFair.Post. Since EvsnRob.Pre
targets adversarial examples and makes local changes to Dtr, we expect its combination with other de-
fenses to behave similar to MdlWM.Pre and DtWM.Pre. DiffPriv.Pre and GpFair.Pre make global
changes by transforming all data records in Dtr and should be applied before other defenses, as we expect
them to avoid conflicts. GpFair.Post makes global changes in post-training stage to all predictions, and
the behavior is likely to be similar to PoisnRob.Post which also makes global changes to f in post-training
stage. Validating these interactions is left for future work.

Summary. ML models must be protected against multiple risks simultaneously, requiring effective combi-
nation of defenses. We systematize prior work, identify unexplored combinations, and evaluate limitations
of prior techniques. Using insights from our systematization, we present a technique, Def\Con, which is
more accurate than prior work, does not require modifying defenses, scales to more than two defenses, and
applies to various defenses.

Ethical Considerations

We use public datasets and implementations and none of our experiments require IRB approval.
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A Summary of Defenses and Notations

We summarize the different defenses and their impact on ϕu from §3.1 in Table 3.

Table 3: Summary of defenses. (Column ϕu indicates impact on utility: “∨” (decrease), “∼” (no effect),
“∧” → (increase).)
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GpFair (Group Fairness)
• GpFair.Pre (Fair Data) ∨ Kamiran & Calders (2011); Calmon et al. (2017); Zemel et al. (2013); Feldman et al. (2015)
• GpFair.In (Regularization) ∨ Celis et al. (2019); Kearns et al. (2018; 2019); Agarwal et al. (2019; 2018); Zhang et al. (2018a);

Kamishima et al. (2012)
• GpFair.Post (Calibration) ∨ Pleiss et al. (2017); Hardt et al. (2016); Kamiran et al. (2012); Geyik et al. (2019)

Expl (Explanations)
• Expl.Post (Attributions) ∼ Ismail et al. (2021); Smilkov et al. (2017); Sundararajan et al. (2017); Koh & Liang (2017);

Wachter et al. (2017); Selvaraju et al. (2017); Kim et al. (2018)
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