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Abstract

Diffusion models have become the go-to method for text-to-image generation,
producing high-quality images from pure noise. However, the inner workings of
diffusion models is still largely a mystery due to their black-box nature and com-
plex, multi-step generation process. Mechanistic interpretability techniques, such
as Sparse Autoencoders (SAEs), have been successful in understanding and steer-
ing the behavior of large language models at scale. However, the great potential of
SAEs has not yet been applied toward gaining insight into the intricate generative
process of diffusion models. In this work, we leverage the SAE framework to
probe the inner workings of a popular text-to-image diffusion model, and uncover
a variety of human-interpretable concepts in its activations. Interestingly, we find
that even before the first reverse diffusion step is completed, the final composition
of the scene can be predicted surprisingly well by looking at the spatial distribution
of activated concepts. Moreover, going beyond correlational analysis, we design
intervention techniques aimed at manipulating image composition and style, and
demonstrate that (1) in early stages of diffusion image composition can be effec-
tively controlled, (2) in the middle stages image composition is finalized, however
stylistic interventions are effective, and (3) in the final stages only minor textural
details are subject to change.2

1 Introduction

Diffusion models (DMs) [17, 47] have revolutionized the field of generative modeling. These models
iteratively refine images through a denoising process, progressively transforming Gaussian noise into
coherent visual outputs. DMs have established state-of-the-art in image [8, 33, 42, 40, 18], audio [24],
and video generation [19]. The introduction of text-conditioning in diffusion models [40, 41], i.e.
guiding the generation process via text prompts, enables careful customization of generated samples
while simultaneously maintaining exceptional sample quality.

While DMs excel at producing images of exceptional quality, the internal mechanisms by which
they ground textual concepts in visual features that govern generation remain opaque. The time-
evolution of internal representations through the generative process, from pure noise to high-quality
images, renders the understanding of DMs even more challenging compared to other deep learning
models. A particular blind spot is the early, ’chaotic’ stage [53] of diffusion, where noise dominates
the generative process. Recently, a flurry of research has emerged towards demystifying the inner
workings of DMs. In particular, a line of work attempts to interpret the internal representations by
constructing saliency maps from cross-attention layers [50]. Another direction is to find interpretable
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editing directions directly in the model’s feature space that allows for guiding the generation process
[25, 14, 36, 5, 35, 11, 9, 4]. However, most existing techniques are aimed at addressing particular
editing tasks and are not wide enough in scope to provide a more holistic interpretation on the internal
representations of diffusion models.

Mechanistic interpretability (MI) [34] is focused on addressing the above challenges via uncovering
operating principles from inputs to outputs that reveal how neural networks process information
internally. A line of work within MI uses linear or logistic regression on model activations, also
known as probing [13, 32], to uncover specific knowledge stored in model internals. Extensions
[20, 1] explore nonlinear variants for improved detection and model steering. Recently, sparse
autoencoders have emerged within MI as powerful tools to discover highly interpretable features (or
concepts) within large models at scale [6]. These learned features enable direct interventions to steer
model behavior in a controlled manner. Despite their success in understanding language models, the
application of SAEs to diffusion models remains largely unexplored. Recent work [49] leverages
SAEs and discovers highly interpretable concepts in the activations of a distilled DM [43]. While the
results are promising, the paper focuses on a single-step diffusion model, and thus the time-evolution
of visual features, a key characteristic and major source of intrigue around the inner workings of
DMs, is not captured in this work.

In this paper, we aim to bridge this gap and address the following key questions:

• What level of image representation is present in the early stage of the generative process?

• How do visual representations evolve through various stages of the generative process?

• Can we harness the uncovered concepts to steer the generative process in an interpretable way?

• How does the effectiveness of such interventions depend on diffusion time?

We perform extensive experiments on the features of a popular, large-scale text-to-image DM, Stable
Diffusion v1.4 [40], and extract thousands of concepts via SAEs. We propose a novel, scalable, vision-
only pipeline to assign interpretations to SAE concepts. Then, we leverage the discovered concepts to
explore the evolution of visual representations throughout the diffusion process. Strikingly, we find
that the coarse composition of the image emerges even before the first reverse diffusion update step,
at which stage the model output carries no identifiable visual information (see Figure 1). Moreover,
we demonstrate that intervening on the discovered concepts has interpretable, causal effect on the
generated output image. We design intervention techniques that edit representations in the latent space
of SAEs aimed at manipulating image composition and style. We perform an in-depth study on the
effectiveness of such interventions as reverse diffusion progresses. We find that image composition
can be effectively controlled in early stages of diffusion, however such interventions are ineffective in
later stages. Moreover, we can manipulate image style at middle time steps without altering image
composition. Our work deepens our understanding on the evolution of visual representations in
text-to-image DMs and opens the door to powerful, time-adaptive editing techniques.

2 Background

Diffusion models – In the diffusion framework, a forward noising process progressively transforms
the clean data distribution x0 ∼ q0 (x) into a simple distribution qT (typically isotropic Gaussian
distribution) through intermediary distributions qt. In general, qt is chosen such that xt is obtained
by mixing x0 with an appropriately scaled i.i.d. Gaussian noise, qt (xt|x0) ∼ N

(
x0, σ

2
t I

)
, where

the variance σ2
t is chosen according to a variance schedule. Diffusion models [46, 17, 47, 48] learn to

reverse the forward process to generate new samples from q0 by simply sampling from the tractable
distribution qT . Throughout this paper, we assume that the diffusion process is parameterized by
a continuous variable t ∈ [0, 1], where t = 1 corresponds to pure noise distribution and t = 0
corresponds to the distribution of clean images.

Sparse autoencoders (SAEs) – Sparse autoencoders are one of the most popular mechanistic
interpretability techniques, and have been demonstrated to find interpretable features at scale [6, 12].
The core assumption underpinning SAEs is the superposition hypothesis, the idea that models encode
far more concepts than the available dimensions in their activation space by using a combination
of sparse and linear representations [45]. SAEs unpack these features in an over-complete basis
of sparsely activated concepts in their latent space, as opposed to the compressed latent space of
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Figure 1: General scene layout emerges during the very first generation step in diffusion models. We
generate an image with the prompt Several men walking on the dirt with palm trees
in the background. Our interpretability framework can predict segmentation masks for each
object mentioned in the input prompt, solely relying on model activations cached during the first
diffusion step. At this early stage, the posterior mean predicted by the diffusion model does not
contain any visual clues about the final generated image.

autoencoders commonly used in representation learning. Training autoencoders with both low
reconstruction error and sparsely activated latents is not an easy feat. An initial approach [2] towards
this goal uses ReLU as the activation function and ℓ1 loss as a regularizer to induce sparsity. However,
additional tricks are necessary, such as the initialization of encoder and decoder weights, to ensure
that training is stable. Moreover, auxiliary loss terms may be necessary to ensure there are no dead
neurons/concepts. Recent work [31, 12, 3] proposes using TopK activation instead of the ReLU
function, which enables the precise control of the sparsity level without ℓ1 loss and results in improved
downstream task performance over ReLU baselines.

Interpreting diffusion models – There has been significant effort towards interpreting diffusion
models. Tang et al. [50] find that the cross-attention layers in diffusion models with a U-Net backbone
– such as SDXL [38] and Stable Diffusion [40] – can be used to generate saliency maps corresponding
to textual concepts. Another line of work focuses on finding interpretable editing directions in
diffusion U-Nets to control the image generation process. For instance, Kwon et al. [25] and Haas
et al. [14] manipulate bottleneck features, Park et al. [36] identifies edit directions based on the SVD
of the Jacobian between the input and bottleneck layer of the U-Net, while Chen et al. [5] considers
the Jacobian between the input and the posterior mean estimate. Other works modify the key and
value projection matrices [35, 11], or directly control object attributes by thresholding attention maps
[9, 4].

Beyond editing directions, prior studies have noted the emergence of coarse image structure in the
early diffusion steps [27, 15] and the evolution of high- and low-level semantics through different
stages of the diffusion process [37, 30]. In contrast, our SAE-based analysis provides a complementary
yet more granular and systematic characterization of these phenomena; simultaneously enabling
interpretable editing and semantic layout prediction through concept vectors discovered by SAEs.

Recent work [49] trains SAEs on activations of a distilled, single-step diffusion model (SDXL Turbo)
[43]. Authors target residual updates in specific cross-attention blocks of the U-Net and found the
features in the latent space of SAEs are to be highly interpretable. Our approach differs in two key
ways. First, we analyze the time-evolution of interpretable concepts during generation – critical for
understanding and controlling diffusion – which single-step models cannot capture. Second, they
rely on vision-language foundation models to interpret SAE features by summarizing commonalities
among set of images that activate specific features. Alternatively, we introduce a scalable pipeline
that builds a flexible concept dictionary that further supplies us with pixel-level annotations using
open-set object detectors and segmentation models. Concurrently, Cywiński and Deja [7] apply
SAEs to machine unlearning in non-distilled diffusion models. However, they focus on concept
removal and train a single SAE across all time steps, whereas we study temporal dynamics by training
time-specific SAEs. Lastly, Kim and Ghadiyaram [22] use SAEs for controlled generation, but
operate on text-encoder activations rather than visual representations within the diffusion model.
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3 Method

3.1 SAE Architecture and Loss

In this section, we discuss the design choices behind our SAE model. We opt for k-sparse au-
toencoders (with TopK activation) given their success with GPT-4 [12] and SDXL Turbo [49]. In
particular, let x ∈ Rd denote the input activation to the autoencoder that we want to decompose
into a sparse combination of features. Then, we obtain the latent z ∈ Rnf by encoding x as
z = E (x) = TopK (ReLU (Wenc (x− b))), where Wenc ∈ Rnf×d denotes the learnable weights
of the encoder, b ∈ Rd is a learnable bias term, and TopK function keeps the top k highest activations
and sets the remaining ones to 0. Note, that due to the superposition hypothesis, we wish the encoding
to be expansive and therefore nf ≫ d. Then, a decoder is trained to reconstruct the input from
the latent z in the form x̂ = D (z) = Wdecz + b, where Wdec ∈ Rd×nf represents the learnable
weights of the decoder. Note, that the bias term is shared between the encoder and decoder. We
refer to fi = Wdec[:, i] columns of Wdec as concept vectors. We discuss additional details on SAE
training in Appendix A.

3.2 Collecting Model Activations

In this work, we use Stable Diffusion v1.4 (SDv1.4) [40] as our diffusion model due to its widespread
use. Inspired by Surkov et al. [49], we use 200k training prompts from the LAION-COCO dataset
[44] and store ∆ℓ,t ∈ RHℓ×Wℓ×dℓ , the difference between the output and input of the ℓth cross-
attention transformer block at diffusion time t (i.e. the update to the residual stream). We train our
SAE to reconstruct features individually along the spatial dimension. That is the input to the SAE is
∆ℓ,t[i, j, :] for different spatial locations (i, j) whereas ℓ and t are fixed and to be specified next.

To capture the time-evolution of concepts, we collect activations across 50 DDIM steps
at timesteps corresponding to t ∈ [0.0, 0.5, 1.0] and analyze final (t = 0.0, close to fi-
nal generated image), middle, and early (t = 1.0, close to pure noise) diffusion dynam-
ics respectively. For each timestep t, we target 3 different cross-attention blocks in the
denoising model of SDv1.4: down_blocks.2.attentions.1, mid_block.attentions.0,
up_blocks.1.attentions.0. We refer to these as down_block, mid_block, up_block for
brevity. We specifically include the mid_block or the bottleneck layer of the U-Net since earlier
work found interpretable editing directions here [25]. Other blocks are chosen to be the closest to the
bottleneck layer in the downsampling and upsampling paths of the U-Net. The performance of text
guidance is improved through Classifier-Free Guidance (CFG) [16]. The model output is modified
as ε̃θ(xt, t, c) = εθ(xt, t, c) + ω (εθ(xt, t, c)− εθ(xt, t,∅∅∅)) , where ω denotes the guidance scale,
c is the conditioning input and ∅∅∅ is the null-text prompt. At each timestep we collect both the
text-conditioned diffusion features (called cond) and null-text-conditioned features (denoted by
uncond).

To provide an in-depth analysis, we train separate SAEs for different block, conditioning and
timestep combinations. Training results are in Appendix A. In this work, we focus on cond features,
as we hypothesize that they may be more aligned with human-interpretable concepts due to the direct
influence of language guidance through cross-attention (more on this in Appendix C).

3.3 Extracting Interpretations from SAE Features

Multiple work on automatic labeling of SAE features resort to LLM pipelines where the captions
corresponding to top activating dataset examples are collected and the LLM is prompted to summarize
them. However, these approaches come with severe shortcomings. First, they may incorporate the
biases and limitations of the language model into the concept labels, including failures in spatial
reasoning [21], object counting, identifying structural characteristics and appearance [51] and object
hallucinations [26]. Second, they are sensitive to the prompt format and phrasing, and the instructions
may bias or limit the extracted concept labels. Last but not least, it is computationally infeasible
to scale LLM-based concept summarization to a large number of images, limiting the reliability
of extracted concepts. For instance, Surkov et al. [49] only leverages a few dozens of images to
define each concept. Therefore, we opt for designing a scalable approach that obviates the need for
LLM-based labeling and instead use a vision-based pipeline to label our extracted SAE features.

4



In particular, we represent each concept by an associated list of objects, constituting a concept
dictionary. The keys are unique concept identifiers (CIDs) assigned to each of the concept vectors
of the SAE. The values correspond to objects that commonly occur in areas where the concept
is activated. To build the concept dictionary, we first sample a set of text prompts, generate the
corresponding images using a diffusion model and extract the SAE activations for each CID during
generation. We obtain ground truth annotations for each generated image using a pre-trained vision
pipeline, that combines image tagging, object detection and semantic segmentation, resulting in a
mask and label for each object in generated images. Finally, we evaluate the alignment between our
ground truth masks and the SAE activations for each CID, and assign the corresponding label to the
CID only if there is sufficient overlap. We refer the reader to Appendix F.1 for a detailed depiction of
the pipeline.

The concept dictionary represents each concept with a list of objects. In order to provide a more
concise summary that incorporates semantic information, we assign an embedding vector to each
concept. In general, we could use any model that provides robust natural language embeddings, such
as an LLM, however we opt for a simple approach by assigning the mean Word2Vec embedding of
object names activating the given concept.

3.4 Predicting Image Composition from SAE Features

Leveraging the concept dictionary, we predict the final image composition based on SAE features at
any time step, allowing us to gain invaluable insight into the evolution of image representations in
diffusion models. Suppose that we would like to predict the location of a particular object in the final
generated image, but before the reverse diffusion process is completed. First, given SAE features from
a given intermediate time step, we extract the top activating concepts for each spatial location. Next,
we create a conceptual map of the image by assigning a word embedding to each spatial location
based on our curated concept dictionary. This conceptual map shows how image semantics, described
by localized word embeddings, vary spatially across the image. Given a concept we would like to
localize, such as an object from the input prompt, we produce a target word embedding and compare
its similarity to each spatial location in the conceptual map. To produce a predicted segmentation
map, we assign the target concept to spatial locations with high similarity, based on a pre-defined
threshold value. This technique can be applied to each object present in the input prompt (or to any
concepts of interest) to predict the composition of the final generated image. We provide a detailed
visualization of our technique in Appendix F.2.

3.5 Causal Intervention Techniques

Analyzing top activating dataset examples and semantic segmentation predictions only establish
correlational relationship between concepts and the output image. In order to probe causal effects,
we consider two categories of interventions: spatially targeted interventions designed to guide scene
layout and global interventions directed towards manipulating image style.

Spatially targeted interventions – To assess layout controllability using the discovered concepts,
we propose a simple task: enforce a specific object to appear only in a designated quadrant (e.g.,
top-left) of the image. To achieve this, we intercept activations and edit features in the SAE latent
space by amplifying the desired concept in the target region and setting it to 0 otherwise. Recall, that
the contribution of the ℓth transformer block at time t is given by ∆ℓ,t. Let Zℓ,t denote the latents
after encoding the activations with the SAE encoder E . Let S denote the set of coordinates to which
we would like to restrict the object. Let Co be the set of CIDs that are relevant to object o. We wish
to modifty the latents as follows:

∀c ∈ Co, Z̃ℓ,t[i, j, c] =

{
β, if (i, j) ∈ S

0, otherwise
, (1)

where β is our intervention strength. However, decoding the modified latents directly is suboptimal
as the SAE cannot reconstruct the input perfectly. Instead, we modify the activations directly using
the concept vectors. The modification in Eq. 1 can be equivalently written as:

∆̃ℓ,t[i, j] =

{
∆ℓ,t[i, j] + β

∑
c∈Co

fc if (i, j) ∈ S

∆ℓ,t[i, j]−
∑

c∈Co
fc, otherwise

. (2)
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Figure 2: An overview of our SAE intervention technique. The prompt "An apple in a basket"
specifies the necessary concepts but is vague in terms of spatial composition. We intercept activations
of the denoising model and edit the latents after encoding them with the SAE. For the features that are
spatially located in the bottom-right quadrant, we increase the coefficient corresponding to "apple"
concept, while setting it to 0 for all other features. After the intervention, generated image satisfies
the specified layout where all the apples are located in the bottom-right quadrant.

An overview of this intervention can be seen in Figure 2. In prior experiments, we observe that
the same intervention strength β does not work well across different objects o. To solve this, we
introduce a normalization where the intervention at a spatial coordinate (i, j) is proportional to the
norm of the latent at that coordinate ∥Zℓ,t[i, j]∥. Therefore, the effective intervention strength is
βij = β ∥Zℓ,t[i, j]∥.

Global interventions – Beyond image composition, we investigate whether image style can be
manipulated through our discovered concepts. To this end, given a CID c related to the style of
interest, as image style is a global property we modify the activation at each spatial location as

∆̃ℓ,t[i, j] = ∆ℓ,t[i, j] + βfc. (3)

Similar to spatially targeted interventions, we find that normalization is necessary for β to work well
across different choices of style. We let β to be adaptive to spatial locations and modify them as
β̃ij =

∥Zℓ,t[i,j]∥∑
i,j∥Zℓ,t[i,j]∥β.

4 Experiments

We perform extensive experiments on SD v1.4 aimed at understanding how internal representations
emerge and evolve through the generative process.

4.1 Building the Concept Dictionary

We sample 40k prompts from the LAION-COCO dataset from a split that has not been used to
train the SAEs. We build the concept dictionary following our technique introduced in Section 3.3.
For annotating generated images, we leverage RAM [54] for image tagging, Grounding DINO [28]
for open-set object detection and SAM [23] for segmentation, following the pipeline in Ren et al.
[39]. We assign a label to a specific CID if the IoU between the corresponding annotated mask
and activation is greater than 0.5. We binarize the activation map for the IoU calculation by first
normalizing to [0, 1] range, then thresholding at 0.1. We visualize the top 5 activating concepts and
the corresponding concept dictionary entries in Appendix F.3.

4.2 Emergence of Image Composition

Next, we investigate how image composition emerges and evolves in the internal representations of
the diffusion model. We sample 5k LAION-COCO test prompts that have not been used for SAE
training or to build the concept dictionary, and generate corresponding images with SDv1.4. Then,
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(a) Evolution of predicted image composition accuracy
(in terms of IoU) over the reverse diffusion process
(mid_block).

(b) Visualization of segmentation maps predicted
from extracted concepts across reverse diffusion steps
(up_block).

Figure 3: Evolution of predicted image composition during the reverse diffusion process, shown
through segmentation accuracy (left) and visualizations (right). Features from later time steps become
progressively more accurate at predicting the final layout of the image. However, the general image
composition emerges as early as the first time step.

we follow the methodology described in Section 3.4 to predict a segmentation mask for every noun
in the input prompt using SAE features at various stages of diffusion. We filter out nouns that are
not in Word2Vec and those not detected in the generated image by our zero-shot labeling pipeline.
We evaluate the mean IoU between the predicted masks and the ground truth annotations from our
labeling pipeline for the first generation step (t = 1.0), the middle step (t = 0.5) and final diffusion
step (t = 0.0). Numerical results are summarized in Figure 3a.

First, we surprisingly find that the image composition emerges during the very first reverse diffusion
step (even before the first complete forward pass!), as we are able to predict the rough layout of
the final scene with IoU ≈ 0.26 from mid_block SAE activations. As Figure 1 demonstrates, the
general location of objects from the input prompt is already determined at this stage, even though the
model output (posterior mean prediction) does not contain any visual clues about the final generated
scene yet. More examples can be seen in the second column of Figure 3b.

Second, we observe that the image composition and layout is mostly finalized by the middle of the
reverse diffusion process (t = 0.5), which is supported by the saturation in the accuracy of predicted
masks. Visually, predicted masks for t = 0.5 and t = 0.0 look similar, however we see indications
of increasing semantic granularity in represented concepts. For instance, the second row in Figure
3b depicts predicted segmentation masks for the noun church. Even though the masks for t = 0.5
and t = 0.0 are overall similar, the mask in the final time step excludes doors and windows on the
building, suggesting that those regions are assigned more specific concepts, such as door and window.
Moreover, we would like to emphasize that the segmentation IoU is evaluated with respect to our
zero-shot annotations, which are often less accurate than our predicted masks for t = 0.0, and thus
the reported IoU is bottlenecked by the quality of our annotations.

Finally, we find that image composition can be extracted from any of the investigated blocks,
and thus we do not observe strong specialization between these layers for composition-related
information. However, up_block provides generally more accurate segmentations than down_block,
and mid_block provides the lowest due to the lower spatial resolution. We also find that cond
features result in more accurate prediction of image composition than uncond features, likely due
to more semantic information as an indirect result of text conditioning. Results for all block and
conditioning combinations can be found in Appendix C.

4.3 Effectiveness of Interventions Across Diffusion Time

Beyond establishing correlational effects, we analyze how our discovered concepts can be leveraged
in causal interventions targeted at manipulating image composition and style. We specifically focus
on the effectiveness of these interventions as a function of diffusion time, split into 3 stages: early
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No Intervention

1

top-left top-right bottom-left bottom-right

1

(a) Early-stage intervention.

top-left top-right bottom-left bottom-right

1

(b) Middle-stage intervention

top-left top-right bottom-left bottom-right

1

(c) Final-stage intervention

Figure 4: Effect of spatially targeted interventions at different stages of diffusion, aimed at manipulat-
ing image layout. We can restrict objects to the specified quadrant of the image when intervened in
early stages of diffusion. However, in middle and final stages our interventions are unsuccessful.

for t ∈ [0.6, 1.0], middle for t ∈ [0.2, 0.6] and final for t ∈ [0, 0.2]. Motivated by the success of
bottleneck intervention techniques [25, 14, 36], we target mid_block in our experiments.

Spatially targeted interventions– We consider bee, book, and dog as the objects of interest and at-
tempt to restrict them to four quadrants: top-left, top-right, bottom-left, and bottom-right.
In order to find the CIDs to be intervened on, we sweep the concept dictionary of the given time step
and collect all the CIDs where the word of interest appears. Results are summarized in Figure 4.

Global interventions– Through our concept dictionary and visual inspection of top dataset examples
at t = 0.5, we select the following CIDs: #1722 that controls the cartoon look of the image, #524
appears mostly with beach images where sea and sand are visible together, and #2137 activates the
most on paintings (top activating images can be found in Appendix H). We find matching concepts
for other time steps by picking the CIDs with the highest Word2Vec embedding similarity to the
above target CIDs. An overview of results is depicted in Figure 5.

4.3.1 Early-stage Interventions

First, we apply spatially targeted interventions according to Eq. 2 using an SAE trained on cond
activations of mid_block at t = 1.0. We observe that a large intervention strength β is needed to
successfully control the spatial composition consistently. We hypothesize that the skip connections in
the U-Net architecture and the features from the null-text conditioning in classifier-free guidance
reduce the effect of our interventions, as they provide paths that bypass the intervention. Thus, a larger
value of intervention strength is needed to mask the leakage effects. In Figure 4a, we observe that the
objects of interest are successfully guided to their respective locations. Moreover, the concepts that
we do not intervene on, such as the flower in the first row are preserved.

Next, we perform global interventions according to Eq. (3) aimed at manipulating image style.
Interestingly, as depicted in Figure 5a, we find that instead of controlling image style, these global
interventions broadly modify the composition of the image, without imbuing it with a particular
style. As depicted in Figure 6 (top row), this phenomenon holds for a wide range of β. As we vary
the intervention strength, we obtain images with various compositions, but without the target style.
This observation is consistent with our hypothesis that early stages of diffusion are responsible for
shaping the image composition, whereas more abstract and high-level concepts, such as those related
to consistent artistic styles emerge later.

4.3.2 Middle-stage Interventions

We keep the setting from early-stage experiments, but use an SAE trained on the activations at
t = 0.5. In contrast with early-stage results, as shown in Figure 4b, we find that our spatially
localized intervention fails to manipulate image composition at this stage. This result suggests that
the locations of prominent objects in the scene have been finalized by this stage. The interventions
cause visual distortions, while maintaining image composition. Interestingly, in some cases we see
semantic changes in the targeted regions. For instance, intervening on the book concept in the second
row of Fig. 4b in the top-left quadrant changes the tea cup into a book, instead of moving the
large book making up most of the scene.
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No Intervention

1

cartoon sea & sand painting

1

(a) Early-stage intervention

cartoon sea & sand painting

1

(b) Middle-stage intervention

cartoon sea & sand painting

1

(c) Final-stage intervention

Figure 5: Effect of global interventions aimed at manipulating image style. Intervening in the
early stages of diffusion drastically modifies image composition without imbuing the image with a
particular style. In stark contrast, middle-stage global interventions successfully manipulate image
style without interfering with image composition. However, in the final stages of diffusion, such
global interventions have no effect on style or composition, and only result in minor textural changes.

In an effort to control image style, we perform global interventions in the middle stages. We
show results in Figure 5b. We find that the these interventions do not alter image composition as
in early stages of diffusion. Instead, we observe local edits more aligned with stylistic changes
(cartoon look, sandy texture, smooth straight lines, etc.), while the location of objects in the scene are
preserved. Contrasting this with early-stage interventions, we hypothesize that the middle stage of
diffusion is responsible for the emergence of more high-level and abstract concepts whereas the image
layout is already determined in the earlier time steps (also supported by our semantic segmentation
experiments). Moreover, varying the intervention strength impacts the intensity of style transfer in
the output image (Figure 6 (middle row)).

4.3.3 Final-stage Interventions

Performing spatially targeted interventions in the final stage of diffusion (Figure 4c) has no effect on
image composition and only causes some minor changes in local details. This outcome is expected,
as we observe that even by the middle stages of diffusion, image composition is finalized.

Similarly, we find that our global intervention technique is ineffective in manipulating image style
in the final stage of diffusion (Figure 5c), as we only observe minor textural changes across a wide
range of intervention strengths (Figure 6 (bottom row)).

4.4 Summary of observations

Our experimental observations can be summarized as follows:

• Early stage of diffusion: coarse image composition emerges as early as during the very first
diffusion step. At this stage, we are able to approximately identify where prominent objects will be
placed in the final generated image (Section 4.2 and Figure 1). Moreover, image composition is still
subject to change: we can manipulate the generated scene (Figure 4a) by spatially targeted interven-
tions that amplify the desired concept in some regions and dampens it in others. However, we are
unable to steer image style (Figure 5a) at this stage using our global intervention technique. Instead
of high-level stylistic edits, these interventions result in major changes in image composition.

• Middle stage of diffusion: image composition has been finalized at this stage and we are able
to predict the location of various objects in the final generated image with high accuracy (Figure
3). Moreover, our spatially targeted intervention technique fails to meaningfully change image
composition at this stage (Figure 4b). On the other hand, through global interventions we can
effectively control image style (Figure 5b) while preserving image composition, in stark contrast to
the early stages.
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β = 0.0 β = 1.0 β = 2.0 β = 4.0 β = 10.0 β = 20.0 β = 40.0

Early-stage

Middle-stage

Final-stage

1

Figure 6: Effect of intervention strength. We perform global intervention on a concept (#1722 for
all time steps) corresponding to cartoon look in top activating images. Early-stage interventions, at
any strength, are unable to modify image style consistently but broadly influence image composition.
Interventions in the middle stages imbue the image with the target style with increasing intensity. We
only observe minor textural changes in final stages of diffusion, even at high intervention strengths.

• Final stage of diffusion: Image composition can be predicted from internal representations to
very high accuracy (empirically, often higher than our pre-trained segmentation pipeline), however
manipulating image composition through our spatially localized interventions fail (Figure 4c). Our
global intervention technique only results in minor textural changes without meaningfully changing
image style (Figure 5c). These observations are consistent with prior work [53] highlighting the
inefficiency of editing in the final, ’refinement’ stage of diffusion.

While these observations are based on the SDv1.4 diffusion model, we expect similar behavior from
different models and architectures. In partiular, we hypothesize that the concepts that are learned
by the model are mostly due to the diffusion objective rather than the precise choice of denoising
architecture. As noted by Fuest et al. [10], the denoising objective in diffusion models encourages
the learning of semantic image representations useful for downstream tasks, much like Denoising
Autoencoders (DAEs). The key distinction is that diffusion models condition on the timestep t,
effectively functioning as a hierarchy of DAEs operating at multiple noise levels. Building on this
close analogy between DAEs and diffusion models (rigorously analyzed in [52]), we believe that
even if the denoising model architecture changes (such as DiT used in FLUX models vs. the U-Net
in SDv1.4, SDXL, etc.), similar underlying concepts should emerge when probed appropriately due
to the fundamentally related representations learned by diffusion models.

We also include more quantitative experiments demonstrating that concepts become more refined and
distinct as generation progresses (Appendix E.1), and assessing the success of global and spatially
targeted interventions at different diffusion stages which conforms with our summary of observations
in this section (Appendix E.2).

5 Conclusions and Limitations

In this paper, we take a step towards demystifying the inner workings of text-to-image diffusion
models under the lens of mechanistic interpretability, with an emphasis on understanding how visual
representations evolve over the generative process. We show that the semantic layout of the image
emerges as early as the first reverse diffusion step and can be predicted surprisingly well from our
learned features, even though no coherent visual cues are discernible in the model outputs at this
stage yet. As reverse diffusion progresses, the decoded semantic layout becomes progressively
more refined, and the image composition is largely finalized by the middle of the reverse trajectory.
Furthermore, we conduct in-depth intervention experiments and demonstrate that we can effectively
leverage the learned SAE features to control image composition in the early stages and image style
in the middle stages of diffusion. Developing editing techniques that adapt to the evolving nature
of diffusion representations is a promising direction for future work. A limitation of our method
is the leakage effect rooted in the U-Net architecture of the denoiser, which enables information to
bypass our interventions through skip connections. We believe that extending our work to diffusion
transformers would effectively tackle this challenge.
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made in the paper.
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4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Justification: The full set hyperparameters are provided in the main paper and in the
Appendix to train and test the SAEs towards reproducing the main claims in the paper.
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• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We release the code base and accompanying model checkpoints. The data we
use is already open-source.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We share all training and test details in Section 4 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: In terms of numerical results, we provide the average performance in the main
body of the paper (in Figure 3a and in the Appendices E.1 and E.2). The numerical results
provided are solely to demonstrate trends and not used as direct comparison with competing
methods.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please see Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conform in every respect with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see Appendix I.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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• The conference expects that many papers will be foundational research and not tied
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• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We share SAE checkpoints together with the concept dictionaries that we’ve
build. We also provide scripts to load and use them at https://github.com/berktinaz/
stable-concepts.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this paper does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Additional details on SAE training

We obtain the learnable parameters of SAE by optimizing the reconstruction error

Lrec (Wenc,Wdec, b) = Lrec (θ) = ∥x− x̂∥22 .
In practice, training only on the reconstruction error is insufficient due to the emergence of dead
features. Dead features are defined as directions in the latent space that are not activated for some
specified number of training iterations resulting in wasted model capacity and compute. To resolve
this issue, Gao et al. [12] proposes an auxiliary loss AuxK that models the reconstruction error of
the SAE using the top-kaux feature directions that have been inactive for the longest. To be specific,
define the reconstruction error as e = x− x̂, then the auxiliary loss takes the form

Laux (θ) = ∥e− ê∥22 ,
where ê is the approximation of the reconstruction error using the top-kaux dead latents. The
combined loss for the SAE training becomes

L (θ) = Lrec (θ) + αLaux (θ) ,

where α is a hyperparameter. We use a filtered version of the LAION-COCO3

dataset for training prompts. We train SAEs on the residual updates in the dif-
fusion U-Net blocks down_blocks.2.attentions.1, mid_block.attentions.0,
up_blocks.1.attentions.0, referred to as down_block, mid_block, up_block. We
use guidance scale of ω = 7.5 and 50 DDIM steps to collect the activations. The dimension of
the activation tensor is 16 × 16 × 1280 for down_block and up_block, 8 × 8 × 1280 for the
mid_block. We train all models with Adam optimizer on a single NVIDIA RTX A6000 GPU.
Training on 200k prompts takes ≈ 1 hour for up_block and down_block, and ≈ 20 minutes for
mid_block. Training hyperparameters are as follows:

• α = 1
32 ,

• batch_size: 4096,
• d = 1280,
• learning_rate: 0.0001,
• kaux = 256,
• n_epochs: 1,
• nf = 4d = 5120.

We keep track of normalized mean-squared error (MSE) and explained variance of the SAE recon-
structions. In table 1 we provide the complete set of training metrics for all combinations of block,
conditioning, timestep, and k.

B Additional details on interventions

In table 2 we provide the intervention strength (β) we use for each reverse diffusion stage and
intervention type.

Table 2: Intervention strengths (β) for different intervention types and stages.

Intervention type Stage Intervention strength (β)

spatially_targetted
early 4000
middle 400
final 1000

global
early 8
middle 10
final 10

3https://huggingface.co/datasets/guangyil/laion-coco-aesthetic, license: apache-2.0
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Table 1: Performance metrics for different block types, timesteps, conditioning and k values. Best
metrics for each conditioning block are underlined. Best overall metrics are bold.

Conditioning Block Timestep (t) k Scaled MSE Explained Variance (%)

cond

down_block 0 10 0.6293 36.6
20 0.5466 44.8

0.5 10 0.6275 37.6
20 0.5510 45.1

1.0 10 0.4617 51.7
20 0.3767 60.5

mid_block 0 10 0.4817 50.5
20 0.4133 57.3

0.5 10 0.4802 50.9
20 0.4194 57.0

1.0 10 0.4182 56.4
20 0.3503 63.3

up_block 0 10 0.5540 44.0
20 0.4698 52.5

0.5 10 0.5414 45.3
20 0.4648 52.9

1.0 10 0.4177 57.7
20 0.3424 65.3

uncond

down_block 0 10 0.6306 36.4
20 0.5477 44.6

0.5 10 0.6364 36.9
20 0.5580 44.5

1.0 10 0.3874 58.6
20 0.3081 66.9

mid_block 0 10 0.4852 50.7
20 0.4161 57.6

0.5 10 0.4909 50.8
20 0.4277 57.0

1.0 10 0.3286 65.7
20 0.2613 72.6

up_block 0 10 0.5550 44.0
20 0.4701 52.5

0.5 10 0.5436 45.3
20 0.4653 53.3

1.0 10 0.2724 71.4
20 0.2115 77.7

In fig. 7, we perform global intervention on concept #1722 (corresponding to cartoon look in top
activating images) for all timesteps for various intervention strength β.

C Additional results on segmentation accuracy

We provide a comprehensive overview of the accuracy of predicted segmentations across different
architectural blocks in SDv1.4 in Figure 8.

We find that coarse image composition can be extracted from any of the investigated blocks, and
from both cond and uncond features even in the first reverse diffusion step. We consistently observe
saturation by the middle of the reverse diffusion trajectory. We note that the saturation is partially due
to imperfect ground truth masks from our annotation pipeline that can be less accurate than the masks
obtain from the SAE features at late time steps. Overall, up_block provides the most accurate, and
mid_block the least accurate segmentations (due to the lower spatial resolution in the bottleneck).
We observe consistently lower segmentation accuracy based on uncond features. We hypothesize that
uncond features may encode more low-level visual information, whereas cond features are directly
influenced by the text conditioning and therefore represent more high-level semantic information.
Surprisingly, the reconstruction error however is higher for SAEs trained on cond features as depicted
in Table 1.
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β = 0.0 β = 1.0 β = 2.0 β = 4.0 β = 10.0 β = 20.0 β = 40.0

1

(a) Early-stage intervention

β = 0.0 β = 1.0 β = 2.0 β = 4.0 β = 10.0 β = 20.0 β = 40.0

1

(b) Middle-stage intervention

β = 0.0 β = 1.0 β = 2.0 β = 4.0 β = 10.0 β = 20.0 β = 40.0

1

(c) Final-stage intervention

Figure 7: Effect of intervention strength. We perform global intervention on a concept (#1722 for
all time steps) corresponding to cartoon look in top activating images. Early-stage interventions, at
any strength, are unable to modify image style consistently but broadly influence image composition.
Interventions in the middle stages imbue the image with the target style with increasing intensity. We
only observe minor textural changes in final stages of diffusion, even at high intervention strengths.
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(a) down_block (b) mid_block (c) up_block

Figure 8: Accuracy of predicted segmentations based on SAE features from different architectural
blocks. cond stands for text-conditioned diffusion features, and uncond denotes null-text condition-
ing.

D Qualitative assessment of activations

We visualize the activation maps for top 10 (in terms of mean activation across the spatial dimensions)
activating concepts for generated samples in Figures 9 - 11 for various time steps and blocks. Based
on our empirical observations, the activations can be grouped in the following categories:

• Local semantics – Most concepts fire in semantically homogeneous regions, producing a
semantic segmentation mask for a particular concept. Examples include the segmentation
of the pavement, buildings and people in Figure 9, the plate, food items and background
in Figure 10 and the face, hat, suit and background in Figure 11. We observe that these
semantic concepts can be redundant in the sense that multiple concepts often fire in the same
region (e.g. see Fig. 10, second row with multiple concepts focused on the food in the bowl).
We hypothesize that these duplicates may add different conceptual layers to the same region
(e.g. food and round in the previous example). In terms of diffusion time, we observe that
the segmentation masks are increasingly more accurate with respect to the final generated
image, which is expected as the final scene progressively stabilizes during the diffusion
process. This observation is more thoroughly verified in Section 4.2 and Figure 3a. In
terms of different U-Net blocks, we observe that up_blocks.1.attentions.0 provides
the most accurate segmentation of the final scene, especially at earlier time steps.

• Global semantics (style) – We find concepts that activate more or less uniformly in the
image. We hypothesize that these concepts capture global information about the image, such
as artistic style, setting or ambiance. We observe such concepts across all studied diffusion
steps and architectural blocks.

• Context-free – We observe that some concepts fire exclusively in specific, structured regions
of the image, such as particular corners or bordering edges of the image, irrespective of
semantics (see e.g. the last activation in the first row of Figure 9). We hypothesize that
these concepts may be a result of optimization artifacts, and are leveraged as semantic-
independent knobs for the SAE to reduce reconstruction error. Specifically, if the SAE is
unable to "find" k meaningful concepts in the image, as encouraged by the training objective,
it may compensate for the missing signal energy in these context-free directions. Visual
examples and further discussion can be found in Appendix G.

E Quantitative results

E.1 Quantifying temporal evolution of concepts

In order to understand how much each SAE feature aligns with a particular concept beyond the
qualitative results we have, we introduce two metrics: concept cohesion and concept separability. We
refer to concept cohesion as a measure of how tightly clustered the items in the concept dictionary
are around their concept center. Similarly, we calculate concept separability as a measure of how
distinct concepts are from one another. Next, we talk about in detail how we calculate these scores.
To calculate concept cohesion, for each concept, we calculate the mean word2vec embedding of
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Figure 9: Visualization of top activating concepts in a generated sample. Concepts are sorted by mean
activation across spatial locations and top 10 activation maps are shown. Each row depicts a different
snapshot along the reverse diffusion trajectory starting from pure noise (t = 1.0) and terminating
with the generated final image (t = 0.0). Note that each row within the same column may belong to
a different concept, as concepts are not directly comparable across different diffusion time indices
(separate SAE is trained for each individual timestep). Sample ID: 2000018.

the items in the concept dictionary. Then, for each item in the dictionary entry, we calculate the
cosine distance to the mean embedding and take the average. The final score is calculated by taking
the average across concepts. As for the concept separability, we first calculate the concept centers
as described before. Note that, we have an n × d tensor where n is the number of concepts in
our dictionary and d is the word2vec embedding dimension. We then calculate the pairwise cosine
similarity matrix (of shape n× n). Then we denote the final score as the average of non-diagonal
entries. We calculate these for our concept dictionaries for each timestep t ∈ {0.0, 0.5, 1.0}. The
results are presented in Table 3.

Table 3: Concept cohesion and separability across timesteps t.

t Concept Cohesion Concept Separability
0.0 0.664± 0.182 0.344± 0.159
0.5 0.639± 0.170 0.363± 0.154
1.0 0.588± 0.169 0.433± 0.169
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Figure 10: Visualization of top activating concepts in a generated sample. Concepts are sorted by
mean activation across spatial locations and top 10 activation maps are shown. Each row depicts
a different snapshot along the reverse diffusion trajectory starting from pure noise (t = 1.0) and
terminating with the generated final image (t = 0.0). Note that each row within the same column
may belong to a different concept, as concepts are not directly comparable across different diffusion
time indices (separate SAE is trained for each individual timestep). Sample ID: 2000035.

We observe that as we move along the reverse diffusion iterates (t = 1.0 to t = 0.0), the concepts
that we have identified become purer (as measured by the increase in concept cohesion from 0.588
to 0.664) Moreover, average pair-wise similarity of concepts decrease from 0.433 to 0.344. This
indicates that concepts are becoming more distinct and separated as generation progresses.

E.2 Quantitative assessment of intervention success

Spatially targeted interventions – To quantitatively assess the success of spatially targeted inter-
ventions summarized in Figure 4, we utilize CLIPSeg [29] as a zero-shot segmentation method to
determine whether the object in the generated image is in the intended quadrant. More specifically,
using the object name, CLIPSeg gives a prediction score for each pixel in the generated image. We
calculate the center of the mass and determine which quadrant of the image it belongs to. We run
the experiments on an extended object list consisting of 10 in total ("bee", "book", "dog", "apple",
"banana", "cat", "car", "phone", "door", "bird"). We select these objects as they are commonly
observed in the LAION-COCO dataset. For each timestep, we calculate the overall spatial edit
success as the average matching score across all objects and 4 quadrants. We present the average
score in Table 4.
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Figure 11: Visualization of top activating concepts in a generated sample. Concepts are sorted by
mean activation across spatial locations and top 10 activation maps are shown. Each row depicts
a different snapshot along the reverse diffusion trajectory starting from pure noise (t = 1.0) and
terminating with the generated final image (t = 0.0). Note that each row within the same column
may belong to a different concept, as concepts are not directly comparable across different diffusion
time indices (separate SAE is trained for each individual timestep). Sample ID: 2000042.

Table 4: Performance of spatially targeted interventions across timesteps t.

Method t = 0.0 t = 0.5 t = 1.0

Random Baseline 0.25 0.25 0.25
Ours 0.23 0.35 0.80

We observe the edits at timesteps t = 0.0 and t = 0.5 unsuccessful and to be comparable to the
random prediction baseline. At t = 1.0, our edits are successful 80% of the time. It is likely that we
can improve the performance further with hyperparameter tuning, which we leave it for future work.

Global interventions – Since no ground truth images are available in the case of global interventions,
we adopt a proxy metric to measure success (inspired by earlier editing-focused works such as Prompt-
to-Prompt [15]): CLIP similarity between the generated image and the mean CLIP embedding of
the target concept (computed as the average embedding of all dictionary words associated with that
concept). We measure this similarity both before and after the intervention. An edit is considered
successful if the similarity increases post-intervention. We also report the average LPIPS score

28



between the image before and after intervention as a proxy to the quality of the generated image. That
is, ideally we want the edited images to stay close to the “reference” (before intervention) image.

To perform this analysis, we sample 1000 prompts from the validation set for added robustness and
apply our editing method at three different diffusion timesteps (early, middle, late) for the concept
indices highlighted in Figure 5 (which correspond to the concepts cartoon, sea & sand, and
painting). The results are summarized in Table 5.

Table 5: Global intervention performance across timesteps t.

Timestep Concept ID CLIPbefore CLIPbefore ∆CLIP Edit Success LPIPS
t = 0.0 1722 0.201 0.208 +0.007 0.85 0.114

2349 0.190 0.194 +0.004 0.73 0.094
3593 0.201 0.206 +0.005 0.76 0.133

Average 0.197 0.203 +0.006 0.78 0.114
t = 0.5 1722 0.203 0.222 +0.019 0.94 0.379

524 0.192 0.220 +0.028 0.96 0.407
2137 0.203 0.218 +0.015 0.88 0.369

Average 0.199 0.220 +0.021 0.93 0.385
t = 1.0 1722 0.202 0.212 +0.010 0.77 0.647

2366 0.194 0.197 +0.003 0.58 0.646
2929 0.203 0.212 +0.009 0.73 0.665

Average 0.200 0.207 +0.007 0.69 0.653

We find that edits are most successful at the middle timestep (t = 0.5), with a 93% success rate and
the highest average ∆CLIP similarity (+0.021), compared to 78% (+0.006) and 69% (+0.007) at
early and late stages, respectively. This aligns well with our qualitative observations and supports
our main insight: intervening during the middle stages of diffusion offers the most effective control
over image style while preserving content. Furthermore, we observe mean LPIPS scores for t = 0.0,
t = 0.5, and t = 1.0 as 0.114, 0.385, and 0.653 respectively. Although LPIPS score of 0.114 is
the best among diffusion stages, we note the low edit success. Note that this is in line with our
observation that “global interventions in the final stage of diffusion only results in minor textural
changes without meaningfully changing image style”. Similarly, we observe a large mean LPIPS
score for early stage edits, likely due to major changes in the image composition. The middle stage
LPIPS stands in between the two extremes but has significantly higher ∆CLIP and edit success.

F Additional details on building concept dictionary and predicting image
composition

F.1 Extracting interpretations from SAE features

In Figure 12, we provide a detailed figure to depict the curation of the concept dictionary (also
explained in Section 3.3). To build the concept dictionary, we first sample a set of text prompts,
generate the corresponding images using a diffusion model and extract the SAE activations for
each CID during generation. We obtain ground truth annotations for each generated image using a
pre-trained vision pipeline, that combines image tagging, object detection and semantic segmentation,
resulting in a mask and label for each object in generated images. Finally, we evaluate the alignment
between our ground truth masks and the SAE activations for each CID, and assign the corresponding
label to the CID only if there is sufficient overlap.

F.2 Predicting image composition from SAE features

In Figure 13, we show the pipeline that we use to predict image composition in detail. Leveraging
the concept dictionary, we predict the final image composition based on SAE features at any time
step, allowing us to gain invaluable insight into the evolution of image representations in diffusion
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Figure 12: Curating the concept dictionary: 1) We cache SAE activations across time steps and
blocks during generation. 2) We leverage a pipeline of image tagging, open-set object detection and
promptable segmentation to annotate the generated image with segmentation masks and object labels.
3) We find SAE activations that overlap with the object masks. 4) We add the overlapping object’s
label to the concept dictionary under the matching SAE activation’s CID.

models. Suppose that we would like to predict the location of a particular object in the final generated
image, but before the reverse diffusion process is completed. First, given SAE features from a given
intermediate time step, we extract the top activating concepts for each spatial location. Next, we
create a conceptual map of the image by assigning a word embedding to each spatial location based
on our curated concept dictionary. This conceptual map shows how image semantics, described
by localized word embeddings, vary spatially across the image. Given a concept we would like to
localize, such as an object from the input prompt, we produce a target word embedding and compare
its similarity to each spatial location in the conceptual map. To produce a predicted segmentation
map, we assign the target concept to spatial locations with high similarity, based on a pre-defined
threshold value. This technique can be applied to each object present in the input prompt (or to any
concepts of interest) to predict the composition of the final generated image.

F.3 More examples from the concept dictionary

We depict top 5 activating concepts, extracted from up_blocks.1.attentions.0, for generated
images and their corresponding concept dictionary entries in Figures 14 - 16.

G Context-free activations

We observe the emergence of feature directions in the representation space of the SAE that are local-
ized to particular, structured regions in the image (corners, vertical or horizontal lines) independent
of high-level image semantics. We visualize examples in Figures 17 - 18. Specifically, we find
concept IDs for which the variance of activations averaged across spatial dimensions is minimal
over a validation split. We depict the mean and variance of such activations and showcase generated
samples that activate the particular concept. We observe that these localized activation patterns
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Figure 13: Predicting image composition: 1) We cache SAE activations at the first diffusion step (or
other time step of interest) and extract top activated concepts per spatial location. 2) We fetch corre-
sponding objects from the concept dictionary and produce a conceptual embedding via Word2Vec. 3)
We compare the conceptual embedding at each location to the target word embeddings from the input
prompt and predict a segmentation map based on cosine similarity.

(a) t = 1.0 (b) t = 0.0

Figure 14: Concept dictionary and visualization of the activation maps for the top 5 activating
concepts. Sample ID: 2000031

.
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(a) t = 1.0 (b) t = 0.0

Figure 15: Concept dictionary and visualization of the activation map for the top 5 activating concepts.
Sample ID: 2000061

(a) t = 1.0 (b) t = 0.0

Figure 16: Concept dictionary and visualization of the activation map for the top 5 activating concepts.
Sample ID: 2000062
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Figure 17: We plot the mean and variance of activations, extracted at t = 1.0, for concepts with
lowest average variance across spatial locations. We find concepts that fire exclusively at specific
spatial locations. We depict generated samples that maximally activate for the given concept.

appear throughout the generative process (both at t = 1.0 in Figure 17 and at t = 0.0 in Figure 18).
Moreover, the retrieved activating samples typically do not share common semantic or low-level
visual features, as demonstrated by the sample images.

H Visualization of top dataset examples

Top dataset examples for a concept ID c is determined by sorting images based on their average
concept intensity γc where the averaging is over spatial dimensions. Formally (definition is taken
from [49]), for a transformer block ℓ and timestep t, we define γc as:

γc =
1

HℓWℓ

∑
i,j

Zℓ,t[i, j, c].

In Figures 19 - 32, we provide top activated images for various concept IDs and for various timestep
t’s.
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Figure 18: We plot the mean and variance of activations, extracted at t = 0.0, for concepts with
lowest average variance across spatial locations. We find concepts that fire exclusively at specific
spatial locations. We depict generated samples that maximally activate for the given concept.
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Figure 19: Top activating dataset examples for the concept ID 10 belonging to the SAE trained on the
cond activation of mid_block at t = 1.0.

1

Figure 20: Top activating dataset examples for the concept ID 13 belonging to the SAE trained on the
cond activation of mid_block at t = 1.0.
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Figure 21: Top activating dataset examples for the concept ID 49 belonging to the SAE trained on the
cond activation of mid_block at t = 1.0.

36



1

Figure 22: Top activating dataset examples for the concept ID 1722 belonging to the SAE trained on
the cond activation of mid_block at t = 1.0.
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Figure 23: Top activating dataset examples for the concept ID 2787 belonging to the SAE trained on
the cond activation of mid_block at t = 1.0.
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Figure 24: Top activating dataset examples for the concept ID 524 belonging to the SAE trained on
the cond activation of mid_block at t = 0.5.
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Figure 25: Top activating dataset examples for the concept ID 1314 belonging to the SAE trained on
the cond activation of mid_block at t = 0.5.
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Figure 26: Top activating dataset examples for the concept ID 1722 belonging to the SAE trained on
the cond activation of mid_block at t = 0.5.
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Figure 27: Top activating dataset examples for the concept ID 2137 belonging to the SAE trained on
the cond activation of mid_block at t = 0.5.

1

Figure 28: Top activating dataset examples for the concept ID 0 belonging to the SAE trained on the
cond activation of mid_block at t = 0.0.

I Broader Impact Statement

In this work, we demystify the inner workings of text-to-image diffusion models by revealing
how visual representations evolve over the reverse diffusion process. By uncovering interpretable
features and developing stage-specific editing techniques, our approach may enable more granular
and controllable image generation, which can benefit safety critical applications. However, we
acknowledge that greater interpretability and control also carry risks, such as facilitating misuse for
deceptive content generation or circumventing safety mechanisms.
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Figure 29: Top activating dataset examples for the concept ID 1722 belonging to the SAE trained on
the cond activation of mid_block at t = 0.0.

1

Figure 30: Top activating dataset examples for the concept ID 4972 belonging to the SAE trained on
the cond activation of mid_block at t = 0.0.
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Figure 31: Top activating dataset examples for the concept ID 4979 belonging to the SAE trained on
the cond activation of mid_block at t = 0.0.

1

Figure 32: Top activating dataset examples for the concept ID 86 belonging to the SAE trained on the
cond activation of down_block at t = 0.0.
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