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Abstract

Despite the great success of pre-trained language models (PLMs) in a large set of
natural language processing (NLP) tasks, there has been a growing concern about
their security in real-world applications. Backdoor attack, which poisons a small
number of training samples by inserting backdoor triggers, is a typical threat to
security. Trained on the poisoned dataset, a victim model would perform normally
on benign samples but predict the attacker-chosen label on samples containing
pre-defined triggers. The vulnerability of PLMs under backdoor attacks has been
proved with increasing evidence in the literature. In this paper, we present several
simple yet effective training strategies that could effectively defend against such
attacks. To the best of our knowledge, this is the first work to explore the possibility
of backdoor-free adaptation for PLMs. Our motivation is based on the observation
that, when trained on the poisoned dataset, the PLM’s adaptation follows a strict
order of two stages: (1) a moderate-fitting stage, where the model mainly learns
the major features corresponding to the original task instead of subsidiary features
of backdoor triggers, and (2) an overfitting stage, where both features are learned
adequately. Therefore, if we could properly restrict the PLM’s adaptation to
the moderate-fitting stage, the model would neglect the backdoor triggers but
still achieve satisfying performance on the original task. To this end, we design
three methods to defend against backdoor attacks by reducing the model capacity,
training epochs, and learning rate, respectively. Experimental results demonstrate
the effectiveness of our methods in defending against several representative NLP
backdoor attacks. We also perform visualization-based analysis to attain a deeper
understanding of how the model learns different features, and explore the effect of
the poisoning ratio. Finally, we explore whether our methods could defend against
backdoor attacks for the pre-trained CV model. The codes are publicly available at
https://github.com/thunlp/Moderate-fitting.

1 Introduction

Despite the rapid development and great success of pre-trained language models (PLMs) (Han et al.,
2021), there have been increasing security concerns on deploying them in real-world applications.
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Backdoor attack by poisoning the training data is one typical security threat. The idea is that attackers
insert backdoor triggers into certain training samples. After being trained on poisoned data, the victim
model would (1) behave normally on the benign inputs, but (2) predict the attacker-chosen label given
an input containing pre-defined triggers during inference. Initially introduced in the field of computer
vision (CV) (Gu et al., 2017; Chen et al., 2017), diverse backdoor attack methods have been proposed
in natural language processing (NLP), including inserting context-independent words (Kurita et al.,
2020) or sentences (Dai et al., 2019) into training samples and modifying the syntactic structure (Qi
et al., 2021c) or text style (Qi et al., 2021b). Empirical results reveal that even pre-trained language
models (PLMs), the current foundation infrastructure for NLP (Min et al., 2021), are highly fragile to
these attacks. Such a vulnerability poses a significant threat to real-life applications of PLMs.

In this paper, we show backdoor attacks can be easily defended against using simple training strategies.
Specifically, we focus on the following setting: (1) the attacker poisons the training data and releases
the poisoned training dataset on open-source platforms. The attacker does not control the model
training process; (2) the victims download the poisoned training dataset from the open-source platform
to train their own models. If no defense is applied, the victim will get a model injected with backdoors.
Instead, with our proposed defense method, the risks of backdoor attack can be significantly mitigated
even if the model is trained on the poisoned dataset.

Our motivation is based on previous findings (Tänzer et al., 2022) that during the PLM’s adaptation
to a specific dataset, the model would first learn the general-purpose patterns shared by most of
the training samples, and then memorize those uncommon patterns of noisy samples. Under the
setting of backdoor attack, a partially poisoned dataset consists of both general-purpose patterns
(major features) derived from most clean samples and backdoor triggers (subsidiary features) injected
by attackers, and both features are highly distinct. For a PLM trained on the poisoned dataset, we
observe that the model’s learning dynamics follow a strict order of two stages: (1) moderate-fitting
stage, where the model mainly learns the major features instead of subsidiary backdoor triggers, and
(2) overfitting stage, where the model learns both features adequately.

Based on our observation, if we could properly restrict the PLM’s adaptation to the moderate-
fitting stage, the model would neglect the malicious backdoor triggers but still achieve satisfying
performance on the original task. To this end, we propose three methods to limit the PLM’s adaptation
to the moderate-fitting stage, i.e., reducing the model capacity, training epochs, and learning rate
during training. Specifically, to decrease the model capacity, we resort to parameter-efficient tuning
(PET), also known as delta tuning (Ding et al., 2022), which optimizes a small number of parameters
instead of all the PLM’s parameters. We additionally apply a flexible low-rank reparameterization
network to existing PET algorithms to further reduce the model capacity. In addition, we demonstrate
that reducing the training epochs or learning rate also suffices for our goal of restricting the PLM’s
adaptation to the moderate-fitting stage.

In experiments, we validate the feasibility of the proposed methods in defending against a series of
representative backdoor attacks on several NLP tasks. The results reflect that, each proposed method
could significantly lower the attack success rate (ASR) of the trained model while slightly hurting the
performance of the original task on benign samples. This demonstrates that our methods are effective
to defend against backdoor attacks in the training stage. To gain a deeper understanding, we visualize
the model’s learning dynamics on the poisoned dataset under different model capacity. Furthermore,
we conduct analyses to explore the effect of the poisoning ratio. We also create a synthetic dataset to
show that the two-stage learning phenomenon commonly exists in the scenario where PLMs jointly
learn two distinct features that are imbalanced in the training data. Finally, we explore whether our
methods could defend against backdoor attacks for the pre-trained CV model. In general, our study
offers simple yet effective backdoor defense methods and uncovers the underlying mechanism of the
backdoor attack in NLP.

2 Related Work

Backdoor Attack in NLP. One typical way of the backdoor attack is training data poisoning. By
poisoning the training samples with malicious triggers, backdoor attackers aim to establish a strong
connection between the trigger and the attacker-chosen target label (Chen et al., 2017). Plenty of
algorithms for training data poisoning have been proposed in the field of CV, such as inserting patch
triggers (Gu et al., 2017) and blending benign samples with specific patterns (Chen et al., 2017).
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Recently, many poisoning methods that insert triggers into the training data have also emerged in
NLP, such as word-level (Kurita et al., 2020) and sentence-level (Dai et al., 2019) triggers. However,
these methods typically leverage unusual words or sentences that are uncorrelated to the context.
These triggers break the grammar rules or coherence of normal text and could be easily detected in
the inspection process (Qi et al., 2021c). In light of this, researchers recently proposed more invisible
backdoor triggers, such as modifying the syntactic structure (Qi et al., 2021c) and transferring the
text style (Qi et al., 2021b).

Backdoor Defense in NLP. The advance of backdoor attacks spawned a line of backdoor defense
algorithms. The first category is to examine the training samples and remove the poisoned ones. For
instance, Chen and Dai (2021) propose Backdoor Keyword Identification (BKI) to remove suspicious
samples that contain potential backdoor keywords from the training dataset. The second category is to
inspect the testing samples. Qi et al. (2021a) detect and remove the words that may be the backdoor
trigger from testing samples using outlier word detection; Yang et al. (2021) distinguish the poisoned
data from clean data based on robustness-aware perturbations during the inference stage. The third
category distinguishes trojaned models from clean models (Azizi et al., 2021; Liu et al., 2022b; Shen
et al., 2022). Orthogonal to the above methods, our methods do not require additional operations on
data or model and thus are more practical.

Learning Behavior of DNNs on Noisy Data. Many efforts have been spent on exploring the learn-
ing behavior of DNNs when the training data contains label noise. Zhang et al. (2021) demonstrate
that DNNs are skilled in fitting random labels, showing excellent memorization abilities. Arpit et al.
(2017) further reveal that DNNs tend to prioritize learning simple patterns before memorizing the
noisy data. As the foundation model for NLP, PLMs are also demonstrated adept in memorizing the
training data (Carlini et al., 2021, 2022) and recalling the learned facts (Petroni et al., 2019). Tänzer
et al. (2022) additionally analyze the learning dynamics of PLMs under label noise, and observe
distinct learning phases, i.e., PLMs first learn general-purpose features and then enter a performance
plateau, followed by rapidly memorizing label noise. Different from the above works, in this paper,
we target at defending against backdoor attacks. Under our setting, for poisoned samples, the input
data is modified by inserting triggers, and the modified data’s label is set as the target label chosen by
the attacker. When trained on the poisoned data, the model would find a shortcut by establishing a
connection between the backdoor features and the corresponding label.

Parameter-efficient Tuning. Fine-tuning, which optimizes all of the parameters, is the conventional
way to adapt PLMs towards a downstream task. However, due to the tremendous size of PLMs,
fine-tuning could bring huge computation and storage costs. In order to make it feasible to tune larger
PLMs, parameter-efficient tuning (PET) methods are proposed (Ding et al., 2022). PET tunes a small
number of parameters and achieves comparable performance to fine-tuning. Up to now, various PET
algorithms have emerged, including (1) inserting additional modules into the Transformer (Vaswani
et al., 2017) block (Houlsby et al., 2019; Lester et al., 2021; Li and Liang, 2021), (2) optimizing part
of PLM’s existing parameters (Ben-Zaken et al., 2021; Guo et al., 2021), and (3) reparameterizing
tunable parameters as low-rank decompositions (Hu et al., 2021). In this paper, we demonstrate the
potential application of PET in backdoor defense by reducing the model capacity.

3 Methodology

In this section, to achieve our goal of restricting the PLM’s adaptation to the moderate-fitting stage,
we design three training strategies during PLM’s downstream adaptation, by reducing the (1) model
capacity, (2) training epochs, and (3) learning rate, respectively.

Reducing the Model Capacity. The traditional way for PLM’s downstream adaptation is to
optimize all the parameters in the PLM (i.e., fine-tuning). Due to the tremendous size of tunable
parameters and the complicated network architecture in a Transformer block, the model capacity
(complexity) of a PLM is inevitably huge3. Although a huge model capacity is typically considered
as the guarantee for good memorization and representational ability (LeCun et al., 1998; Arpit
et al., 2017), recent works have demonstrated that for PLMs, most downstream NLP tasks have a

3The model capacity is decided by the tunable parameters during PLM’s downstream adaptation.

3



considerably small intrinsic dimension (Aghajanyan et al., 2021; Qin et al., 2021), which is defined as
the minimal parameters needed to approximate some function or data distribution. This finding reveals
that, for PLMs, a huge model capacity may not be the prerequisite for the successful downstream
adaptation; instead, we could utilize a small model capacity but still achieve excellent performance.

Parameter-efficient tuning (PET) serves as a possible solution to reduce the model capacity by
significantly reducing the tunable parameters. However, in most cases, the extent of such reduction
is still far from causing moderate-fitting. The reason is that, the actual model capacity is not just
decided by the number of tunable parameters, but also by the overall intrinsic rank (Hu et al., 2021)
of the tunable parameters. Specifically, existing PET algorithms suffer from the following defects:
(1) most PET algorithms (e.g., Adapter (Houlsby et al., 2019) and Prefix-Tuning (Li and Liang,
2021)) do not have a low-rank constraint on the updates of the tunable parameters, but instead allow
the intrinsic rank of weight updates larger than the actual intrinsic dimension of the downstream
adaptation; (2) for those algorithms that explicitly model the low-rank updates of the parameters (e.g.,
LoRA (Hu et al., 2021)), their low-rank structures are individually distributed in different modules in
the Transformer layers (dubbed as local low-rank architecture). Instead, we argue that it is essential
to have a global low-rank architecture to constrain the overall intrinsic rank of the weight updates.

To mitigate the above defects, we propose a flexible method that could be applied to PET algorithms.
We reparameterize all of the tunable parameters defined by a PET algorithm with a global low-rank
decomposition. Without loss of generality, assuming a PET algorithm defines N tunable weights
(and biases): {W1, ...,WN} of various sizes, we first flatten each one into a one-dimensional
vector. For example, a two-dimensional weight matrix Wi ∈ Rdi

1×di
2 could be converted to a vector

Vi ∈ Rdi
v , where div = di1 × di2, and Wi(j, k) = Vi(j × di2 + k) for 0 ≤ j < di1 and 0 ≤ k < di2.

After that, we concatenate all the flattened vectors as follows: Vall = [V1; ...;VN ] ∈ Rdall , where
dall =

∑N
i=1 d

i
v denotes the total number of tunable parameters. Finally, we reparameterize Vall as

low-rank decompositions. Specifically, the reparameterization network consists of two projection
layers Proj1 and Proj2 with an activation function σ between them:

Vall = Proj2(σ(Proj1(E))), (1)

where E ∈ Rdemb is a tunable embedding. The layer Proj1 projects E from dimension demb to the
bottleneck dimension dI , creating a vector I = Proj1(E) ∈ RdI . Note dI is set small (e.g., 1)
enough to ensure the low model capacity. The layer Proj2 projects the dimension of I from dI to
dall, and forms the tunable parameters Vall defined by the PET algorithm. During adaptation, instead
of tuning Vall, we jointly optimize Proj1, Proj2 and E, and keep the PLM’s parameters fixed.

Reducing the Training Epochs. Too many training epochs could cause the model to overfit the
training data exhaustively. In our setting where the training data is partially poisoned with backdoor
triggers, after enough training epochs, the PLM would eventually learn both the major and subsidiary
features present in the data adequately. Inspired by Li et al. (2020) who contend that early stopping is
robust to label noise for over-parameterized neural networks, we propose to reduce training epochs
to prevent the PLM’s adaptation from entering the overfitting stage. It is worth noting that similar
defense techniques have also been proposed in other areas, such as Wallace et al. (2021); Liu et al.
(2022a).

Reducing the Learning Rate. Intuitively, training the PLM with a larger learning rate and fewer
epochs is approximately equivalent to training the PLM with more epochs but a smaller learning
rate. Therefore, similar to the idea of limiting the number of training epochs, reducing the learning
rate serves as another simple yet effective method that could prevent the model from learning the
poisoned samples adequately.

4 Experiments

In this section, we first conduct experiments to evaluate our proposed defense methods. We choose two
representative NLP backdoor attacks as the main experiments (§ 4.1). Then we analyze the learning
dynamics of the model under different settings and visualize representative feature distributions
learned during the training process in § 4.2. Furthermore, we conduct systematic analyses to gain a
deeper understanding of the effect of the poisoning ratio. Also, we show that the two-stage learning is
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Figure 1: Results of reducing the model capacity using reparameterized PET against word-level attack.
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Figure 2: Results of reducing the model capacity using reparameterized PET against syntactic attack.

a common phenomenon for PLMs in the scenario where PLMs jointly learn two distinct features that
are imbalanced in the training data. In addition, we demonstrate that our methods could successfully
defend against other NLP backdoor attacks (§ 4.3). We also compare our proposed defense method
with other defense methods in § 4.4. Finally, we explore whether our methods could defend against
backdoor attacks for the pre-trained CV model (§ 4.5).

4.1 Main Experiments

Experimental Setting. We use RoBERTaBASE (Liu et al., 2019) as the backbone PLM. We perform
experiments on three datasets, including SST-2 (Socher et al., 2013), AG News (Zhang et al.,
2015) and Hate Speech and Offensive Language (HSOL) (Davidson et al., 2017). We focus on
two representative backdoor attacks: the word-level attack, i.e., inserting meaningless words into
sentences, and the syntactic attack, i.e., using SCPN (Iyyer et al., 2018) to perform the syntactic
transformation, following Qi et al. (2021c). For evaluation, we use two metrics: attack success rate
(ASR) on the poisoned test set and clean accuracy (ACC) on the clean test set. ASR measures to what
extent the model is attacked, and ACC measures how the attacked model behaves on the original task.
We evaluate three proposed methods, i.e., reducing the model capacity, training epochs and learning
rate, respectively.

Reducing the Model Capacity. We choose three representative PET algorithms, i.e., LoRA,
Adapter and Prefix-Tuning. We reparameterize the tunable parameters of each PET algorithm as
low-rank decompositions and experiment with different bottleneck dimensions, i.e., {256, 32, 4, 2,
1}. The number of training epochs is set as 10. For reparameterized LoRA and Adapter, we set
the learning rate to 3 × 10−4 for both word-level attack and syntactic attack; for reparameterized
Prefix-Tuning, we set the learning rate to 3× 10−4 and 5× 10−4 for word-level attack and syntactic
attack, respectively. The results are visualized in Figure 1 (word-level attack) and Figure 2 (syntactic
attack), from which we observe that with the bottleneck dimension decreasing from a large value
(e.g. 256) to a small value (e.g. 1), the ASR drops significantly, while the ACC only drops a little,
especially for the word-level attack. Taking the reparameterized Adapter under word-level attack on
SST-2 as an example, when the bottleneck dimension changes from 32 to 4, the ASR decreases from
97.15% to 8.11% while the ACC declines from 94.51% to 93.68%. This reflects that reducing the
model capacity could successfully defend against backdoor attacks while only hurting the original
classification task a little. In addition, the above conclusion holds for all three PET algorithms,
demonstrating that our low-rank reparameterization network is generic to PET algorithms. We further
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Figure 3: Results of reducing the training epochs against word-level and syntactic attacks.
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Figure 4: Results of reducing the learning rate against word-level and syntactic attacks.

show in appendix B.4 and appendix B.5 that the vanilla LoRA and Adapter cannot well defend
against the backdoor attack under a normal setting.

Reducing the Training Epochs or Learning Rate. We evaluate the performance when fine-tuning
the PLM, where the model capacity is the same for all experiments, with different training epochs
and learning rates. For the former, we set the training epochs to {10, 2, 1} and choose a learning
rate of 2× 10−5 for the word-level attack and 5× 10−6 for the syntactic attack; for the latter, the
learning rate is chosen from {2× 10−5, 5× 10−6, 1× 10−6, 5× 10−7} and the number of training
epochs is set as 10. The results are illustrated in Figure 3 (reducing the training epochs) and Figure 4
(reducing the learning rate). We observe that in most cases, for both word-level attack and syntactic
attack, either reducing the training epochs or the learning rate could significantly lower the ASR,
while having little effect on ACC. However, for the syntactic attack on AG News, the ASR does
not decline much when we reduce the training epochs or learning rate. The underlying reason may
be that the syntactic triggers change the original samples to a large extent for AG News so that the
syntactic triggers are easier for RoBERTaBASE to learn during fine-tuning, making it harder to restrict
the PLM’s adaptation to the first moderate-fitting stage.

We also perform experiments to investigate the effects of reducing the training epochs or learning rate
when using PET algorithms. The results can be found in appendix B.3. To sum up, the experimental
results show that all the three proposed methods could effectively defend against the word-level
attack and syntactic attack in most cases. Using the above training strategies, the PLM’s adaptation is
restricted to the moderate-fitting stage, where the primary features of the original classification task
are learned, while the backdoor triggers are not well learned. From the results, we also find that in
some cases, merely decreasing the training epochs or the learning rate within a certain range using
the fine-tuning method is not enough to restrict the PLM’s adaptation to the moderate-fitting stage. In
contrast, reducing the model capacity is more useful to some extent.

4.2 Analysis

Visualization of the Learning Dynamics. To attain a deeper understanding of the model’s learning
dynamics on the partially poisoned dataset with different model capacity, we record the changes of
ACC and ASR during the whole training process. Specifically, we choose the setting of SST-2 under
the word-level attack, and compare the learning dynamics when using reparameterized LoRA with a
large bottleneck dimension (256) and a small one (1). The changes of ACC and ASR during training
are shown in Figure 5 (a, d). We observe that, when training with sufficiently large model capacity
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Figure 5: Visualization of PLM’s learning dynamics when using reparameterized LoRA with the bottleneck
dimension of 256 (a, b, c) and 1 (d, e, f). We record the changes of ACC and ASR in (a, d). Both ACC and
ASR are tested with a fixed interval of training steps and at the end of model training. We also select two
representative testing points (the green and black dashed lines in (a, d)) for both bottleneck dimensions and
visualize the learned feature distributions in (b, c, e, f). (b)/(e) corresponds to the testing point of the green
dashed line in (a)/(d). (c)/(f) corresponds to the testing point of the black dashed line in (a)/(d).

Table 1: The influence of the poisoning ratio for word-level attack and syntactic attack. We use reparameterized
LoRA with the bottleneck dimension of 1, and evaluate both ACC and ASR under different poisoning ratios.

Word-level Attack Syntactic Attack

Poisoning Ratio 2.5% 5% 7.5% 10% 12.5% 10% 12.5% 15% 17.5% 20%
ACC (SST-2) 92.53 92.64 92.42 92.48 90.66 91.98 91.93 91.82 91.60 91.65
ASR (SST-2) 10.20 10.96 11.51 11.62 14.47 42.11 48.36 53.84 61.62 65.90

(Figure 5 (a)), both ACC and ASR become high after enough training, with ACC rising earlier than
ASR. This means that the model indeed prioritizes learning the major features of the original task
over the backdoor triggers. When training with limited model capacity (Figure 5 (d)), after fluctuating
for a while, the ACC becomes high while the ASR remains low. The phenomenon means the model
begins to learn features after a short time, and would mainly learn the major features of the original
task under limited model capacity, i.e., staying in the moderate-fitting stage.

Taking a step further, we select two representative testing points in the training process (two vertical
dashed lines in Figure 5 (a) and (d), respectively). In addition to the negative and positive samples in
the original development set, we create poisoned samples by inserting triggers into the same negative
samples. Then we visualize the learned features of the above three categories of samples using
t-SNE (Van der Maaten and Hinton, 2008) in Figure 5 (b, c, e, f).

When training with the sufficiently large model capacity, Figure 5 (b) shows that most negative
samples’ features and positive samples’ features are separated, while the poisoned samples’ features
are nearly overlapped with those of negative samples. This means that the model learns the major
classification task well, while the subsidiary backdoor triggers are not well learned in the early stage.
Figure 5 (c) shows that both the major classification task and backdoor triggers are learned adequately
after enough training. The four clusters of poisoned samples’ features in Figure 5 (c) correspond to
four kinds of inserted trigger words (i.e., “cf”, “mn”, “bb”, “tq”).

When training with limited model capacity, Figure 5 (e), which corresponds to the green dashed
line in Figure 5 (d), shows that all three kinds of features are not well learned. Instead, the features
visualized in Figure 5 (f), which correspond to the black dashed line in Figure 5 (d), are similar to
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Table 2: Results on a synthetic dataset with samples from SST-2 (the primary task) and AG News (the subsidiary
task). We train RoBERTaBASE on the synthetic dataset, and evaluate the performance of both tasks under different
model capacity, training epochs and learning rates.

Tuning Method Reparameterized LoRA Fine-tuning

Setting
Bottleneck Dimension Training Epochs Learning Rate

32 6 1 10 1 5 × 10−6 1 × 10−6 5 × 10−7

SST-2 94.56 93.47 92.20 94.95 93.68 94.23 93.41 91.93
AG News 95.42 89.82 71.21 92.79 83.92 93.05 78.82 69.13

those of Figure 5 (b) where the model is trained with limited time but large model capacity. This
shows that the major classification task is learned well, while the subsidiary backdoor triggers are not
well learned, which explains the effectiveness of reducing the model capacity in backdoor defense.
All of the above results demonstrate that the model first learns the common patterns and then learns
rare patterns during training on a partially poisoned dataset.

Poisoning Ratio. We perform experiments to see the influence of the poisoning ratio to ASR when
using our reparameterized LoRA for word-level attack and syntactic attack on SST-2. The number
of training epochs is set as 10 and the learning rate is set as 3 × 10−4. The bottleneck dimension
of the reparameterization network is set as 1. We experiment with different poisoning ratios. From
the results in Table 1, we can see that for both attacks, with the poisoning ratio increasing, the ASR
gradually rises. Intuitively, the poisoning ratio can be seen as the proportion of subsidiary features,
and a larger poisoning ratio makes it easier for the model to learn backdoor features. Besides, we
also observe that the ASR of the syntactic attack is higher than that of the word-level attack under the
same poisoning ratio (10%). The reason may be that the syntactic attack modifies the input sentence
globally. And the modification is overall larger than that of the word-level attack (local modification).

Experiments on a Synthetic Dataset. Considering that training a PLM on the dataset partially
poisoned with backdoor triggers involves jointly learning both the major features and subsidiary
features in the training data, we explore whether our findings could be extended to the general
scenario where the model jointly learns two distinct features that are imbalanced in training data. We
simulate the scenario by creating a synthetic dataset. Specifically, we mix all the training samples of
SST-2 (6920 in total) and a small amount of randomly sampled data from AG News (464 in total).
Detailed experimental settings are described in appendix A.2. Then we perform experiments on
the synthetic dataset using three proposed training strategies and evaluate the performance of two
tasks. From the results listed in Table 2, we can see that when we reduce the model capacity, training
epochs or learning rate, the performance of the primary task (SST-2) is hardly influenced, while
the performance of the subsidiary task (AG News) drops significantly, which is aligned with the
observations under the backdoor attack setting.

4.3 Experiments on Other NLP Backdoor Attacks

In previous sections, we choose the word-level attack and the syntactic attack as the main experiments.
In this section, we investigate whether our methods can also be applied to other NLP backdoor attacks,
such as add-sentence attack (Dai et al., 2019) and style transfer attack (Qi et al., 2021b) on SST-2.
For the add-sentence attack, we insert a specific sentence into the original input to form the poisoned
sample. For the style transfer attack, we employ the bible style following Qi et al. (2021b).

For reducing the model capacity, we choose the reparameterized LoRA and choose different bottleneck
dimensions, i.e., {32, 4, 2, 1}. The number of training epochs is set as 10 and the learning rate is set
as 3 × 10−4. We also experiment with reducing the training epochs by fine-tuning RoBERTaBASE
for {15, 10, 2, 1} epochs, and the learning rate is set as 5× 10−6 and 2× 10−5 for the add-sentence
attack and the style transfer attack, respectively. In addition, we conduct experiments to investigate
the effects of reducing the learning rate by fine-tuning RoBERTaBASE with different learning rates, i.e.,
{2× 10−5, 5× 10−6, 1× 10−6, 5× 10−7}, for 10 epochs. From the experimental results in Table 3,
we can see that all three proposed methods could effectively lower ASR while having little impact on
ACC, demonstrating that our methods can defend against various NLP backdoor attacks.
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Table 3: Results of our methods against add-sentence attack and style transfer attack on SST-2.

Add-sentence Attack Style Transfer Attack

Bottleneck Dimension 32 4 2 1 32 4 2 1
ACC 94.56 93.96 92.37 92.81 94.67 94.01 92.59 91.43
ASR 100.00 98.36 65.13 42.21 85.96 61.51 58.77 60.86

Training Epochs 15 10 2 1 15 10 2 1
ACC 94.62 94.89 93.03 90.77 94.29 94.23 94.01 93.79
ASR 100.00 99.89 86.95 35.20 87.28 86.18 72.15 61.84

Learning Rate 2 × 10−5 5 × 10−6 1 × 10−6 5 × 10−7 2 × 10−5 5 × 10−6 1 × 10−6 5 × 10−7

ACC 94.78 94.89 93.03 91.60 94.23 94.45 93.30 91.76
ASR 100.00 99.89 94.08 60.75 86.18 77.85 61.18 42.21

Table 4: Comparisons of the defense performance between our proposed method and other defense methods
against the word-level, syntactic, add-sentence, and style transfer attacks on SST-2.

Defense Method Word-level Attack Syntactic Attack Add-sentence Attack Style Transfer Attack
ACC ASR ACC ASR ACC ASR ACC ASR

ONION 92.42 10.20 92.75 86.29 93.68 99.89 93.47 81.58
BKI 94.29 76.75 93.74 93.09 94.56 100.00 94.18 80.48

STRIP 94.07 99.12 93.85 89.47 94.34 100.00 94.07 85.09
RAP 94.29 82.89 93.52 91.67 93.74 87.61 86.00 85.53

Our Method 94.23 7.89 91.98 42.11 92.81 42.21 91.76 42.21

4.4 Comparisons with Other Defense Methods

We compare the defense performance of our method with several other defense methods, including
ONION (Qi et al., 2021a), Backdoor Keyword Identification (BKI) (Chen and Dai, 2021), STRIP (Gao
et al., 2021) and RAP (Yang et al., 2021). For a brief introduction, Backdoor Keyword Identification
(BKI) is a training-time defense method by identifying and removing potential poisoned samples
from training samples. ONION, STRIP and RAP are inference-time defense methods. We adapt them
to the training-time defense for fair comparisons, following (Cui et al., 2022). From the experimental
results in Table 4, we can see that the defense performance of our proposed methods is better than
other defense methods. The ASR after applying our proposed defense method is lower than those
after applying other defense methods.

4.5 Experiments on Backdoor Attacks for the Pre-trained CV Model

In this section, we investigate whether our methods could also defend against backdoor attacks for
the pre-trained CV model. Specifically, we choose two kinds of backdoor attacks, i.e., inserting patch
triggers (Gu et al., 2017) and blending the benign sample with the specific pattern (Chen et al., 2017).
We use the pre-trained VGG16 (Simonyan and Zisserman, 2015) model as the backbone model and
perform experiments on the poisoned CIFAR10 dataset (Krizhevsky et al., 2009). The VGG16 model
is pre-trained on ImageNet (Deng et al., 2009; Russakovsky et al., 2015). We adopt two training
strategies: reducing the training epochs and learning rate.

We visualize the changes of ACC and ASR under different settings for two attacks in Figure 6
(a-f). We evaluate both ACC and ASR for each epoch. Our findings are as follows: (1) For the
patch-trigger attack, the model mostly learns the original classification task for the first few epochs
under a relatively low learning rate, as reflected in the high ACC and low ASR for the first few epochs
in Figure 6 (b). This finding seems contradictory to the discovery in Li et al. (2021), which claims
that the training loss on poisoned samples declines much faster than that on benign samples in the first
few epochs. However, their model is not pre-trained on ImageNet and they do not use a low learning
rate. As the model pre-trained on ImageNet has already learned some knowledge about extracting
normal features, it is possibly easier for such a model to learn the original classification task. We
also explore the effects of pre-training when a language model is trained on a poisoned dataset in
appendix B.2. (2) From the comparison between Figure 6 (a) and (c), we can see that jointly reducing
the training epochs and learning rate can defend against the patch-trigger attack to some extent, i.e.,
the ASR drops sharply while the ACC also declines to some degree. (3) Reducing training epochs or
learning rate seems not able to defend against the blending-trigger attack as shown in Figure 6 (d, e,
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Figure 6: Results of our methods against patch-trigger attack (a, b, c) and blending-trigger attack (d, e, f). We
record the changes of ACC and ASR during training when using different training epochs and learning rates.

f). The blending-trigger attack modifies the input data globally rather than alters the input data locally
like the patch-trigger attack, which makes the blending-trigger attack harder to defend against.

5 Conclusion

In this paper, we reveal the mechanism of the PLM’s adaptation on a partially poisoned training
dataset. We observe that the model would prioritize learning the common patterns shared by a
majority of clean training samples, and then learn the infrequent backdoor patterns corresponding to a
small number of poisoned samples. Based on this mechanism, we propose three simple yet effective
methods to defend against current backdoor attacks in NLP, by reducing the model capacity, training
epochs and learning rate, respectively. We also conduct a series of analyses towards gaining a deeper
understanding of the effectiveness of our methods. By rethinking current backdoor attacks in NLP,
our findings shed light on how to enhance the security of the model during the PLM’s downstream
adaptation stage.
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