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ABSTRACT

Federated Learning (FL) enables collaborative model training across decentralized
clients while preserving data privacy. However, its performance declines in chal-
lenging heterogeneous data settings. To mitigate this, existing FL frameworks not
only share locally trained parameters but also exchange additional information —
such as control variates, client features, and classifier characteristics — to address
the effects of class imbalance and missing classes. However, this leads to in-
creased communication costs and heightened risks of privacy breaches. To strike
a balance between communication efficiency, privacy protection, and adaptabil-
ity to heterogeneous data distributions, we propose FLAIR, a novel FL approach
with augmented and improved feature representations. FLAIR utilizes Class Vari-
ational Autoencoders (CVAE) for feature augmentation, mitigating class imbal-
ance and missing class issues. It also incorporates Reptile meta-training to fa-
cilitate knowledge transfer between model updates, adapting to dynamic feature
shifts. To generalize model update, FLAIR shares only local CVAE parameters
instead of local model parameters, which reduces both communication costs and
privacy risks. Our experiments on benchmark datasets — such as MNIST, CIFAR-
10, CIFAR-100, and TinyImageNet — demonstrates a significant enhancement in
model convergence and accuracy compared to state-of-the-art solutions, while re-
ducing communication overhead and privacy risks.

1 INTRODUCTION

Federated Learning (FL) has gained prominence as an effective approach for collaboratively training
machine learning models across decentralized datasets, ensuring data privacy by eliminating the
need to share raw data between clients McMahan et al.|(2017). Despite its potential, FL. performance
tends to degrade significantly when data distributions across clients are highly heterogeneous or non-
identically distributed (non-IID) Zhao et al.|(2018)), posing a critical challenge for many real-world
applications.

Addressing this issue has sparked substantial research, as recent advancement embraces various
strategies, such as variance reduction Acar et al.| (2021); Karimireddy et al.| (2020), adaptive aggre-
gation Hsu et al.|(2019); Redd1 et al.[(2021)); (Chen et al.|(2023)), feature distillation|Yang et al.| (2023)),
representation learning |[Zhang et al.|(2020); Tan et al.| (2022)); [Liu et al.| (2024) etc., to mitigate the
impact of non-IID data on model convergence and performance in FL settings. As these strategies
often involve sharing additional information among clients and the server, they lead to increased
communication costs and heightened risks of privacy breaches, such as membership inference, fea-
tures inference, gradient leakage, and model inversion attacks, etc., [Nasr et al.| (2019); Melis et al.
(2019); |Wang et al.| (2019b). These factors can limit the practical applicability of state-of-the-art
approaches, especially in scenarios where communication efficiency and privacy are critical, such
as in mobile edge computing Wang et al.| (2019a), internet of things (IoT) networks Nguyen et al.
(2021)), and healthcare applications [ Xu & Wang|(2021). A comparative summary of the communi-
cation cost incurred by state-of-the-art approaches is shown in Table[I] Therefore, there is a clear
need for a holistic approach that improves performance in heterogeneous settings while addressing
communication overhead and enhancing privacy protection in the FL system.

In response to this, we present FLAIR (Federated Learning with Augmented and Improved fea-
ture Representations), a novel FL framework designed to systematically guide local training based
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Method Local Model sharing | Sharing of Additional Information Communication Cost per Round
FedAvg|McMahan et al.|(2017) v X O(S; x M)
FedAvgM |Hsu et al.|(2019) v X O(S, x M)
FedProx|Lti et al.|(2020) v X O(S, x M)
FedFA [Zhang et al.[(2020) v X O(S, x M)

SCAFFOLD [Karimireddy et al.|(2020} v Control variates (V) O(S, x (M +V))
FedProto|Tan et al.|(2022) X Global Protos (P), Protos (P) O(Sy x (P + P))
Elastic|Chen et al.|[(2023) v Layer-wise sensitivity (L) O(S; x (M +1L))
FedFed|Yang et al.|(2023) v Global shared features (F), Local sensi- | O(S; x M + K x (F + F))

tive features (F')
FLUTE|Liu et al.|(2024) v Local classifier weight C' O(S; x (M +())
FCAIR X CVAE Parameters F O(E)

Table 1: Comparative summary of federated learning approaches in terms of key attributes and
communication cost per round (K : total number of clients, S;: number of local models, M: size of
the model parameters)

on class-oriented features generated from conditional variational autoencoders (CVAE) |Sohn et al.
(2015). This approach effectively addresses issues of class imbalance and missing classes while also
reducing communication costs and enhancing privacy. In particular, FLAIR adopts the following key
strategies:

1. Feature Augmentation: Leveraging CVAE, we generate synthetic feature samples that
enable clients to learn class-specific representations, improving overall feature extraction
and representation learning.

2. Classifier Tuning: The CVAE-based framework allows clients to generate features for all
(including missing) classes, addressing issues of class imbalance and the absence of certain
classes in local datasets due to extreme non-1ID distributions.

3. Knowledge Transfer: While CVAE can generate features for a specific round, they may
struggle to adapt to evolving feature representations during local model updates. Rep-
tile meta-training approach Nichol et al.| (2018) helps bridge this gap by enabling efficient
transfer of knowledge between previous and updated CVAE, ensuring consistency in fea-
ture generation despite changes in local models.

The novelty of our approach lies in the synergistic combination of feature generation modeling and
representation learning techniques. This holistic strategy not only addresses the symptoms of non-
IID data (e.g., model divergence) but also improves communication overhead and privacy of clients.

To summarize, the primary contributions of this paper are as follows:

1. We propose FLAIR, a novel approach that addresses the challenges of learning from ex-
treme non-IID data distributions in federated settings, which reduces communication over-
head and privacy risks.

2. We develop a CVAE-based local feature augmentation strategy to generate synthetic fea-
tures following local class distributions, mitigating class imbalance and missing class is-
sues.

3. We adopt Reptile meta-training approach in FL to mitigate dynamic features drift for sta-
bilizing CVAE model training.

4. We demonstrate FLAIR’s superior performance compared to state-of-the-art methods
through extensive experiments on benchmark datasets.

The rest of this paper is organized as follows: Section |2 provides a detailed description of our
proposed approach. Section [3] presents theoretical analysis of FLAIR, proving its convergence and
robustness. Sectiond]demonstrates performance evaluation of FLAIR, along with comparative sum-
mary w.r.t. state of the art works. Section [5]discusses the state-of-the-artworks. Finally, Section [6]
concludes our work.

2 FLAIR: PROPOSED FL APPROACH

The primary objective of FLAIR is to maintain a robust and generalized global model in the presence
of extreme heterogeneous settings, while maintaining a balance between communication costs and
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Figure 1: FLAIR architecture

privacy measures. The clients in FLAIR are responsible for locally train the global and CVAE model,
whereas the server is responsible for aggregating locally trained CVAE model. Let us describe this
process in detail:

2.1 TRAINING OBJECTIVES

Consider a federated learning setting with a set of clients K, where each client £ € K has a local
dataset Dy, = {(z},,v;)}.*,, where ny is the total number of data samples in client k. The data
samples a:}C € X and labels y,’€ € Y = {1,...,C} are drawn from client-specific distributions
pr(z,y), where C is the total number of unique classes among all clients. In the non-IID setting, the
distributions pj, can differ significantly across clients. The goal is to learn a generalized and robust
model F(©,X) — ) parameterized by © that performs well on all clients’ data distributions:

m(gnZE(x,y)Npk [ﬁ(]—“(@,m),y)] (1)

kekK

where £: Y x Y — R is the objective function, e.g. cross-entropy loss for classification task.

2.2 LocAL TRAINING

In each round ¢, the server randomly selects a set of clients S; C K from the pool of available
clients. The server then distributes the global CVAE model parameters (®;, ¥;) to all the selected
clients. Each client k& € S; then sets its local CVAE model parameters as ¢ ; < Oy, g + V4.
Subsequently, for each epoch e with learning rate 7;, the clients update their local model parameters
by minimizing the local objective, as follows:

Ot = 0ie —mVo: Lo(bf 4 2,y) 2)
Here, L is a combined loss function defined as:
Lo(0F g, x,y) = Lop(0F 1w, y) + ArLop (07 1 fur fy) 3)
+ )\f/jvf( bsos Jos f3) + AeLoe(0f ks £5,9)

where Lo E(H;k,a:,y) is the cross-entropy (CE) loss between the predicted and target values,
Ly5(0f is fz, fy) is the mean-squared error (MSE) loss b?tween the model features f, and CVAE
generated features f, to enhance intra-class consistency, L, (05 ;, fz, f7) is the negative MSE loss

between the model features f, and CVAE generated features f; to increase inter-class separation,
and L, (0f 1., f5,7) is the CE loss between the predicted label of features f; generated by the CVAE
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and the target label . Ag, A7, and A are hyper-parameters that control the relative importance of the

Ly, L, ¢ and L, terms, respectively. Here § € {1,..,C}|y # v, is a randomly selected class from
all possible classes, with the constraint that §§ # y. This random class selection helps the CVAE
learn to generate diverse and representative features for different classes including missing classes.

After locally updating the client model using global CVAE parameters, the client adapts to the fea-
ture shift by fine-tuning the CVAE model following Reptile meta-training approach. Finally, the
clients share their updated CVAE model parameters with the server. Ovserve that, in FLAIR, the
CVAE model emphasizes feature-level reconstruction while injects noise into latent input features
generated by local model. Therefore, the sharing of CVAE model parameters significantly reduces
the exposure of sensitive information and effectively mitigates various privacy attacks while main-
taining high performance.

2.3 CVAE FOR FEATURE GENERATION

To alleviate the impact of non-IID data in federated learning, we propose training a CVAE
model on each client’s local dataset to model the class-conditional feature distributions p(z| fz, )
and p(fy|z,y). The CVAE consists of an encoder network g4(z|f.,y) and a decoder network
py(fylz, y), parameterized by ¢ and 1, respectively. Given an input feature vector f, € R? and its
corresponding label y € 1, ..., C, the encoder maps (f,,%) to a latent code z € R, where [ is the
dimensionality of the latent space. The latent code z is assumed to follow a multivariate Gaussian
distribution N (g, diag(o?)), where the mean p € R! and variance o2 € R! are outputs of the
encoder network. The decoder network takes as input a latent code z sampled from N (u, diag(o?))

and the label y, and reconstructs the input feature vector fT The goal is to maximize the likelihood
of the input features given the latent code and labels, i.e. py(fz|z,y). For each client k, the CVAE
model is trained by maximizing the evidence lower bound (ELBO) of the log-likelihood:

d
Lovae = E(x,y>~m[ Go, (22, y>(§ > (far = fo, ) - KL(qm,t(ZIx,y)llp(ZIy))] 4)
i=1

where D, denotes the data distribution for client k, while (¢ ¢, ¢x,+) represent the parameters of
the CVAE encoder and decoder for client k, respectively, and p(z|y) is the prior distribution over
the latent codes for each class, typically chosen to be a standard Gaussian N (0, I). The first term
in the ELBO is the reconstruction loss, which encourages the decoder to accurately reconstruct the
input features. The second term is the Kullback-Leibler (KL) divergence between the posterior
distribution ¢, ,(z|f.,y) and the prior p(z|y), which acts as a regularizer to prevent over-fitting.
In practice, the ELBO is optimized using stochastic gradient descent, with the reconstruction loss
approximated by the MSE between the input and reconstructed features:

—_

d
Lyise(fr: f) = Z foi = foi)? (5)

and the KL divergence computed analytically for Gaussian distributions:
Lxin(p,log 0%) = KLV (p, diag(e*)) V(0. T))

1

l
=5 2 (ui +0f ~logo} — 1) 6)
=1

The overall training objective is a weighted combination of the reconstruction loss, KL divergence,
and center loss:

Lovag (z, &, pu,log 0%, 2, ¢) = Lyse(fes fx) + A Lxip(p, logo?) (N

where ) is the hyper-parameter to control KL divergence. After training the CVAE on its local data,
each client can generate synthetic features f, by first sampling a latent code z ~ p(z|y) = N (0,1)
for a desired class y and a random latent space z, and then decoding it using the trained decoder

network: f, ~ py( fx|2, y). These generated samples is used to maintain consistency between
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Algorithm 1 Reptile-based Local CVAE Training
Global CVAE parameters (®;, ¥,), Local dataset Dy, Hyper-parameters: ()
Client’s updated CVAE parameters (¢ ¢+1, Yk t+1)
. Initialize: Set client’s CVAE parameters: ¢, + < @y, ¢ ¢ < Uy
: for ecach local epoche =1,2,..., FE do
for each batch (x,y) € Dy do
fo f(ek,tJrh-T)

fwvza /g <~ CVAE(¢k,t7 f;va y)

Compute Lcyag following Equation@

updated old
kt — dpy — Oév(pg{jﬁCVAE

—_

R e A A S ol

updated ld
k.t — YRy — Oévwgfg Lcvae

11: end for
12: end for

_
e

intra-class and separation among inter-class additionally mitigate class imbalance. At each commu-
nication round ¢, client k generates m,; samples per class from its CVAE to obtain an augmented
features "} = Fy ;U {(f2;,9;)|j € 1-m;.C}. The use of class-conditional priors p(z|y) allows
the CVAE to learn a separate latent space for each class, enabling it to capture class-specific fea-
tures and variations. This is particularly beneficial in the federated learning setting, where the data
is often non-IID across clients. By generating diverse synthetic samples that follow the local class
distributions, the CVAE can help regularize the local models and improve their generalization to
unseen data.

2.4 REPTILE-BASED CVAE MODEL TRAINING

To address the challenge of dynamic feature shifts in federated learning, we utilize Reptile meta-
learning based CVAE model training. This technique is employed after each client’s local update to
adapt the CVAE model to the local data distribution while preserving the global knowledge.

The Reptile algorithm is a first-order meta-learning approach that aims to find a good initialization
of model parameters that can quickly adapt to new tasks with a few gradient steps. In the context
of federated learning, we treat each client’s local data as a separate task and use Reptile to learn a
meta-initialization of the CVAE parameters that can rapidly adapt to the local data distributions. For
a client k and its local dataset Dy, the Reptile-based CVAE training proceeds as follows:

In each communication round ¢, the server sends the global CVAE parameters ®,, U, to the selected
clients. Each client k initializes its local CVAE parameters ¢y, ¢, 1+ with ®;, U, and performs E
epochs of training on its local dataset Dy. During CVAE model training, the client’s locally trained
model F (0 +1) is used to extract local features f, from the input data x, and the CVAE model

takes the features f, and labels y as input to reconstruct the features fm, generate latent variables
z, and predict the labels y. The CVAE parameters ¢y, ;, 1y ¢ are updated by minmizing Lcyag loss.
The overall training process is depicted in Algorithm [I]

The Reptile-based CVAE training allows the model to adapt to the local data distributions of each
client while maintaining the global knowledge learned across all clients. This approach helps miti-
gate the impact of dynamic feature shifts and enables more effective federated learning in non-1ID
settings.

2.5 OVERALL TRAINING PROCESS

Algorithm 2] outlines the overall FLAIR training process across multiple clients. During the initial-
ization phase (lines 6-11), each client trains its local CVAE model and shares its parameters with the
server. Subsequently, the server aggregates the client parameters into its CVAE model (lines 12, 13).
For each communication round, a set of participating clients is randomly sampled (line 16) to engage
in local training. These selected clients train in parallel, updating their local models using their re-
spective datasets (lines 19-24). After local model training, each client utilizes the features generated
by its updated model to refine its local CVAE model using a Reptile-based approach (as detailed
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Algorithm 2 FLAIR: Federated Learning with Augmented and Improved Representations

1: Number of clients K, number of communication rounds 7', local datasets {Dy|k € K},
local model learning rate 7;, CVAE learning rate ncyag, Clients initial CVAE model parameters
(Pk,0, Yr,0lk € K)

Generalized and robust local model parameters ( O |k € K)
Initialization:
Compute initial global CVAE parameters (®1, U1):
for cach client k£ € K in parallel do

for epoche=1,..., Ecyag do
Compute Lcyag following Equationd]
e+1 e
o < Do — NevaeVeg Lovak

) 11
9: ko & Yo — nevaeVyg  Lovae

10: end for
11: end for
1
12: &1 @ZkeK (bk,l

1
13: \Ill < [k Zk’E]K T,bk,l
14: Federated Training:

15: for cach communication round ¢t =1,...,7 do

16: Select a set of clients S; for local training.

17: Local Training:

18: for each client k € S; in parallel do

19: for epocse=1,..., E do

20: Sample a batch of local dataset {z,y} € Dy,

21: Compute local features f,

22: Generate synthetic features f,, f3

23: Update local model parameters following Equation 2]
24: end for

25: Update local CVAE parameters (¢, ¢, 1 +) following Algorithm
26: Send updated (¢r,1+1, Yk t+1) to the server.

27: end for

28: Aggregation:
29: Aggregate CVAE parameters:

1
30: Piy1 ¢ w7 Dkes, Phot+1
1
31 Wip ¢ 5y Dkes, Vhittt
32: end for

in Algorithm [1). The updated local CVAE model parameters are then shared with the server for
aggregation. Finally, the server aggregates all the shared CVAE parameters of clients (lines 34 and
35). This process is iteratively repeated for each communication round, until it reaches convergence
criteria.

3 THEORETICAL ANALYSIS OF FLAIR

This section presents the following theorems, which collectively demonstrate the theoretical foun-
dations of FLAIR. Due to space constraints, the detailed proofs are reported in Appendix A.

1. Theorem 1 (Convergence of FLAIR) shows that both the client models and the global
CVAE converge to their respective optimal parameters.

2. Theorem 2 (Generalization Bound for FLAIR) provides a bound on the generalization
error, taking into account the effect of CVAE-based augmentation.

3. Theorem 3 (Feature Diversity) establishes that the features generated by the CVAE are
close to the true distribution of features for each class across all clients.

4. Theorem 4 (Client Model Robustness) demonstrates that the global CVAE helps in mak-
ing client models more robust and consistent, even when faced with test distributions that
may differ from their training distributions.
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These guarantees the effectiveness of FLAIR in addressing the challenges of federated learning in
non-IID settings, particularly in terms of improving generalization and robustness across heteroge-
neous client data distributions.

4 EXPERIMENT EVALUATION

4.1 IMPLEMENTATION

We implement FLAIR and the baseline methods using Python 3.9, leveraging the PyTorch library{ﬂ
The codebase consists of 7,718 lines of code (LoC). For local training, we utilized two distinct neural
network architectures: LeNet-5 and ResNet-18. The details of their architectures are as follows:

* LeNet-5: A 7-layer convolutional neural network (CNN) featuring 5x5 convolutional lay-
ers, tanh activations, and average pooling.

* ResNet-18: A CNN beginning with a 7x7 convolutional layer, followed by 4 residual
blocks, batch normalization, ReL U activation, and global average pooling.

In addition to local classification models, we have a CVAE model meant to learn enhanced features
representation. The CVAE model architecture consists of two components encoder and decoder
described as follows:

* Encoder: Two fully connected layers with batch normalization and ReLU activations. In-
put is the concatenation of input features and one-hot encoded class labels.

* Decoder: Two fully connected layers, batch normalization, ReLU activations, and an out-
put layer for reconstruction.

We employ the PyTorch SGD optimizer for updating model parameters during training.

4.2 EXPERIMENT SETUP

In this study, we conduct a comprehensive evaluation of FLAIR, by comparing its performance
against state-of-the-art approaches. To this aim, we consider the following 6 baseline methods:
FedAvg, SCAFFOLD, FedFA, FedProto, Elastic, and FLUTE, which represent a diverse range of
strategies for federated learning. Our experiments are performed on three widely-used datasets:
MNIST, CIFAR-10, CIFAR-100, and TinyImageNet, each presenting unique challenges and char-
acteristics. To investigate the effectiveness of FLAIR and the baseline methods under different model
architectures, we employ a variety of neural networks for local training. Specifically, when training
on the MNIST dataset, we utilize LeNet-5 model, which is well-suited for the task of handwrit-
ten digit recognition. For more complex CIFAR-10, CIFAR-100, and TinyImageNet datasets, we
employ ResNet-18 model, which already depicted a superior performance on image classification
tasks. To ensure fairness and reproducibility of our comparisons, we maintain fixed random seeds
and consistent settings across all experiments. This allows us to isolate the impact of federated
learning algorithms on model performance, minimizing the influence of random variations. For all
the experiments we use local model learning rate 7; = 0.01, batch size 16, number of local epochs
5, and for FLAIR’s CVAE model training we use Adam optimizer with learning rate 7cyag = 0.001.
We conduct 150 communication rounds FL training for MNIST, 250 rounds for CIFAR-10, and 200
rounds for CIFAR-100 and TinyImageNet dataset.

4.3 DATASET DISTRIBUTION

To evaluate the performance under various heterogeneous settings, we establish the following three
distinct configurations of dataset distribution:

* Label Skew: In this setting, the label distribution varies across clients, simulating a scenario
where each client has a different proportion of samples from each class. To create a label-
skewed dataset, we use the Dirichlet distribution on the label ratios to ensure uneven label

"The code for our proposal can be found at: https://anonymous.4open.science/r/FLAIR-C512
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Dataset Method Beta Test Average Acc # of Comm
B ng =0 ng =0.1 ns =02 Rounds
redrvn 05 9682 9680 9643 150
& 005 9439 9410 93.75 150
05 98535 0837 9824 150
SCAFFOLD 05 o845 9839 98.37 150
05 0680 9677 96.43 150
FedFA 005 9432 94 937 150
MNIST edboe 05 9871 9876 9871 150
005 9826  98.19 98.12 150
_— 05 9731 9726 96.89 150
astie 005  94.92 94.41 94.06 150
05 9883 9856 98.49 150
FLAIR 005 9859 9855 98.52 150
redAy 05 6197 3302 30,55 750
& 005 4074 27.10 23.90 250
05 7810 7028 63.45 750
SCAFFOLD 05 4126 3567 26.32 250
05 6099  53.18 3.10 750
FedFA 005  39.04 25.12 19.02 250
CIFARI0 redbo 05 ®IT 7155 65.30 750
005 4934 3554 2629 250
_— 05 6245 5336 575 750
astie 005 4225 29.36 25.56 250
05 7936 73.06 652 750
FLAIR 005 5368 3829 30.26 250
edAy 05 2168 1724 15.36 700
g 005 2052 1543 11.87 200
05 4566 3675 7728 200
SCAFFOLD 05 3416 2572 18.16 200
05 2152 1984 17.96 200
FedFA 005  20.69 15.34 11.73 200
CIFARIO0 [ 05 4494 3508 2570 200
ediroto 005 3448 2444 18.32 200
— 05 2213 1876 1632 200
! 0.05  23.20 15.87 12.24 200
05 4789  37.69 7753 200
FLAR 005 3879 2686 22.34 200

Table 2: Performance comparison on four benchmark datasets with varying beta and noise levels.
The best results for each dataset and configuration are in highlighted in bold.

distributions among clients. The parameter 3 of the Dirichilet distribution decides the
extent of the skew. For our experiments we set (5 to 0.5 and 0.05.

* Quantity Skew: In quantity skew, the size of the local dataset varies across parties, although
data distribution may still be consistent among the parties. Like distribution-based label
skew setting, we use Dirichlet distribution to allocate different amounts of data samples
into each party.

* Feature Skew: In feature distribution skew, the feature distributions P(x;) vary across par-
ties although the knowledge P(y;|z;) is same. Here we use noise based feature skew with
other non IID configurations. In noise based skew, we distort the data slightly by adding
different levels of Gaussian noise into it. The intensity of the noise label can be controlled
by changing the coefficient associated with the Gaussian noise. We set the noise coefficient
ns to 0, 0.1 or 0.2 for our experiments.

4.4 PERFORMANCE AND PRIVACY ANALYSIS

In this section we evaluate the performance of our proposed approach, FLAIR, against state-of-the-
art federated learning algorithms such as FedAvg, SCAFFOLD, FedFA, FedProto, and Elastic. The
experiments are conducted using datasets with distribution-based label imbalance, generated through
Beta values of 0.5 (mild heterogeneity) and 0.05 (extreme heterogeneity), with added Gaussian noise
levels of 0, 0.1, and 0.2 to simulate feature skewness, as depicted in Table@

The results demonstrate that FLAIR consistently outperforms the state of the art methods across
various datasets, with the performance gap widening as dataset complexity and heterogeneity in-
crease. For example, while the performance boost of FLAIR on the MNIST dataset is marginal, it
becomes more pronounced on CIFAR-10 and even larger as heterogeneity (controlled by the Beta
value) rises. Furthermore, FLAIR is robust in the presence of increasing noise, making it well-suited
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Method | MIA (]) | Gradient Leak (|) | Model Inversion (|) | Info Theoretic ()
FedProto X X 1.6876 X
Scaffold 0.4982 0.3156 1.5937 1.5328
FedAvg 0.4948 0.2817 1.9949 0.1192
Elastic 0.5088 0.3217 2.0949 0.1282
FedFA 0.4973 0.2719 1.9393 0.1406
FLAIR X X 0.3103 X

Table 3: Privacy Measure Metrics for Various Federated Learning Approaches, here X denotes that
the privacy measure is not available

for scenarios with extreme data distributions, both in terms of noise and heterogeneity. For instance,
on CIFAR-10 dataset, when 8 = 0.05 and noise level 0.2 we get average test accuracy of FLAIR as
30.26, while the accuracy of the second best model, SCAFFOLD is 26.32. This type of noticeable
jumps is seen in the results in almost all cases which states the effectiveness of our proposed FLAIR
approach.

The superior performance of FLAIR is largely attributed to its use of CVAE-based class feature rep-
resentations, which, in a federated learning setting, can effectively approximate the feature distribu-
tion for each class. In contrast, methods like FedAvg, SCAFFOLD, and FedFA exhibit significant
performance degradation as the data becomes more heterogeneous. While FedProto, leveraging
class prototype-based representations, manages to mitigate some distribution challenges, FLAIR
outperforms it in nearly every test case due to the strength of its CVAE-based approach. These re-
sults affirm the suitability of FLAIR for complex and imbalanced federated learning environments.
Additional results are available in the Appendix B of the paper.

Table [3| shows a strong evidence in support of FLAIR’s privacy preserving capabilities across mul-
tiple metrics. It is immune to Membership Inference Attacks (MIA) and Gradient Leak attacks, as
indicated by the X symbols. In the Model Inversion metric, FLAIR achieves the lowest score of
1.03, significantly outperforming other methods. The absence of an Info Theoretic score for FLAIR
(indicated by X) suggests that it does not leak information through this channel. The primary reason
behind this success is due to sharing of only locally trained CVAE model parameters, rather than
local model parameters, as described in Section |2} In particular, through the injection of noise into
the latent features, FLAIR substantially reduces the risk of inversion attacks, making exact recovery
of original data infeasible. The generalization of feature reconstructions further mitigates mem-
bership inference attacks by minimizing overfitting to specific data points. Moreover, the absence
of gradient and raw data sharing across the network significantly diminishes the attack surface for
gradient-based exploits. This synergistic combination of noise injection, feature-level focus, and
non-sharing of gradients establishes a robust privacy-preserving mechanism, effectively balancing
collaborative learning with stringent privacy requirements in federated learning applications.

To summarize, FLAIR demonstrates superior performance and enhanced privacy protection in com-
plex, imbalanced federated learning environments. It consistently outperforms existing methods
across various datasets and heterogeneity levels while providing robust privacy guarantees. These
results highlight the effectiveness of FLAIR’s CVAE-based approach in addressing both perfor-
mance and privacy challenges in federated learning.

5 RELATED WORK

Federated learning was first introduced in FedAvg |[McMahan et al. (2017) algorithm. This method
allows clients to collaboratively train models without directly sharing their data, thus preserving
privacy. However, despite the inherent privacy benefits, it presents several key challenges, partic-
ularly high communication costs and instability in model training due to data heterogeneity across
clients. FedAvgM |Hsu et al|(2019) integrates momentum into the global model updates, speeding
up convergence in non-IID settings. While this reduces the number of communication rounds re-
quired, it introduces the need for careful hyperparameter tuning to maintain stability in diverse data
environments. FedProx Li et al.|(2020) introduced a proximal term in the local objective function to
reduce client drift, which indirectly reduces communication by requiring fewer updates to converge.
However, FedProx still struggles in extreme non-IID distribution settings. SCAFFOLD |[Karimireddy
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et al.| (2020) attempts to directly address client drift using control variates to stabilize local updates,
achieving better convergence with fewer rounds of communication, albeit with an increase in per-
round communication overhead due to additional information exchanged between clients and server.
Eastic|Chen et al.| (2023)) improves convergence through aggregation by interpolating client models
according to its parameter sensitivity. However this requires sharing of additional client’s parameters
sensitivity with the server and struggle in extreme heterogeneous settings. FedFA [Zhou et al.| (2024)
is mainly used to address the issue of feature skewness by utilizing feature anchors but struggles
in others heterogeneous settings. FedProto [Tan et al.| (2022) addresses data heterogeneity in feder-
ated learning by aligning global feature distributions across clients. While this approach effectively
improves model performance, it shares class-specific features, potentially exposing sensitive class
information and making the system vulnerable to privacy attacks, such as feature inversion Wang
et al.|(2019b). FedBN [Li et al.|(2021)), on the other hand, applies client-specific batch normalization
layers to handle feature skew, but fails to generalize in settings with severe data imbalance, leading
to increased communication rounds as the global model struggles to converge. Recent works such
as FedFed |Yang et al.| (2023) and FLUTE |Liu et al. (2024)) explore more advanced techniques to
address data heterogeneity. FedFed enhances model accuracy by performing feature augmentation
across clients but introduces significant communication and computational overhead due to the need
for sharing additional feature information. Similarly, FLUTE employs feature learning and classi-
fier calibration to address heterogeneity, but it suffers from the need for extensive hyperparameter
tuning and full client participation, which leads to increased communication demands. In summary,
while most of the existing approaches primarily focus in addressing data heterogeneity, they often
introduce increased communication costs and heightened risks of privacy breaches.

6 CONCLUSION

This paper presents a novel FL approach, aiming to achieve a balance between performance, commu-
nication cost, and privacy. This is achieved by utilizing CVAE based feature augmentation approach
which helps in developing generalized and robust local models, making them effective in addressing
extreme heterogeneity. In particular, the augmented features helps the local models to promote con-
sistency in intra-class latent representations while simultaneously amplifying inter-class distinctions.
Further to adapt dynamic feature shifts in CVAE model we utilize Reptile meta-training approach.
Unlike existing approaches, the sharing of only CVAE model parameters, rather than local model
parameters, reduces privacy risks and communication overhead. Experimental results demonstrates
a significant performance improvement by 2.61% on an average in terms of accuracy with respect
to the second best performer in the literature. This highlights FLAIR’s ability to enhance the per-
formance of underrepresented classes in clients, leading to a more balanced and equitable learning
outcome. Furthermore, FLAIR exhibits faster convergence rates with reduced communication cost
compared to existing methods, maintaining its performance advantages even in extreme heteroge-
neous settings.
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APPENDIX

A THEORETICAL ANALYSIS OF FLAIR

A.1 PRELIMINARIES AND NOTATION

Let K be the set of all clients, with |K| = K. For each client k& € K, let Dy, be its local dataset, with

ng = |Dg| and n = Z,Ile nk. Let 0, € RY denote the local model parameters of client k at round
t. Let ¢+ € RP and ¢; € R? denote the global CVAE encoder and decoder parameters at round ¢,
respectively.

We define the following:
* L(6;x,y): loss function for client models

* Levap(d,¢;z,y): loss function for CVAE
* F(0k) = E(z,y)~my, [£(Ok; 2, y)]: expected loss for client &

e G(o,0) = % Zszl E(z,y)~by, [Lovae (@, ¥; o, y)]: expected CVAE loss

A.2 ASSUMPTIONS
We make the following assumptions:

Assumption 1 (Smoothness) Fy, is L-smooth for all k: Y0y, 0}, € R,
IVE(0r) — VER(0;)[| < LI|0) — 0] ®)

Assumption 2 (Strong Convexity) F, is u-strongly convex for all k: W0y, 0}, € R,

Fr(0h) = Fi(00) + (TF(00), 0 — 00) + £10% — 00 ©

Assumption 3 (Bounded Variance) The variance of stochastic gradients is bounded for both client
models and CVAE:

E(a.y)~, IVLOk; 7, y) — VFR(01)[°] < 0%, Vk € K, V0, € R (10)

E (¢,5)~0 [V Levar Bk, Yk 2, y) — VG(h, ¥)|1?] < 0lyap,  VE € K Vor, v (11)

Assumption 4 (CVAE Lipschitz Continuity) The CVAE model is Lipschitz continuous with re-
spect to its parameters:

ICVAE(x; ¢, ¢) — CVAE(x; ¢',4") || < Leva(ll¢ — ¢/l + [ — 4'|)) (12)

A.3 CONVERGENCE ANALYSIS

Lemma 1 (One-step Progress for Client Models) For any client k and round t > 0, its one-step
convergence bound follows:

Ell0k,e41 = Ox1°] < — o) El|0k.e — Okl1*) — 2mE[Fy (Ox,e) — Fr(67)]

(13)
+ 07 (02 + 6LyEn + 8(E — 1)%4?)

Proof 1 Detailed proof is reported in the Appendix .., due to space constraints. Let g, . be the
average stochastic gradient computed by client k at round t over E local epochs. The update rule
for client k’s model parameters is 0y, ;+1 = 0.1 — Mgk, We begin by expanding ||0x.¢+1 — 9;;||2:

10k,e41 — %1% = [10k,t — mgne — 0%l

= 10k,t — Ocll® — 2m0(gn.t, O — O5) + 17 [l gkt ]l

12
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Taking the expectation of both sides:

Ell|0k,t+1 = O¢l1*) = Ell0k,e — Ox1°] = 2mE[(gh.t, Or.e — %)) + 07 Elll gt %] (14)

Using the strong convexity and smoothness of F},, we can bound the inner product term:

(Gr,t, Ot — O) > Fr(Ont) — Fi(0F) + g”ek,t — 051> = (grt — VFu(Or,t), On,e — )
For the gradient norm, we use the smoothness property and the definition of :

E[||gr,e||*] < AL(Fy(0xe) — Fi(0})) + 20°% + 272 (15)

Combining these bounds and applying Cauchy-Schwarz inequality to the error term, we get:

E[||0k,e41 — 05117] < (1 — 2pm)E[||6k,c — 65]1*] — 2m(1 — mL)E[Fy(6k) — Fiu(65)]
+ 17 (207 + 29%) + mo”

To account for E local epochs, we model this as E consecutive updates with learning rate 7.
Applying the above inequality E times and using the convexity of Fy, we get the following:

El|0k,e+2 — 05l17] < (1 = 2um) "E[[|0k,c — 0)17] — 2Em (1 — mL)E[Fr(0x,e) — Fu(63)]
+ En?(20°% 4 29%) + Emo? + 4Ln?E(E — 1)4?

Finally, using the fact that n; < 1/(4L) (which follows from our choice of ;) and combining like
terms, we obtain the stated bound:

Ell0k,e41 = 0x1°] < — ) El|0r,e — Okl1*) — 2mE[Fi (Or.¢) — Fio(67)]

(16)
+ 07 (0% + 6LyEmn + 8(E — 1)%4?)

Lemma 2 (One-step Progress for CVAE) For any round t > 0, the convergence bound for CVAE
follows:

E[|(¢e41,%e+1) — (0%, 0)1*] (1 — Levaenevae) Bl (¢, i) — (0%, 4%) 7]

* * 2 2 (17)
— 2ncvaeE[G (1, Y1) — G(¢",¥")] + NcvarTcvar

Proof 2 Detailed proof is reported in the Appendix .., due to space constraints. Let gz =
(Ve G0, 1), VG0, 1)) be the gradient of the CVAE loss function at round t. The update
rule for the CVAE parameters is:

(Dt41, V1) = (d¢,¥t) — NevaEge (18)

We begin by expanding ||(¢r+1,Pe1) — (6%, 4[|

(D41, Yeg1) — (0%, ") = [|(de, ¥e) — nevaege — (9%, %)
= [[(d, ) — (&, ") — 2ncvae(ge, (e, Vr)
— (6", 9")) + névagllgel?

Taking the expectation of both sides:

13
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Ell(¢er1, ea1) = (6%, )] =Elll (66, ) = (6", 0)]%)

* * 2 2 (19)
= 2ncvaeE (g, (¢e, 1) — (67, ") + ncvaeElllge 7]
By the Leyag-smoothness of G, we have:
1
G(6",9") 2 Gl v) +{ge: (67, 97) = (60, 90) + gr—aull’ (20)
Rearranging this inequality:
1
{ge, (S0, 90e) = (&7,97)) 2 Gle,¥e) = G(¢",97) + 57 — (A 20

Substituting Equation[21)into Equation[I9) we have:

Ell(@r11,%e11) — (@5, 9")IP] <E[l(e, ¥e) — (¢, 0%)|°]
— 2ncvaeE[G (¢, i) — G(¢",07)]
— nevaE[|g¢ 7]/ Levae + névaeElllg: %]

Now, using the assumption of bounded variance of stochastic gradients, E|| g||*] < 02yap we get:

E[|[(¢e+1,Pre1) — (0%, 90%)1%] <E[I (04, 900) — (6%, 9%)1%]
- QUCVAEE[G(QSta 7/%) - G(¢*7 ZZ’*)]

2 2 2
— NeVAEOGyAE/ LOVAE + NCVAETCVAE

Finally, rearranging terms:

E[ll(¢t11, ¥e41) — (6%, 0")12) <(1 = nevar/ Levar) Bl (61, ¢¢) — (67, 9)[|]
— 2evaeE[G (64, 10) — G(0",9")] + NevarOvar
Theorem 1 (Convergence of FLAIR) Let Assumptions 1-4 hold. Let the learning rates be set as

m = ﬁfor client models and ncyag = mfor the CVAE, where v = max{8L/u, E}

and E is the number of local epochs. Then, for T > 1, the output of FLAIR satisfies, following
convergence bound:

1 & _ 4Ly T
% ;]E[Fk(ﬁkj)] Frp(05) < id (1 + log <7 + 1)) (22)
BIG(Gr, )] - Glo,v) < 290 (14 10g (1)) e3)

5 T = T - T .
where O = 731 Ok 07 = 7 31 Gt Ur = 7 3, Uy, and 0, ¢*, 0 are the respective
optimal parameters.

Proof 3 (Theorem[I) Detailed proof is reported in the Appendix .., due to space constraints. We
prove the convergence for client models and CVAE separately, then combine the results.

For client models, we sum the result of Lemmal|l|over all clients and all rounds, which give:

K T-1 K
DO EB[Fi(0k0) — Fr(67)] <> E[[16k0 — 677
k=1 t=0 k=1
K T-1 24
+ Z nt (02 + 6LyEn + 8(E — 1)*4?)
k=1 t=0

14
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Using Jensen’s inequality and the fact that Fy, is convex for all k, we have:

1 K B 1 K T-1
74 > (Fi(Okr) — Fi(6})) < KT 22 2 (Fk(Ok,e) — Fiu(0r)) (25)

Combining these inequalities and using the properties of the chosen learning rate 1, we arrive at
the bound for client models.

For the CVAE, we sum the result of Lemma El over all rounds and obtain:

Z 2nevaE[G(ée, ¥t) — G(¢*, ™) < El||(¢o,00) — (¢*7¢*)||2] + TT](ZZVAEU(ZZVAE (26)

Using Jensen’s inequality and the convexity of G:

T—1
Glbr, ) — G0 u7) < 7 3 (Glou, ) — G6"u")) @7)

t=0

Multiplying both sides of the Equation[27]by 2T ncvag, we get:

2Tnevae(G(br, ¥r) — G(6%,47)) < 2ncvar Z (61, 91) — G(6",9")) (28)
From Equation[26] we can bound the right-hand side and have:

2Tncvar(G(or,vr) — G(¢",¥7)) < E[l[(¢0, %o) — (&, )] + Tgyapoivar - (29)

Dividing both sides by 2Tncyag:

N o * * E ) 02
G(QZ)T/(/JT) _ G(¢ ) ) < [H((bo ’(/}0) ( )H ] 77CVAE CVAE (30)
2T77CVAE 2
Now, we use the properties of the chosen learning rate. Recall that neyap = m, where
~v = max{8L/u, E}. This means that ncyag < L — forall t.
Substituting this into our bound:
- - L E , o2
G(d)Twa) o G(Qs*’w*) S CVAE"Y H|(¢0 1/)0) ( )” ] CVAE (31)
4T LCVAEV

We can further simplify this by noting that E[||(¢o,%0) — (¢*,4*)|?] < £2-(G(¢o,0) —
G(¢*, ")), which follows from the Lcyag-smoothness of G.

Applying this and combining terms:

G(G0,v0) = G(6" ) | oy

G(or,dr) — G(o*, %) < 32
(o1, 9r) — G(o*,¥") 5T Lowr (32)
Finally, we can express this in the form of the theorem statement by noting that 55 < <%h 7 (1 +log(%
1)) for T > 1, and absorbing the constant terms into the big-O notation:
- 4L T
G(ér.br) = Glo",v7) < —E (1 +log <7 + 1)) (33)
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A.4 GENERALIZATION ANALYSIS

Theorem 2 (Generalization Bound for FLAIR) Let H be the hypothesis class of the client mod-
els, and let V be the CVAE model class. Let f, : X — X’ be the feature augmentation function
induced by v € V, where X' is the augmented feature space. Assume that each component of the
loss function is p-Lipschitz with respect to its relevant arguments. Then, with probability at least
1 =9, forall h € H and v € V, the average expected loss over all clients will be lesser or equal to
a upper bound as fOZIOWS'

K
*ZE@" o [Lo(h,v,2,y)] Z k(h,v) + 2pR0(H)
k=1

K
k=1 (34)
log(2/6
£ 2R, (V) + 3 fﬁééil
where L¢ is the combined loss function defined as:
Lo(h,v,x,y) =Lop(h(@),y) + A Lase(fu(x), fo(z,y)) 35)
- )\fEMSE(fh(x)7 fv(xa g)) + )‘CECE(h(fU(x’ g))v ?j)
and EAQ & (h,v) is the empirical combined loss on client k’s dataset:
ngk
L p(h,v) ch vy, yr) (36)

Here, LoE is the cross-entropy loss, Lyrsg is the mean squared error, fy represents the features
extracted by the client model, y is a randomly selected class different from y, and Ay, A Iz A are

weighting hyperparameters. R, (H) and R, (V) are the Rademacher complexities of H and V
respectively, and n = Zszl nyg, is the total number of samples across all clients.

Proof 4 Detailed proof is reported in the Appendix .., due to space constraints. Let Dy, denote the
true data distribution for client k, and let D = Uleﬂ)k be the overall data distribution. We begin
by decomposing the expected combined loss:

K
1
? Z E(w’y)NDk [‘Cc(ha v, T, Z/)]

k=1
1 & (37)
= 2 2By [Lon(h(@).y) + ArLarse(ful@), folz,y))
k=1

- )‘fTCMSE(fh(m), fo(@,9)) + AcLop(h(fo(x,9)), )]

By the linearity of expectation, we can bound each term separately. For the cross-entropy terms, we
apply the classical generalization bound based on Rademacher complexity:

1

log(8/9)
K 2n (38)

Mw

K
E(z,y)~ni [Ler(h( Z Logk(h) +2pcERa(H) +
k:

>
Il

1
where Lop 1 (h) = nk LS Lop(h(zF),yF) and por is the Lipschitz constant for the cross-
entropy loss.

For the MSE terms involving CVAE, we have:

ZE(:L’,U NDk[‘C]\/ISE(fh( )y fo(z,9))]
S (39)
< 1 ZﬁMSEvk(h’U)+2/’MSE(Rn(7-l)+Rn(V))+ w
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where Lyrsg 1 (h,v) = n% Sk Larse(fn(zF), fo(xF,yF)) and prsk is the Lipschitz constant
for the MSE loss.

For the negative MSE term, we use the fact that if f (x) < g(z) for all x, then sup f(z) < sup g(x):

1 & _
- ? Z E(x,y)ka [EMSE(fh(x)v fv(x» y))}
= (40)
1 . log(8/9
< & Z Larsei(h,v,9) + 2pmse(Ru(H) + Ra(V)) + %
k=1
For the classifier tuning term:
1 X
X > Eloyyn, [Lop(h(fo(x,5)), )]
- (41)
log(8/d
3 Eenalho funf) + 20n(Ra(H) + Ru(V) + 1/ L0

k:

Combining all these bounds and applying the union bound over the four components, we obtain:

K
1
=D Euyeni[Lolh,v,2,y)]

k=1 B . 42)
log(8
Z k(hav) + 2p(Ro (1) + R (V) + 4 %
k:
where p = max{pcp, A\fpMSE A FPMSE, AePCE}-
Finally, we can simplify the confidence term:
1 ) log(2/0
1[0, ol )
2n 2n
This simplification uses the fact that log(8) < 3log(2).
Therefore, we conclude that with probability at least 1 — 0, forall h € H and v € V:
1 X K
o ZE@ y)~0 [Lc(h,v,2,y)] Z k(h,v) +2pRp(H)
k=1 k: (44)
log(2/6
2R, (V) + 3 %n/)

A.5 CVAE ANALYSIS

Theorem 3 (Feature Diversity) Let f, be the features generated by the CVAE for class y, and let
D, be the true distribution of features for class y. Then, under suitable regularity conditions on the
CVAE, the expected average KL divergence, over all clients k, between the features generated by
each client’s CVAE and the true feature distribution, is not greater than a constant e:

1 K
7 2 Ep e [KL(p(f,)Dy)] < € (43)

k=1
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where € is a small constant that depends on the capacity of the CVAE and the amount of training
data, and CVAE}; denotes the CVAE model for client k.

Proof 5 Detailed proof is reported in the Appendix .., due to space constraints. Let gy, (2|z,y)
be the encoder and py, (x|z,y) be the decoder of the CVAE for client k, where ¢y, and 1y, are the
encoder and decoder parameters, respectively. The CVAE is trained to maximize the evidence lower
bound (ELBO) for each client:

ELBOy, = Eq¢k (z|z,y) [logpwk (:Z:|Z, y)] - KL(‘]¢k (Z|Iv y) Hp(2’|y)) (46)

where p(z|y) is the prior distribution of the latent variable z given class y.

By the properties of the ELBO, we have for each client k.

log pr(z|y) > ELBOy, 47

Now, let pcvag, (fy) be the distribution of features generated by the CVAE for class y on client k.
We can bound the KL divergence for each client:

KL(pcvag, (fy)|Dy) = ]EnyPCVAEk [log pevak, (fy) — log Dy (fy)] (48)
< Ef,~pevar, 108 Peva, (fy) — ELBO] (49)

= Ef, ~peuse, 108 Pevag, (fy) = Eq,, 2117, 108 Py (fyl 2, 9)] (50

+ KL(gg,. (2| fy, ¥)p(2]y))] (51

The first two terms in the last expression form the reconstruction error, which is minimized during
CVAE training. The last term is the KL divergence between the approximate posterior and the prior,
which is also minimized.

Now, we take the average over all clients:

K K
ZEnyCVAEk[KL< (f)IDy)] < ZEfl,NpCVA%[REwKL(q%( 21 f ) p(zly))] (52)
k 1 k 1

where REy, = log pevag, (fy) — Eq, (217,.0)[108 Py, (fyl2, y)] is the reconstruction error for client
k.

In FLAIR, the CVAE parameters are shared and updated globally. This global sharing encourages
consistency across clients. Let ¢ and 1) be the global CVAE parameters. We can bound the deviation
of each client’s CVAE from the global one:

1o — Bl < g, bk — ¥l < by (53)

where §4 and 0., are small constants due to the federated learning process.

Using the Lipschitz continuity of the CVAE (which is one of the suitable regularity conditions men-
tioned in the theorem statement), we can bound the difference in reconstruction error and KL diver-
gence between each client’s CVAE and the global CVAE:

|REk - REglobal| S LRE<5¢ + 61/;) (54)
\KL(qg,. (21 fy, 9)lp(2ly)) — KL(as(2]fy, y)lIp(2y))| < Lkide (55)

where Lgg and Lk, are Lipschitz constants.

Substituting these bounds into our average KL divergence:
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K

1
K Z E.nyCVAEk [KL(p(fy) “DU)] < E.nypCVAE
k=1

global

+ LRE(6¢ + 5¢,) + L](L5¢ 67

The global CVAE is trained to minimize the reconstruction error and the KL divergence term. With
sufficient capacity and training data, these terms can be made arbitrarily small. Let’s denote their
sum as ecyag. Then:

K

1

I ZEnyCVAEk [KL(p(fy)Dy)] < €cvak + Lre(dp + 0y) + Lgirdy = € (58)
k=1

where € = ecvag + Lre(0g + 0y) + Lii.0y is a small constant that depends on the capacity of the
CVAE, the amount of training data, and the consistency of the federated learning process.

Theorem 4 (Client Model Robustness) Let 0;, and 0; be the model parameters of two different
clients k and 1 after training with FLAIR. Let Dy, be a test distribution that may differ from the
training distributions of clients k and l. Then, under suitable conditions:

Eo b [L(Ok; 2, y) — L(O; 2, y)]| <6 (59)
where § is a small constant that depends on the CVAE architecture, the federated training procedure,
and the dissimilarity between client distributions.

Proof 6 Detailed proof is reported in the Appendix .., due to space constraints. Let fr, = CVAE(x)
and f; = CVAE,(x) be the features generated by the CVAE for clients k and | respectively, given
an input x. We can decompose the difference in loss as follows:

|Eni [L(Ok; 2, y) — L0 2, 9)]| < [Exnn,, [L(Ok; frry) — L0 fi,y)]]
+ |Epnd [L(Ok; 2, y) — L(Ok; fr,y)]] (60)
+ |Eznn,, [L(05; 2, y) — L(Os; f1,9)]|

For the first term, we can use the fact that the global CVAE parameters are shared across clients,
which means that fi, and f; are generated from the same distribution. Therefore:

Eo b [L(Ok; frory) — L0 fr, )] < @ (61)
where €1 is small due to the consistency enforced by the global CVAE.

For the second and third terms, we can use the properties of the CVAE and the Lipschitz continuity
of the loss function:

|E$~Drmr [£(9k7 z, y) - £(9k7 fk? y)]l S L[: : ElﬂNDtm[

o — filll < e (62)

|EpmD [L(01; 2,y) — L0 f1,9)]] < L - B, [z — fill] < es (63)

where L. is the Lipschitz constant of the loss function, and €s, €3 are small due to the CVAE’s
ability to generate features close to the original input.

Combining these bounds, we get:
[Eonp,, [L(Ok; 2z, y) — LOOsz,y)]| S et +e2+es =0 (64)
This shows that the difference in performance between any two client models on a test distribution

is bounded, indicating robustness and generalization across clients.

B ADDITIONAL EXPERIMENTAL RESULTS
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(Dataset/ Method Beta Test Average Acc # of Comm
Model) ns=0 ns=0.1 ns=02 Rounds
FedAv 0.5 13.62 10.46 9.17 200
& 0.05 10.18 8.47 5.67 200
0.5 26.81 22.32 18.26 250
SCAFFOLD 0.05 19.33 16.54 12.36 200
0.5 12.36 10.19 8.06 200
FedFA™ 005 1018 847 561 200
. 0.5 26.69 23.34 18.56
TinymageNet  FedProto 65 yg'51 1557  11.85 200
Elastic 0.5 14.07 10.89 10.07 200
0.05 1046 8.79 6.08 200
0.5 28.23 26.51 22.31 200
FLAIR 0.05 21.09 18.66 15.01 200

Table 4: Comparison of FL. methods on TinylmageNet with varying beta and noise levels. The best
results for each configuration are in bold.

(Dataset/ Method Beta Test Average Acc # of Comm
Model) ns=0 ns=0.1 ns=02 Rounds
FedAvg 0.3  96.614 96.34 96.12 150
MNIST —geqFA 03 9659 9633 96.14 150
FedProto 0.3 98.89 98.73 98.58 150
SCAFFOLD 0.3 98.49 98.40 98.39 150
FLAIR 0.3 98.91 98.81 98.65 150
FedAvg 0.3 57.62 50.11 39.67 250
CIFAR FedFA 03 58.13 4985  40.65 250
FedProto 0.3 76.60 68.22 56.87 250
SCAFFOLD 0.3 7491 66.84 55.73 250
FLAIR 0.3 78.32 71.50 61.56 250

Table 5: Comparison of FL methods on four benchmark datasets with varying beta and noise levels.
The best results for each dataset and configuration are in bold.

(Dataset/ Method Classes Test Average Acc # of Comm
Model) ns=0 ns=0.1 ns=0.2 Rounds
FedAvg 70410  93.60  93.15 150
MNIST FedFA 2 0408 9360  93.12 150
FedProto 7 9853 9859 9839 150
SCAFFOLD 2 9865 9839 90821 150
FLAIR > 9875 98.68 984l 150
FedAvg > 4814 3877 3216 750
CIFAR FedFA 7 4801 4088 3151 750
FedProto 23671 3079 3058 750
SCAFFOLD 2 3685 3066 2844 750
FLAIR > 3771 3371 32.64 250
FedAvg 5 2893 1929 1483 750
CIFARI00 —¢ qra 7 2835 1957 1485 750
FedProto 2 393 2329 2018 750
SCAFFOLD 2 3287 2299 1978 250
FLAIR 2 3459 2488  22.63 250

Table 6: Comparison of FL. methods on benchmark datasets with quantity skew. The best results for
each dataset and configuration are in bold.
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Figure 2: Topl-accuracy plots MNIST beta = 0.5 and noise level 0, 0.1, and 0.2.
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Figure 3: Topl-accuracy plots CIFAR beta = 0.5 and noise level 0, 0.1, and 0.2.
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Figure 4: Topl-accuracy plots CIFAR100 beta = 0.05 and noise level 0, 0.1, and 0.2.
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