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Abstract

Large language models (LLMs) exhibit impres-
sive in-context learning (ICL) capability, enabling
them to perform new tasks using only a few
demonstrations in the prompt. Two different
mechanisms have been proposed to explain ICL:
induction heads that find and copy relevant to-
kens, and function vector (FV) heads whose acti-
vations compute a latent encoding of the ICL task.
To better understand which of the two distinct
mechanisms drives ICL, we study and compare
induction heads and FV heads in 12 language
models. Through detailed ablations, we discover
that few-shot ICL performance depends primarily
on FV heads, especially in larger models. In ad-
dition, we uncover that FV and induction heads
are connected: many FV heads start as induction
heads during training before transitioning to the
FV mechanism. This leads us to speculate that in-
duction facilitates learning the more complex FV
mechanism that ultimately drives few-shot ICL1.

1. Introduction
One of the most remarkable features of large language mod-
els (LLM) is their ability to perform in-context learning
(ICL), where they can adapt to various new tasks using
only context given in the prompt at inference time. This
capability has become crucial to adapt pre-trained LLMs to
specific tasks, sparking significant research into its underly-
ing mechanisms (Olsson et al., 2022; Akyürek et al., 2023;
von Oswald et al., 2023).

To date, two key mechanisms have been associated with
ICL, each supported by different lines of evidence. First,
induction circuits (Elhage et al., 2021) were hypothesized
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(a) ICL accuracy of Pythia 6.9B across
different percentages of heads ablated.
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(b) Induction score (blue) and FV score
(pink) of an FV head during training.

Figure 1. (a) Ablating function vector (FV) heads significantly
degrades few-shot in-context learning (ICL) accuracy, while ablat-
ing induction heads has minimal impact beyond ablating random
heads. (b) Evolution of an FV head during training, demonstrating
high induction scores earlier in training that decrease as FV score
emerges. This pattern suggests induction may serve as a precursor
for FV mechanism.

to be the primary mechanism behind ICL in LLMs (Olsson
et al., 2022; Singh et al., 2024; Crosbie & Shutova, 2024;
Dong et al., 2023). Induction circuits operate by identifying
previous occurrences of the current token in the prompt and
copying the subsequent token. More recently, Todd et al.
(2024) and Hendel et al. (2023) propose the existence of
function vectors (FV). FVs are a compact representation of
a task extracted from specific attention heads, and they can
be added to a model’s computation to recover ICL behavior
without in-context demonstrations.

To resolve whether one or both mechanisms drive ICL in
transformer LLMs, we conduct a comprehensive study of
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Table 1. Summary of findings in this work, where ✓ represents findings with evidence directly shown by our experiments and ∼ represents
conjectures that our results suggest.

Findings Evidence Section Contribution

Induction heads and FV heads are distinct. ✓ 3 Context-setting
Induction scores and FV scores are correlated. ✓ 3 Context-setting
Ablating FV heads hurts few-shot ICL accuracy more than ablating induction heads. ✓ 4 Main finding
Some FV heads evolve from induction heads during training. ✓ 5 Main finding
FV heads implement more complex or abstract computations than induction heads. ∼ 5 Speculation
Induction heads serve as a stepping stone for models to develop FV heads ∼ 5 Speculation

the attention heads implementing these mechanisms (termed
induction heads and FV heads) across 12 decoder-only trans-
former models ranging from 70M to 7B parameters (Table
2) and 45 natural language ICL tasks (listed in Appendix
A.8). Our analysis reveals several key findings.

First, we verify that there is a difference to explain, i.e. that
induction and FV heads are indeed distinct (§3). Across
models, there is a low or zero overlap between induction and
FV heads. These heads also have distinct characteristics:
induction heads generally appear in slightly earlier layers
than FV heads, and emerge significantly earlier during train-
ing. On the other hand, there are correlations in behavior:
FV heads behave more similarly to induction heads than a
random head from the same network, and vice versa.

Second, through ablation studies (§4), we demonstrate that
FV heads are the primary drivers of ICL performance. Re-
moving FV heads substantially degrades ICL task accuracy,
while removing induction heads has a limited effect (Figure
1a). This effect is consistent across all 12 models we studied,
and is more pronounced in larger models (§4). Interestingly,
this challenges the prevailing view of induction heads as
the key mechanism for few-shot ICL (Olsson et al., 2022;
Crosbie & Shutova, 2024; Dong et al., 2023).

Third, we reconcile our findings with previous work by iden-
tifying three key methodological differences (§7): earlier
studies used a different metric for ICL that does not strongly
track few-shot performance, did not account for correlations
between FV and induction heads, and sometimes focused
on small models. We find the choice of metric is the most
significant factor, as discussed in §7 and demonstrated by
experiments in §4.

Finally, by analyzing training dynamics (§5), we uncover
a surprising developmental relationship: many induction
heads evolve into FV heads during training, but the reverse
never occurs (Figure 1b). This leads us to speculate that
induction heads facilitate learning the more complex FV
heads for ICL – the FV mechanism is more effective at per-
forming ICL, and therefore eventually replaces the simpler
induction mechanism §6.

Aside from clarifying the drivers of few-shot ICL, our find-

ings offer broader lessons for model interpretability re-
search. They highlight how correlations between related
mechanisms can lead to illusory explanations (e.g. the con-
founding effect of the correlation between induction and FV
heads), and the choice of definitions may lead to different
conclusions (e.g. different metrics to measure ICL). Addi-
tionally, our results challenge strong versions of universality
– the difference between the importance of FV heads and
induction heads shifts significantly with model scale (§4).

Table 2. Models studied in this work. We use huggingface imple-
mentations (Wolf et al., 2020) for all models. We report the number
of parameters, number of layers |L|, and number of attention heads
|a| for each model.

Model Param. |L| |a|
Pythia (Biderman et al., 2023) 70M 6 48

160M 12 144
410M 24 384

1B 16 128
1.4B 24 384
2.8B 32 1024
6.9B 32 1024

GPT-2 (Radford et al., 2019) 117M 12 144
345M 24 384
774M 36 720
1.6B 48 1200

Llama 2 (Touvron et al., 2023) 7B 32 1024

2. Background
We present a comparative analysis of two mechanisms pro-
posed to explain ICL: induction heads (Elhage et al., 2021;
Olsson et al., 2022) and FV heads (Todd et al., 2024; Hendel
et al., 2023). In this section, we first present the different
conceptualizations of ICL. Then, we provide the definitions
of induction heads and FV heads.
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Figure 2. Location of induction heads (blue) and FV heads (pink) in model layers. The average layer of induction and FV heads are shown
in blue and pink dotted lines respectively. Most induction heads appear in early-middle layers, FV heads appear at layers slightly deeper
than induction heads.

2.1. In-context learning

ICL broadly refers to the ability of a machine learning
model, especially LLMs, to adapt its behavior and perform
new tasks by leveraging contextual information provided
with the input prompt, without any changes to its underlying
parameters. This allows the model to dynamically interpret
and respond to a wide range of tasks solely based on the
information given at inference time, such as instructions or
examples, making it highly adaptable. Two distinct concep-
tualizations of ICL have emerged in the literature, reflecting
different operationalizations of the phenomenon:

ICL as few-shot task accuracy. This conception, popular-
ized by Brown et al. (2020), defines ICL through few-shot
performance – the model’s accuracy on novel tasks when
provided with a few demonstrations in the prompt. The
majority of existing works studying ICL focuses on this
conception of ICL (Dong et al., 2023; Akyürek et al., 2023;
Wei et al., 2023; Bansal et al., 2023; Crosbie & Shutova,
2024), and ICL is often used synonymously with this few-
shot ability at inference time. We adopt this definition of
ICL in this paper as well, as it is currently the most standard
in the literature. Unless specified otherwise, “in-context
learning” in this paper will refer to this definition.

ICL as context-dependent loss reduction. On the other
hand, few-shot learning could be interpreted as a subset
of ICL, where ICL is defined more broadly as the model’s
ability to reduce loss at later tokens by using the context of
earlier observations (Kaplan et al., 2020; Olsson et al., 2022;
Lampinen et al., 2024). In this conception, ICL is measured
by the difference between the model loss on earlier tokens
and later tokens in the sequence. This difference was pre-
viously called “ICL score” in Olsson et al. (2022), to avoid
confusion we call this “token-loss difference”.

While these two conceptualizations of ICL have often been
conflated, our experiments demonstrate these metrics can di-
verge significantly (§4). Models may maintain high few-shot

ICL accuracy while showing reduced token-loss difference,
and vice versa. This distinction helps explain conflicting
conclusions about ICL mechanisms in prior studies.

2.2. Induction heads

Induction heads were first identified by Elhage et al. (2021)
and extensively studied by Olsson et al. (2022) as the mech-
anism behind ICL. They are attention heads that identify
repeated patterns in the input: when processing a token, they
attend to the token that followed a previous occurrence of
the same token, predicting it will appear next.

The initial evidence for induction heads’ role in ICL came
from Olsson et al. (2022), who studied small attention-only
models (1-3 layers). They observed that the emergence of in-
duction heads during training coincided with improvements
in ICL ability – measured as the difference between the loss
at the 500th versus 50th token in the context. Their ablation
studies showed that removing induction heads impaired this
metric.

To identify and analyze induction heads, we measure their
induction scores using the TransformerLens framework
(Nanda & Bloom, 2022). For each attention head a, we
compute its induction score on a synthetic sequence con-
structed by repeating a uniformly sampled random token
sequence: r = r1r2...r50r

′
1r

′
2...r

′
50. The induction score is

defined as:

SI(a, r) =

50∑
i=1

ar′i→ri+1

where ar′i→ri+1
represents the attention weight that head a

places on token ri+1 when processing token r′i. For each
attention head in each model, we take the mean induction
score over 1000 samples of random sequences r, normalized
by total attention mass to obtain a value between 0 and 1.
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Figure 3. Percentage of head overlap between induction and FV heads (left) in green, and between induction and randomly sampled heads
in gray. Percentile of induction score of FV heads (center). Percentile of FV score of induction heads (right). There is little overlap
between induction and FV heads, but FV heads have relatively high induction scores and vice versa.

2.3. FV heads

Function vectors (FV) were concurrently discovered by
Todd et al. (2024) and Hendel et al. (2023). They repre-
sent a different mechanism for ICL: FVs are compact vector
representations of ICL tasks that can be extracted from
specific attention heads and added back into the language
model’s computations to reproduce ICL behavior. We re-
fer to the attention heads that encode and transport these
function vectors as FV heads.

To identify FV heads, we employ the casual mediation anal-
ysis framework from Todd et al. (2024). For each ICL task
t in our task set T , where t is defined by a dataset Pt of
in-context prompts pti ∈ Pt consisting of input-output pairs
(xi, yi), we:

1. Compute the mean activation of an attention head a
over prompts in Pt: āt = 1

Pt

∑
pt
i∈Pt

a(pti)

2. Create corrupted ICL prompts p̃ti ∈ P̃t by randomly
shuffling the output labels ỹi while maintaining the
same inputs xi

3. Measure each head’s function vector score (FV score)
as its causal contribution to recovering the correct out-
put y for the input x given corrupted examples (xi, ỹi)
when its activation pattern is replaced with the mean
task-conditioned activation āt:

SFV (a|p̃ti) = f(p̃ti|a := āt)[y]− f(p̃ti)[y].

For each attention head, we take the mean FV score across
37 natural language ICL tasks from (Todd et al., 2024)
(Appendix A.8), using 100 prompts per task. Each prompt
contains 10 input-output demonstration pairs followed by a
single test instance.

3. Induction heads and function vector heads
are distinct but correlated

Before analyzing the relative contributions of induction and
FV heads to ICL performance, we first establish that these

represent distinct mechanisms, while noting important cor-
relations between them.

3.1. Head locations

We begin by examining the location of the top induction
and FV heads within the models. Figure 2 shows the layers
where the top 2% induction heads and FV heads appear in
three representative Pythia models (see Appendix A.10 for
all 12 models). In certain experiments such as this one, we
need to decide on a threshold to differentiate between mean-
ingful induction or FV heads and the long tail of attention
heads that perform neither induction nor the FV mechanism.
The 2% threshold was carefully chosen following previous
work by Todd et al. (2024), and verified with the shape
of the distribution of induction and FV scores (Appendix
A.2) that this threshold indeed meaningfully distinguish the
important heads from others.

In general, induction heads seem to appear in early-middle
layers and FV heads appear in slightly deeper layers than
induction heads, although this trend is not statistically sig-
nificant in all models (Appendix A.10). This suggests that
induction and FV heads do not fully overlap and are indeed
distinct mechanisms. Moreover, the deeper locations of
FV heads may indicate they implement more abstract com-
putations than induction heads, though this interpretation
remains speculative.

3.2. Overlap between induction and FV heads

To further examine how distinct induction and FV heads are,
we analyze the extent of the overlap between the two types
of heads in two ways.

First, we measure direct overlap - the percentage of heads
that rank in the top 2% for both mechanisms: 100× |IH∩FV |

|IH|
where IH and FV represent the sets of top induction and
FV heads respectively. The results show minimal overlap:
seven of our twelve models show zero overlap, with the
remaining models showing only 5-15% overlap (Figure 3
left). This leads us to conclude that induction heads and
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FV heads are mostly distinct. This motivates our subse-
quent experiments that study induction and FV heads as two
separate phenomena.

However, a more nuanced pattern emerges when we com-
pute the percentile of the induction score of the top 2% FV
heads (Figure 3 center) and the percentile of the FV score
of the top 2% induction heads (Figure 3 right). In most
models, FV heads are at around the 90-95th percentile of
induction scores, and vice versa. Therefore, although there
is little overlap between the sets of induction and FV heads,
induction and FV scores are correlated: FV heads have
high induction scores relative to other attention heads, and
induction heads have relatively high FV scores 2.

4. Function vector heads drive in-context
learning

Having established that induction and FV heads represent
distinct mechanisms, we now investigate their relative causal
importance for ICL through systematic ablation studies. Our
analysis focuses primarily on few-shot ICL accuracy while
also examining effects on metrics used in previous work for
comparison.

4.1. Method

Ablation. To assess the causal contribution of different at-
tention heads, we measure how ICL performance changes
when specific heads are disabled. We use mean ablation,
where we replace each target head’s output with its average
output across our task dataset (described in later sections).
This approach avoids the out-of-distribution effects associ-
ated with zero ablation (Hase et al., 2021; Wang et al., 2023;
Zhang & Nanda, 2024), though our findings remain robust
across different ablation methods (Appendix A.4).

To control for the correlation between induction and FV
heads identified in Section 3, we introduce ablation with
“exclusion”: when ablating n FV heads, we select the top
n heads by FV score that are not in the top 2% by induc-
tion score, and vice versa. This helps isolate the unique
contributions of each mechanism.

Few-shot ICL accuracy. We primarily evaluate ICL perfor-
mance on a series of few-shot ICL tasks. Each ICL task is
defined by a set of input-output pairs (xi, yi). The model is
prompted with 10 input-output exemplar pairs that demon-
strate this task, and one query input xq that corresponds
to a target output yq that is not part of the model’s prompt.
We compute the model’s accuracy in predicting the correct

2In our main analysis, we do not rely on the correlation between
the distribution of induction scores and FV scores across the full
set of attention heads because there is a long tail of attention heads
with low scores on both induction and FV. For completeness, we
plot the induction and FV scores of all heads in Appendix A.2.

output yq . We summarize the full set of ICL tasks we study
in Appendix A.8.

To avoid leakage between ICL tasks used to identify FV
heads and those used to evaluate FV head ablations, we
randomly split the 37 ICL tasks from Todd et al. (2024) into
26 tasks used to measure FV scores of heads, and 11 tasks
to evaluate ICL performance. We also add 8 new tasks for
ICL evaluation: 4 tasks are variations of tasks in Todd et al.
(2024), and 4 are binding tasks from Feng & Steinhardt
(2024). In total, we evaluate ICL accuracy on 19 natural
language tasks, with 100 prompts per task.

Token-loss difference. In Olsson et al. (2022), ICL perfor-
mance is measured by the difference between the model loss
of a token appearing early in the context (e.g., the 50th to-
ken) and later in the context (e.g., the 500th token). We also
report results using this metric to compare with previous
work.

We measure token-loss difference by taking the loss of the
50th token in the input prompt minus the loss of the 500th to-
ken in the prompt3, averaged over 10,000 randomly sampled
examples from the Pile dataset (Gao et al., 2021).

4.2. Results

We evaluate the impact of ablating different proportions
(1-20%) of the top attention heads based on induction or FV
score, across all models. We compare against two baselines:
model performance with no ablation (“clean”) and with
ablations of randomly sampled heads (“random”). Figure
4 shows results for three representative models, where few-
shot ICL accuracy is averaged over the 19 evaluation tasks.
We provide comprehensive results across all models and
ICL accuracy broken down by task in Appendix A.9. We
plot the average induction/FV scores and percentiles of the
heads preserved during ablations in Appendix A.11.

Our initial ablation experiments, shown in the top row of
Figure 4, removed heads based on their scores without con-
sidering the potential overlap between induction and FV
heads. These results revealed that ablating FV heads caused
greater degradation in few-shot ICL performance compared
to ablating induction heads, with this disparity becoming
more pronounced in larger models. We also find that ablat-
ing induction heads has more effect on ICL performance
than random. The effect of ablating induction heads con-
verges to the effect of ablating FV heads as we increase the
number of heads ablated.

However, the convergence noted above may be due to an
increasing overlap in the set of heads ablated in the induction
head and FV head ablations (Appendix A.12). To address

3We invert the difference used in Olsson et al. (2022) so higher
scores indicate better ICL performance.
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Figure 4. Top: Few-shot ICL accuracy after ablating induction and FV heads. Center: Few-shot ICL accuracy after ablating non-FV
induction and non-induction FV heads. Bottom: Token-loss difference after ablating non-FV induction and non-induction FV heads.
Ablating FV heads lead to a bigger drop in ICL accuracy, especially in larger models. Ablating induction heads with low FV scores does
not significantly affect ICL accuracy. ICL accuracy and token-loss difference behave differently.

this, we conduct a second set of experiments using ablation
with exclusion, shown in the center row of Figure 4.

When ablating induction heads while preserving the top
2% FV heads, we observe minimal impact on few-shot ICL
performance – comparable to random ablations in models
exceeding 1B parameters. Conversely, ablating FV heads
while preserving induction heads continues to significantly
impair ICL performance. The performance gap between FV
and induction head ablations widens with model scale, sug-
gesting that the observed effects of induction head ablations
without exclusion are primarily due to heads exhibiting both
induction and FV properties.

These ablations suggest that the contributions of induction
heads to ICL in the top row of Figure 4 mostly come from
heads that are both induction and FV heads, and that FV
heads matter the most for few-shot ICL: as long as the
model preserves its top 2% FV heads, it can perform ICL
with reasonable accuracy even if we ablate induction heads.

The bottom row of Figure 4 presents the effects of abla-
tions with exclusion on token-loss difference. In smaller
models (below 160M parameters), neither ablating induc-
tion nor FV heads shows significant impact to token-loss
difference compared to random ablations. However, in mod-
els with over 345M parameters, induction head ablations

affect token-loss difference more than FV head ablations.
This experiment primarily demonstrates that few-shot ICL
accuracy and token-loss difference measure two very dif-
ferent things. In particular, we find instances where ICL
accuracy and token-loss difference diverge: when we ablate
random heads and induction heads, the model has high ICL
accuracy but low token-loss difference. We speculate that
this is due to the model preserving its ICL abilities (thus
the high ICL accuracy), but loses other abilities that are
also associated with learning important signals from con-
text (thus the low token-loss difference). These contrasting
results between the two metrics help reconcile apparently
contradictory findings in existing literature.

5. FV heads evolve from induction heads
Finally, to further understand how these two families of
attention heads develop, we analyze their evolution dur-
ing model training. We examine attention heads across 8
intermediate training checkpoints in 7 Pythia models.

5.1. Induction and FV strength during training

To measure the general strength of induction and FV mech-
anisms during training, we plot the mean induction and FV
scores of the top 2% induction and FV heads at each model
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checkpoint, along with few-shot ICL accuracy (Figure 5).
We include plots for all Pythia models in Appendix A.13.

Our analysis reveals a consistent pattern across all Pythia
models: induction heads emerge early in training, at around
step 1,000 out of 143,000, while FV heads appear sub-
stantially later at around step 16,000. The development of
these heads shows distinct characteristics as well – induction
scores exhibit a sharp initial rise followed by a plateau or
slight decline, whereas FV scores demonstrate a gradual but
sustained increase from step 16,000 through the end of train-
ing. This temporal asymmetry suggests that induction heads
represent a simpler mechanism that models can acquire ear-
lier, while FV heads embody a more complex mechanism
that requires extended training. In addition, we observe
that in all models, few-shot ICL accuracy begins to improve
around the same time as when induction heads appear, and
continues to gradually increase throughout training.

5.2. Evolution of individual heads during training

To gain more granular insights into head development, we in-
vestigate the evolution of individual attention heads through-
out training. Figure 6 the induction scores (top row) and FV
scores (bottom row) of the top 2% induction and FV heads
across training steps. Individual heads are represented by
continuous lines, with line opacity corresponding to their
final induction or FV scores.

A striking pattern emerges across all models: many heads
that ultimately become strong FV heads initially exhibit
high induction scores, emerging around the same time as
dedicated induction heads. These proto-FV heads initially
achieve induction scores comparable to those of special-
ized induction heads. However, as training progresses, their
induction scores gradually decline while their FV scores
increase. Importantly, this pattern is unidirectional; we
found no instances of induction heads that develop signifi-
cant FV capabilities during training, as evidenced by their
consistently low FV scores throughout training. This sug-
gests many FV heads evolve from induction heads during
training, but not vice versa.

6. Interpretation and discussion
Our investigation revealed several key insights about the
relationship between induction and FV heads in transformer
models and their effect on ICL. While these mechanisms are
distinct, they show notable correlation (§3). FV heads con-
sistently appear in deeper layers and emerge later in training
compared to induction heads (§3,5.1). Our ablation studies
demonstrated that FV heads are crucial for few-shot ICL
performance, particularly in larger models, while induction
heads have comparatively minimal impact (§4). Further-
more, we observed multiple instances of heads transitioning
from induction to FV functionality during training, but never
the reverse (§5.1). We propose two working conjectures to
explain these empirical findings more broadly, and consider
arguments for and against them.

Our first conjecture (C1) posits that induction heads serve
as precursots to FV heads. Under this interpretation, induc-
tion heads serve as a stepping stone for models to develop
the more sophisticated FV mechanism. The mechanism un-
derlying induction heads is simpler and easier to learn, but
this method does not fully solve more complex ICL prob-
lems. As FV heads emerge and prove to be more effective
at difficult ICL tasks, they gradually supersede the simpler
induction mechanism.

Several lines of evidence support this conjecture. First, we
observed multiple FV heads that initially displayed strong
induction behavior before transitioning to FV functionality.
The subsequent decline in induction scores suggests these
heads abandon the simpler mechanism once the more ef-
fective FV capability develops. The unidirectional nature
of this transition - we never observe induction heads with
initially high FV scores - further supports this interpretation.
Additionally, the minimal effect of ablating pure induction
heads (those with low FV scores) on few-shot ICL perfor-
mance suggests their role becomes less critical once FV
heads develop. To further verify this, future work could ex-
plore how removing induction heads during training could
impact the development of FV heads. However, C1 does not
fully explain the existence of FV heads with low induction
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Figure 6. Evolution of induction scores (top) and FV scores (bottom) of individual induction and FV heads across training. Certain FV
heads have a high induction score earlier in training; the reverse is not true for induction heads.

scores throughout training.

C1 also aligns with our observations about architectural and
training dynamics. FV heads consistently emerge later in
training and appear in deeper layers, consistent with them
implementing a more complex computation. Furthermore,
we observe that in all models, few-shot ICL accuracy begins
to rise around the same time as when induction heads appear,
and continues to gradually increase until the end of training.
Since ICL accuracy continues to improve even after the
formation of induction heads, we speculate that the sharp
emergence of induction heads contributes to an initial rise
in ICL performance, but the gradual formation of FV heads
drives the further improvements in ICL. This reinforces our
conjecture that induction heads may serve as a stepping
stone for FV

An alternative conjecture (C2) suggests that FV heads are a
combination of induction and another mechanism. This
conjecture proposes that heads that appear to “transition”
from induction to FV functionality may actually be polyse-
manticheads, implementing both mechanisms and possibly
others. Their measured induction scores decline as their
attention patterns diversify to support multiple mechanisms.

While C2 explains the correlation between induction and
FV mechanisms as arising from shared underlying mecha-
nisms, it faces a significant challenge: our ablation studies
show that removing monosemantic FV heads (those without
significant induction scores) substantially hurts ICL perfor-
mance. This is difficult to reconcile with C2’s prediction that
pure FV heads should be less critical if the key functionality
depends on combined induction-FV mechanisms.

7. Related work
In this paper, we compared two mechanisms that have been
previously proposed to explain ICL: induction heads (El-
hage et al., 2021; Olsson et al., 2022) and FV heads (Todd
et al., 2024; Hendel et al., 2023). A line of previous work
have attributed the mechanism behind ICL to induction
heads. Olsson et al. (2022) studied small attention-only
models with 1-3 layers and showed that the emergence of
induction heads co-occur with the emergence of ICL perfor-
mance. We observe a similar co-occurence in §5.1. They
also showed that ablating induction heads decreases token-
loss difference, similarly to our results in §4.2. Singh et al.
(2024) expanded on this by introducing a causal framework
to manipulate activations in toy models, and identified three
subcircuits that drives induction head formation, and conse-
quently, the phase transition in ICL.

Crosbie & Shutova (2024) performed ablation studies on
LLMs of size 8B and 20B parameters, and Bansal et al.
(2023) on an LLM of size 66B, to demonstrate that induction
heads are important for ICL in large models as well. We
observe similar results in the top row of Figure 4, where
we performed ablations without accounting for the overlap
between induction and FV heads.

Further works explored the ICL capabilities and internal
mechanisms of transformer models through multiple com-
plementary lenses. Edelman et al. (2024) demonstrated how
models develop statistical induction heads for Markov chain
prediction. Xie et al. (2022) frames ICL as implicit Bayesian
inference when pretrainng data exhibits latent coherence.
Garg et al. (2022) empirically proved transformer models
can learn linear functions and complex classes in-context.
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Guo et al. (2024) extended this to compositional tasks and
observed mechanisms such as copying behaviors within
transformers.

Reconciling divergent findings

While induction heads and FV heads have been proposed
by their respective works as the mechanism behind ICL, our
side-by-side analysis of induction and FV heads reveals that
FV heads seem to primarily contribute to ICL performance.
We believe that the main reason for the divergence between
our result and previous work lies in several intuitively related
concepts in the literature that are assumed to be the same.

First, ICL is used synonymously with few-shot learning in
most of the literature, while other works conceptualize ICL
as loss reduction in tokens appearing later in a sequence.
The two distinct definitions of ICL have often been conflated
to refer to the same phenomenon. However, our experiments
reveal that the two ICL metrics capture different phenomena:
FV heads strongly influence few-shot ICL accuracy but not
token-loss difference, while induction heads show the oppo-
site pattern (§4). This divergence of token-loss difference
from few-shot ICL performance accounts for much of the
apparent contradiction with previous findings.

Second, we find that induction heads and FV heads are
correlated (§3), a confound not previously controlled for.
Initial ablation studies, including ours (§4), showed that re-
moving induction heads significantly degrades few-shot ICL
accuracy (Crosbie & Shutova, 2024; Bansal et al., 2023).
However, when we control for this correlation by only ab-
lating induction heads with low FV scores, their impact
becomes comparable to random ablation. In contrast, ablat-
ing FV heads with low induction scores still significantly
degrades ICL performance. This suggests that previous
studies may have attributed to induction heads effects that
actually stemmed from FV-like behavior in a subset of in-
duction heads.

Third, scale matters. Previous work establishing induction
heads as the key ICL mechanism (Olsson et al., 2022; Singh
et al., 2024) focused on small models to enable detailed
mechanistic analysis. However, we find that the relative
importance of FV heads increases with model scale. In our
smallest model (70M parameters), induction and FV heads
have similar causal effects on few-shot ICL (§A.3), but this
does not hold true in larger models, which highlights the
importance of studying these phenomena across different
model scales.

8. Conclusion
Our research challenges the prevailing understanding of in-
context learning mechanisms in transformer models. While
induction heads have been widely considered the primary

driver of ICL, our evidence demonstrates that function vec-
tor (FV) heads play a more crucial causal role in few-shot
ICL performance. We attribute previous misconceptions to
two key factors: the conflation of few-shot ICL with token-
loss difference, and not accounting for the overlap between
induction and FV heads.

Remarkably, although induction and FV mechanisms ap-
pear to implement two distinct processes, we also observe
an interesting interplay between the two types of heads: in-
duction and FV scores are correlated, and many FV heads
are “former” induction heads with high induction scores
earlier in training. This observation supports the conjecture
that induction heads serve as precursors to FV heads: the
simpler induction mechanism provides an initial foundation
for ICL, from which the more sophisticated FV mechanism
eventually emerges.

Our investigation also yields important methodological in-
sights for the broader field of model interpretability. First,
seemingly equivalent definitions of model capabilities (such
as few-shot accuracy versus token-loss difference) can lead
to substantially different conclusions. Second, studying
mechanistic components in isolation may produce mislead-
ing results when these components share overlapping behav-
iors, as demonstrated by the confounding effects of ablating
heads that exhibit both high induction and FV scores. We
thereby recommend future works to carefully define the
type of ICL studied, and consider the interactions between
different circuits.

Furthermore, our results challenge strong versions of the
universality hypothesis in interpretability. While both in-
duction and FV heads contribute meaningfully to few-shot
ICL in smaller models, their relative importance diverges
with scale – FV heads become increasingly crucial while in-
duction heads’ impact approaches that of random ablations.
This scale-dependent behavior suggests that mechanisms
may vary across model architectures.

These findings prompt several important questions for fu-
ture research. If induction heads indeed serve as precursors
to FV heads, what makes this necessary? What role do
the remaining induction heads serve in fully trained mod-
els? Are there additional mechanisms that provide an even
more complete explanation of ICL capabilities? We also
leave practical applications of our findings to future work
– evidence of the higher importance of FV suggests that
ICL could be optimized in smaller models by using training
methods or architectures that promote the formation of FV
heads.

Acknowledgements
We thank Jiahai Feng, Neel Nanda, Robert Kirk, and Anish
Kachinthaya for their helpful feedback, and anonymous

9



Which Attention Heads Matter for In-Context Learning?

reviewers for useful comments. KY is supported by the
Vitalik Buterin Ph.D. Fellowship in AI Existential Safety.

Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
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A. Appendix
A.1. Limitations of our work

Our findings are limited to models under 7B parameters, and
we leave scaling our analysis to larger models to future work.
The range of models we study also limits the complexity of
the ICL tasks we studied, as we selected tasks where models
have reasonable few-shot performance. To ensure that our
findings apply to real-world tasks, we included realistic tasks
such as translation, commonsense question answering, news
topic classification. Our ablation studies also do not account
for the hydra effect (McGrath et al., 2023), as measuring the
extent of self-repair when ablating specific heads remains an
open problem (the method in McGrath et al. (2023) applies
to ablating all heads in a single layer). If the same magnitude
of the hydra effect is present in our ablations of different
head types, our findings on the relative importance of heads
would still hold, however this is not yet proven. We leave to
future work to measure the extent of second-order effects in
ablations.

A.2. Induction scores vs. FV scores

In Figure 7, we plot the induction score and FV score of each
attention head. We also color the heads that are determined
as an induction head, an FV heads, or both, using the top
2% for each score as the threshold. The plots show that the
2% threshold meaningfully select important heads from the
cluster of other low-scoring heads across models. Taking a
higher percentage for the threshold would select heads with
FV scores close to 0.

A.3. Ablations

In Figure 8, we plot model accuracy averaged over ICL
tasks across different quantities of heads ablated in each
head type. In Figure 9, we plot the token-loss difference of
models across different quantities of heads ablated.

A.4. Random and zero ablations

In Figure 10, we plot model accuracy averaged over ICL
tasks across different quantities of heads ablated with ran-
dom ablation or zero ablation. For random ablations, we
replace the head’s output vector with the output vector of a
randomly sampled different head. For zero ablations. we
replace the head’s output vector with a zero vector.

A.5. Ablating random heads at specific layers

In Figure 11, we ablate heads randomly sampled from spe-
cific layers of the model. Let L be the number of heads in
each layer, A be the number of heads we’re ablating, and ℓ
be the layer we’re targeting. Then, if A < L, we sample A
heads from layer ℓ. If A ≥ L, we ablate all L heads in layer

ℓ and we sample A− L heads from other layers to ablate.

A.6. Induction and function vector scores across models

Our ablation studies reveal a consistent trend where FV
heads are increasingly important relative to induction heads
for ICL performance as model scale increases. To further
explore this trend, we examine how induction scores and
FV scores vary with model scale, and whether these scores
follow similar trends to our ablation experiments.

In Figure 12, we plot the maximum and mean induction
and FV scores across all heads, and mean scores of top 2%
heads, for each model. The left plot in Figure 12 shows that
induction scores are relatively similar across model size,
with a small increase in maximum induction score and a
decrease in the top 2% mean induction score with model
scale.

In the right plot of Figure 12, there is no clear trend between
FV score and model scale, however, Pythia 1B and 1.4B
models have markedly higher maximum FV scores. One
possible explanation is that models with high head dimen-
sionality relative to total parameter count have stronger FV
heads: Pythia 1B and 1.4B have head dimensionality of
256 and 128 respectively (Table 2) whereas other models
with similar parameter count have only 64-80 attention head
dimensions.

We also find very low FV scores in Pythia 70M and Llama
2 models. FV scores may be low in Pythia 70M because it
is too small in parameter size for FV heads to emerge. Low
scores in Llama 2 compared to other models may be due to
differences in architecture, and additional experiments can
help confirm this. Overall, we do not recover the same trend
in induction/FV scores as the trend in our ablation studies.

For reference, we also provide box plots of the full distribu-
tion of induction and FV scores in Figure 13.

A.7. Evaluating function vectors on task execution

To further inspect the prevalence of the FV mechanism
in different models, we evaluate the efficacy of FVs for
ICL task execution. A successful FV triggers the model to
execute the particular task the FV encodes, even when the
model sees no useful in-context demonstrations of the task.
First, to extract FVs, for each model we gather the top 2%
attention heads with highest FV scores as the set A. Then,
for each ICL task t ∈ T , we sum the average outputs of
heads in A over prompts from t and obtain the FV for the
task t: FVt =

∑
a∈A āt.

In Figure 14, we report model accuracy averaged over 40
ICL tasks where the model performs inference on uncor-
rupted prompts (clean), prompts with shuffled labels (shuf-
fled), shuffled prompts with FVt added to hidden states at
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Figure 8. ICL accuracy after ablating induction and FV heads.
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Figure 9. Token-loss difference after ablating induction heads with low FV scores and FV heads with low induction scores.
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Figure 10. Few-shot ICL accuracy after ablating induction and FV heads, using either random ablation method (rows 1 and 3) or zero
ablation method (rows 2 and 4). Overall, the observation that ablating FV heads decreases ICL accuracy more than induction heads, is
robust against different methods of ablation.
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Figure 11. ICL accuracy after ablating randomly sampled heads from specific layers. The clean ICL accuracy, induction ablations and FV
ablations are also plotted for comparison but only the random ablations (green curve) are affected by the choice of target layer.
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Figure 13. Distribution of induction scores (top) and FV scores
(bottom) across model size.

layer |L|/3, and shuffled prompts with FV extracted from
random heads added to hidden states at layer |L|/3. We take
1000 examples per task that are previously unseen during
FV score computation.

In most models, adding the FV recovers model performance
on uncorrupted prompts, with the exception of Pythia 2.8B.
One possible explanation for this is again due to head di-
mensionality: Pythia 2.8B has head dimension 80, which
is significantly smaller than other models with similar pa-
rameter size that have head dimensions of 128. Together
with our experiments in §A.6, results provide preliminary
evidence that high head dimensionality relative to model
size is a predictor of FV strength (H6).

A.8. ICL tasks

In Table 3, we list the ICL tasks used in this study. We refer
to Todd et al. (2024) and Feng & Steinhardt (2024) for a
detailed description of each task.

A.9. Ablations by task

In Figures 15-18, we plot the ICL accuracy after ablating
induction heads and FV heads for each task in the evaluation
set. We also compute the random baseline for each task,
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Figure 14. Model ICL accuracy on prompts with 10 in-context
examples (clean), on uninformative shuffled prompts, on shuffled
prompts with FV, and on shuffled prompts with random head
outputs. Adding FV recovers most of the model accuracy on a
clean run, with the exception of Pythia 2.8B.

where we randomly sample outputs seen during training
and compare these random outputs to the ground truth. The
random baselines are shown in red horizontal lines.

A.10. Head locations

In Figure 19, we plot the locations of induction heads and
FV heads across model layers.

A.11. Induction and FV scores of heads after ablation

In Figures 20 – 27, we plot the induction scores, percentile
of induction scores, FV scores, and percentile of FV scores
of the heads ablated in §4, for both ablation and ablation
with exclusion.

A.12. Overlap between ablated induction and FV heads

In Figure 28, we plot the percentage of attention heads
that overlap between the set of induction heads and FV
heads we ablate. We find that as the number of ablated
heads increases, the overlap between the two sets of ablated
heads also increases. This demonstrates the importance of
performing ablations with exclusion to control for overlap.

A.13. Scores across training

In Figure 29, we plot the evolution of induction and FV
scores averaged over top 2% heads across model training,
along with the few-shot accuracy of the model checkpoints
averaged over the evaluation tasks. In Figure 30, we plot the
evolution of induction and FV scores of individual heads
across training.
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Table 3. Summary of ICL tasks used in our study. Tasks in bold are new tasks that were not used in (Todd et al., 2024).

Abstractive Tasks Extractive Tasks

Abstract clf (Ours.) Adjective vs. verb (Todd et al., 2024)
Antonym (Nguyen et al., 2017) Animal vs. object (Todd et al., 2024)
Binding capital (Feng & Steinhardt, 2024) Choose first of list (Todd et al., 2024)
Binding capital parallel (Feng & Steinhardt, 2024) Choose middle of list (Todd et al., 2024)
Binding fruit (Feng & Steinhardt, 2024) Choose last of list (Todd et al., 2024)
Binding shape (Feng & Steinhardt, 2024) Color vs. animal (Todd et al., 2024)
Capitalize first letter (Nguyen et al., 2017) Concept vs. object (Todd et al., 2024)
Capitalize index (Ours.) Fruit vs. animal (Todd et al., 2024)
Capitalize second letter (Ours.) Object vs. concept (Todd et al., 2024)
Capitalize (Nguyen et al., 2017) Verb vs. adjective (Todd et al., 2024)

Country-capital (Todd et al., 2024) CoNLL-2003, NER-person (Tjong Kim Sang, 2002)
Country-currency (Todd et al., 2024) CoNLL-2003, NER-location (Tjong Kim Sang, 2002)
English-French (Lample et al., 2018) CoNLL-2003, NER-organization (Tjong Kim Sang, 2002)
English-German (Lample et al., 2018)
English-Spanish (Lample et al., 2018)
French-English (Lample et al., 2018)
Landmark-Country (Hernandez et al., 2024)
Lowercase first letter (Todd et al., 2024)
National parks (Todd et al., 2024)
Next-item (Todd et al., 2024)
Previous-item (Todd et al., 2024)
Park-country (Todd et al., 2024)
Person-instrument (Hernandez et al., 2024)
Person-occupation (Hernandez et al., 2024)
Person-sport (Hernandez et al., 2024)
Present-past (Todd et al., 2024)
Product-company (Hernandez et al., 2024)
Singular-plural (Todd et al., 2024)
Synonym (Nguyen et al., 2017)

CommonsenseQA (MC-QA) (Talmor et al., 2019)
Sentiment analysis (SST-2) (Socher et al., 2013)
AG News (Zhang et al., 2015)
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Figure 15. ICL accuracy after ablations by task. The red horizontal line represents the random baseline.
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Figure 16. ICL accuracy after ablations by task. The red horizontal line represents the random baseline.
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Figure 17. ICL accuracy after ablations by task. The red horizontal line represents the random baseline.

22



Which Attention Heads Matter for In-Context Learning?

10 20

0.4

0.6

ag_news

10 20
0.0

0.5

1.0
capitalize_first_letter

10 20
0.0

0.5

conll2003_organization

10 20
0.00

0.25

0.50

national_parks

10 20
0.0

0.2

0.4

park-country

10 20
0.0

0.1

0.2

person-occupation

10 20
0.0

0.5

animal_v_object_3

10 20
0.0

0.5

1.0
choose_first_of_5

10 20
0.0

0.2

0.4

english-german

10 20
0.0

0.2

0.4

person-instrument

10 20
0.0

0.1

0.2

commonsense_qa

10 20
0.0

0.1

0.2

capital_index

10 20
0.0

0.1

0.2

capitalize_second_letter

10 20
0.0

0.2

0.4
abstract_clf

10 20
0.0

0.5

french-english

10 20
0.0

0.5

bind_fruit

10 20
0.00

0.25

0.50

bind_capital_par

10 20
Pythia 2.8B

0.0

0.2

0.4
bind_capital

10 20
0.00

0.25

0.50

bind_shape
Clean
Random
Induction
FV

10 20

0.4

0.6

ag_news

10 20
0.0

0.5

capitalize_first_letter

10 20
0.0

0.5

conll2003_organization

10 20
0.00

0.25

0.50

national_parks

10 20
0.0

0.2

0.4

park-country

10 20
0.0

0.1

0.2

person-occupation

10 20
0.0

0.5

animal_v_object_3

10 20
0.0

0.5

1.0
choose_first_of_5

10 20
0.00

0.25

0.50

english-german

10 20

0.2

0.4

person-instrument

10 20
0.0

0.1

commonsense_qa

10 20
0.0

0.1

0.2

capital_index

10 20
0.0

0.1

capitalize_second_letter

10 20
0.0

0.2

0.4

abstract_clf

10 20
0.0

0.5

french-english

10 20
0.0

0.5

bind_fruit

10 20
0.00

0.25

0.50

bind_capital_par

10 20
Pythia 6.9B

0.00

0.25

0.50

bind_capital

10 20
0.0

0.5

bind_shape
Clean
Random
Induction
FV

10 20
0.0

0.5

ag_news

10 20
0.0

0.5

1.0
capitalize_first_letter

10 20
0.0

0.5

conll2003_organization

10 20
0.0

0.5

national_parks

10 20
0.0

0.5

park-country

10 20

0.2

0.4

person-occupation

10 20
0.0

0.5

animal_v_object_3

10 20
0.0

0.5

1.0
choose_first_of_5

10 20
0.00

0.25

0.50

english-german

10 20

0.4

0.6

0.8
person-instrument

10 20
0.0

0.2

0.4

commonsense_qa

10 20
0.0

0.1

0.2

capital_index

10 20
0.0

0.2

capitalize_second_letter

10 20
0.0

0.2

0.4

abstract_clf

10 20
0.0

0.5

french-english

10 20
0.0

0.5

bind_fruit

10 20
0.0

0.5

bind_capital_par

10 20
Llama 2 7B

0.0

0.5

bind_capital

10 20
0.0

0.5

bind_shape
Clean
Random
Induction
FV

Figure 18. ICL accuracy after ablations by task. The red horizontal line represents the random baseline.
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Figure 19. Location of induction heads (blue) and FV heads (pink) in model layers
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Figure 20. Induction scores of the remaining heads after ablation.
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Figure 21. Percentile of induction scores of the remaining heads after ablation.
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Figure 22. Induction scores of the remaining heads after ablation with exclusion.
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Figure 23. Percentile of induction scores of the remaining heads after ablation with exclusion.
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Figure 24. FV scores of the remaining heads after ablation.
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Figure 25. Percentile of FV scores of the remaining heads after ablation.
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Figure 26. FV scores of the remaining heads after ablation with exclusion.
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Figure 27. Percentile of FV scores of the remaining heads after ablation with exclusion.
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Figure 28. Overlap between set of induction heads and FV heads ablated.
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Figure 29. Evolution of induction score and FV score averaged over top 2% heads across training.
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Figure 30. Evolution of induction scores (left) and FV scores (right) of individual induction and FV heads across training
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