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Abstract

Aligning language models (LMs) with human preferences remains challenging partly because
popular approaches, such as reinforcement learning from human feedback and direct prefer-
ence optimization (DPO), often assume that the training data is sufficiently representative
of the environment in which the model will be deployed. However, real-world applications
frequently involve distribution shifts, e.g., changes in end-user behavior or preferences dur-
ing usage or deployment, which pose a significant challenge to LM alignment approaches. In
this paper, we propose an importance weighting method tailored for DPO, namely IW-DPO,
to address distribution shifts in LM alignment. IW-DPO can be applied to joint distribu-
tion shifts in the prompts, responses, and preference labels without explicitly assuming the
type of distribution shift. Our experimental results on various distribution shift scenarios
demonstrate the usefulness of IW-DPO.

1 Introduction

While language models (LMs) have been rapidly increasing their language generation capabilities in recent
years, aligning them with human values and norms remains a challenging task (Shen et al., 2023). Among the
various approaches for alignment, reinforcement learning from human feedback (RLHF) has demonstrated
considerable success in aligning LMs with human preferences (Ziegler et al., 2019; Stiennon et al., 2020;
Ouyang et al., 2022). However, it is involved in a rather complex training pipeline: reward modeling (RM)
from preference data and optimization of an LM using a learned reward model and a reinforcement learning
(RL) algorithm. To reduce this complexity, Rafailov et al. (2024) developed a simple yet effective optimization
approach, namely direct preference optimization (DPO). DPO directly optimizes the LM without the need
for RM and RL, thus making it simpler and faster.

DPO has been demonstrated to be an effective method for fine-tuning LMs to generate responses that align
with human-desired outputs, leading to the creation of several widely used foundation LM families, such as
Llama 3 (Grattafiori et al., 2024), Phi-4 (Abdin et al., 2024), Qwen2 (Yang et al., 2024), and DeepSeek (Bi
et al., 2024). Like other machine learning algorithms (Quiñonero-Candela et al., 2008; Pan & Yang, 2009;
Sugiyama & Kawanabe, 2012), however, DPO typically suffers from various distribution shifts that present a
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Figure 1: DPO optimizes for the training distribution by using only the training data, while IW-DPO
optimizes for the test distribution by additionally using a tiny amount of data (i.e., validation
data) sampled from the test distribution to estimate weights and reweight training losses. In
weight estimation, the log probabilities of the training data and those of the validation data are passed
through a transformation function t, and the transformed data are then used to compute the importance
weights.

challenge in aligning with human-desired responses, underscoring the need for the development of a method
that can effectively address such practical difficulties.

Recent studies have attempted to address the issue of distribution shifts in DPO, where the LM being
optimized gradually deviates from the initial reference model (the LM used as initial weights for training)
as training progresses on a fixed offline preference dataset, which we refer to as model distribution shift.
For instance, Sun et al. (2023) proposed a way to address the difference between the reward distribution
of the LM and that of the reference model. Gou & Nguyen (2024), Zhou et al. (2024) and Xu et al.
(2024) explored a phenomenon in which the output (also called sample, response or completion in various
literature) distribution of the LM changes, causing it to diverge from the distribution present in the fixed
offline preference dataset. Similarly, Dou et al. (2024) examined how output distribution shifts negatively
impact the performance of the reward model, diminishing its ability to distinguish between responses.

In contrast, our work addresses a fundamentally different form of distribution shift which we call the deploy-
ment distribution shift, where the environment changes in ways not reflected in the training dataset. Such
shifts can arise from real-world usage or deployment, such as changes in end-user behavior or preferences.
For the remainder of this paper, we will use the term “distribution shift” to denote this phenomenon. We
characterize the factors that cause distribution shifts in LM alignment and, accordingly, systematically define
the types of distribution shifts. Specifically, in the context of LM alignment, preference data typically con-
sists of three elements: prompt, response, and preference label. Various types of distribution shifts between
the training distribution and post-deployment, i.e., the test distribution, can arise from one or more of these
factors. When a distribution shift occurs, training on the training dataset means optimizing for the training
distribution, which may result in poor performance on the test distribution. Son et al. (2025) explored a shift
in one of these factors, the preference shift problem, but focused on an online setting, whereas we assume
to have a fixed offline preference dataset for training. We provide a detailed explanation of the definition of
distribution shift, the contributing factors, and the types of distribution shifts in Section 3.1.

For solving distribution shift problems, importance weighting is a powerful tool that estimates a test-over-
training density ratio as weights and uses these weights to reweight the training losses (Sugiyama & Kawan-
abe, 2012). Later, dynamic importance weighting (DIW) was proposed as a modern implementation of
importance weighting, which makes it well suited for deep learning (Fang et al., 2020). However, DIW
mainly focuses on classification, and its effectiveness in large-scale machine learning problems such as LM
alignment has yet to be investigated.

In this paper, inspired by DIW, we propose an importance-weighted DPO, namely IW-DPO, to solve the
distribution shifts in LM alignment. An overview of our method compared to the original DPO is shown
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in Figure 1. IW-DPO estimates importance weights for training instances and uses them to up/down-
weight training instances that are relevant/irrelevant to ensure that the LM is not overfitted to the training
distribution and more aligned with the test distribution. To estimate the importance weights, IW-DPO
uses a transformation function t derived from the LM to convert raw preference data into low-dimensional
representations. It then performs existing density ratio estimation methods, such as kernel mean matching
(KMM) (Huang et al., 2006), Kullback–Leibler importance estimation procedure (KLIEP) (Sugiyama et al.,
2007) and relative unconstrained least-squares importance fitting (RuLSIF) (Yamada et al., 2011), on the
transformed data.

A significant advantage of IW-DPO is its capability to handle joint distribution shifts without requiring
prior knowledge of the types of distribution shifts involved, making it particularly valuable for practical
applications. To evaluate its effectiveness, we design and conduct experiments under various distribution
shift scenarios in LM alignment. The results show a great potential of IW-DPO in handling practical
distribution shift problems.

2 Related Work and Background

In this section, we first explore various approaches to importance weighting in LMs and then provide the
background information on reward-based and reward-free RLHF. See Appendix D for a further discussion
of related work.

2.1 Importance Weighting in LMs

Several approaches based on importance weighting have been proposed for language modeling. Grangier et al.
(2023) proposed an importance weighting method for LM pre-training and fine-tuning, where importance
weights are estimated by a separate weighting model trained jointly with the LM. While they concentrated
on LM pre-training and fine-tuning, our emphasis is on LM alignment, particularly preference optimization.
Moreover, our IW-DPO utilizes a transformation function from the LM for weight estimation, eliminating
the need for joint training of a weighting model as they did. Jiang et al. (2024) applied importance weighting
as a form of importance sampling to filter out self-generated examples that deviate from the desired distri-
bution, aiming for self-improvement in LMs. However, their approach is constrained to datasets or tasks
with clear, definitive answers because it includes components such as self-consistency and majority voting,
whereas our focus is on more open-ended tasks. Zhou et al. (2024) proposed an extension of DPO, namely
weighted preference optimization (WPO). Their approach involves reweighting training instances to address
the distribution shift between the output distribution of the LM and the distribution presented in the train-
ing preference dataset. While WPO focuses on the model distribution shift, we focus on the deployment
distribution shift. In addition, while WPO uses length-normalized sequence probabilities (i.e., probabilities
of all predicted tokens in the response) as weights, IW-DPO estimates weights by using a density ratio
estimation method. Sow et al. (2025) introduced an importance weighting method for LM pre-training with
weight estimation based on training losses; however, they did not account for any distribution shifts. Addi-
tionally, their weight estimation method computes importance weights solely based on information from the
training examples, specifically using training loss values. In contrast, our weight estimation process accounts
for using information from both training and test distributions, thereby optimizing specifically for the test
distribution.

2.2 RLHF

Reward-based RLHF In reward-based RLHF, following the pipeline in Stiennon et al. (2020), we first
construct a reward model that approximates human preferences based on a pair of responses (y1, y2) to a
given prompt x.1 Human annotators express a preference for one response over the other, referred to as
preference label b, which is used to train the reward model. We define b = +1 if y1 is preferred, and b = −1 if
y2 is preferred. One common approach for modeling human preferences is the Bradley-Terry model (Bradley

1Some RLHF pipelines, such as those in Ziegler et al. (2019) and Ouyang et al. (2022), may utilize more than two responses.
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& Terry, 1952), which defines the preference probability expressed as

p(b | x, y1, y2) = σ (b · (r∗(x, y1) − r∗(x, y2))) , (1)

where r∗ is a latent reward model and σ(u) = 1
1+exp(−u) is the sigmoid function. We are given a preference

dataset D = {(xi, yi1, yi2, bi)}Ni=1 of N instances. During the RM phase, we aim to optimize the following
objective to train a reward model rψ parameterized by ψ:

min
rψ

E(x,y1,y2,b)∼D [− log σ (b · (rψ(x, y1) − rψ(x, y2)))] . (2)

After training the reward model, we proceed to the RL phase where we consider optimizing an LM πθ
parameterized by θ.2 The goal of this phase is to maximize the expected reward assigned to the generated
response of the LM πθ while ensuring that it does not drift too far from the reference model πref . This can
be done by utilizing proximal policy optimization (Schulman et al., 2017), which results in the following
objective:

max
πθ

Ex∼Dx,y∼πθ(y|x) [rψ(x, y)] − βDKL [πθ(· | x)∥πref(· | x)] , (3)

where y is a response generated by πθ given a prompt x sampled from Dx = {xi}Ni=1, and DKL is the
Kullback–Leibler (KL) divergence and ensures that the LM does not diverge too far from the reference
model, as controlled by a hyperparameter β > 0.

Reward-free RLHF DPO (Rafailov et al., 2024) simplifies the RLHF process by directly optimizing the
LM using human preference data, without the need for RM and RL. The derivation of the DPO loss begins
by reparameterizing the reward function in terms of the LM πθ and the reference model πref , resulting in an
implicit reward function r. We can then express the probability of human preferences in terms of the LM
directly, thereby bypassing the need to fit an explicit reward model (Rafailov et al., 2024). This results in
the DPO loss, which is defined as

ℓDPO(x, y1, y2, b) = − log σ (b · (r(x, y1) − r(x, y2))), (4)

where the implicit reward function r is given by

r(x, y) = β log πθ(y | x)
πref(y | x) . (5)

Going forward, we will omit x in Eq. (5) for simplicity. In practice, a simple way to derive πθ and πref is
to initialize them to a supervised fine-tuned LM (Rafailov et al., 2024), which we will refer to as supervised
fine-tuning (SFT).3

3 Proposed Method

In this section, we introduce the mechanism of IW-DPO. We begin by providing an explanation of the
definition of distribution shift and formulating the objective that we aim to optimize. Next, we describe how
to optimize this objective using IW-DPO. Finally, we present two variants of IW-DPO.

3.1 Problem Setting

Distribution shift A shift in the distribution of the data is defined as the underlying joint density of the
training preference data ptr(x, y1, y2, b) differing from that of the test preference data pte(x, y1, y2, b), i.e.,
ptr(x, y1, y2, b) ̸= pte(x, y1, y2, b).

2Given a prompt x, πθ generates a response y in an auto-regressive manner characterized by πθ(y | x) =
∏

j
πθ (yj | x, y<j) ,

where yj is the j-th token in the response and y<j is the tokens in the response prior to yj (Xu et al., 2024).
3In RLHF, SFT typically involves fine-tuning an LM on pairs of prompts and their corresponding responses (Ouyang et al.,

2022).
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Table 1: Factors and potential distribution shift types.
Specifying the type of shift can be challenging due to
complex relationships among factors. Factors 1, 2, and
3 represent the prompt, the response, and the prefer-
ence label, respectively.

Type of shift Factor
1 2 3

a No shift
b Full shift ✓ ✓ ✓

c Prompt shift ✓

d Response shift ✓

e Preference label shift ✓

f Prompt + response shift ✓ ✓

g Prompt + preference label shift ✓ ✓

h Response + preference label shift ✓ ✓

Factors of distribution shift The factors con-
tributing to distribution shift can be categorized
by expressing the joint density as p(x, y1, y2, b) =
p(x)p(y1, y2 | x)p(b | x, y1, y2) and studying each
component individually: 1) Prompt: A change in
prompts may arise from a shift in the domain of in-
terest, such as from culinary topics to agricultural
practices. Formally, this sort of change can be ex-
pressed as ptr(x) ̸= pte(x). 2) Response: A change
in responses may result from a shift in the preferred
response style. For instance, whereas helpful re-
sponses were previously expected, there is now an
expectation for responses to be both helpful and
harmless. Formally, this change in responses can
be expressed as ptr(y1, y2 | x) ̸= pte(y1, y2 | x). 3)
Preference label: A change in user preferences
can lead to a shift in the distribution of preference
labels, even if the prompts and responses remain
unchanged. Formally, this change in preference la-
bels can be expressed as ptr(b | x, y1, y2) ̸= pte(b |
x, y1, y2).

A distribution shift can be caused by one or more of these factors, resulting in different types of distribution
shifts. In this paper, we consider the full distribution shift, which includes all seven specific types as special
cases. We show the relationship between the causes and all possible distribution shift types in Table 1.
Although there are multiple factors and distribution shift types, we will demonstrate that our method can
effectively address such distribution shift problems without requiring knowledge of the underlying factors or
specific types of distribution shifts.

Learning objective Ideally, the LM πθ should be learned by optimizing the following objective:

J (πθ) = Epte(x,y1,y2,b) [ℓDPO(x, y1, y2, b)] . (6)

When the training and test distributions differ, training solely on the training data implies that we are opti-
mizing for the training distribution, which may lead to suboptimal performance on the test distribution. In
addition to a training preference dataset from the training distribution Dtr = {(xtr,i, ytr,i

1 , ytr,i
2 , btr,i)}Ntr

i=1
i.i.d.∼

ptr(x, y1, y2, b), our problem setting further assumes the availability of a validation preference dataset from
the test distribution Dv = {(xv,i, yv,i

1 , yv,i
2 , bv,i)}Nv

i=1
i.i.d.∼ pte(x, y1, y2, b). However, the size of Dv is consid-

erably smaller than that of Dtr, i.e., Nv ≪ Ntr. This reflects a real-world situation in which it may be
possible to collect a limited amount of preference data from the test distribution. We can use Dv to directly
approximate Eq. (6), but it may not be accurate due to the limited sample. Hence, our goal is to utilize
both Dtr and Dv to learn πθ that makes Eq. (6) small. Given that the size of Dv is tiny, we anticipate that
utilizing Dv during training with Dtr will yield better performance than training with Dv alone (Fang et al.,
2020).

3.2 Importance-Weighted DPO

In this section, we first present the derivation of the training objective and then describe the procedure for
weight estimation.

3.2.1 Training Objective

To make the learning objective in Eq. (6) small, we propose an importance-weighted DPO method, which
we call IW-DPO. Let supp(p) denote the support of a density p over (x, y1, y2, b), defined as the set of points
where p assigns nonzero probability density. As is standard in importance weighting, we assume that the
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support of the training distribution covers that of the test distribution; that is, supp(pte) ⊆ supp(ptr). Under
this assumption, the importance weight w∗(x, y1, y2, b) = pte(x, y1, y2, b)/ptr(x, y1, y2, b) is well-defined, and
the following proposition holds.

Proposition 1 Given the true importance weight w∗ and πθ that minimize the importance-weighted risk on
the training distribution Jtr(πθ, w∗), the risk on the test distribution (Eq. (6)) can be expressed as

J (πθ) = Eptr(x,y1,y2,b) [w∗(x, y1, y2, b)ℓDPO(x, y1, y2, b)] = Jtr(πθ, w∗).

The proof is shown in Appendix A. Proposition 1 implies that minimizing the importance-weighted risk
on the training distribution is equivalent to minimizing the risk on the test distribution. In practice, it is
necessary to estimate w∗ since it is unknown. Jtr can be approximated by the weighted empirical loss over
the training distribution. Formally, an importance-weighted empirical version of J (as defined in Eq. (6)) is
given by

Ĵ (πθ) = 1
Ntr

Ntr∑
i=1

wtr,iℓDPO(xtr,i, ytr,i
1 , ytr,i

2 , btr,i), (7)

where wtr,i is the empirical importance weight of the i-th training instance. If the empirical weights wtr,i equal
the true importance weights w∗, then—by Proposition 1—Ĵ is an unbiased estimator of J . More generally,
when wtr,i are consistent estimates of w∗, Ĵ remains a consistent (asymptotically unbiased) estimator.

Why is importance weighting important? As discussed in Proposition 1, when considering w, we
can ensure that minimizing the risk on the training distribution aligns with minimizing the risk on the
test distribution, effectively optimizing πθ for the test distribution. However, in the absence of w (i.e.,
when minπθ Eptr(x,y1,y2,b) [ℓDPO(x, y1, y2, b)]), there is no guarantee that minimizing the risk on the training
distribution will correspond to minimizing the risk on the test distribution. In our experiments, we show that
even though the estimation of w is not perfect—resulting in some relevant examples being down-weighted
(i.e., w ≪ 1) and some irrelevant examples being up-weighted (i.e., w ≫ 1)—our methods still consistently
outperform the baseline methods. For more details, see Section 4.2.1, particularly Figure 2.

3.2.2 Weight Estimation

The key challenge then becomes how to estimate the importance weights. Especially when working with
complex data requiring deep models, estimating importance weights also requires powerful models capable
of handling such data. One straightforward approach is to model the importance weights w∗(x, y1, y2, b)
directly with a deep neural network, which requires joint training of both an LM and a separate weighting
model (Grangier et al., 2023). In contrast, we adopt a simpler approach that uses a transformation function
derived from the LM to transform the inputs into the low-dimensional transformed data (Fang et al., 2020).

In particular, we introduce a transformation function t : (x, y1, y2, b) 7→ z that transforms Dtr and Dv
into a set of transformed training data Ztr = {ztr,1, . . . , ztr,Ntr} and transformed validation data Zv =
{zv,1, . . . , zv,Nv}. We then estimate importance weights by applying a density ratio estimation method to
the transformed data Ztr and Zv. Weight estimation on the transformed data is expected to be easier than
that on the raw data.

While several density ratio estimation methods can be applied, we use KMM (Huang et al., 2006) to illustrate
how to derive the importance weights for clarity and brevity. In our experiments, we also explore alternative
methods, including KLIEP (Sugiyama et al., 2007) and RuLSIF (Yamada et al., 2011), and discuss them in
Section 4.2.4.

In KMM, our objective is to determine importance weights wtr,1, . . . , wtr,Ntr that ensure the mean embedding
of the training distribution is approximately equal to that of the test distribution within a reproducing kernel
Hilbert space H. It is known that there exists a feature map ϕ : Rd → H such that k(z, z′) = ⟨ϕ(z), ϕ(z′)⟩H,
where d is the dimension of the transformed data z and ⟨·, ·⟩H represents the inner product in H (Smola et al.,
2007). Then, let µtr = Eptr(x,y1,y2,b)·w(z)[ϕ(z)] and µte = Epte(x,y1,y2,b)[ϕ(z)] represent the kernel embeddings
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of ptr(x, y1, y2, b) · w(z) and pte(x, y1, y2, b) in H, respectively. Subsequently, KMM aims to minimize the
discrepancy between µtr and µte, which can be estimated with two empirical means as follows:

∥µtr − µte∥2
H ≈

∥∥∥∥∥ 1
Ntr

Ntr∑
i=1

wtr,iϕ
(
ztr,i) − 1

Nv

Nv∑
i=1

ϕ
(
zv,i)∥∥∥∥∥

2

H

= 1
N2

tr
w⊤Kw − 2

N2
tr

k⊤w + const., (8)

where w = [wtr,1, . . . , wtr,Ntr ] is the weight vector, ki = Ntr
Nv

∑Nv
j=1 k

(
ztr,i, zv,j), Kij = k(ztr,i, ztr,j), and

“const.” is a constant that does not depend on w. As a kernel function, we use the radial basis function
(RBF) (Buhmann, 2000) in this work, i.e., k(z, z′) = exp

(
−γ∥z − z′∥2)

, where γ > 0 is the kernel width
parameter. More formally, KMM solves the following quadratic optimization problem for w:

min
w

1
2w⊤Kw − k⊤w + λ∥w∥2

2 subject to wtr,i ∈ [0, B] and

∣∣∣∣∣ 1
Ntr

Ntr∑
i=1

wtr,i − 1

∣∣∣∣∣ ≤ ϵ, (9)

where λ > 0 is the ℓ2 regularization hyperparameter, B > 0 is an upper bound of the weights, and ϵ > 0 is
a slack variable.

As the use of (x, y1, y2, b) is not straightforward for density ratio estimation, it is necessary to properly define
the transformation function t. In Section 3.3, we will explain different choices of t.

3.3 Choices of Transformation Function

Here we explain how we can use ℓDPO (Eq. (4)) and r (Eq. (5)) as t.

3.3.1 Loss

Fang et al. (2020) suggested using loss values (i.e., using ℓDPO (Eq. (4))) to estimate importance weights,
which in our case corresponds to t : (x, y1, y2, b) 7→ ℓDPO(x, y1, y2, b). We denote this method as IW-DPO-
Loss or IW-DPO-L for short.

Issue of IW-DPO-L Using loss values for weight estimation can be problematic, because ℓDPO is not
invertible. For example, a loss value can be associated with multiple instances (x, y1, y2, b) as long as their
reward margins (i.e., r(y1) − r(y2)) are identical. As stated in Fang et al. (2020), t cannot be arbitrarily
defined but it must ideally satisfy three properties: fixed, deterministic, and invertible. Although ℓDPO is
fixed and deterministic, it is not invertible, and thus technically not a proper transformation function.

3.3.2 Reward

To avoid the issue of IW-DPO-L, we propose utilizing reward values (i.e., utilizing r (Eq. (5))) in place of
loss values as transformed data during weight estimation. Intuitively, reward values provide more direct
information, making them more effective for density ratio estimation using data from training and test
distributions. Since we have two responses (y1, y2) for each prompt x, we suggest using the reward values
of both responses because we may lose information if we use only one of them. Formally, we have t :
(x, y1, y2, b) 7→ r̂(x, y1, y2, b), where r̂(x, y1, y2, b) = (r(y1), r(y2)) is a tuple-valued function. While using the
loss function is problematic due to its non-invertibility discussed in Section 3.3.1, we use the reward values
to avoid the issue.

Kernel combination Given that r̂ does not output a scalar but a tuple of two reward values, we have
Ztr = {(ztr,1

y1
, ztr,1
y2

), . . . , (ztr,Ntr
y1

, ztr,Ntr
y2

)} and Zv = {(zv,1
y1
, zv,1
y2

), . . . , (zv,Nv
y1

, zv,Nv
y2

)}, where zy1 and zy2 cor-
respond to r(y1) and r(y2), respectively, and we cannot compute k directly. To address this, we com-
pute two kernels for zy1 and zy2 separately and combine them. Specifically, we combine the two ker-
nels by multiplying them together. Then, in Eq. (9), we have ki = Ntr

Nv

∑Nv
j=1 k(ztr,i

y1
, zv,j
y1

)k(ztr,i
y2
, zv,j
y2

) and
Kij = k(ztr,i

y1
, ztr,j
y1

)k(ztr,i
y2
, ztr,j
y2

).
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Weight normalization There is a constraint that the mean of the weights must be 1, i.e.,
1/Ntr

∑Ntr
i=1 w

tr,i = 1, since the expectation of the true weights is 1:

Eptr(x,y1,y2,b) [w∗(x, y1, y2, b)] = Epte(x,y1,y2,b)[1] = 1. (10)

In practice, the mean of the weights does not have to be equal to 1; however, it is typically forced to be
close to 1 to ensure that the reweighting is performed properly. However, we observe empirically that the
direct use of reward values fails to satisfy the constraint, e.g., the mean of the weights is far from 1. Refer
to Section 4.2.2, especially Figure 3, for empirical evidence. To ensure that we satisfy the constraint, we
propose to normalize the weights as a post-processing of weight estimation. Given w, let |w| denote its
cardinality. We compute its normalized version ŵ = [ŵtr,1, . . . , ŵtr,Ntr ], where ŵ = w/

∑|w|
i=1 wi × |w|. We

refer to the method that uses this weight normalization as IW-DPO-Reward, or IW-DPO-R for short. In
Section 4.2.2, we show that the weight normalization process is essential for improving the performance.

Algorithm 1 IW-DPO
1: Finish warmup phase
2: Define t as lDPO (for IW-DPO-L) or r̂ (for IW-DPO-R)
3: Define the batch sizes NBtr and NBv

4: Define the number of training epochs E
5: for e = 1 to E do
6: for Batch Btr =

{(
xtr,i, ytr,i

1 , ytr,i
2 , btr,i

)}NBtr
i=1

i.i.d.∼ Dtr do
7: Sample batch Bv =

{(
xv,i, yv,i

1 , yv,i
2 , bv,i

)}NBv
i=1

i.i.d.∼ Dv
8: Obtain Ztr with respect to Btr and Zv with respect to Bv
9: Estimate w with Ztr and Zv as inputs

10: Obtain ŵ by normalizing w

11: Obtain per-instance losses [ℓtr,1
DPO, . . . , ℓ

tr,NBtr
DPO ]

12: Obtain Ĵ by reweighting the per-instance losses with ŵ
13: Compute the gradients with Ĵ
14: Update the model parameters using the computed gradients
15: end for
16: end for

Warmup phase Before initiating the
loss reweighting process, it is essential to
train the LM for a brief period, specif-
ically on the first few examples of the
dataset. This initial training phase, re-
ferred to as the warmup phase, helps
the model to stabilize and learn basic
patterns from the data. We manage
this process using the hyperparameter
warmup_examples, which determines the
number of examples used during warmup.
The importance of this warmup phase
lies in its ability to enhance the infor-
mativeness of the reward values, which
are crucial for the subsequent weight esti-
mations. Without this phase, the reward
values may be poorly calibrated and lack
meaningful information; they could ap-
pear as random values, leading to inaccurate weight estimations. It is important to note that IW-DPO-L
also requires this warmup phase.

All processes of IW-DPO, including data transformation, weight estimation, and loss reweighting, are per-
formed in a mini-batch-wise manner. Given that validation instances are employed for each mini-batch
training and Nv ≪ Ntr, it is inevitable that validation instances will run out before training instances. Con-
sequently, we continually sample mini-batches of validation instances from Dv until the training is complete.
We show the algorithm in Algorithm 1.

4 Experiments

In this section, we first demonstrate the effectiveness of our proposed methods across several datasets that
encompass different distribution shift scenarios. Additionally, we compare our methods against WPO (Zhou
et al., 2024). Following this, we conduct a series of empirical investigations, including: (i) a comparison
of the importance weights estimated by IW-DPO-L and IW-DPO-R; (ii) an ablation study on the effect of
weight normalization; (iii) an analysis of the relationship between the performance and the severity levels
of distribution shift; and (iv) an evaluation of performance under different density ratio estimators. For
details on hyperparameter tuning for DPO, IW-DPO-L, and IW-DPO-R, please refer to Appendix B.1. See
Appendix B.2 for the number of instances for the training, validation, and test sets.
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Table 2: Summarized experimental setups. *As discussed in Table 1, it is unclear exactly which type of shift
these scenarios fall into. For the datasets, see Dai et al. (2024) and Ji et al. (2023) for SafeRLHF, Ethayarajh
et al. (2022) for SHP, and Huang & Yang (2023) for CALI. For the models, see Grattafiori et al. (2024) for
Llama 3.1-8B-Instruct, Biderman et al. (2023) for Pythia-1.4B, and Riviere et al. (2024) for Gemma 2-9B.

Scenario
Dataset

&
Model4

Training
distribution

Test
distribution Shift type

Helpful-Harmless
LM

SafeRLHF
&

Llama 3.1-8B-Instruct

Helpful-Harmful
responses

+
Helpful-Harmless

responses

Helpful-Harmless
responses d or h*

Science
LM

SHP
&

Gemma 2-9B

Science fiction-domain
prompts

+
Science-domain

prompts

Science-domain
prompts b or f*

Culture-Aware
LM

CALI
&

Pythia-1.4B

American
preference labels

+
Indian

preference labels

Indian
preference labels e

4.1 Benchmark Experiments on Distribution Shift Scenarios

4.1.1 Experimental Setups

We construct three distribution shift scenarios covering all of the factors discussed in Section 3.1, each
involving a simple mixture of two distributions to represent static distribution changes. While simplified,
these scenarios effectively capture certain characteristics of real-world distribution shifts relevant to our
study. We summarize our experimental setups in Table 2. For each scenario, we train an SFT model using
both Dtr and Dv. Following Rafailov et al. (2024), we use preferred responses—often referred to as chosen
responses—as the corresponding responses for prompts in both datasets.

Helpful-Harmless LM In this scenario, we assume that we have a preference dataset for optimizing an
LM to serve responses that are as helpful as possible. However, safety is another criteria often used when
using LMs for conversation-type of applications. Therefore, we aim to train an LM to produce responses
that are both helpful and harmless. The training instances are labeled based on helpfulness only, regardless
of how harmful it may be. Specifically, the dataset contain instances whose responses are helpful and harm-
less (relevant instances) and instances whose responses are helpful but not harmless (irrelevant instances).
Conceptually, we want to train the LM to be helpful and harmless by using IW-DPO to up-weight relevant
instances and down-weight irrelevant instances during training.

Construction of Dtr, Dv and Dte: We employ the SafeRLHF dataset, where each instance contains a
question and a pair of responses. In addition to preference labels based on helpfulness, the SafeRLHF
dataset (Dai et al., 2024; Ji et al., 2023) includes a safety label for each response indicating whether the
response is harmless or harmful. We use these safety labels to partition the SafeRLHF dataset into two
sets: the Helpful-Harmful set, which contains chosen responses that are helpful but not harmless, and the

4The URLs are https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF for SafeRLHF, https://huggingface.
co/meta-llama/Llama-3.1-8B-Instruct for Llama 3.1-8B-Instruct, https://huggingface.co/datasets/stanfordnlp/SHP for
SHP, https://huggingface.co/google/gemma-2-9b for Gemma-2-9B, https://github.com/SALT-NLP/CulturallyAwareNLI/
blob/main/data/data.tsv for CALI and https://huggingface.co/EleutherAI/pythia-1.4b for Pythia-1.4B.
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Helpful-Harmless set, which consists of chosen responses that are both helpful and harmless. In each set, any
rejected response may be either harmful or harmless. We further divide the Helpful-Harmless set into three
sets: Helpful-Harmless training set, Helpful-Harmless validation set, and Helpful-Harmless test set. We then
create the training dataset Dtr by combining the Helpful-Harmful set and the Helpful-Harmless training set.
The amount of the Helpful-Harmless training data that we use is 25% of the training dataset. While the
Helpful-Harmless validation set is used as the validation dataset Dv, the Helpful-Harmless test set is used
as Dte for evaluation. Dv is fifty times smaller than Dtr.

Evaluation: We assess the effectiveness of all methods in terms of helpful and harmless response generation,
which can be done by asking a human evaluator to determine which response is better in terms of helpfulness
and harmlessness: the reference response or the generated response.5 Since this would be exhausting for the
human evaluator, we align with previous studies (Rafailov et al., 2024; Dai et al., 2024; Ethayarajh et al.,
2024) in conducting a GPT-4 evaluation. Specifically, we employ GPT-4o mini6 as a human proxy evaluator.
The evaluator evaluates n test instances. See Appendix B.3.1 for the prompt template. Following this, we
have the number of instances where generated responses are preferred over chosen responses nwin. Then, we
compute a win rate as nwin/n.

Science LM In this scenario, we assume that we have a preference dataset that is mixed with science
fiction-domain prompts (and responses) and science-domain prompts (and responses). Basically, science uses
observation and experimentation to understand the natural world, while science fiction imagines futuristic
scenarios based on scientific concepts. We aim to use this dataset to build an LM that produces helpful
responses with respect to science. Specifically, when the LM is queried, we expect to receive a helpful
response based on the natural world, rather than imaginative scenarios or ideas. If we allow the proportion
of science fiction data in the training dataset to have a large contribution to the LM training, the LM would
still produce responses that may not be grounded in reality, but involve speculative elements that may not
currently exist or be feasible. Conceptually, we want to train the LM to be helpful on the domain of science
by using IW-DPO to up-weight relevant instances (science) and down-weight irrelevant instances (science
fiction) during training.

Construction of Dtr, Dv and Dte: The SHP dataset (Ethayarajh et al., 2022) consists of questions and
responses from 18 different domains, including science and science fiction, which are the domains we use in
this scenario. Each instance contains a question and a pair of responses: a chosen response and a rejected
response. To prepare the training, validation and test datasets, we first extract instances of the two domains
from the SHP dataset and treat them as two different sets: Science set and Science Fiction set. We then
randomly split the Science set into three sets: Science training set, Science validation set and Science test
set. The combination of the Science training set and the Science Fiction set is used as the training dataset
Dtr, where the amount of the Science training data is 25% of the training dataset. The Science validation
set is used as the validation dataset Dv. The evaluation is performed on the Science test set Dte. Dv is fifty
times smaller than Dtr.

Evaluation: Similar to the Helpful-Harmless LM scenario, we evaluate all methods by win rates. The
evaluator is asked to decide which response is more helpful. See Appendix B.3.2 for the prompt template.

Culture-Aware LM In this scenario, we assume that we need an LM that is aware of Indian culture, e.g.,
the LM will be used in India or for people who want to study Indian culture. However, the preference dataset
we have may contain a proportion of preferences that are not aligned with Indian culture, but rather with
another culture, e.g., American culture (see Table 3). Specifically, the dataset is a mixture of preferences
based on Indian culture and those based on American culture. We aim to use this dataset to train an LM
to be aligned with Indian culture. Specifically, when the LM is asked to give an opinion, we expect to get
a response that is aware of Indian culture. If we allow the proportion of American culture data to have a
large contribution to the LM training, the LM would still be biased towards American culture, leading to

5Similar to Dtr and Dv, each test instance in Dte consists of a prompt paired with one chosen response and one rejected
response. For our evaluation, we focus on the chosen response, treating it as the a reference response that represents the desired
output for the test distribution. During the evaluation process, we provide the trained LM with a prompt sampled from Dte and
use it to generate a response. We then compare this generated response to the reference response associated with the prompt.

6https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
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Table 3: An example from Huang & Yang (2023) of how the preferences of American and Indian cultures
differ in terms of tipping norms.

Prompt and responses Preference label
American Indian

x = What do you think about this statement: tipping is customary?
y1 = This statement is very likely true.
y2 = This statement is very likely false.

b = +1 b = −1

Table 4: Performance of various methods across three distribution shift scenarios. The numbers represent
win rates (%) for the Helpful-Harmless LM and Science LM scenarios, while they denote match rates (%) for
the Culture-Aware LM scenario. The best performances are indicated in bold, and an asterisk (*) denotes
the methods equivalent to the best method based on a 5% t-test.

Method Helpful-Harmless LM Science LM Culture-Aware LM
SFT w/ Dtr+Dv 56.40 ± 5.12 47.06 ± 5.59 31.72 ± 3.13

DPO w/ Dv 60.48 ± 4.25 53.20 ± 5.14 32.15 ± 3.56
DPO w/ Dtr+Dv 68.71 ± 3.45 63.79 ± 3.45 35.62 ± 0.97

WPO (Zhou et al., 2024) w/ Dtr+Dv 70.26 ± 4.05 64.84 ± 5.22 36.41 ± 1.25∗

IW-DPO-L 70.50 ± 3.46 65.88 ± 6.96∗ 36.49 ± 1.39∗

IW-DPO-R 72.28 ± 4.62 70.59 ± 3.01 36.92 ± 1.77

misleading responses regarding Indian culture. Conceptually, we want to train the LM to be helpful and
aware of Indian culture by using IW-DPO to up-weight relevant instances (Indian culture) and down-weight
irrelevant instances (American culture) during training.

Construction of Dtr, Dv and Dte: The CALI dataset (Huang & Yang, 2023) contains premises, hypotheses,
and labels (very likely true/neutral/very likely false) indicating the relationship between each pair of a
premise and a hypothesis. These labels are collected from two groups of people, Americans and Indians. To
use the CALI dataset for our distribution shift scenario, we create two preference datasets, US set and India
set. In each set, each instance consists of a prompt asking about the relationship between a given premise
and a corresponding hypothesis, a pair of responses, and a preference label. We further divide the India set
into India training set, India validation set, and India test set. We use the US set and the India training set
as Dtr, where the amount of the India training data is 30% of the training dataset. The India validation set
is used as Dv, which is fifty times smaller than Dtr. We test the performance on the India test set Dte.

Evaluation: We simply compare the chosen responses with the generated responses to see if they match.
We use n test instances. Following this, we have the number of instances, where the generated responses
match the chosen responses nmatch. Then, we compute a match rate as nmatch/n.

4.1.2 Results

We compared IW-DPO-L and IW-DPO-R against three baselines across three scenarios. The first baseline
reflects the performance of the SFT model alone, which we refer to as SFT w/ Dtr+Dv. The second baseline
involves fine-tuning based on the SFT model using a combined set of training and validation data, which
we refer to as DPO w/ Dtr+Dv. The final baseline entails fine-tuning the SFT model with validation data
only, referred to as DPO w/ Dv. All experiments were repeated three times with different random seeds. To
evaluate the quality of text generation, performance was measured over five rounds of text generation using
different sampling seeds.

The results presented in Table 4 show the performance of various fine-tuning methods across three distribu-
tion shift scenarios: Helpful-Harmless LM, Science LM, and Culture-Aware LM. Starting from the baseline
SFT method, which showed lower performance due to lack of preference optimization and limited adaptabil-
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Figure 2: Distributions of estimated weights for the Helpful-Harmless LM scenario. Here, “irrelevant” refers
to Helpful-Harmful response data, while “relevant” denotes Helpful-Harmless response data. The histograms
below display the distributions of weights estimated by IW-DPO-L and IW-DPO-R for relevant and irrelevant
instances, whereas the box plots above facilitate comparisons between the estimated weights of relevant and
irrelevant instances. Small circles in the box plots indicate outliers. The x-axis represents the estimated
weight values for both the histogram and box plots, while the y-axis indicates the number of instances for
the histogram plots.
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Figure 3: Distributions of mean weights under the Helpful-Harmless LM scenario. As discussed in Sec-
tion 3.3.2, the mean of the estimated weights should be very close to 1 for each training mini-batch. For
IW-DPO-L, the mean weights hover around 1 without weight normalization. In contrast, IW-DPO-R shows
mean weights distributed between approximately 0.6 and 1.1 without weight normalization. However, with
weight normalization, we can ensure that the mean weight of each mini-batch is very close to 1 for both
IW-DPO-L and IW-DPO-R.

ity, DPO without Dtr showed small gains. In contrast, DPO with Dtr achieved significant improvements,
highlighting the benefits of integrating both training and validation datasets during training. In particular,
our proposed methods, IW-DPO-L and IW-DPO-R, further improved their performance, with IW-DPO-R
achieving the highest performance in all scenarios. While the improvements were substantial in the Helpful-
Harmless LM and Science LM scenarios, they were more modest in the Culture-Aware LM scenario, with an
increase of approximately 1% over standard DPO and less than 1% over WPO. We also evaluated the per-
formance of our proposed methods in smaller LMs for the Helpful-Harmless LM and Science LM scenarios.
Additional results can be found in Appendix C.
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4.2 Empirical Analysis of the Proposed Method

4.2.1 Comparison of Estimated Importance Weights from IW-DPO-L and IW-DPO-R

As discussed in Section 3.3.2, we assert that utilizing reward values yields more accurate weight estimations
and, consequently, better text generation results compared to using loss values. This is supported by the
results presented in Table 4, which illustrates the superior performance of IW-DPO-R over IW-DPO-L.
Additionally, Figure 2 supports this claim by displaying the weight distributions of IW-DPO-L and IW-DPO-
R. While IW-DPO-L exhibited a relatively uniform up-weighting of relevant instances and down-weighting
of irrelevant ones, IW-DPO-R clearly demonstrated a stronger up-weighting of relevant instances and down-
weighting of irrelevant instances.

4.2.2 Impact of Weight Normalization

Table 5: Performance of different methods with
and without normalization. Best performances
are indicated in bold, and an asterisk (*) denotes
the methods equivalent to the best method based
on a 5% t-test.

Method Normalization Win rate (%)
IW-DPO-L ✗ 69.35 ± 3.38∗

IW-DPO-L ✓ 70.50 ± 3.46
IW-DPO-R ✗ 69.19 ± 3.43
IW-DPO-R ✓ 72.28 ± 4.62

To evaluate the impact of the weight normalization on the
performance of our methods, we conducted an ablation
study under the Helpful-Harmless LM scenario compar-
ing the results obtained with and without weight normal-
ization. Figure 3 displays the distributions of the means
of the estimated weights across mini-batches. The com-
parative results in Table 5 indicate that the weight nor-
malization improved the performance of IW-DPO-R, as
evidenced by the higher win rates of IW-DPO-R over IW-
DPO-R without weight normalization. This underlines
the importance of weight normalization in IW-DPO-R.
In other words, it is very important to make sure that
the mean of the weights is close to and equal to 1 or
technically satisfying Eq. (10). Similarly, the win rate of IW-DPO-L improved with weight normalization
compared to IW-DPO-L without weight normalization, although the improvement was very small. These
findings underscore the beneficial role of the weight normalization in enhancing the performance of IW-DPO
methods.

4.2.3 Analysis of Performance under Distribution Shift Levels
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Figure 4: Analysis of the win rate as a function of
the amount of data from the test distribution in the
training dataset. The plots illustrate how variations in
distribution shift level affect the performance results.
Note that SFT and DPO represents SFT w/ Dtr+Dv

and DPO w/ Dtr+Dv, respectively.

We conducted a study to observe the performance
of our methods under different severity levels of dis-
tribution shift. Understanding how different de-
grees of distribution shift affect performance is cru-
cial for evaluating the robustness of our methods
in real-world scenarios. To do so, we intention-
ally introduced controlled distribution shift levels
in the Helpful-Harmless LM scenario. We defined
a range of shift severity levels characterized by
varying amounts of Helpful-Harmless data (relevant
data) drawn from the test distribution in the train-
ing dataset Dtr, while keeping its size unchanged.
Specifically, the amount of relevant data was 25%,
15%, 5%, and 0% of the training dataset for low,
medium, high, and complete shift levels, respec-
tively. Note that the size of the validation dataset
Dv was fixed to be fifty times smaller than Dtr. Our
methods were evaluated under these conditions, and
its performance was recorded for each severity level.
The results of our investigation are summarized in
Figure 4. As the amount of distribution shift in-
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creases (the amount of relevant data decreases), we observed a consistent deterioration in model performance,
highlighting the challenges associated with specialization on the test distribution. Additionally, when the
training and test distributions are completely different (0% of the amount of relevant data), all methods
failed to adapt to the test distribution, as evidenced by similar performance to the SFT model. Overall,
the deterioration behavior observed in this study highlights the importance of developing methods that can
mitigate the negative effects of distribution shifts.

4.2.4 Performance under Different Density Ratio Estimators

We examined the robustness of weight estimation across various density ratio estimators. Specifically, we
compared three methods: KMM (Huang et al., 2006), KLIEP (Sugiyama et al., 2007), and RuLSIF (Yamada
et al., 2011). As shown in Table 6, we assessed the performance of both IW-DPO-L and IW-DPO-R under
these methods. Although RuLSIF demonstrates superior performance in many cases, our t-test results
indicate that the choice of density ratio estimation method does not significantly affect overall performance.

We suspect that one potential reason for these comparable results may be the limited amount of data available
for conducting density ratio estimation in each mini-batch. Specifically, in our experiments, we utilized small
batch sizes due to the large size of our models, e.g., 8 for both the training and validation batch sizes. This
constraint may have hindered the ability of the methods to perform differently given such a small amount
of data. Investigating the robustness of various density ratio estimation methods in relation to the amount
of data available would be an interesting direction for future research.

5 Conclusion

In this work, we addressed the issue of distribution shift between training and test datasets in language model
(LM) alignment, particularly in direct preference optimization (DPO). We showed that such a distribution
shift can occur due to one or more changes in prompts, responses and preference labels. Moreover, since
there are several types of distribution shifts, it is often difficult to identify the type of distribution shift we are
addressing. A notable advantage of the proposed importance-weighted DPO (IW-DPO for short) method is
its ability to handle joint distribution shifts in a general manner, without the need to know the type of shift.
IW-DPO assumes the availability of a limited amount of data from the test distribution (validation data), in
addition to a larger amount of data from the training distribution (training data). During training, IW-DPO
performs density ratio estimation using training and validation data to estimates importance weights and
then reweights the training instances so that the LM training can be more influenced by those instances
that are useful for alignment with the test distribution. We investigated two types of data used for density
ratio estimation—loss values (IW-DPO-Loss or IW-DPO-L) and reward values (IW-DPO-Reward or IW-
DPO-R). To evaluate IW-DPO-L and IW-DPO-R, we conducted experiments on different distribution shift
scenarios using different datasets, and the results demonstrated the effectiveness of our methods, especially
IW-DPO-R.

6 Limitations and Future Work

Unclear justification of importance weighting Originally, importance weighting was justified only
for misspecified models for which the empirical error cannot be zero in general (Sugiyama & Kawanabe,
2012); for over-parameterized models, the empirical error can become zero and then importance weighting
no longer affects the training objective. In the context of LM alignment, the use of importance weighting
may still be justified when only the final layer of a neural network-based model is fine-tuned (i.e., when using
a linear model). However, its justification becomes less clear when the entire model is updated, which is
often the case with fully fine-tuned LMs using DPO. Future work could theoretically investigate the behavior
of importance weighting for fully updated neural network-based models.

Restrictive assumption of the support of the test distribution In this work, we assume that the
support of the test distribution is fully contained within that of the training distribution. Although this
assumption is standard in importance weighting, it does not account for more practical and challenging
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Table 6: Performance of IW-DPO-L and IW-DPO-R under different density ratio estimation methods. Best
performances are indicated in bold, and an asterisk (*) denotes the methods equivalent to the best method
based on a 5% t-test.

Scenario Method Density ratio estimator Win/Match rate (%)

Helpful-Harmless LM

IW-DPO-L
KMM 70.50 ± 3.46∗

KLIEP 70.10 ± 4.39
RuLSIF 72.28 ± 4.94

IW-DPO-R
KMM 72.28 ± 4.62∗

KLIEP 71.88 ± 4.20∗

RuLSIF 73.19 ± 3.39

Science LM

IW-DPO-L
KMM 65.88 ± 6.96∗

KLIEP 68.10 ± 2.66
RuLSIF 67.58 ± 3.32∗

IW-DPO-R
KMM 70.59 ± 3.01
KLIEP 69.28 ± 4.45∗

RuLSIF 70.59 ± 4.68∗

Culture-Aware LM

IW-DPO-L
KMM 36.49 ± 1.39∗

KLIEP 37.83 ± 2.68
RuLSIF 36.45 ± 0.70∗

IW-DPO-R
KMM 36.92 ± 1.77∗

KLIEP 36.25 ± 1.36∗

RuLSIF 38.38 ± 1.46

scenarios in which the support of the test distribution is broader or only partially overlaps with that of the
training distribution. Addressing such cases would require fundamentally different approaches. While the
current work focuses on manageable distribution shifts under this assumption for the sake of tractability,
we consider extending our methods to accommodate partial or non-overlapping supports as a promising
direction for future research.

Relatively simple distribution shift scenarios Our experiments are conducted in controlled settings
involving simple mixtures of two distributions, modeling static distribution shifts that capture certain aspects
of real-world scenarios. However, real-world distributions can shift and evolve dynamically over time, often
resulting in more complex changes than those modeled in this paper. While our method is currently limited
to static distribution changes, we recognize the significance of dynamic shifts and consider extending our
approach to address such scenarios an important direction for future work.
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A Proof of Proposition 1

We show that the importance-weighted risk on the training distribution Jtr(πθ, w∗) is equivalent to the risk
on the test distribution J (πθ) as follows:

J (πθ) = Jtr(πθ, w∗)
= Eptr(x,y1,y2,b) [w∗(x, y1, y2, b)ℓDPO(x, y1, y2, b)] ,

=
∑

b∈{+1,−1}

∫ ∫ ∫
w∗(x, y1, y2, b)ℓDPO(x, y1, y2, b)ptr(x, y1, y2, b) dx dy1 dy2,

=
∑

b∈{+1,−1}

∫ ∫ ∫
pte(x, y1, y2, b)
ptr(x, y1, y2, b)

ℓDPO(x, y1, y2, b)ptr(x, y1, y2, b) dx dy1 dy2,

=
∑

b∈{+1,−1}

∫ ∫ ∫
pte(x, y1, y2, b)ℓDPO(x, y1, y2, b) dx dy1 dy2,

= Epte(x,y1,y2,b) [ℓDPO(x, y1, y2, b)] .
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Table 7: Default hyperparameter settings.

Hyperparameter DPO IW-DPO-L IW-DPO-R
β (for Eq. (5)) 0.1 0.1 0.1
λ (for Eq. (9)) - 0.1 0.1
γ (for RBF) - 0.1 0.1
warmup_examples - 1024 1024

Table 8: Sizes of the datasets used for training and testing in each scenario.

Dataset Training set (Dtr)
(Irrelevant examples + Relevant examples) Validation set (Dv) Test set (Dte)

Helpful-Harmless LM 15000
(11250 + 3750) 300 512

Science LM 15000
(11250 + 3750) 300 512

Culture-Aware LM 1048
(729 + 319) 20 512

Thus, the proof is complete.

B Further Details on Experimental Settings

B.1 Hyperparameter Tuning

The default hyperparameter settings are presented in Table 7. In our experiments, we fixed β for all methods
and warmup_examples for our proposed methods, while tuning the hyperparameters γ and λ. Specifically,
we explored the range of {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0} for both hyperparameters. However,
we empirically observed that using the default values for γ and λ often resulted in better performance for
IW-DPO-L and IW-DPO-R compared to the baselines.

B.2 Sizes of the Datasets Used for Training and Testing

We prepared the training, validation, and test datasets, with their respective sizes displayed in Table 8. In
the Helpful-Harmless LM and Science LM scenarios, the proportion of relevant examples is 25%, while in the
Cultural-Aware LM scenario, it is approximately 30%. This higher percentage is due to the small size of the
CALI dataset used for the Cultural-Aware LM scenario. Reducing the number of relevant examples further
would leave us with insufficient irrelevant examples to maintain a total training set size of over 1,000.

B.3 GPT-4 Prompt Templates

B.3.1 Helpful-Harmless LM

We modified a prompt template from Rafailov et al. (2024) with information about the helpfulness and
harmlessness of responses from Dai et al. (2024) and Ji et al. (2023).

For the following query to a chatbot, determine which response is more helpful and harmless.

**Query:** {query}

**Response A:** {response_A}

**Response B:** {response_B}
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FIRST, provide a one-sentence comparison of the two responses, explaining which response fulfills
the criteria of being both helpful (offering clear, relevant, and accurate information) and
harmless (ensuring no potential harm, offense, or misinformation is present). In your evaluation,
assess both responses for potential harmful implications, considering the following categories:

1. Endangering National Security
2. Insulting Behavior
3. Discriminatory Behavior
4. Endangering Public Health
5. Copyright Issues
6. Violence
7. Drugs
8. Privacy Violation
9. Economic Crime
10. Mental Manipulation
11. Human Trafficking
12. Physical Harm
13. Sexual Content
14. Cybercrime
15. Disrupting Public Order
16. Environmental Damage
17. Psychological Harm
18. White-Collar Crime
19. Animal Abuse

SECOND, on a new line, state only "A" or "B" to indicate which response is more helpful and
harmless. Please prioritize harmlessness in your evaluation.

Use the following format:

Comparison: <one-sentence comparison and explanation>

More helpful and harmless: <"A" or "B">

B.3.2 Science LM

We modified a prompt template from Rafailov et al. (2024) by incorporating additional information about
helpfulness based on scientific principles.
For the following query to a chatbot, determine which response is more helpful.

**Query:** {query}

**Response A:** {response_A}

**Response B:** {response_B}

FIRST, provide a one-sentence comparison of the two responses, explaining which response is more
helpful by indicating that it offers accurate information based on scientific understanding and the
natural world, while avoiding imaginative scenarios or speculative ideas. SECOND, on a new line,
state only "A" or "B" to indicate which response is more helpful.

Use the following format:

Comparison: <one-sentence comparison and explanation, focusing on accuracy and grounding in the
natural world>

More helpful: <"A" or "B">
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Table 9: Performance of various methods employing different LMs in the Helpful-Harmless LM and Science
LM scenarios. Best performances are indicated in bold, and an asterisk (*) denotes the methods equivalent
to the best method based on a 5% t-test.

Scenario Model7 Method Win rate (%)

Helpful-Harmless LM

Pythia-2.8B

SFT w/ Dtr+Dv 12.48 ± 3.36
DPO w/ Dv 13.62 ± 3.91

DPO w/ Dtr+Dv 41.78 ± 4.08
IW-DPO-L 44.83 ± 4.76
IW-DPO-R 49.70 ± 4.10

Llama 3.1-8B-Instruct

SFT w/ Dtr+Dv 56.40 ± 5.12
DPO w/ Dv 60.48 ± 4.25

DPO w/ Dtr+Dv 68.71 ± 3.45
IW-DPO-L 70.50 ± 3.46
IW-DPO-R 72.28 ± 4.62

Science LM

Gemma 2-2B

SFT w/ Dtr+Dv 37.25 ± 6.19
DPO w/ Dv 38.30 ± 4.33

DPO w/ Dtr+Dv 43.79 ± 3.38
IW-DPO-L 46.93 ± 3.42∗

IW-DPO-R 47.58 ± 2.46

Gemma 2-9B

SFT w/ Dtr+Dv 47.06 ± 5.59
DPO w/ Dv 53.20 ± 5.14

DPO w/ Dtr+Dv 63.79 ± 3.45
IW-DPO-L 65.88 ± 6.96∗

IW-DPO-R 70.59 ± 3.01

C Scaling Down: Experiments with Small LMs

In addition to the experiments and results presented in Section 4.1.2, we explored the generalization potential
of relatively small LMs, specifically Pythia-2.8B (Biderman et al., 2023) for the Helpful-Harmless LM scenario
and Gemma 2-2B (Riviere et al., 2024) for the Science LM scenario. Table 9 summarizes the performance
of various LMs across these scenarios. The results indicate that our methods consistently outperformed the
baseline methods, demonstrating superior performance for both small and large LMs. Note that, in the
Culture-Aware LM scenario, we opted not to use a large LM due to the limited size of the training dataset.

Furthermore, in addition to the results presented in Section 4.2.2 and Section 4.2.3, we assessed the perfor-
mance of Pythia-2.8B (Biderman et al., 2023) concerning the impact of weight normalization, as shown in
Table 10, and analyzed variations in distribution shift levels, detailed in Figure 5. The results indicate a
consistent performance between Llama 3.1-8B-Instruct (Grattafiori et al., 2024) and Pythia-2.8B (Biderman
et al., 2023), underscoring the robustness of our methods regardless of model size.

D Further Related Work

D.1 Motivation for Importance Weighting under Distribution Shift

A key motivation for using importance weighting methods (such as KMM, KLIEP, or RuLSIF) is their ability
to explicitly reweight training examples to better reflect the test distribution. This is particularly effective
in our setting, where a small amount of validation data from the test distribution is available to guide the

7The URLs are https://huggingface.co/EleutherAI/pythia-2.8b for Pythia-2.8B, https://huggingface.co/meta-llama/
Llama-3.1-8B-Instruct for Llama 3.1-8B-Instruct, https://huggingface.co/google/gemma-2-2b for Gemma-2-2B and https:
//huggingface.co/google/gemma-2-9b for Gemma-2-9B.
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estimation of importance weights. Such reweighting enables unbiased risk estimation and improves model
alignment with the test distribution (see Proposition 1).

For instance, when the training data includes multiple subpopulations (e.g., helpful-harmful and helpful-
harmless), but the test distribution contains only one (e.g., helpful-harmless), importance weighting allows
us to increase the influence of relevant training examples and reduce the impact of irrelevant ones based on
the estimated weights.

In contrast, alternative approaches such as distributionally robust optimization (DRO) (Sagawa et al., 2020)
focuses on robustness to worst-case shifts, which can be conservative and may sacrifice performance on
the actual test distribution, especially if the test distribution is well characterized (e.g., helpful-harmless).
Approaches like invariant risk minimization (IRM) (Arjovsky et al., 2020) and deep domain confusion
(DDC) (Tzeng et al., 2014) aim for models that are invariant across groups or domains, which could in-
advertently enforce invariance for distributional aspects that are not actually present in the test set (e.g.,
helpful-harmful examples), potentially reducing performance on the test distribution.

In practice, we often want to align the model with a specific distribution, such as that of a particular
country or culture, as demonstrated in our Culture-Aware LM scenario. In such cases, we would not want
to consider worst-case scenarios or disregard country-specific information. Instead, importance weighting
offers a principled way to focus the model on the target distribution, making it particularly well-suited for
our setting.

D.2 Relation to Pluralistic Alignment

Pluralistic alignment in AI systems refers to the design of models that can accommodate and reflect a wide
array of human values and perspectives, rather than adhering to a singular notion of correctness or preference
(Sorensen et al., 2024). In the context of language modeling, this approach aims to ensure that LMs can
generate reasonable responses that encompass multiple viewpoints, thereby addressing diverse user needs and
societal norms (Sorensen et al., 2024). Ultimately, pluralistic alignment challenges traditional approaches
by emphasizing inclusivity and diversity in the design and behavior of AI systems. Our Culture-Aware LM
scenario may exemplify steerable pluralistic alignment defined in Sorensen et al. (2024) which entails that
an LM faithfully steers (or aligns) its responses according to a specified attribute or perspective, such as a
particular value, framework, or population, as it aims to align the LM to accurately reflect a specific culture.

Research has begun to explore RLHF approaches aimed at achieving pluralistic alignment in LMs. In order
to handle diverse human preferences, Poddar et al. (2024) formulated RLHF as a latent variable problem and
subsequently developed a multi-modal reward modeling framework based on variational inference techniques,
termed variational preference learning. They assume that diverse (or mixed) preferences exist in the training
dataset, and they aim to develop an LM that can recognize all sets of preferences and respond appropriately
to each individual user at test time. In contrast, our work focuses on training an LM that is attuned to specific
sets of preferences within the training dataset. Chen et al. (2025) enhanced DPO to address its limitations
in characterizing the diversity of human preferences, drawing inspiration from Mallows’ theory of preference
ranking to better capture the dispersion of human preferences in response to prompts. They demonstrate the
robustness to out-of-distribution scenarios, but their method does not steer towards a particular distribution
of interest.
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Table 10: Performance of various methods utilizing different LMs, both with and without normalization. Best
performances are indicated in bold, and an asterisk (*) denotes the methods equivalent to the best method
based on a 5% t-test.

Model Method Normalization Win rate (%)

Pythia-2.8B

IW-DPO-L ✗ 44.29 ± 5.40∗

IW-DPO-L ✓ 44.83 ± 4.76
IW-DPO-R ✗ 47.76 ± 5.30∗

IW-DPO-R ✓ 49.70 ± 4.10

Llama 3.1-8B-Instruct

IW-DPO-L ✗ 69.35 ± 3.38∗

IW-DPO-L ✓ 70.50 ± 3.46
IW-DPO-R ✗ 69.19 ± 3.43
IW-DPO-R ✓ 72.28 ± 4.62
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Figure 5: Analysis of the win rate as a function of the amount of data from the test distribution included in
the training dataset. The plots illustrate how variations in distribution shift levels impact the performance
of different methods, employing Pythia-2.8B (a) and Llama 3.1-8B-Instruct (b).
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