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ABSTRACT

Federated Learning (FL) enables collaborative model training across decentralized
clients while preserving data privacy. However, its performance declines in chal-
lenging heterogeneous data settings. To mitigate this, existing FL frameworks not
only share locally trained parameters but also exchange additional information –
such as control variates, client features, and classifier characteristics – to address
the effects of class imbalance and missing classes. However, this leads to in-
creased communication costs and heightened risks of privacy breaches. To strike
a balance between communication efficiency, privacy protection, and adaptabil-
ity to heterogeneous data distributions, we propose FLAIR, a novel FL approach
with augmented and improved feature representations. FLAIR utilizes Class Vari-
ational Autoencoders (CVAE) for feature augmentation, mitigating class imbal-
ance and missing class issues. It also incorporates Reptile meta-training to fa-
cilitate knowledge transfer between model updates, adapting to dynamic feature
shifts. To generalize model update, FLAIR shares only local CVAE parameters
instead of local model parameters, which reduces both communication costs and
privacy risks. Our experiments on benchmark datasets – such as MNIST, CIFAR-
10, CIFAR-100, and TinyImageNet – demonstrates a significant enhancement in
model convergence and accuracy compared to state-of-the-art solutions, while re-
ducing communication overhead and privacy risks.

1 INTRODUCTION

Federated Learning (FL) has gained prominence as an effective approach for collaboratively training
machine learning models across decentralized datasets, ensuring data privacy by eliminating the
need to share raw data between clients McMahan et al. (2017). Despite its potential, FL performance
tends to degrade significantly when data distributions across clients are highly heterogeneous or non-
identically distributed (non-IID) Zhao et al. (2018), posing a critical challenge for many real-world
applications.

Addressing this issue has sparked substantial research, as recent advancement embraces various
strategies, such as variance reduction Acar et al. (2021); Karimireddy et al. (2020), adaptive aggre-
gation Hsu et al. (2019); Reddi et al. (2021); Chen et al. (2023), feature distillation Yang et al. (2023),
representation learning Zhang et al. (2020); Tan et al. (2022); Liu et al. (2024) etc., to mitigate the
impact of non-IID data on model convergence and performance in FL settings. As these strategies
often involve sharing additional information among clients and the server, they lead to increased
communication costs and heightened risks of privacy breaches, such as membership inference, fea-
tures inference, gradient leakage, and model inversion attacks, etc., Nasr et al. (2019); Melis et al.
(2019); Wang et al. (2019b). These factors can limit the practical applicability of state-of-the-art
approaches, especially in scenarios where communication efficiency and privacy are critical, such
as in mobile edge computing Wang et al. (2019a), internet of things (IoT) networks Nguyen et al.
(2021), and healthcare applications Xu & Wang (2021). A comparative summary of the communi-
cation cost incurred by state-of-the-art approaches is shown in Table 1. Therefore, there is a clear
need for a holistic approach that improves performance in heterogeneous settings while addressing
communication overhead and enhancing privacy protection in the FL system.

In response to this, we present FLAIR (Federated Learning with Augmented and Improved fea-
ture Representations), a novel FL framework designed to systematically guide local training based
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Method Local Model sharing Sharing of Additional Information Communication Cost per Round
FedAvg McMahan et al. (2017) ✓ ✗ O(St ×M)

FedAvgM Hsu et al. (2019) ✓ ✗ O(St ×M)
FedProx Li et al. (2020) ✓ ✗ O(St ×M)

FedFA Zhang et al. (2020) ✓ ✗ O(St ×M)
SCAFFOLD Karimireddy et al. (2020) ✓ Control variates (V ) O(St × (M + V ))

FedProto Tan et al. (2022) ✗ Global Protos (P ), Protos (P̃ ) O(St × (P + P̃ ))
Elastic Chen et al. (2023) ✓ Layer-wise sensitivity (L) O(St × (M + L))

FedFed Yang et al. (2023) ✓ Global shared features (F ), Local sensi-
tive features (F̃ )

O(St ×M +K × (F + F̃ ))

FLUTE Liu et al. (2024) ✓ Local classifier weight C O(St × (M + C))
FLAIR ✗ CVAE Parameters E O(E)

Table 1: Comparative summary of federated learning approaches in terms of key attributes and
communication cost per round (K: total number of clients, St: number of local models, M : size of
the model parameters)

on class-oriented features generated from conditional variational autoencoders (CVAE) Sohn et al.
(2015). This approach effectively addresses issues of class imbalance and missing classes while also
reducing communication costs and enhancing privacy. In particular, FLAIR adopts the following key
strategies:

1. Feature Augmentation: Leveraging CVAE, we generate synthetic feature samples that
enable clients to learn class-specific representations, improving overall feature extraction
and representation learning.

2. Classifier Tuning: The CVAE-based framework allows clients to generate features for all
(including missing) classes, addressing issues of class imbalance and the absence of certain
classes in local datasets due to extreme non-IID distributions.

3. Knowledge Transfer: While CVAE can generate features for a specific round, they may
struggle to adapt to evolving feature representations during local model updates. Rep-
tile meta-training approach Nichol et al. (2018) helps bridge this gap by enabling efficient
transfer of knowledge between previous and updated CVAE, ensuring consistency in fea-
ture generation despite changes in local models.

The novelty of our approach lies in the synergistic combination of feature generation modeling and
representation learning techniques. This holistic strategy not only addresses the symptoms of non-
IID data (e.g., model divergence) but also improves communication overhead and privacy of clients.

To summarize, the primary contributions of this paper are as follows:

1. We propose FLAIR, a novel approach that addresses the challenges of learning from ex-
treme non-IID data distributions in federated settings, which reduces communication over-
head and privacy risks.

2. We develop a CVAE-based local feature augmentation strategy to generate synthetic fea-
tures following local class distributions, mitigating class imbalance and missing class is-
sues.

3. We adopt Reptile meta-training approach in FL to mitigate dynamic features drift for sta-
bilizing CVAE model training.

4. We demonstrate FLAIR’s superior performance compared to state-of-the-art methods
through extensive experiments on benchmark datasets.

The rest of this paper is organized as follows: Section 2 provides a detailed description of our
proposed approach. Section 3 presents theoretical analysis of FLAIR, proving its convergence and
robustness. Section 4 demonstrates performance evaluation of FLAIR, along with comparative sum-
mary w.r.t. state of the art works. Section 5 discusses the state-of-the-artworks. Finally, Section 6
concludes our work.

2 FLAIR: PROPOSED FL APPROACH

The primary objective of FLAIR is to maintain a robust and generalized global model in the presence
of extreme heterogeneous settings, while maintaining a balance between communication costs and
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Figure 1: FLAIR architecture

privacy measures. The clients in FLAIR are responsible for locally train the global and CVAE model,
whereas the server is responsible for aggregating locally trained CVAE model. Let us describe this
process in detail:

2.1 TRAINING OBJECTIVES

Consider a federated learning setting with a set of clients K, where each client k ∈ K has a local
dataset Dk = {(xik, yik)}

nk
i=1, where nk is the total number of data samples in client k. The data

samples xik ∈ X and labels yik ∈ Y = {1, . . . , C} are drawn from client-specific distributions
pk(x, y), where C is the total number of unique classes among all clients. In the non-IID setting, the
distributions pk can differ significantly across clients. The goal is to learn a generalized and robust
model F(Θ,X )→ Y parameterized by Θ that performs well on all clients’ data distributions:

min
Θ

∑
k∈K

E(x,y)∼pk [L(F(Θ, x), y)] (1)

where L : Ŷ × Y → R+ is the objective function, e.g. cross-entropy loss for classification task.

2.2 LOCAL TRAINING

In each round t, the server randomly selects a set of clients St ⊆ K from the pool of available
clients. The server then distributes the global CVAE model parameters (Φt,Ψt) to all the selected
clients. Each client k ∈ St then sets its local CVAE model parameters as ϕk,t ← Φt, ψk,t ← Ψt.
Subsequently, for each epoch e with learning rate ηl, the clients update their local model parameters
by minimizing the local objective, as follows:

θe+1
k,t = θek,t − ηl∇θek,t

LC(θek,t, x, y) (2)

Here, LC is a combined loss function defined as:

LC(θet,k, x, y) = LCE(θet,k, x, y) + λfLvf (θet,k, fx, fy) (3)

+ λf̃ L̃vf (θ
e
t,k, fx, fỹ) + λcLvc(θet,k, fỹ, ỹ)

where LCE(θet,k, x, y) is the cross-entropy (CE) loss between the predicted and target values,
Lvf (θet,k, fx, fy) is the mean-squared error (MSE) loss between the model features fx and CVAE
generated features fy to enhance intra-class consistency, L̃vf (θet,k, fx, fỹ) is the negative MSE loss
between the model features fx and CVAE generated features fỹ to increase inter-class separation,
and Lvc(θet,k, fỹ, ỹ) is the CE loss between the predicted label of features fỹ generated by the CVAE
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and the target label ỹ. λf , λf̃ , and λc are hyper-parameters that control the relative importance of the
Lvf , L̃vf and Lvc terms, respectively. Here ỹ ∈ {1, .., C}|ỹ ̸= y, is a randomly selected class from
all possible classes, with the constraint that ỹ ̸= y. This random class selection helps the CVAE
learn to generate diverse and representative features for different classes including missing classes.

After locally updating the client model using global CVAE parameters, the client adapts to the fea-
ture shift by fine-tuning the CVAE model following Reptile meta-training approach. Finally, the
clients share their updated CVAE model parameters with the server. Ovserve that, in FLAIR, the
CVAE model emphasizes feature-level reconstruction while injects noise into latent input features
generated by local model. Therefore, the sharing of CVAE model parameters significantly reduces
the exposure of sensitive information and effectively mitigates various privacy attacks while main-
taining high performance.

2.3 CVAE FOR FEATURE GENERATION

To alleviate the impact of non-IID data in federated learning, we propose training a CVAE
model on each client’s local dataset to model the class-conditional feature distributions p(z|fx, y)
and p(fy|z, y). The CVAE consists of an encoder network qϕ(z|fx, y) and a decoder network
pψ(fy|z, y), parameterized by ϕ and ψ, respectively. Given an input feature vector fx ∈ Rd and its
corresponding label y ∈ 1, . . . , C, the encoder maps (fx, y) to a latent code z ∈ Rl, where l is the
dimensionality of the latent space. The latent code z is assumed to follow a multivariate Gaussian
distribution N (µ, diag(σ2)), where the mean µ ∈ Rl and variance σ2 ∈ Rl are outputs of the
encoder network. The decoder network takes as input a latent code z sampled fromN (µ, diag(σ2))

and the label y, and reconstructs the input feature vector f̂x. The goal is to maximize the likelihood
of the input features given the latent code and labels, i.e. pψ(fx|z, y). For each client k, the CVAE
model is trained by maximizing the evidence lower bound (ELBO) of the log-likelihood:

LCVAE = E(x,y)∼Dk

[
Eqϕk,t

(z|x,y)

(1
d

d∑
i=1

(fxi
− f̂xi

)2
)
− KL

(
qϕk,t

(z|x, y)∥p(z|y)
)]

(4)

where Dk denotes the data distribution for client k, while (ϕk,t, ψk,t) represent the parameters of
the CVAE encoder and decoder for client k, respectively, and p(z|y) is the prior distribution over
the latent codes for each class, typically chosen to be a standard Gaussian N (0, I). The first term
in the ELBO is the reconstruction loss, which encourages the decoder to accurately reconstruct the
input features. The second term is the Kullback-Leibler (KL) divergence between the posterior
distribution qϕk,t

(z|fx, y) and the prior p(z|y), which acts as a regularizer to prevent over-fitting.
In practice, the ELBO is optimized using stochastic gradient descent, with the reconstruction loss
approximated by the MSE between the input and reconstructed features:

LMSE(fx, f̂x) =
1

d

d∑
i=1

(fxi − f̂xi)2 (5)

and the KL divergence computed analytically for Gaussian distributions:

LKLD(µ, log σ
2) = KL(N (µ, diag(σ2))|N (0, I))

=
1

2

l∑
i=1

(µ2
i + σ2

i − log σ2
i − 1) (6)

The overall training objective is a weighted combination of the reconstruction loss, KL divergence,
and center loss:

LCVAE(x, x̂, µ, log σ
2, z, c) = LMSE(fx, f̂x) + λ · LKLD(µ, log σ

2) (7)

where λ is the hyper-parameter to control KL divergence. After training the CVAE on its local data,
each client can generate synthetic features fy by first sampling a latent code z ∼ p(z|ỹ) = N (0, I)
for a desired class y and a random latent space z̃, and then decoding it using the trained decoder
network: fy ∼ pψ(f̂x|z̃, y). These generated samples is used to maintain consistency between

4
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Algorithm 1 Reptile-based Local CVAE Training
1: Input: Global CVAE parameters (Φt, Ψt), Local dataset Dk, Hyper-parameters: (α)
2: Output: Client’s updated CVAE parameters (ϕk,t+1, ψk,t+1)
3: Initialize: Set client’s CVAE parameters: ϕk,t ← Φt, ψk,t ← Ψt
4: for each local epoch e = 1, 2, . . . , E do
5: for each batch (x, y) ∈ Dk do
6: fx ← F(θk,t+1, x)

7: f̂x, z, ŷ ← CVAE(ϕk,t, fx, y)
8: Compute LCVAE following Equation 4.
9: ϕupdatedk,t ← ϕoldk,t − α∇ϕold

k,t
LCVAE

10: ψupdatedk,t ← ψoldk,t − α∇ψold
k,t
LCVAE

11: end for
12: end for

intra-class and separation among inter-class additionally mitigate class imbalance. At each commu-
nication round t, client k generates mt samples per class from its CVAE to obtain an augmented
features Faug

k,t = Fk,t ∪ {(f̂xj , yj)|j ∈ 1 ·mt.C}. The use of class-conditional priors p(z|y) allows
the CVAE to learn a separate latent space for each class, enabling it to capture class-specific fea-
tures and variations. This is particularly beneficial in the federated learning setting, where the data
is often non-IID across clients. By generating diverse synthetic samples that follow the local class
distributions, the CVAE can help regularize the local models and improve their generalization to
unseen data.

2.4 REPTILE-BASED CVAE MODEL TRAINING

To address the challenge of dynamic feature shifts in federated learning, we utilize Reptile meta-
learning based CVAE model training. This technique is employed after each client’s local update to
adapt the CVAE model to the local data distribution while preserving the global knowledge.

The Reptile algorithm is a first-order meta-learning approach that aims to find a good initialization
of model parameters that can quickly adapt to new tasks with a few gradient steps. In the context
of federated learning, we treat each client’s local data as a separate task and use Reptile to learn a
meta-initialization of the CVAE parameters that can rapidly adapt to the local data distributions. For
a client k and its local dataset Dk, the Reptile-based CVAE training proceeds as follows:

In each communication round t, the server sends the global CVAE parameters Φt,Ψt to the selected
clients. Each client k initializes its local CVAE parameters ϕk,t, ψk,t with Φt,Ψt and performs E
epochs of training on its local dataset Dk. During CVAE model training, the client’s locally trained
model F(θk,t+1) is used to extract local features fx from the input data x, and the CVAE model
takes the features fx and labels y as input to reconstruct the features f̂x, generate latent variables
z, and predict the labels ŷ. The CVAE parameters ϕk,t, ψk,t are updated by minmizing LCVAE loss.
The overall training process is depicted in Algorithm 1.

The Reptile-based CVAE training allows the model to adapt to the local data distributions of each
client while maintaining the global knowledge learned across all clients. This approach helps miti-
gate the impact of dynamic feature shifts and enables more effective federated learning in non-IID
settings.

2.5 OVERALL TRAINING PROCESS

Algorithm 2 outlines the overall FLAIR training process across multiple clients. During the initial-
ization phase (lines 6-11), each client trains its local CVAE model and shares its parameters with the
server. Subsequently, the server aggregates the client parameters into its CVAE model (lines 12, 13).
For each communication round, a set of participating clients is randomly sampled (line 16) to engage
in local training. These selected clients train in parallel, updating their local models using their re-
spective datasets (lines 19-24). After local model training, each client utilizes the features generated
by its updated model to refine its local CVAE model using a Reptile-based approach (as detailed

5
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Algorithm 2 FLAIR: Federated Learning with Augmented and Improved Representations
1: Input: Number of clients K, number of communication rounds T , local datasets {Dk|k ∈ K},

local model learning rate ηl, CVAE learning rate ηCVAE, Clients initial CVAE model parameters
( ϕk,0, ψk,0|k ∈ K)

2: Output: Generalized and robust local model parameters ( Θk|k ∈ K )
3: Initialization:
4: Compute initial global CVAE parameters (Φ1,Ψ1):
5: for each client k ∈ K in parallel do
6: for epoch e = 1, . . . , ECVAE do
7: Compute LCVAE following Equation 4.
8: ϕe+1

k,0 ← ϕek,0 − ηCVAE∇ϕe
k,0
LCVAE

9: ψe+1
k,0 ← ψek,0 − ηCVAE∇ψe

k,0
LCVAE

10: end for
11: end for
12: Φ1 ← 1

|K|
∑
k∈K ϕk,1

13: Ψ1 ← 1
|K|

∑
k∈K ψk,1

14: Federated Training:
15: for each communication round t = 1, . . . , T do
16: Select a set of clients St for local training.
17: Local Training:
18: for each client k ∈ St in parallel do
19: for epocs e = 1, . . . , E do
20: Sample a batch of local dataset {x, y} ∈ Dk
21: Compute local features fx
22: Generate synthetic features fy, fỹ
23: Update local model parameters following Equation 2.
24: end for
25: Update local CVAE parameters (ϕk,t, ψk,t) following Algorithm 1.
26: Send updated (ϕk,t+1, ψk,t+1) to the server.
27: end for
28: Aggregation:
29: Aggregate CVAE parameters:
30: Φt+1 ← 1

|St|
∑
k∈St ϕk,t+1

31: Ψt+1 ← 1
|St|

∑
k∈St ψk,t+1

32: end for

in Algorithm 1). The updated local CVAE model parameters are then shared with the server for
aggregation. Finally, the server aggregates all the shared CVAE parameters of clients (lines 34 and
35). This process is iteratively repeated for each communication round, until it reaches convergence
criteria.

3 THEORETICAL ANALYSIS OF FLAIR

This section presents the following theorems, which collectively demonstrate the theoretical foun-
dations of FLAIR. Due to space constraints, the detailed proofs are reported in Appendix A.

1. Theorem 1 (Convergence of FLAIR) shows that both the client models and the global
CVAE converge to their respective optimal parameters.

2. Theorem 2 (Generalization Bound for FLAIR) provides a bound on the generalization
error, taking into account the effect of CVAE-based augmentation.

3. Theorem 3 (Feature Diversity) establishes that the features generated by the CVAE are
close to the true distribution of features for each class across all clients.

4. Theorem 4 (Client Model Robustness) demonstrates that the global CVAE helps in mak-
ing client models more robust and consistent, even when faced with test distributions that
may differ from their training distributions.
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These guarantees the effectiveness of FLAIR in addressing the challenges of federated learning in
non-IID settings, particularly in terms of improving generalization and robustness across heteroge-
neous client data distributions.

4 EXPERIMENT EVALUATION

4.1 IMPLEMENTATION

We implement FLAIR and the baseline methods using Python 3.9, leveraging the PyTorch library1.
The codebase consists of 7,718 lines of code (LoC). For local training, we utilized two distinct neural
network architectures: LeNet-5 and ResNet-18. The details of their architectures are as follows:

• LeNet-5: A 7-layer convolutional neural network (CNN) featuring 5x5 convolutional lay-
ers, tanh activations, and average pooling.

• ResNet-18: A CNN beginning with a 7x7 convolutional layer, followed by 4 residual
blocks, batch normalization, ReLU activation, and global average pooling.

In addition to local classification models, we have a CVAE model meant to learn enhanced features
representation. The CVAE model architecture consists of two components encoder and decoder
described as follows:

• Encoder: Two fully connected layers with batch normalization and ReLU activations. In-
put is the concatenation of input features and one-hot encoded class labels.

• Decoder: Two fully connected layers, batch normalization, ReLU activations, and an out-
put layer for reconstruction.

We employ the PyTorch SGD optimizer for updating model parameters during training.

4.2 EXPERIMENT SETUP

In this study, we conduct a comprehensive evaluation of FLAIR, by comparing its performance
against state-of-the-art approaches. To this aim, we consider the following 6 baseline methods:
FedAvg, SCAFFOLD, FedFA, FedProto, Elastic, and FLUTE, which represent a diverse range of
strategies for federated learning. Our experiments are performed on three widely-used datasets:
MNIST, CIFAR-10, CIFAR-100, and TinyImageNet, each presenting unique challenges and char-
acteristics. To investigate the effectiveness of FLAIR and the baseline methods under different model
architectures, we employ a variety of neural networks for local training. Specifically, when training
on the MNIST dataset, we utilize LeNet-5 model, which is well-suited for the task of handwrit-
ten digit recognition. For more complex CIFAR-10, CIFAR-100, and TinyImageNet datasets, we
employ ResNet-18 model, which already depicted a superior performance on image classification
tasks. To ensure fairness and reproducibility of our comparisons, we maintain fixed random seeds
and consistent settings across all experiments. This allows us to isolate the impact of federated
learning algorithms on model performance, minimizing the influence of random variations. For all
the experiments we use local model learning rate ηl = 0.01, batch size 16, number of local epochs
5, and for FLAIR’s CVAE model training we use Adam optimizer with learning rate ηCVAE = 0.001.
We conduct 150 communication rounds FL training for MNIST, 250 rounds for CIFAR-10, and 200
rounds for CIFAR-100 and TinyImageNet dataset.

4.3 DATASET DISTRIBUTION

To evaluate the performance under various heterogeneous settings, we establish the following three
distinct configurations of dataset distribution:

• Label Skew: In this setting, the label distribution varies across clients, simulating a scenario
where each client has a different proportion of samples from each class. To create a label-
skewed dataset, we use the Dirichlet distribution on the label ratios to ensure uneven label

1The code for our proposal can be found at: https://anonymous.4open.science/r/FLAIR-C512

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Dataset Method Beta Test Average Acc # of Comm
β ns = 0 ns = 0.1 ns = 0.2 Rounds

MNIST

FedAvg 0.5 96.82 96.80 96.43 150
0.05 94.39 94.10 93.75 150

SCAFFOLD 0.5 98.53 98.37 98.24 150
0.05 98.45 98.39 98.37 150

FedFA 0.5 96.80 96.77 96.43 150
0.05 94.32 94 93.7 150

FedProto 0.5 98.71 98.76 98.71 150
0.05 98.26 98.19 98.12 150

Elastic 0.5 97.31 97.26 96.89 150
0.05 94.92 94.41 94.06 150

FLAIR 0.5 98.83 98.56 98.49 150
0.05 98.59 98.55 98.52 150

CIFAR10

FedAvg 0.5 61.97 53.02 50.55 250
0.05 40.74 27.10 23.90 250

SCAFFOLD 0.5 78.19 70.28 63.45 250
0.05 41.26 35.67 26.32 250

FedFA 0.5 60.99 53.18 45.10 250
0.05 39.04 25.12 19.02 250

FedProto 0.5 78.77 71.55 65.30 250
0.05 49.34 35.54 26.29 250

Elastic 0.5 62.45 53.36 45.75 250
0.05 42.25 29.36 25.56 250

FLAIR 0.5 79.36 73.06 65.52 250
0.05 53.68 38.29 30.26 250

CIFAR100

FedAvg 0.5 21.68 17.24 15.56 200
0.05 20.52 15.43 11.87 200

SCAFFOLD 0.5 45.66 36.75 27.28 200
0.05 34.16 25.72 18.16 200

FedFA 0.5 21.52 19.84 17.96 200
0.05 20.69 15.34 11.73 200

FedProto 0.5 44.94 35.08 25.21 200
0.05 34.48 24.44 18.32 200

Elastic 0.5 22.13 18.76 16.32 200
0.05 23.20 15.87 12.24 200

FLAIR 0.5 47.89 37.69 27.53 200
0.05 38.79 26.86 22.34 200

Table 2: Performance comparison on four benchmark datasets with varying beta and noise levels.
The best results for each dataset and configuration are in highlighted in bold.

distributions among clients. The parameter β of the Dirichilet distribution decides the
extent of the skew. For our experiments we set β to 0.5 and 0.05.

• Quantity Skew: In quantity skew, the size of the local dataset varies across parties, although
data distribution may still be consistent among the parties. Like distribution-based label
skew setting, we use Dirichlet distribution to allocate different amounts of data samples
into each party.

• Feature Skew: In feature distribution skew, the feature distributions P (xi) vary across par-
ties although the knowledge P (yi|xi) is same. Here we use noise based feature skew with
other non IID configurations. In noise based skew, we distort the data slightly by adding
different levels of Gaussian noise into it. The intensity of the noise label can be controlled
by changing the coefficient associated with the Gaussian noise. We set the noise coefficient
ns to 0, 0.1 or 0.2 for our experiments.

4.4 PERFORMANCE AND PRIVACY ANALYSIS

In this section we evaluate the performance of our proposed approach, FLAIR, against state-of-the-
art federated learning algorithms such as FedAvg, SCAFFOLD, FedFA, FedProto, and Elastic. The
experiments are conducted using datasets with distribution-based label imbalance, generated through
Beta values of 0.5 (mild heterogeneity) and 0.05 (extreme heterogeneity), with added Gaussian noise
levels of 0, 0.1, and 0.2 to simulate feature skewness, as depicted in Table 2.

The results demonstrate that FLAIR consistently outperforms the state of the art methods across
various datasets, with the performance gap widening as dataset complexity and heterogeneity in-
crease. For example, while the performance boost of FLAIR on the MNIST dataset is marginal, it
becomes more pronounced on CIFAR-10 and even larger as heterogeneity (controlled by the Beta
value) rises. Furthermore, FLAIR is robust in the presence of increasing noise, making it well-suited
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Method MIA (↓) Gradient Leak (↓) Model Inversion (↓) Info Theoretic (↓)
FedProto ✗ ✗ 1.6876 ✗
Scaffold 0.4982 0.3156 1.5937 1.5328
FedAvg 0.4948 0.2817 1.9949 0.1192
Elastic 0.5088 0.3217 2.0949 0.1282
FedFA 0.4973 0.2719 1.9393 0.1406
FLAIR ✗ ✗ 0.3103 ✗

Table 3: Privacy Measure Metrics for Various Federated Learning Approaches, here ✗ denotes that
the privacy measure is not available

for scenarios with extreme data distributions, both in terms of noise and heterogeneity. For instance,
on CIFAR-10 dataset, when β = 0.05 and noise level 0.2 we get average test accuracy of FLAIR as
30.26, while the accuracy of the second best model, SCAFFOLD is 26.32. This type of noticeable
jumps is seen in the results in almost all cases which states the effectiveness of our proposed FLAIR
approach.

The superior performance of FLAIR is largely attributed to its use of CVAE-based class feature rep-
resentations, which, in a federated learning setting, can effectively approximate the feature distribu-
tion for each class. In contrast, methods like FedAvg, SCAFFOLD, and FedFA exhibit significant
performance degradation as the data becomes more heterogeneous. While FedProto, leveraging
class prototype-based representations, manages to mitigate some distribution challenges, FLAIR
outperforms it in nearly every test case due to the strength of its CVAE-based approach. These re-
sults affirm the suitability of FLAIR for complex and imbalanced federated learning environments.
Additional results are available in the Appendix B of the paper.

Table 3 shows a strong evidence in support of FLAIR’s privacy preserving capabilities across mul-
tiple metrics. It is immune to Membership Inference Attacks (MIA) and Gradient Leak attacks, as
indicated by the ✗ symbols. In the Model Inversion metric, FLAIR achieves the lowest score of
1.03, significantly outperforming other methods. The absence of an Info Theoretic score for FLAIR
(indicated by ✗) suggests that it does not leak information through this channel. The primary reason
behind this success is due to sharing of only locally trained CVAE model parameters, rather than
local model parameters, as described in Section 2. In particular, through the injection of noise into
the latent features, FLAIR substantially reduces the risk of inversion attacks, making exact recovery
of original data infeasible. The generalization of feature reconstructions further mitigates mem-
bership inference attacks by minimizing overfitting to specific data points. Moreover, the absence
of gradient and raw data sharing across the network significantly diminishes the attack surface for
gradient-based exploits. This synergistic combination of noise injection, feature-level focus, and
non-sharing of gradients establishes a robust privacy-preserving mechanism, effectively balancing
collaborative learning with stringent privacy requirements in federated learning applications.

To summarize, FLAIR demonstrates superior performance and enhanced privacy protection in com-
plex, imbalanced federated learning environments. It consistently outperforms existing methods
across various datasets and heterogeneity levels while providing robust privacy guarantees. These
results highlight the effectiveness of FLAIR’s CVAE-based approach in addressing both perfor-
mance and privacy challenges in federated learning.

5 RELATED WORK

Federated learning was first introduced in FedAvg McMahan et al. (2017) algorithm. This method
allows clients to collaboratively train models without directly sharing their data, thus preserving
privacy. However, despite the inherent privacy benefits, it presents several key challenges, partic-
ularly high communication costs and instability in model training due to data heterogeneity across
clients. FedAvgM Hsu et al. (2019) integrates momentum into the global model updates, speeding
up convergence in non-IID settings. While this reduces the number of communication rounds re-
quired, it introduces the need for careful hyperparameter tuning to maintain stability in diverse data
environments. FedProx Li et al. (2020) introduced a proximal term in the local objective function to
reduce client drift, which indirectly reduces communication by requiring fewer updates to converge.
However, FedProx still struggles in extreme non-IID distribution settings. SCAFFOLD Karimireddy
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et al. (2020) attempts to directly address client drift using control variates to stabilize local updates,
achieving better convergence with fewer rounds of communication, albeit with an increase in per-
round communication overhead due to additional information exchanged between clients and server.
Eastic Chen et al. (2023) improves convergence through aggregation by interpolating client models
according to its parameter sensitivity. However this requires sharing of additional client’s parameters
sensitivity with the server and struggle in extreme heterogeneous settings. FedFA Zhou et al. (2024)
is mainly used to address the issue of feature skewness by utilizing feature anchors but struggles
in others heterogeneous settings. FedProto Tan et al. (2022) addresses data heterogeneity in feder-
ated learning by aligning global feature distributions across clients. While this approach effectively
improves model performance, it shares class-specific features, potentially exposing sensitive class
information and making the system vulnerable to privacy attacks, such as feature inversion Wang
et al. (2019b). FedBN Li et al. (2021), on the other hand, applies client-specific batch normalization
layers to handle feature skew, but fails to generalize in settings with severe data imbalance, leading
to increased communication rounds as the global model struggles to converge. Recent works such
as FedFed Yang et al. (2023) and FLUTE Liu et al. (2024) explore more advanced techniques to
address data heterogeneity. FedFed enhances model accuracy by performing feature augmentation
across clients but introduces significant communication and computational overhead due to the need
for sharing additional feature information. Similarly, FLUTE employs feature learning and classi-
fier calibration to address heterogeneity, but it suffers from the need for extensive hyperparameter
tuning and full client participation, which leads to increased communication demands. In summary,
while most of the existing approaches primarily focus in addressing data heterogeneity, they often
introduce increased communication costs and heightened risks of privacy breaches.

6 CONCLUSION

This paper presents a novel FL approach, aiming to achieve a balance between performance, commu-
nication cost, and privacy. This is achieved by utilizing CVAE based feature augmentation approach
which helps in developing generalized and robust local models, making them effective in addressing
extreme heterogeneity. In particular, the augmented features helps the local models to promote con-
sistency in intra-class latent representations while simultaneously amplifying inter-class distinctions.
Further to adapt dynamic feature shifts in CVAE model we utilize Reptile meta-training approach.
Unlike existing approaches, the sharing of only CVAE model parameters, rather than local model
parameters, reduces privacy risks and communication overhead. Experimental results demonstrates
a significant performance improvement by 2.61% on an average in terms of accuracy with respect
to the second best performer in the literature. This highlights FLAIR’s ability to enhance the per-
formance of underrepresented classes in clients, leading to a more balanced and equitable learning
outcome. Furthermore, FLAIR exhibits faster convergence rates with reduced communication cost
compared to existing methods, maintaining its performance advantages even in extreme heteroge-
neous settings.
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Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2021.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems, 28, 2015.

Yi Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang. Feder-
ated learning with heterogeneous architectures using graph hypernetworks. Advances in Neural
Information Processing Systems, 35:1243–1256, 2022.

Xiang Wang, Yingying Han, Chanh Wang, Qiyu Zhao, Xie Chen, and Min Chen. Edge intelligence:
Paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE,
2019a.

Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong Qi. Beyond
inferring class representatives: User-level privacy leakage from federated learning. In IEEE IN-
FOCOM 2019-IEEE Conference on Computer Communications, pp. 2512–2520. IEEE, 2019b.

Jie Xu and Fei Wang. Federated learning in healthcare: A survey. ACM Computing Surveys, 2021.

Zhiqin Yang, Yonggang Zhang, Yu Zheng, Xinmei Tian, Hao Peng, Tongliang Liu, and Bo Han.
Fedfed: Feature distillation against data heterogeneity in federated learning. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=phnGilhPH8.

Yiding Zhang, John C Duchi, and Martin J Wainwright. Federated learning with non-iid data. arXiv
preprint arXiv:2007.13518, 2020.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

T. Zhou, J. Zhang, and D. K. Tsang. Fedfa: Federated learning with feature anchors to align features
and classifiers for heterogeneous data. IEEE Transactions on Mobile Computing, 23(06):6731–
6742, jun 2024. ISSN 1558-0660. doi: 10.1109/TMC.2023.3325366.

11

https://openreview.net/forum?id=LIQYhV45D4
https://openreview.net/forum?id=LIQYhV45D4
https://openreview.net/forum?id=phnGilhPH8
https://openreview.net/forum?id=phnGilhPH8


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

APPENDIX

A THEORETICAL ANALYSIS OF FLAIR

A.1 PRELIMINARIES AND NOTATION

Let K be the set of all clients, with |K| = K. For each client k ∈ K, let Dk be its local dataset, with
nk = |Dk| and n =

∑K
k=1 nk. Let θk,t ∈ Rd denote the local model parameters of client k at round

t. Let ϕt ∈ Rp and ψt ∈ Rq denote the global CVAE encoder and decoder parameters at round t,
respectively.

We define the following:

• L(θ;x, y): loss function for client models

• LCVAE(ϕ, ψ;x, y): loss function for CVAE
• Fk(θk) = E(x,y)∼Dk

[L(θk;x, y)]: expected loss for client k

• G(ϕ, ψ) = 1
K

∑K
k=1 E(x,y)∼Dk

[LCVAE(ϕ, ψ;x, y)]: expected CVAE loss

A.2 ASSUMPTIONS

We make the following assumptions:

Assumption 1 (Smoothness) Fk is L-smooth for all k: ∀θk, θ′k ∈ Rd,

∥∇Fk(θk)−∇Fk(θ′k)∥ ≤ L∥θk − θ′k∥ (8)

Assumption 2 (Strong Convexity) Fk is µ-strongly convex for all k: ∀θk, θ′k ∈ Rd,

Fk(θ
′
k) ≥ Fk(θk) + ⟨∇Fk(θk), θ′k − θk⟩+

µ

2
∥θ′k − θk∥2 (9)

Assumption 3 (Bounded Variance) The variance of stochastic gradients is bounded for both client
models and CVAE:

E(x,y)∼Dk
[∥∇L(θk;x, y)−∇Fk(θk)∥2] ≤ σ2, ∀k ∈ K,∀θk ∈ Rd (10)

E(x,y)∼Dk
[∥∇LCVAE(ϕk, ψk;x, y)−∇G(ϕ, ψ)∥2] ≤ σ2

CVAE, ∀k ∈ K,∀ϕk, ψk (11)

Assumption 4 (CVAE Lipschitz Continuity) The CVAE model is Lipschitz continuous with re-
spect to its parameters:

∥CVAE(x;ϕ, ψ)− CVAE(x;ϕ′, ψ′)∥ ≤ LCVAE(∥ϕ− ϕ′∥+ ∥ψ − ψ′∥) (12)

A.3 CONVERGENCE ANALYSIS

Lemma 1 (One-step Progress for Client Models) For any client k and round t ≥ 0, its one-step
convergence bound follows:

E[∥θk,t+1 − θ∗k∥2] ≤(1− µηl)E[∥θk,t − θ∗k∥2]− 2ηtE[Fk(θk,t)− Fk(θ∗k)]
+ η2l

(
σ2 + 6LγEηl + 8(E − 1)2γ2

) (13)

Proof 1 Detailed proof is reported in the Appendix .., due to space constraints. Let gk,t be the
average stochastic gradient computed by client k at round t over E local epochs. The update rule
for client k’s model parameters is θk,t+1 = θk,t − ηlgk,t. We begin by expanding ∥θk,t+1 − θ∗k∥2:

∥θk,t+1 − θ∗k∥2 = ∥θk,t − ηlgk,t − θ∗k∥2

= ∥θk,t − θ∗k∥2 − 2ηl⟨gk,t, θk,t − θ∗k⟩+ η2l ∥gk,t∥2

12
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Taking the expectation of both sides:

E[∥θk,t+1 − θ∗k∥2] = E[∥θk,t − θ∗k∥2]− 2ηlE[⟨gk,t, θk,t − θ∗k⟩] + η2l E[∥gk,t∥2] (14)

Using the strong convexity and smoothness of Fk, we can bound the inner product term:

⟨gk,t, θk,t − θ∗k⟩ ≥ Fk(θk,t)− Fk(θ∗k) +
µ

2
∥θk,t − θ∗k∥2 − ⟨gk,t −∇Fk(θk,t), θk,t − θ∗k⟩

For the gradient norm, we use the smoothness property and the definition of γ:

E[∥gk,t∥2] ≤ 4L(Fk(θk,t)− Fk(θ∗k)) + 2σ2 + 2γ2 (15)

Combining these bounds and applying Cauchy-Schwarz inequality to the error term, we get:

E[∥θk,t+1 − θ∗k∥2] ≤ (1− 2µηl)E[∥θk,t − θ∗k∥2]− 2ηl(1− ηlL)E[Fk(θk,t)− Fk(θ∗k)]
+ η2l (2σ

2 + 2γ2) + ηlσ
2

To account for E local epochs, we model this as E consecutive updates with learning rate ηl.
Applying the above inequality E times and using the convexity of Fk, we get the following:

E[∥θk,t+E − θ∗k∥2] ≤ (1− 2µηl)
EE[∥θk,t − θ∗k∥2]− 2Eηl(1− ηlL)E[Fk(θk,t)− Fk(θ∗k)]

+ Eη2l (2σ
2 + 2γ2) + Eηlσ

2 + 4Lη2l E(E − 1)γ2

Finally, using the fact that ηl ≤ 1/(4L) (which follows from our choice of ηl) and combining like
terms, we obtain the stated bound:

E[∥θk,t+1 − θ∗k∥2] ≤(1− µηl)E[∥θk,t − θ∗k∥2]− 2ηlE[Fk(θk,t)− Fk(θ∗k)]
+ η2l (σ

2 + 6LγEηl + 8(E − 1)2γ2)
(16)

Lemma 2 (One-step Progress for CVAE) For any round t ≥ 0, the convergence bound for CVAE
follows:

E[∥(ϕt+1, ψt+1)− (ϕ∗, ψ∗)∥2] ≤(1− LCVAEηCVAE)E[∥(ϕt, ψt)− (ϕ∗, ψ∗)∥2]
− 2ηCVAEE[G(ϕt, ψt)−G(ϕ∗, ψ∗)] + η2CVAEσ

2
CVAE

(17)

Proof 2 Detailed proof is reported in the Appendix .., due to space constraints. Let gt =
(∇ϕG(ϕt, ψt),∇ψG(ϕt, ψt)) be the gradient of the CVAE loss function at round t. The update
rule for the CVAE parameters is:

(ϕt+1, ψt+1) = (ϕt, ψt)− ηCVAEgt (18)

We begin by expanding ∥(ϕt+1, ψt+1)− (ϕ∗, ψ∗)∥2:

∥(ϕt+1, ψt+1)− (ϕ∗, ψ∗)∥2 = ∥(ϕt, ψt)− ηCVAEgt − (ϕ∗, ψ∗)∥2

= ∥(ϕt, ψt)− (ϕ∗, ψ∗)∥2 − 2ηCVAE⟨gt, (ϕt, ψt)
− (ϕ∗, ψ∗)⟩+ η2CVAE∥gt∥2

Taking the expectation of both sides:

13
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E[∥(ϕt+1, ψt+1)− (ϕ∗, ψ∗)∥2] =E[∥(ϕt, ψt)− (ϕ∗, ψ∗)∥2]
− 2ηCVAEE[⟨gt, (ϕt, ψt)− (ϕ∗, ψ∗)⟩] + η2CVAEE[∥gt∥2]

(19)

By the LCVAE-smoothness of G, we have:

G(ϕ∗, ψ∗) ≥ G(ϕt, ψt) + ⟨gt, (ϕ∗, ψ∗)− (ϕt, ψt)⟩+
1

2LCVAE
∥gt∥2 (20)

Rearranging this inequality:

⟨gt, (ϕt, ψt)− (ϕ∗, ψ∗)⟩ ≥ G(ϕt, ψt)−G(ϕ∗, ψ∗) +
1

2LCVAE
∥gt∥2 (21)

Substituting Equation 21 into Equation 19, we have:

E[∥(ϕt+1, ψt+1)− (ϕ∗, ψ∗)∥2] ≤E[∥(ϕt, ψt)− (ϕ∗, ψ∗)∥2]
− 2ηCVAEE[G(ϕt, ψt)−G(ϕ∗, ψ∗)]

− ηCVAEE[∥gt∥2]/LCVAE + η2CVAEE[∥gt∥2]

Now, using the assumption of bounded variance of stochastic gradients, E[∥gt∥2] ≤ σ2
CVAE, we get:

E[∥(ϕt+1, ψt+1)− (ϕ∗, ψ∗)∥2] ≤E[∥(ϕt, ψt)− (ϕ∗, ψ∗)∥2]
− 2ηCVAEE[G(ϕt, ψt)−G(ϕ∗, ψ∗)]

− ηCVAEσ
2
CVAE/LCVAE + η2CVAEσ

2
CVAE

Finally, rearranging terms:

E[∥(ϕt+1, ψt+1)− (ϕ∗, ψ∗)∥2] ≤(1− ηCVAE/LCVAE)E[∥(ϕt, ψt)− (ϕ∗, ψ∗)∥2]
− 2ηCVAEE[G(ϕt, ψt)−G(ϕ∗, ψ∗)] + η2CVAEσ

2
CVAE

Theorem 1 (Convergence of FLAIR) Let Assumptions 1-4 hold. Let the learning rates be set as
ηl =

2
µ(t+γ) for client models and ηCVAE = 2

LCVAE(t+γ)
for the CVAE, where γ = max{8L/µ,E}

and E is the number of local epochs. Then, for T ≥ 1, the output of FLAIR satisfies, following
convergence bound:

1

K

K∑
k=1

E[Fk(θ̄k,T )]− Fk(θ∗k) ≤
4Lγ

µT

(
1 + log

(
T

γ
+ 1

))
(22)

E[G(ϕ̄T , ψ̄T )]−G(ϕ∗, ψ∗) ≤ 4LCVAEγ

T

(
1 + log

(
T

γ
+ 1

))
(23)

where θ̄k,T = 1
T

∑T
t=1 θk,t, ϕ̄T = 1

T

∑T
t=1 ϕt, ψ̄T = 1

T

∑T
t=1 ψt, and θ∗k, ϕ

∗, ψ∗ are the respective
optimal parameters.

Proof 3 (Theorem 1) Detailed proof is reported in the Appendix .., due to space constraints. We
prove the convergence for client models and CVAE separately, then combine the results.

For client models, we sum the result of Lemma 1 over all clients and all rounds, which give:
K∑
k=1

T−1∑
t=0

2ηlE[Fk(θk,t)− Fk(θ∗k)] ≤
K∑
k=1

E[∥θk,0 − θ∗k∥2]

+

K∑
k=1

T−1∑
t=0

η2l
(
σ2 + 6LγEηl + 8(E − 1)2γ2

) (24)

14
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Using Jensen’s inequality and the fact that Fk is convex for all k, we have:

1

K

K∑
k=1

(Fk(θ̄k,T )− Fk(θ∗k)) ≤
1

KT

K∑
k=1

T−1∑
t=0

(Fk(θk,t)− Fk(θ∗k)) (25)

Combining these inequalities and using the properties of the chosen learning rate ηt, we arrive at
the bound for client models.

For the CVAE, we sum the result of Lemma 2 over all rounds and obtain:

T−1∑
t=0

2ηCVAEE[G(ϕt, ψt)−G(ϕ∗, ψ∗)] ≤ E[∥(ϕ0, ψ0)− (ϕ∗, ψ∗)∥2] + Tη2CVAEσ
2
CVAE (26)

Using Jensen’s inequality and the convexity of G:

G(ϕ̄T , ψ̄T )−G(ϕ∗, ψ∗) ≤ 1

T

T−1∑
t=0

(G(ϕt, ψt)−G(ϕ∗, ψ∗)) (27)

Multiplying both sides of the Equation 27 by 2TηCVAE, we get:

2TηCVAE(G(ϕ̄T , ψ̄T )−G(ϕ∗, ψ∗)) ≤ 2ηCVAE

T−1∑
t=0

(G(ϕt, ψt)−G(ϕ∗, ψ∗)) (28)

From Equation 26, we can bound the right-hand side and have:

2TηCVAE(G(ϕ̄T , ψ̄T )−G(ϕ∗, ψ∗)) ≤ E[∥(ϕ0, ψ0)− (ϕ∗, ψ∗)∥2] + Tη2CVAEσ
2
CVAE (29)

Dividing both sides by 2TηCVAE:

G(ϕ̄T , ψ̄T )−G(ϕ∗, ψ∗) ≤ E[∥(ϕ0, ψ0)− (ϕ∗, ψ∗)∥2]
2TηCVAE

+
ηCVAEσ

2
CVAE

2
(30)

Now, we use the properties of the chosen learning rate. Recall that ηCVAE = 2
LCVAE(t+γ)

, where
γ = max{8L/µ,E}. This means that ηCVAE ≤ 2

LCVAEγ
for all t.

Substituting this into our bound:

G(ϕ̄T , ψ̄T )−G(ϕ∗, ψ∗) ≤ LCVAEγE[∥(ϕ0, ψ0)− (ϕ∗, ψ∗)∥2]
4T

+
σ2

CVAE

LCVAEγ
(31)

We can further simplify this by noting that E[∥(ϕ0, ψ0) − (ϕ∗, ψ∗)∥2] ≤ 2
LCVAE

(G(ϕ0, ψ0) −
G(ϕ∗, ψ∗)), which follows from the LCVAE-smoothness of G.

Applying this and combining terms:

G(ϕ̄T , ψ̄T )−G(ϕ∗, ψ∗) ≤ γ(G(ϕ0, ψ0)−G(ϕ∗, ψ∗))

2T
+

σ2
CVAE

LCVAEγ
(32)

Finally, we can express this in the form of the theorem statement by noting that γ
2T ≤

4γ
T (1+log(Tγ +

1)) for T ≥ 1, and absorbing the constant terms into the big-O notation:

G(ϕ̄T , ψ̄T )−G(ϕ∗, ψ∗) ≤ 4LCVAEγ

T

(
1 + log

(
T

γ
+ 1

))
(33)
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A.4 GENERALIZATION ANALYSIS

Theorem 2 (Generalization Bound for FLAIR) Let H be the hypothesis class of the client mod-
els, and let V be the CVAE model class. Let fv : X → X ′ be the feature augmentation function
induced by v ∈ V , where X ′ is the augmented feature space. Assume that each component of the
loss function is ρ-Lipschitz with respect to its relevant arguments. Then, with probability at least
1− δ, for all h ∈ H and v ∈ V , the average expected loss over all clients will be lesser or equal to
a upper bound as follows:

1

K

K∑
k=1

E(x,y)∼Dk
[LC(h, v, x, y)] ≤

1

K

K∑
k=1

L̂C,k(h, v) + 2ρRn(H)

+ 2ρRn(V) + 3

√
log(2/δ)

2n

(34)

where LC is the combined loss function defined as:
LC(h, v, x, y) =LCE(h(x), y) + λfLMSE(fh(x), fv(x, y))

− λf̃LMSE(fh(x), fv(x, ỹ)) + λcLCE(h(fv(x, ỹ)), ỹ)
(35)

and L̂C,k(h, v) is the empirical combined loss on client k’s dataset:

L̂C,k(h, v) =
1

nk

nk∑
i=1

LC(h, v, xki , yki ) (36)

Here, LCE is the cross-entropy loss, LMSE is the mean squared error, fh represents the features
extracted by the client model, ỹ is a randomly selected class different from y, and λf , λf̃ , λc are
weighting hyperparameters. Rn(H) and Rn(V) are the Rademacher complexities of H and V
respectively, and n =

∑K
k=1 nk is the total number of samples across all clients.

Proof 4 Detailed proof is reported in the Appendix .., due to space constraints. Let Dk denote the
true data distribution for client k, and let D = ∪Kk=1Dk be the overall data distribution. We begin
by decomposing the expected combined loss:

1

K

K∑
k=1

E(x,y)∼Dk
[LC(h, v, x, y)]

=
1

K

K∑
k=1

E(x,y)∼Dk
[LCE(h(x), y) + λfLMSE(fh(x), fv(x, y))

− λf̃LMSE(fh(x), fv(x, ỹ)) + λcLCE(h(fv(x, ỹ)), ỹ)]

(37)

By the linearity of expectation, we can bound each term separately. For the cross-entropy terms, we
apply the classical generalization bound based on Rademacher complexity:

1

K

K∑
k=1

E(x,y)∼Dk
[LCE(h(x), y)] ≤

1

K

K∑
k=1

L̂CE,k(h) + 2ρCERn(H) +
√

log(8/δ)

2n
(38)

where L̂CE,k(h) = 1
nk

∑nk

i=1 LCE(h(xki ), yki ) and ρCE is the Lipschitz constant for the cross-
entropy loss.

For the MSE terms involving CVAE, we have:

1

K

K∑
k=1

E(x,y)∼Dk
[LMSE(fh(x), fv(x, y))]

≤ 1

K

K∑
k=1

L̂MSE,k(h, v) + 2ρMSE(Rn(H) +Rn(V)) +
√

log(8/δ)

2n

(39)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where L̂MSE,k(h, v) = 1
nk

∑nk

i=1 LMSE(fh(x
k
i ), fv(x

k
i , y

k
i )) and ρMSE is the Lipschitz constant

for the MSE loss.

For the negative MSE term, we use the fact that if f(x) ≤ g(x) for all x, then sup f(x) ≤ sup g(x):

− 1

K

K∑
k=1

E(x,y)∼Dk
[LMSE(fh(x), fv(x, ỹ))]

≤ − 1

K

K∑
k=1

L̂MSE,k(h, v, ỹ) + 2ρMSE(Rn(H) +Rn(V)) +
√

log(8/δ)

2n

(40)

For the classifier tuning term:

1

K

K∑
k=1

E(x,y)∼Dk
[LCE(h(fv(x, ỹ)), ỹ)]

≤ 1

K

K∑
k=1

L̂CE,k(h ◦ fv, ỹ) + 2ρCE(Rn(H) +Rn(V)) +
√

log(8/δ)

2n

(41)

Combining all these bounds and applying the union bound over the four components, we obtain:

1

K

K∑
k=1

E(x,y)∼Dk
[LC(h, v, x, y)]

≤ 1

K

K∑
k=1

L̂C,k(h, v) + 2ρ(Rn(H) +Rn(V)) + 4

√
log(8/δ)

2n

(42)

where ρ = max{ρCE , λfρMSE , λf̃ρMSE , λcρCE}.

Finally, we can simplify the confidence term:

4

√
log(8/δ)

2n
≤ 3

√
log(2/δ)

2n
(43)

This simplification uses the fact that log(8) ≤ 3 log(2).

Therefore, we conclude that with probability at least 1− δ, for all h ∈ H and v ∈ V:

1

K

K∑
k=1

E(x,y)∼Dk
[LC(h, v, x, y)] ≤

1

K

K∑
k=1

L̂C,k(h, v) + 2ρRn(H)

+ 2ρRn(V) + 3

√
log(2/δ)

2n

(44)

A.5 CVAE ANALYSIS

Theorem 3 (Feature Diversity) Let fy be the features generated by the CVAE for class y, and let
Dy be the true distribution of features for class y. Then, under suitable regularity conditions on the
CVAE, the expected average KL divergence, over all clients k, between the features generated by
each client’s CVAE and the true feature distribution, is not greater than a constant ϵ:

1

K

K∑
k=1

Efy∼CVAEk
[KL(p(fy)∥Dy)] ≤ ϵ (45)
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where ϵ is a small constant that depends on the capacity of the CVAE and the amount of training
data, and CVAEk denotes the CVAE model for client k.

Proof 5 Detailed proof is reported in the Appendix .., due to space constraints. Let qϕk
(z|x, y)

be the encoder and pψk
(x|z, y) be the decoder of the CVAE for client k, where ϕk and ψk are the

encoder and decoder parameters, respectively. The CVAE is trained to maximize the evidence lower
bound (ELBO) for each client:

ELBOk = Eqϕk
(z|x,y)[log pψk

(x|z, y)]− KL(qϕk
(z|x, y)∥p(z|y)) (46)

where p(z|y) is the prior distribution of the latent variable z given class y.

By the properties of the ELBO, we have for each client k:

log pk(x|y) ≥ ELBOk (47)

Now, let pCVAEk
(fy) be the distribution of features generated by the CVAE for class y on client k.

We can bound the KL divergence for each client:

KL(pCVAEk
(fy)∥Dy) = Efy∼pCVAEk

[log pCVAEk
(fy)− logDy(fy)] (48)

≤ Efy∼pCVAEk
[log pCVAEk

(fy)− ELBOk] (49)

= Efy∼pCVAEk
[log pCVAEk

(fy)− Eqϕk
(z|fy,y)[log pψk

(fy|z, y)] (50)

+ KL(qϕk
(z|fy, y)∥p(z|y))] (51)

The first two terms in the last expression form the reconstruction error, which is minimized during
CVAE training. The last term is the KL divergence between the approximate posterior and the prior,
which is also minimized.

Now, we take the average over all clients:

1

K

K∑
k=1

Efy∼CVAEk
[KL(p(fy)∥Dy)] ≤

1

K

K∑
k=1

Efy∼pCVAEk
[REk + KL(qϕk

(z|fy, y)∥p(z|y))] (52)

where REk = log pCVAEk
(fy) − Eqϕk

(z|fy,y)[log pψk
(fy|z, y)] is the reconstruction error for client

k.

In FLAIR, the CVAE parameters are shared and updated globally. This global sharing encourages
consistency across clients. Let ϕ and ψ be the global CVAE parameters. We can bound the deviation
of each client’s CVAE from the global one:

∥ϕk − ϕ∥ ≤ δϕ, ∥ψk − ψ∥ ≤ δψ (53)

where δϕ and δψ are small constants due to the federated learning process.

Using the Lipschitz continuity of the CVAE (which is one of the suitable regularity conditions men-
tioned in the theorem statement), we can bound the difference in reconstruction error and KL diver-
gence between each client’s CVAE and the global CVAE:

|REk − REglobal| ≤ LRE(δϕ + δψ) (54)
|KL(qϕk

(z|fy, y)∥p(z|y))− KL(qϕ(z|fy, y)∥p(z|y))| ≤ LKLδϕ (55)

where LRE and LKL are Lipschitz constants.

Substituting these bounds into our average KL divergence:
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1

K

K∑
k=1

Efy∼CVAEk
[KL(p(fy)∥Dy)] ≤ Efy∼pCVAEglobal

[REglobal + KL(qϕ(z|fy, y)∥p(z|y))] (56)

+ LRE(δϕ + δψ) + LKLδϕ (57)

The global CVAE is trained to minimize the reconstruction error and the KL divergence term. With
sufficient capacity and training data, these terms can be made arbitrarily small. Let’s denote their
sum as ϵCVAE. Then:

1

K

K∑
k=1

Efy∼CVAEk
[KL(p(fy)∥Dy)] ≤ ϵCVAE + LRE(δϕ + δψ) + LKLδϕ = ϵ (58)

where ϵ = ϵCVAE + LRE(δϕ + δψ) + LKLδϕ is a small constant that depends on the capacity of the
CVAE, the amount of training data, and the consistency of the federated learning process.

Theorem 4 (Client Model Robustness) Let θk and θl be the model parameters of two different
clients k and l after training with FLAIR. Let Dtest be a test distribution that may differ from the
training distributions of clients k and l. Then, under suitable conditions:

|Ex∼Dtest [L(θk;x, y)− L(θl;x, y)]| ≤ δ (59)
where δ is a small constant that depends on the CVAE architecture, the federated training procedure,
and the dissimilarity between client distributions.

Proof 6 Detailed proof is reported in the Appendix .., due to space constraints. Let fk = CVAEk(x)
and fl = CVAEl(x) be the features generated by the CVAE for clients k and l respectively, given
an input x. We can decompose the difference in loss as follows:

|Ex∼Dtest [L(θk;x, y)− L(θl;x, y)]| ≤ |Ex∼Dtest [L(θk; fk, y)− L(θl; fl, y)]|
+ |Ex∼Dtest [L(θk;x, y)− L(θk; fk, y)]|
+ |Ex∼Dtest [L(θl;x, y)− L(θl; fl, y)]|

(60)

For the first term, we can use the fact that the global CVAE parameters are shared across clients,
which means that fk and fl are generated from the same distribution. Therefore:

|Ex∼Dtest [L(θk; fk, y)− L(θl; fl, y)]| ≤ ϵ1 (61)

where ϵ1 is small due to the consistency enforced by the global CVAE.

For the second and third terms, we can use the properties of the CVAE and the Lipschitz continuity
of the loss function:

|Ex∼Dtest [L(θk;x, y)− L(θk; fk, y)]| ≤ LL · Ex∼Dtest [∥x− fk∥] ≤ ϵ2 (62)

|Ex∼Dtest [L(θl;x, y)− L(θl; fl, y)]| ≤ LL · Ex∼Dtest [∥x− fl∥] ≤ ϵ3 (63)

where LL is the Lipschitz constant of the loss function, and ϵ2, ϵ3 are small due to the CVAE’s
ability to generate features close to the original input.

Combining these bounds, we get:

|Ex∼Dtest [L(θk;x, y)− L(θl;x, y)]| ≤ ϵ1 + ϵ2 + ϵ3 = δ (64)

This shows that the difference in performance between any two client models on a test distribution
is bounded, indicating robustness and generalization across clients.

B ADDITIONAL EXPERIMENTAL RESULTS
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(Dataset/ Method Beta Test Average Acc # of Comm
Model) ns = 0 ns = 0.1 ns = 0.2 Rounds

TinyImageNet

FedAvg 0.5 13.62 10.46 9.17 200
0.05 10.18 8.47 5.67 200

SCAFFOLD 0.5 26.81 22.32 18.26 250
0.05 19.33 16.54 12.36 200

FedFA 0.5 12.36 10.19 8.06 200
0.05 10.18 8.47 5.61 200

FedProto 0.5 26.69 23.34 18.56
0.05 18.51 15.57 11.85 200

Elastic 0.5 14.07 10.89 10.07 200
0.05 10.46 8.79 6.08 200

FLAIR
0.5 28.23 26.51 22.31 200

0.05 21.09 18.66 15.01 200

Table 4: Comparison of FL methods on TinyImageNet with varying beta and noise levels. The best
results for each configuration are in bold.

(Dataset/ Method Beta Test Average Acc # of Comm
Model) ns = 0 ns = 0.1 ns = 0.2 Rounds

MNIST FedAvg 0.3 96.614 96.34 96.12 150
FedFA 0.3 96.59 96.33 96.14 150

FedProto 0.3 98.89 98.73 98.58 150
SCAFFOLD 0.3 98.49 98.40 98.39 150

FLAIR 0.3 98.91 98.81 98.65 150

CIFAR FedAvg 0.3 57.62 50.11 39.67 250
FedFA 0.3 58.13 49.85 40.65 250

FedProto 0.3 76.60 68.22 56.87 250
SCAFFOLD 0.3 74.91 66.84 55.73 250

FLAIR 0.3 78.32 71.50 61.56 250

Table 5: Comparison of FL methods on four benchmark datasets with varying beta and noise levels.
The best results for each dataset and configuration are in bold.

(Dataset/ Method Classes Test Average Acc # of Comm
Model) ns = 0 ns = 0.1 ns = 0.2 Rounds

MNIST FedAvg 2 94.10 93.69 93.15 150
FedFA 2 94.08 93.69 93.12 150

FedProto 2 98.53 98.59 98.39 150
SCAFFOLD 2 98.65 98.39 98.21 150

FLAIR 2 98.75 98.68 98.41 150

CIFAR FedAvg 2 48.14 38.77 32.16 250
FedFA 2 48.01 40.88 31.51 250

FedProto 2 36.71 30.79 30.58 250
SCAFFOLD 2 36.85 30.66 28.44 250

FLAIR 2 37.71 33.71 32.64 250

CIFAR100 FedAvg 2 28.93 19.29 14.83 250
FedFA 2 28.35 19.57 14.85 250

FedProto 2 32.93 23.29 20.18 250
SCAFFOLD 2 32.87 22.99 19.78 250

FLAIR 2 34.59 24.88 22.63 250

Table 6: Comparison of FL methods on benchmark datasets with quantity skew. The best results for
each dataset and configuration are in bold.
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Figure 2: Top1-accuracy plots MNIST beta = 0.5 and noise level 0, 0.1, and 0.2.
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Figure 3: Top1-accuracy plots CIFAR beta = 0.5 and noise level 0, 0.1, and 0.2.
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Figure 4: Top1-accuracy plots CIFAR100 beta = 0.05 and noise level 0, 0.1, and 0.2.
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