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Abstract

To defend against privacy leakage of user data,
differential privacy is widely used in federated
learning, but it is not free. The addition of
noise randomly disrupts the semantic integrity
of the model and this disturbance accumulates
with increased communication rounds. In this
paper, we introduce a novel federated learning
framework with rigorous privacy guarantees,
named FedCEO, designed to strike a trade-off
between model utility and user privacy by
letting clients “Collaborate with Each Other”.
Specifically, we perform efficient tensor low-rank
proximal optimization on stacked local model
parameters at the server, demonstrating its
capability to flexibly truncate high-frequency
components in spectral space. This capability
implies that our FedCEO can effectively recover
the disrupted semantic information by smoothing
the global semantic space for different privacy
settings and continuous training processes.
Moreover, we improve the SOTA utility-privacy
trade-off bound by order of

√
d, where d is the

input dimension. We illustrate our theoretical
results with experiments on representative
datasets and observe significant performance
improvements and strict privacy guarantees under
different privacy settings. The code is available at
https://github.com/6lyc/FedCEO_
Collaborate-with-Each-Other.
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1. Introduction
Federated learning (FL) (McMahan et al., 2017), a privacy-
preserving distributed machine learning paradigm, enables
multiple parties to jointly learn a model under global
scheduling while keeping the data from leaving the local
client. Nevertheless, recent work has shown that an at-
tacker (i.e., the server or a particular client) can steal raw
training data (Zhu et al., 2019; Jeon et al., 2021) and even
specific private information (Fowl et al., 2022) by inverting
parameters (gradients) uploaded from other clients. To fur-
ther enhance privacy safeguards, differential privacy (DP)
(Dwork, 2006; 2010) has become the prevailing standard in
privacy-preserving machine learning (Jain et al., 2018; Levy
et al., 2021). This privacy computing technique has proven
effective in federated learning, guarding against client (user)
privacy breaches by introducing random noise to uploaded
updates (McMahan et al., 2018; Jain et al., 2021; Malekmo-
hammadi et al., 2024). Unfortunately, randomized mecha-
nisms like DP may result in a sacrifice of model utility, es-
pecially as the number of communication rounds increases
(Yuan et al., 2023). Overall, the key issue is how to achieve
an improved utility-privacy trade-off in differentially private
federated learning (DPFL), which constitutes a novel and
challenging research direction (Bietti et al., 2022; Cheng
et al., 2022; Shen et al., 2023; Tsoy et al., 2024).

Considering the randomness of the introduced noise for
differential privacy, the specific semantic information that
gets corrupted can differ across individual clients. Mean-
while, there exists a certain similarity between the data
distributions of each client, leading to the correlation in
their semantic spaces. Therefore, we propose to mitigate
the impact of DP noise on the utility of the global model in
federated learning by exploiting the semantic complemen-
tarity between the noisy parameters of different clients. To
substantiate our motivation, we visualize the smoothness
of the global semantic space at different stages of training
(see the heat map in Figure 1). Specifically, we compute
Laplacian regularization values for the last linear layer of
the backbone along the client-side direction, which serves as
a metric for assessing the smoothness of the global semantic
space (Yin et al., 2015; Pang & Cheung, 2017). Furthermore,
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Figure 1. The heat map illustrates the smoothness of the global semantic space for ten clients at different training stages, where the color
gradient from red to blue signifies an increase in smoothness. The bar chart illustrates the testing accuracy on the tenth class for each
client during different training stages, where clients experiencing significant degradation in the semantic understanding of the tenth class
are highlighted in pink, while others are marked in green. Due to the randomness of DP noise, we observe significant degradation in the
local semantic representation of 10-th class for clients 1, 3, and 6 among the ten clients (ACC significantly reduced), while the impact on
other clients is relatively minor. Consequently, the corresponding blocks in the tenth row of the heat map matrix turn red, indicating a
decrease in the smoothness of the global semantic space. In contrast, our approach enhances the smoothness of the global semantic space,
evidenced by the recovery of the blue color in the tenth row of the heat map matrix. Simultaneously, the local semantic representation of
class ten for clients 1, 3, and 6 is restored (ACC improved), based on the collaboration among all clients.

we present the testing accuracy for each client concerning
the 10-th class on the CIFAR-10 dataset with a two-layer
multi-layer perceptron (MLP) (see the bar chart Figure 1).
Taking the 10-th class in CIFAR-10 as an illustrative exam-
ple, we observe that the introduction of differential privacy
disrupts the smoothness of the global semantic space for
the tenth class (as evidenced by the reddening of the tenth
row). Simultaneously, there is a significant decline in testing
accuracy for this class across clients 1, 3, and 6. Following
our proposed low-rank processing, we observe an enhance-
ment in the smoothness of the global semantic space for the
tenth class (as evidenced by the bluing of the tenth row),
concomitant with an increase in accuracy for clients 1, 3,
and 6. Moreover, a similar phenomenon is noted for the
seventh class (as observed in the seventh row of the heat
map). This emphasizes that smoothing the global semantic
space based on the semantic complementarity of noise pa-
rameters between clients is key to addressing the declining
utility of models in the DPFL framework. While previous
works have also focused on improving utility in DPFL, they
are fundamentally based on restricting the local updates
(Cheng et al., 2022; Shen et al., 2023) without considering
the collaborative relationship across different clients. In
other words, our work provides a new perspective on the
utility-privacy trade-off in federated learning by exploring

an inter-client semantic collaboration approach.

Contributions. In this work, we propose an optimization
algorithm in the server based on tensor low-rank techniques,
which offers a flexible approach to smoothing the global
semantic space for different privacy settings and continuous
training processes. We provide rigorous theoretical anal-
ysis and extensive empirical evidence to substantiate our
proposed framework. Specifically, our contributions are
summarized as follows:

1. We introduce a novel federated learning framework,
FedCEO, characterized by stringent privacy guaran-
tees and enhanced model utility. We establish its equiv-
alence in the spectral space to the truncated tensor sin-
gular value decomposition (T-tSVD) algorithm (Kilmer
& Martin, 2011), showing its ability to achieve smooth-
ness by truncating high-frequency components in the
global semantic space. Benefiting from the T-tSVD,
we can flexibly control the degree of semantic comple-
mentarity between clients according to noise levels.

2. We theoretically prove a new utility-privacy tradeoff
bound for our FedCEO yielding a notable improve-
ment of O(

√
d) over previous SOTA results due to

low-rankness, where d is the input dimension.
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3. We empirically demonstrate that our model utility out-
performs previous work under various model archi-
tectures and privacy settings. Furthermore, we also
employ a common gradient inversion algorithm named
DLG (Zhu et al., 2019) to attack our framework, val-
idating its robust privacy-preserving performance. In
summary, we demonstrate that our approach achieves
the best trade-off between utility and privacy within
the framework of DPFL.

1.1. Related Work

To ensure formal privacy guarantees, federated learning with
differential privacy has undergone extensive investigation
(Kim et al., 2021; Naseri et al., 2022). Recent efforts have
been concentrated on user-level differential privacy, aim-
ing to enhance model utility (McMahan et al., 2018; Wei
et al., 2021; Shen et al., 2023). In alignment with these
endeavors, we also adopt user-level differential privacy and
employ it locally to safeguard against potential adversarial
threats to the server (Fowl et al., 2022; Hu et al., 2024).
Moreover, to further enhance the model utility of DPFL,
current methods mainly investigate techniques such as reg-
ularization or personalization, fundamentally constraining
the size of uploaded updates. (Cheng et al., 2022) proposes
two regularization techniques: bounded local update regu-
larization and local update sparsification. These methods
enforce constraints to reduce the norm of local updates. In
a more natural paradigm, PPSGD (Bietti et al., 2022) intro-
duces a personalized privacy-preserving stochastic gradient
optimization algorithm designed for training additive mod-
els with user-level differential privacy. It decomposes the
model into the sum of local and global learning components,
selectively sharing only the global part. However, extending
this method to more complex personalized models proves
challenging. Work closely related to ours are (Jain et al.,
2021) and CENTAUR (Shen et al., 2023), who perform sin-
gular value decomposition (SVD) on noisy representation
matrices of clients individually at the server. They verify
that handling such issues in the spectral space is promising.
However, their methods independently explore spectral in-
formation. In contrast, we stack the noisy models into a
higher-order tensor, capitalizing on the semantic comple-
mentarity among clients to further enhance model utility in
DPFL. Consequently, we improve the utility-privacy trade-
off from their O(d1.5) and O(d) to our O(

√
d).

2. Preliminaries
2.1. Federated Learning

Federated learning (FL) (McMahan et al., 2017) is a multi-
round protocol involving a central server and a set of local
clients collaboratively training a privacy-preserving global
model. In the federated learning, we address the following

formulation of the optimization problem:

min
w∈Rd

{
f(w) :=

1

K

∑
k∈St

fk (w)

}
, (1)

where N is the total number of clients, with a selection
of a subset St of size K in each round. Let w denote the
parameters of the global model, and Dk denote the local
dataset of client k. Let fk := Eb∼Dk

[F (w; b)] denote the
empirical risk for client k, where b represents a randomly
sampled mini-batch from the local dataset Dk.

To achieve the goal of collaborative training without ex-
posing local data, federated learning employs parameter
transmission followed by aggregation. However, FL intro-
duces challenges not encountered in centralized learning,
such as gradient conflicts arising from data heterogeneity
and privacy risks due to gradient leakage. Our paper primar-
ily focuses on privacy concerns in FL and explores further
utility guarantees.

2.2. Differential Privacy

Differential Privacy (DP) is a privacy computing technique
with formal mathematical guarantees. We commence by
presenting the definition of base DP.

Definition 2.1 (Differential Privacy (Dwork, 2006; Abadi
et al., 2016)). A randomized mechanism M : D → R with
data domain D and output range R gives (ϵ, δ)-differential
privacy if for any two adjacent datasets D,D′ ∈ D that
differ by one record (add or remove) and all outputs S ⊆ R
it holds that

Pr[M(D) ∈ S] ≤ eϵ Pr [M (D′) ∈ S] + δ,

where ϵ and δ denote the privacy budget and the relaxation
level, respectively. It indicates the hardness of obtaining
information about one record in the dataset by observing
the output of the algorithm M, especially when the privacy
budget ϵ is smaller.

User-level DP: In this paper, we employ user-level dif-
ferential privacy, which naturally suits federated learning,
shifting the protected scale to individual user (Dwork, 2010;
McMahan et al., 2018). In other words, one record in Defi-
nition 2.1 consists of all data belonging to a single client.

2.3. Differential Privacy in Federated Learning

User-level differential privacy provides formal privacy guar-
antees for individual clients and has found widespread appli-
cations in federated learning. (McMahan et al., 2018) first
introduces DP-FedAvg and DP-FedSGD, formally incorpo-
rating user-level DP into the FL framework. These methods
involve clipping per-user updates at the client side, followed
by aggregation and the addition of Gaussian noise at the
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Algorithm 1 UDP-FedAvg
Input: K: number of participating clients each round,
T : communication rounds, C: clipping threshold,
σ: noise multiplier, η: learning rate, E: local epochs.
Output: w′(T ): global model.

1: Initialize global model w(0) randomly
2: for t = 1 to T do
3: Take a random subset St of K clients (Total N )
4: for all clients k in parallel do
5: w′

k(t) = ClientDPUpdate (w′ (t− 1) , k)
6: end for
7: w′(t) = 1

K

∑
k∈St

w′
k(t)

8: return w′(t)
9: end for

10: return w′(T )

ClientDPUpdate(w0, k)
1: Initialize w = w0 (i.e. w′ (t− 1))
2: for e = 1 to E do
3: Take a random split B from local dataset Dk (i.e.

mini-batches with size B)
4: for batch b ∈ B do
5: w = w − η 1

B

(∑
(x,y)∈b ∇wF (w;x, y)

)
6: end for
7: end for
8: ∆ = w − w0

9: ∆̃ = GradientClip(∆)

10: w′ = w0 + η
(
∆̃ +N (0, Iσ2C2/K)

)
11: return w′

GradientClip(∆)

1: ∆̃ = ∆/max
(
1, ∥∆∥

C

)
2: return ∆̃

server side, which ensures privacy protection for ”large step”
updates derived from user-level data. To further address po-
tential malicious actions at the server (Fowl et al., 2022),
we introduce user-level differential privacy (UDP) locally
(Truex et al., 2020), as shown in Algorithm 1. Although the
aforementioned algorithms provide user-level privacy guar-
antees in federated learning, they often result in a significant
degradation of model utility. In our work, we specifically
focus on strategies to enhance the utility of FL models while
maintaining stringent privacy guarantees.

2.4. Low-rankness

The low-rank property is a crucial characteristic of both nat-
ural and artificial data, offering a description of dependence
relationships among different dimensions. For instance, in
the case of a second-order matrix, low-rankness character-

izes the correlation between elements in rows or columns,
finding extensive applications in areas such as image denois-
ing (Ren et al., 2022) and data compression (Idelbayev &
Carreira-Perpinán, 2020). This paper focuses primarily on
the low-rank property of third-order tensors, employing ten-
sor nuclear norm (TNN) (Yang et al., 2016; Lu et al., 2016)
for characterization and the tensor singular value decom-
position (tSVD) (Kilmer & Martin, 2011; Lu et al., 2019)
algorithm for modeling. The following sections provide a
detailed introduction to these relevant concepts.

The Discrete Fourier Transform (DFT) is implicated in sev-
eral related concepts introduced later in this paper. We de-
note discrete Fourier transform as DFT(·), and more details
are deferred to the Appendix A.1.

For each third-order tensor W , we perform the discrete
Fourier transform along its third dimension, denoted as
W = DFT(W , 3), where W

(i)
represents the i-th frontal

slice of W . Similarly, we have W = IDFT(W , 3), indi-
cating the inverse discrete Fourier transform along the third
dimension.

2.4.1. TENSOR NUCLEAR NORM

The Tensor Nuclear Norm (TNN) is often employed in opti-
mization problems as a metric for the low-rank property of
a tensor. A smaller nuclear norm indicates a lower rank for
the tensor, implying stronger smoothness among its slices.

Definition 2.2 (Tensor Nuclear Norm (Lu et al., 2016)).
For each third-order tensor W ∈ Rn1×n2×n3 , it defines the
tensor nuclear norm, denoted as ∥ · ∥∗, as follows:

∥W∥∗ :=
1

n3

n3∑
i=1

∥∥∥W (i)
∥∥∥
∗
.

It means the average of the matrix nuclear norm of all the
frontal slices of W , where W is a tensor after DFT on W
along the third dimension.

2.4.2. T-PRODUCT AND TENSOR SVD

The tensor singular value decomposition (tSVD) can be
employed to approximate low-rank tensors. To do so, we
first introduce the concept of the tensor-tensor product (t-
product), denoted as U ∗V (Kilmer & Martin, 2011). More
details are deferred to Appendix A.2.

Based on the t-product, we define tensor singular value
decomposition (tSVD) as follows.

Definition 2.3 (Tensor Singular Value Decomposition
(Kilmer & Martin, 2011; Lu et al., 2019)). For each third-
order tensor W ∈ Rn1×n2×n3 , it can be factored in

W = U ∗ S ∗ VH ,
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Algorithm 2 FedCEO
Input: K: number of participating clients each round,
T : communication rounds, C: clipping threshold,
σ: noise multiplier, η: learning rate, E: local epochs,
I: interval, λ: initial coefficient, ϑ: common ratio.
Output: w′(T ): global model.

1: Initialize global model w(0) randomly
2: for t = 1 to T do
3: Take a random subset St of K clients (each client k

is selected with probability p = K
N )

4: for all clients k in parallel do
5: if (t− 1)%I == 0 then
6: w′

k(t) = ClientDPUpdate (ŵk (t− 1) , k)
7: else
8: w′

k(t) = ClientDPUpdate (w′ (t− 1) , k)
9: end if

10: end for
11: if t%I == 0 then
12: WN = fold

(
[w′

1(t), · · · , w′
K(t)]

T
)

13: Ŵ = argminW

{
λ/ϑ

t
I ∥W −WN ∥2F + ∥W∥∗

}
14: {ŵk (t)}Kk=1 = unfold

(
Ŵ
)

15: return {ŵk (t)}Kk=1

16: else
17: w′(t) = 1

K

∑
k∈St

w′
k(t)

18: return w′(t)
19: end if
20: end for
21: return w′(T )

where U ∈ Rn1×n1×n3 ,V ∈ Rn2×n2×n3 are orthogonal,
i.e., U ∗ UH = I and V ∗ VH = I , where (·)H denotes
conjugate transpose. S ∈ Rn1×n2×n3 is an f -diagonal
tensor, whose each frontal slice is diagonal.

Note that tSVD can be efficiently computed in the Fourier
domain using matrix SVD, as detailed in Appendix A.3.
Furthermore, by truncating smaller singular values (or by
retaining the larger singular values), we can decompose the
tensor into a lower-rank part, referred to as the truncated
tSVD (T-tSVD). We defer its algorithm to Appendix A.4.

3. Main Algorithm
3.1. FedCEO

Our main algorithm, as illustrated in Algorithm 2, represents
a local version of the user-level differentially private feder-
ated learning framework, accompanied by a tensor low-rank
proximal optimization acting on stacked noisy parameters

at the server. The specific objective function is as follows:

Ŵ = argmin
W

{
λ/ϑ

t
I ∥W −WN ∥2F + ∥W∥∗

}
. (2)

Every I rounds, we fold the noisy parameters uploaded by
clients into a third-order tensor WN ∈ Rd×h×K where d
represents the input data dimension, h denotes the network
dimension, and K signifies the number of clients selected
in each round. Subsequently, we impose constraints on its
low-rank structure using the previously introduced TNN,
denoted as ∥W∥∗. Furthermore, to prevent trivial solutions,
we apply an offset regularization term based on the Frobe-
nius norm, denoted as ∥W − WN ∥2F . It also serves as
a proximal operator, ensuring the convergence of the op-
timal point Ŵ (Cai et al., 2010). In the next section, we
prove that the constructed optimization objective in Eq. (2)
is equivalent to the T-tSVD algorithm with the adaptive
soft-thresholding rule in Theorem 3.1, where the truncation
threshold is defined by a geometric series, denoted as 1

2λϑ
t
I .

3.2. Analysis

To elucidate the role of our low-rank proximal optimization
objective at the server, we introduce the following theorem.

Theorem 3.1 (Interpretability). For each τ ≥ 0 and
WN ∈ Rd×h×K , our tensor low-rank proximal optimiza-
tion objective defined in algorithm 2 obeys

T-tSVD(WN ,
1

2τ
) = argmin

W

{
τ∥W −WN ∥2F + ∥W∥∗

}
,

(3)
where T-tSVD(·) is a truncated tSVD operator and 1

2τ is
the truncation threshold, defined as follows:

T-tSVD(W ,
1

2τ
) := U ∗D ∗ VH ,

where D is an f-diagonal tensor whose each frontal slice in
the Fourier domain is D

(i)
(j, j) = max{S(i)

(j, j)− 1
2τ , 0},

j ≤ min(d, h), i = 1, · · · ,K.

Proof. A proof is given in Appendix B.1

Combined with Remark B.2 deferred to Appendix B.1, it
indicates that our approach contributes to a smoother global
semantic space by flexibly truncating the high-frequency
components of the parameter tensor.

Specifically, our theorem elucidates that as the regulariza-
tion coefficient τ in Eq. (3) decreases, corresponding to
a larger truncation threshold 1

2τ in T-tSVD, leading to a
smoother global semantic space. In our objective function,
we set the coefficient to λ/ϑ

t
I (ϑ > 1), corresponding to

an adaptive threshold of 1
2λϑ

t
I . This implies that with the

accumulation of noise (i.e., the increase in communication
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rounds t), the server coordinates the gradual enhancement
of semantic smoothness (collaboration) among the various
clients, akin to a CEO. Furthermore, we can choose ap-
propriate initialization coefficients λ for different privacy
settings. Specifically, for stronger privacy guarantees (larger
Gaussian noise), selecting a smaller λ results in a smoother
global semantic space. Furthermore, we derive the follow-
ing corollary.

Proposition 3.2. Given that W ∈ Rd×h×K and the reg-
ularization coefficient τ = 1

2σm
in Eq. (3), we have

T-tSVD(W , σm) with truncation threshold σm. If σm

larger than the highest singular value of W
(i)

for i =
2, 3, . . . ,K, the updated parameters in our FedCEO will
degenerate to the low-rank approximation of the global
parameter in FedAvg.

Formally, for all k = 1, . . . ,K we have

[T-tSVD(W , σm)](k) = TruncatedSVD(W ,
σm

K
)

≈ W

(
σm = max

2≤i≤n

{
σr

(
W

(i))})
,

where W is the parameter tensor in FedCEO, W
is the aggerated average parameter in FedAvg and
TruncatedSVD(·) is the truncated SVD operator for matri-
ces (Defined in Appendix A.4).

Proof. A proof is given in Appendix B.2.

Hence, we can infer that when the truncation threshold is
appropriately chosen (allowing the parameter tensor to re-
tain only the first frequency component), our method can
approximately degenerate into FedAvg. Based on the above
analysis, we can visualize the low-rank proximal optimiza-
tion process through dynamic singular value truncation in
the spectral space, as illustrated in Figure 2.

FedAvg vs. FedCEO: In contrast to our FedCEO, FedAvg
implies retaining only the lowest-frequency components in
the spectral space, representing coarse-grained mutual col-
laboration that lacks the adaptability to different DP settings
and continuous training processes. Our approach, character-
ized by flexible complementarity of semantic information
due to adaptive truncation thresholds, demonstrates superior
model utility in DPFL.

3.3. On the Scalability

The complexity of our approach is O(
∑L

l=1 K ·
min(dld

2
l−1, d

2
l dl−1)) where L is the number of layers, K is

the number of clients and min(dld
2
l−1, d

2
l dl−1) is the com-

plexity of matrix-SVD for each layers. To scale to larger
models, we can perform T-tSVD to the last few layers only
since these layers will be narrower than other layers but
contain more semantic information.

FedAvg ( )

FedCEO ( )

FedCEO ( )

…

Figure 2. The visualization of the low-rank proximal optimization
process, where wi is the (i+ 1)-th frequency component.

4. Utility-Privacy Trade-off Analysis
In this section, we provide a theoretical analysis of the utility
and privacy guarantees for our FedCEO. We denote ϵu and
ϵp as the model utility and the privacy budget, respectively.
Furthermore, we establish an improved utility-privacy trade-
off bound ϵu · ϵp ≤ O(

√
d/K). In comparison to recent

advanced work, our approach exhibits an improvement of
O(

√
d) over the current SOTA result (i.e. O(d/K) as re-

ported in (Shen et al., 2023)).

4.1. Utility Analysis

Firstly, we introduce a generalized definition of utility,
which encompasses the definitions in the latest works.

Definition 4.1 (Utility Loss (Zhang et al., 2022)). The
model utility is characterized as the difference in perfor-
mance when utilizing the protected model information sam-
pled from the distribution P ′

k compared to that drawn from
the unprotected distribution Pk,

ϵ :=
1

K

K∑
k=1

ϵk =
1

K

K∑
k=1

[Uk(P
′
k)− Uk(Pk)] ,

where P ′
k and Pk represent, respectively, the distribu-

tions of convergent models with or without DP. Uk(P ) =
EDk

EWk

[
1
B

∑
b∈B U(Wk, b)

]
denotes the expected utility

taken with respect to Wk ∼ P ′
k or Pk and U is any metric

measuring the performance of the model.

In this paper, we denote Pk as the local model distribution in
FedAvg without DP, and P ′

k as the local model distribution
in our FedCEO with DP. Let U represent the empirical loss
of the model. We define our utility as follows by setting
Pk = wk, P ′

k = w′
k, and U = F .
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Definition 4.2 (Model Utility). We define the utility of
the model within the differential privacy federated learning
framework as follows:

ϵu :=
1

K

K∑
k=1

ϵu,k =
1

K

K∑
k=1

[fk(w
′
k)− fk(wk)]

= f(w′)− f(w∗),

where w′ and w∗ represent, respectively, convergent global
models of FedCEO or FedAvg. fk denotes local empirical
risk and f denotes global empirical risk.

Based on the above definitions, we present the utility guar-
antee for our FedCEO as follows.

Theorem 4.3 (Utility Analysis of FedCEO). Suppose that
Assumptions B.5, B.6 and B.7 hold and let local empiri-
cal risk fk satisfies Definition B.4. Set τ = 1

2(τ0/K) in

Eq. (3) and 0 < m < 1/µ, where m = η − L2B
2(1+γ)2

2µ2

−
[√

2(µB(1+γ)+2L2(1+γ)2B2)√
Kµ2

+ 2L2(1+γ)2B2

Kµ2

]
.

Algorithm 2 satisfies

ϵu = f (w′)−f (w∗) ≤
√
2L1

K

(√
rτ0 +

√
d
√
hCσ

) 1

2µm
,

where r is the rank of the parameter tensor after our pro-
cessing and d is the dimension of input data.

Proof. A proof is given in Appendix B.3

In summary, we demonstrate that our FedCEO satisfies an
outstanding utility bound with ϵu ≤ O(

√
r+

√
d

K ), providing
theoretical utility guarantees. Moreover, achieving low-rank
global semantic space of the whole parameters (i.e. r ≪ d),
we have ϵu ≤ O(

√
d

K ).

4.2. Privacy Analysis

We first establish a general privacy guarantee for Algorithm
1, extending the theoretical results of data-level DP from
(Abadi et al., 2016) to user-level DP.

Lemma 4.4 (Privacy Analysis of UDP-FedAvg (Cheng
et al., 2022)). There exist constants c1 and c2 so that given
the clients sampling probability p = K

N and the number of
communication rounds T , for any ϵ < c1p

2T , Algorithm
1 satisfies user-level (ϵ, δ)-DP for any δ > 0 if we choose

σ ≥ c2p
√

T log(1/δ)

ϵ .

The above lemma proves that the model parameters up-
loaded by each client have strict privacy guarantees. Fur-
thermore, taking into account the tensor low-rank proximal
optimization at the server, we present the privacy guarantee
for our FedCEO as follows.

Theorem 4.5 (Privacy Analysis of FedCEO). Suppose that
the privacy budget ϵp < c1q

2T , let σ be the noise multiple
(a tunable parameter that controls the privacy-utility trade-
off), Algorithm 2 satisfies user-level (ϵp, δ)-DP with

ϵp =
c2K

√
T log(1/δ)

Nσ
.

Proof. A proof is given in Appendix B.4

In summary, we demonstrate that our FedCEO satis-
fies (ϵp, δ)-differential privacy with privacy budget ϵp =
c2K

√
T log(1/δ)

Nσ , providing theoretical privacy guarantees.

4.3. Guaranteed Improvement of Utility-Privacy
Trade-off

On the one hand, Theorem 4.3 indicates that achieving
high utility (i.e., a small ϵu) necessitates selecting a small
noise multiplier σ. On the other hand, Theorem 4.5 asserts
that achieving high privacy (i.e., a small ϵp) necessitates
selecting a large noise multiplier σ. Next, we unify the
utility and privacy analyses of our FedCEO in the DPFL
setting to establish the overarching utility-privacy trade-off.
Corollary 4.6. Let ϵu and ϵp denote the model utility and
the privacy budget, respectively. Under the Assumptions B.5
to B.7 and the conditions outlined in Theorems 4.3 and 4.5,
Algorithm 2 satisfies

ϵu · ϵp ≤ ĉ
√
d

N
,

where d is the input dimension and N is the total number of
clients. ĉ hides the constants and log terms.

Overall, our FedCEO achieves a utility-privacy trade-off
bound ϵu · ϵp ≤ O

(√
d

N

)
.

Summary: Under the unified settings of utility (Defini-
tion 4.1) and privacy (Definition 2.1), compared to exist-
ing SOTA results, we improve the utility-privacy trade-off
bound from O(d1.5/N) (Theorem 5.2 in (Jain et al., 2021))
and O(d/N) (Corollary 5.1 in CENTAUR (Shen et al.,
2023)) to O(

√
d/N). In contrast, our approach leverages

higher-order tensor algorithms to integrate the processes
of parameter partition and semantic fusion, resulting
in a notable improvement with O(

√
d) and providing a

better guarantee for the trade-off between utility and
privacy in DPFL.

5. Experiments
In this section, we present empirical results on real-world
federated learning datasets, validating the utility guarantees,
privacy guarantees, and the advanced trade-off between the
two provided by our FedCEO algorithm.
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Table 1. Testing accuracy (%) on EMNIST and CIFAR-10 under δ = 10−5 and various privacy settings with three common σg . A larger
σg indicates a smaller ϵp, i.e. the stronger privacy guarantee. ϑ stands for the scaling factor of the parameter λ.

Dataset Model Setting UDP-FedAvg PPSGD CENTAUR FedCEO (ϑ=1) FedCEO (ϑ >1)

EMNIST MLP-2-Layers
σg = 1.0 76.59% 77.01% 77.26% 77.14% 78.05%
σg = 1.5 69.91% 70.78% 71.86% 71.56% 72.44%
σg = 2.0 60.32% 61.51% 62.12% 63.38% 64.20%

CIFAR-10 LeNet-5
σg = 1.0 43.87% 49.24% 50.14% 50.09% 54.16%
σg = 1.5 34.34% 47.56% 46.90% 48.89% 50.00%
σg = 2.0 26.88% 34.61% 36.70% 37.39% 45.35%

Figure 3. Privacy protection performance of three federated learn-
ing frameworks on CIFAR-10. Both FedCEO and UDP-FedAvg
demonstrate robust defense against privacy attacks with smaller
Peak Signal-to-Noise Ratio (PSNR), while DLG successfully in-
fers sensitive images from clients in FedAvg.

5.1. Experiment Setup

We set the clipping threshold C uniformly to 1.0 and use
three different privacy settings corresponding to σg =
1.0, 1.5, and 2.0. σg is proportional to the noise multiplier
σ, defined in the privacy engine from the Opacus package
(Yousefpour et al., 2021). We conduct experimental evalua-
tions on both MLP and LeNet model architectures, reporting
the testing accuracy of the global model (consistent with
representative papers (Bietti et al., 2022; Shen et al., 2023)
from recent years). Specific model structures and hyperpa-
rameters are detailed in Appendix C.1.

5.2. Utility Experiments

In Table 1, our FedCEO demonstrates state-of-the-art per-
formance under different privacy settings, aligning with the
utility analysis in Section 4.1. Additionally, we can adapt
to various privacy settings by flexibly adjusting the initial
coefficient λ. Specifically, larger σg corresponds to smaller
λ (lower rank, i.e. smaller r). Moreover, our adaptive mech-
anism increases the truncation threshold (i.e. 1

2λϑ
t
I ) as the

Gaussian noise accumulates during the FL training process,
due to the geometric series with a common ratio ϑ > 1.
Refer to Appendix C.2.1, C.2.2 and C.2.3 for experiments
about model training efficiency, heterogeneous FL settings
and other local model as well text dataset.

U

Figure 4. Utility-Privacy Trade-off for our FedCEO and other meth-
ods on CIFAR-10.

5.3. Privacy Experiments

In Figure 3, our FedCEO and UDP-FedAvg exhibit simi-
lar privacy protection performance for user data, validating
the privacy analysis in Section 4.2. Specifically, we input
the locally uploaded LeNet model (gradients) from three
different FL frameworks into the Deep Leakage from Gra-
dients (DLG) (Zhu et al., 2019) algorithm and set attack
iterations to 300 with a learning rate of 0.01. For our Fed-
CEO, the DLG attack is conducted after the tensor low-rank
proximal optimization to verify that our operation does not
compromise the privacy protection of DP. Then we report
the inference images and their PSNR (dB, ↓) values in Fig-
ure 3. Refer to Appendix C.2.4 for more details.

5.4. Improved Utility-Privacy Trade-off

In Figure 4, we observe that our FedCEO exhibits the best
utility performance across various privacy settings. More-
over, compared to other privacy-preserving methods, our
model shows the smallest decrease in testing accuracy as pri-
vacy is enhanced (i.e. σg increases and ϵp decreases). This
indicates that our FedCEO achieves a best utility-privacy
trade-off, consistent with the analysis in Section 4.3.

8
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6. Conclusion
In this paper, we explore the concept of flexible seman-
tic smoothness (collaboration) among clients, providing
theoretical guarantees for both utility and privacy. Our ap-
proach achieves an improved utility-privacy trade-off bound
of O(

√
d) compared to the current SOTA results. Further-

more, we conduct comprehensive experiments to validate
the utility and privacy across different datasets and privacy
settings, demonstrating the advanced performance consis-
tent with our theoretical analysis. In the future, we aim to
extend tensor low-rank techniques to heterogeneous feder-
ated learning, addressing challenges of gradient conflicts.
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A. More on Preliminaries
A.1. Discrete Fourier Transform

For each vector v ∈ Rn, it defines the discrete Fourier transform, denoted as DFT(·), as follows:

v = DFT(v) := F nv ∈ Cn, (F n)jk =
[
ω(j−1)(k−1)

]
(4)

Here, F n ∈ Cn×n is the DFT matrix and ω = e−i 2π
n where e represents the base of the natural logarithm, and i denotes the

imaginary unit. Furthermore, we denote the inverse discrete Fourier transform as IDFT(·).

A.2. T-product

For each third-order tensor U ∈ Rn1×n2×n3 and V ∈ Rn2×n4×n3 , it defines the t-product, denoted as U ∗ V , as follows:

U ∗ V := fold(bcirc(U) · unfold(V)) ∈ Rn1×n4×n3 , (5)

where the bcirc(·) is a tensor matricization operator known as block circulant matricization, denoted by

bcirc(U) :=


U (1) U (n3) · · · U (2)

U (2) U (1) · · · U (3)

...
...

. . .
...

U (n3) U (n3−1) · · · U (1)

 ∈ Rn1n3×n2n3 .

Furthermore, we define the tensor unfolding operator as follows:

unfold(V) :=


V (1)

V (2)

...
V (n3)

 ∈ Rn2n3×n4 , fold(unfold(V)) = V ∈ Rn2×n4×n3 ,

where V (i) represents the i-th frontal slice of tensor V , i.e., V(:, :, i).

A.3. Algorithm of tSVD

For each matrix Y ∈ Rn1×n2 of rank r, it defines the singular value decomposition operator, denoted as SVD(·), as follows:

SVD(Y ) := UΣV T , Σ = diag ({σi}ri=1) , (6)

where U ∈ Rn1×n1 ,V ∈ Rn2×n2 are orthogonal and Σ ∈ Rn1×n2 is a diagonal matrix, whose main diagonal elements
are the singular values of the matrix Y . Next, we introduce the algorithm of singular value decomposition for third-order
tensors.

Algorithm 3 Tensor singular value decomposition (tSVD)
Input: W ∈ Rn1×n2×n3

Output: U ∈ Rn1×n1×n3 ,S ∈ Rn1×n2×n3 ,V ∈ Rn2×n2×n3

1: W = DFT(W , 3)
2: for i = 1 to n3 do
3: [U

(i)
,S

(i)
,V

(i)
] = SVD(W

(i)
)

4: end for
5: U = fold

([
U

(1)
, · · · ,U (n3)

]T)
, S = fold

([
S

(1)
, · · · ,S(n3)

]T)
, V = fold

([
V

(1)
, · · · ,V (n3)

]T)
6: U = IDFT(U , 3), S = IDFT(S, 3), V = IDFT(V , 3)
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A.4. Algorithm of T-tSVD

For each matrix Y ∈ Rn1×n2 of rank r, it defines the truncated singular value decomposition operator, denoted as
TruncatedSVD(·), as follows:

TruncatedSVD(Y , τ) := UDτ (Σ)V T , Dτ (Σ) = diag ({max (σi − τ, 0)}ri=1) , (7)

where τ is the truncated threshold. Next, we introduce the algorithm of truncated singular value decomposition for third-order
tensors.

Algorithm 4 Truncated tensor singular value decomposition (T-tSVD)
Input: W ∈ Rn1×n2×n3

Output: U ∈ Rn1×n1×n3 ,D ∈ Rn1×n2×n3 ,V ∈ Rn2×n2×n3

1: W = DFT(W , 3)
2: for i = 1 to n3 do
3: [U

(i)
,D

(i)
,V

(i)
] = TruncatedSVD(W

(i)
, τ)

4: end for
5: U = fold

([
U

(1)
, · · · ,U (n3)

]T)
, D = fold

([
D

(1)
, · · · ,D(n3)

]T)
, V = fold

([
V

(1)
, · · · ,V (n3)

]T)
6: U = IDFT(U , 3), D = IDFT(D, 3), V = IDFT(V , 3)

B. Proofs of Main Theory
B.1. Proof of Theorem 3.1 (Interpretability of our optimization objective)

Proof. Based on Parseval’s theorem and the definition of the tensor nuclear norm (Definition 2.2), we have

τ∥W −WN ∥2F + ∥W∥∗

=
τ

K
∥DFT(W −WN )∥2F +

1

K

K∑
i=1

∥W (i)∥∗

=
τ

K

K∑
i=1

∥W (i) −W
(i)

N ∥2F +
1

K

K∑
i=1

∥W (i)∥∗,

(8)

where W
(i)

represents the i-th frontal slice of the tensor obtained by applying the DFT along the third dimension on W .
Therefore, we know

min
W

{
τ∥W −WN ∥2F + ∥W∥∗

}
⇔
{
min
W

(i)

(
τ∥W (i) −W

(i)

N ∥2F + ∥W (i)∥∗
)}K

i=1

. (9)

By Lemma B.1, we have

TruncatedSVD(W
(i)

N ,
1

2τ
) = arg min

W
(i)

{
τ∥W (i) −W

(i)

N ∥2F + ∥W (i)∥∗
}
. (10)

Now, let us define Ŵ = argminW
{
τ∥W −WN ∥2F + ∥W∥∗

}
. Then, based on Eq. (9), Eq. (10) and algorithm A.4, we

have

Ŵ = IDFT

{
fold

([
TruncatedSVD(W

(1)

N ,
1

2τ
), · · · ,TruncatedSVD(W

(K)

N ,
1

2τ
)

]T)}

= T-tSVD(WN ,
1

2τ
)

(11)
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Lemma B.1 (SVT Lemma (Cai et al., 2010)). For each τ ≥ 0 and Y ∈ Rn1×n2 , the truncated singular value decomposition
operator TruncatedSVD(·) obeys

TruncatedSVD(Y ,
1

2τ
) = argmin

X

{
τ∥X − Y ∥2F + ∥X∥∗

}
.

Remark B.2. Due to the inherent correlation within the semantic space of clients, if we perform the Fourier transform on
parameter tensor along the third dimension, the singular values of its first slice will be much greater than the later ones (see
Fig. 5). Formally, we can express the assumption as follows,

σr

(
W

(1))≫ σr

(
W

(i))
where σr(·) is the r-th highest singular value of a matrix and i = 2, 3, . . . ,K.

(a) EMNIST (b) CIFAR-10

Figure 5. The singular value curves in spectral space for the original noise parameter tensors on two real datasets. ω0 to ω9 represent
components from low to high frequency.

B.2. Proof of Proposition 3.2

Next, we have the following proof,

Proof. First, consider T-tSVD(W , σm) in Fourier space and we have

D
(i)
(j, j) = max{S(i)

(j, j)− σm, 0}. (12)

Since we set σm to be larger than the highest singular value of W
(i)

for i = 2, 3, . . . ,K, we have

D
(i)
(j, j) = 0 (13)

for all i = 2, 3, . . . ,K and

D
(1)

(j, j) = max{S(1)
(j, j)− σm, 0}. (14)

It has at least one value to be not zero by Remark B.2.
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Thus, when we perform the inverse Fourier transform, we will get

[T-tSVD(W , σm)](k) =
1

K

K∑
j=1

ei
2π
K (j−1)(k−1)U

(j)
D

(j)
V

(j)

=
1

K
ei

2π
K (k−1)·0U

(1)
D

(1)
V

(1)

=
1

K
U

(1)
D

(1)
V

(1)

=
1

K
TruncatedSVD(W

(1)
, σm).

(15)

From the other side, we know that

W
(1)

=

K∑
k=1

e−i 2π
K 0·(k−1)W (k) =

K∑
k=1

W (k) = KW . (16)

Therefore we obtain that

[T-tSVD(W , σm)](k) =
1

K
TruncatedSVD(KW , σm) = TruncatedSVD(W ,

σm

K
). (17)

Moreover, we appropriately set σm = max2≤i≤n

{
σr

(
W

(i))}
.

On the one hand, normally we know that K ≫ σm. So, based on Eq. (17), we have

[T-tSVD(W , σm)](k) = TruncatedSVD(W ,
σm

K
)

≈ W .
(18)

On the other hand, by Remark B.2, Eq. (15) and Eq. (16), we have

[T-tSVD(W , σm)](k) =
1

K
TruncatedSVD(W

(1)
, σm)

≈ 1

K
W

(1)
= W .

(19)

B.3. Proof of Theorem 4.3 (Utility Analysis of Our FedCEO)

Let w′(t) denote the global model at t-th round in Algorithm 2. Let wk(t+ 1) denote the inexact solution (defined in B.3)
of local optimization without DP by minw fk (w;w

′(t)) at t+ 1 round, where w′(t) is the initial solution. Let M denote
the DP mechanism we used. Let F denote our low-rank proximal optimization at the server (i.e. adaptive T-tSVD). Then we
have ŵk(t+ 1) = F

(
{M (wk (t+ 1))}Kk=1

)
and define w′ (t+ 1) = ESt

[ŵk(t+ 1)]. Moreover, we make the following
definitions and assumptions.
Definition B.3 (γt+1

k -inexact solution). For a function fk (w) and γt+1
k ∈ [0, 1], we define wk(t + 1) as a γt+1

k -inexact
solution of minw fk (w;w0) at (t+ 1) round if

∥∇fk (wk (t+ 1))∥ ≤ γt
k ∥∇fk (w0)∥ ,

where w0 is the initial solution in optimization. γt+1
k represents the local computational load of the k-th client at (t+ 1)-th

round.
Definition B.4 (B-local dissimilarity). The local empirical risk fk are B-locally dissimilar at w if

Ek

[
∥∇fk(w)∥2

]
≤ ∥∇f(w)∥2B2.

Moreover, we define B(w) =

√
Ek[∥∇fk(w)∥2]

∥∇f(w)∥2 for ∥∇f(w)∥ ≠ 0 and then B(w) ≤ B.

14
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Assumption B.5 (L1-continuous). f1, · · · , fN are all L1-continuous:

∀v,w, ∥fk(v)− fk(w)∥ ≤ L1∥v −w∥.

Assumption B.6 (L2-smooth). f1, · · · , fN are all L2-smooth:

∀v,w, ∥∇fk(v)−∇fk(w)∥ ≤ L2∥v −w∥.

Assumption B.7 (µ-strongly convex). f1, · · · , fN are all µ-strongly convex:

∀v,w, (∇fk(v)−∇fk(w))T (v −w) ≥ µ∥v −w∥2.

We can also study the utility guarantee of our FedCEO algorithm under more general non-convex objectives if we introduce
the proximal term to fk like FedProx (Li et al., 2020).

Proof. At (t+ 1)-th round, considering local optimization without DP:

Let us define w∗
k(t+ 1) = argminw fk (w;w

′(t)) (i.e. exact optimal solution). So, we know

∇fk [w
∗
k(t+ 1)] = 0. (20)

Then, based on Assumption B.7, we have

(∇fk(v)−∇fk(w))T (v −w) ≥ µ∥v −w∥2. (21)

Set v = w∗
k(t+ 1),w = wk(t+ 1), based on Eq. (20) and Definition B.3, we have

∥w∗
k(t+ 1)− wk(t+ 1)∥ ≤ 1

µ
∥∇fk (wk (t+ 1))∥ ≤

γt+1
k

µ
∥∇fk (w

′(t))∥ . (22)

Similarly, we know that

∥w∗
k(t+ 1)− w′(t)∥ ≤ 1

µ
∥∇fk (w

′ (t))∥ . (23)

Combining Eq. (22) and Eq. (23), based on the triangle inequality, we have

∥wk(t+ 1)− w′(t)∥ ≤ ∥w∗
k(t+ 1)− wk(t+ 1)∥+ ∥w∗

k(t+ 1)− w′(t)∥ ≤
1 + γt+1

k

µ
∥∇fk (w

′(t))∥ . (24)

Next, let us define w̄(t+ 1) = Ek [wk (t+ 1)] (an auxiliary variable). Based on the Jensen’s inequality and Definition B.4,
we have

∥w̄(t+ 1)− w′(t)∥ ≤ Ek [∥wk(t+ 1)− w′(t)∥] ≤
1 + γt+1

k

µ
Ek [∥∇fk (w

′(t))∥]

≤
1 + γt+1

k

µ

√
Ek

[
∥∇fk (w′(t))∥2

]
≤

(1 + γt+1
k )

µ
B ∥∇f (w′(t))∥ .

(25)

According to the local updates from gradient descent, we have

wk(t+ 1) = w′(t)− η∇fk (w
′(t)) . (26)

Based on the Taylor expansion and Assumption B.6, we have

f (w̄(t+ 1)) ≤ f (w′ (t)) + ⟨∇f (w′ (t)) , w̄ (t+ 1)− w′ (t)⟩+ L2

2
∥w̄ (t+ 1)− w′ (t)∥2

≤ f (w′ (t))− η ∥∇f (w′ (t))∥2 + L2B
2(1 + γ)2

2µ2
∥∇f (w′ (t))∥2

≤ f (w′ (t))−
(
η − L2B(1 + γ)2

2µ2

)
∥∇f (w′ (t))∥2 ,

(27)
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where γ = maxk,t{γt+1
k }.

In practice, we randomly select K clients (i.e. St) to participate in each round of FL training, rather than involving all
clients. Therefore, we consider the following error analysis:

et = ESt
[f (w (t+ 1))− f (w̄ (t+ 1))] , (28)

where w(t+ 1) is the actual version of w̄(t+ 1), taking into account the randomness of client selection.

Based on Assumption B.5, it is easy to see that f is also L1-continuous. Therefore, we have

f (w(t+ 1)) ≤ f (w̄(t+ 1)) + L1 ∥w(t+ 1)− w̄(t+ 1)∥ (29)

Similarly, based on the L2- smoothness of f , we have

L1 ≤ ∥∇f (w′(t))∥+ L2 max (∥w̄(t+ 1)− w′(t)∥ , ∥w(t+ 1)− w′(t)∥)
≤ ∥∇f (w′(t))∥+ L2 (∥w̄(t+ 1)− w′(t)∥+ ∥w(t+ 1)− w′(t)∥)

(30)

Then, based on Eqs. (28), (29) and (30), we have

et ≤ ESt [L1 ∥w (t+ 1))− (w̄ (t+ 1)∥]
≤ ESt [(∥∇f (w′(t))∥+ L2 (∥w̄(t+ 1)− w′(t)∥+ ∥w(t+ 1)− w′(t)∥)) · ∥w(t+ 1)− w̄(t+ 1)∥]
= (∥∇f (w′(t))∥+ L2 ∥w̄(t+ 1)− w′(t)∥) · ESt [∥w(t+ 1)− w̄(t+ 1)∥]
+ L2ESt [∥w(t+ 1)− w′(t)∥ · ∥w(t+ 1)− w̄(t+ 1)∥] .

(31)

Moreover, we know that

ESt
[∥w(t+ 1)− w′(t)∥ · ∥w(t+ 1)− w̄(t+ 1)∥]

≤ ESt
[(∥w(t+ 1)− w̄ (t+ 1)∥+ ∥w̄(t+ 1)− w′(t)∥) · ∥w(t+ 1)− w̄(t+ 1)∥]

= ∥w̄(t+ 1)− w′(t)∥ · ESt
[∥w(t+ 1)− w̄(t+ 1)∥] + ESt

[
∥w(t+ 1)− w̄(t+ 1)∥2

] (32)

Overall, based on Eq. (31) and Eq. (32), we have

et ≤ (∥∇f (w′(t))∥+ 2L2 ∥w̄(t+ 1)− w′(t)∥) · ESt
[∥w(t+ 1)− w̄(t+ 1)∥]

+ L2ESt

[
∥w(t+ 1)− w̄(t+ 1)∥2

] (33)

Similar to (Li et al., 2020), we provide the bounded variance of wk(t+ 1) as follows,

ESt

[
∥w(t+ 1)− w̄(t+ 1)∥2

]
≤ 1

K
Ek

[
∥wk(t+ 1)− w̄(t+ 1)∥2

]
≤ 2

K
Ek

[
∥wk(t+ 1)− w′ (t)∥2

]
≤ 2

K

(1 + γ)2

µ2
Ek

[
∥∇fk (w

′ (t))∥2
]

≤ 2

K

(1 + γ)2B2

µ2
∥∇f (w′ (t))∥2 .

(34)

Based on Jensen’s inequality and Eq. (34), we have

ESt
[∥w(t+ 1)− w̄(t+ 1)∥] ≤

√
ESt

[
∥w(t+ 1)− w̄(t+ 1)∥2

]
≤
√

2

K

(1 + γ)B

µ
∥∇f (w′ (t))∥ .

(35)
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Combining Eq. (33) with Eqs. (25), (34), and (35), we have

et ≤
[
∥∇f (w′ (t))∥+ 2L2

(1 + γ)B

µ
∥∇f (w′ (t))∥

]
·
√

2

K

(1 + γ)B

µ
∥∇f (w′ (t))∥+ 2L2

K

(1 + γ)2B2

µ2
∥∇f (w′ (t))∥2

≤

[√
2
(
µB(1 + γ) + 2L2(1 + γ)2B2

)
√
Kµ2

+
2L2(1 + γ)2B2

Kµ2

]
∥∇f (w′ (t))∥2 .

(36)

Based on Eq. (27) and Eq. (36), we have

ESt
[f (w (t+ 1))] ≤ f (w′ (t))

−

{
η − L2B

2(1 + γ)2

2µ2
−

[√
2
(
µB(1 + γ) + 2L2(1 + γ)2B2

)
√
Kµ2

+
2L2(1 + γ)2B2

Kµ2

]}∥∥∥∇f
(
w

′
(t)
)∥∥∥2 . (37)

Then, we set m = η − L2B
2(1+γ)2

2µ2 −
[√

2(µB(1+γ)+2L2(1+γ)2B2)√
Kµ2

+ 2L2(1+γ)2B2

Kµ2

]
and we have

ESt [f (w (t+ 1))] ≤ f (w′ (t))−m
∥∥∥∇f

(
w

′
(t)
)∥∥∥2 . (38)

Considering DP mechanism and our low-rank proximal optimization:

Based on the L1-continuity of f , we have

f (w′(t+ 1)) ≤ f (w(t+ 1)) + L1 ∥w′(t+ 1)− w(t+ 1)∥ (39)

Thus,
ESt

[f (w′(t+ 1))]− ESt
[f (w(t+ 1))] ≤ L1ESt

[∥w′(t+ 1)− w(t+ 1)∥]

=
L1

K

∑
k∈St

[∥ŵk(t+ 1)− wk(t+ 1)∥]

≤
√
2L1

K

∥∥∥Ŵ −W
∥∥∥
F
,

(40)

where Ŵ = fold
(
[ŵ1(t), · · · , ŵK(t)]

T
)

and W = fold
(
[w1(t), · · · , wK(t)]

T
)
∈ Rd×h×K .

Next, we know that ∥∥∥Ŵ −W
∥∥∥
F
≤
[∥∥∥Ŵ −WN

∥∥∥
F
+ ∥WN −W∥F

]
, (41)

where WN = fold
(
[w′

1(t), · · · , w′
K(t)]

T
)
∈ Rd×h×K .

Based on Parseval’s theorem and Algorithm A.4, we have∥∥∥Ŵ −WN

∥∥∥
F
=
∥∥∥Ŵ −WN

∥∥∥
F

≤
K∑
i=1

∥∥∥∥Ŵ (i)

−W
(i)

N

∥∥∥∥
F

=

K∑
i=1

∥∥∥∥U (i) · diag
(
{max (σj − τ, 0)}rj=1

)(i)
· V (i) −U

(i) · diag
(
{σj}rj=1

)(i)
· V (i)

∥∥∥∥
F

=

K∑
i=1

∥∥∥∥diag ({max (σj − τ, 0)}rj=1

)(i)
− diag

(
{σj}rj=1

)(i)∥∥∥∥
F

≤
√
rτ0, (as τ = τ0/K)

(42)

where {σj}rj=1 are the singular values of WN and τ is the truncated threshold of Algorithm A.4.
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Based on our DP with the Gaussian mechanism, we have

∥WN −W∥F = E [η · ∥N ∥F ] =
√
d
√
hCσ, (43)

where N ∼ N (0,Iσ2C2/K) and I ∈ Rd×h×K .

Choice of τ When the number of clients K is large, and the variance of local Gaussian noise N is small, we set a smaller
truncation threshold with the choice τ = τ0/K. This allows for the retention of more accurate semantic information from
individual clients.

Combining Eq. (40) with Eqs. (41), (42), (42), we have

ESt [f (w′(t+ 1))]− ESt [f (w(t+ 1))] ≤
√
2L1

K

(√
rτ0 +

√
d
√
hCσ

)
. (44)

Overall, based on Eq. (38) and Eq. (44), we have

f (w′ (t+ 1)) ≤ f (w′ (t))−m
∥∥∥∇f

(
w

′
(t)
)∥∥∥2 + √

2L1

K

(√
rτ0 +

√
d
√
hCσ

)
. (45)

Based on the µ-strongly convexity of f , we have

f(w(t)) ≥ f(w′(t)) +∇f(w′(t))T (w(t)− w′(t)) +
µ

2
∥w(t)− w′(t)∥2. (46)

Now, minimize the inequity with respect to w(t) and we have

f (w∗) ≥ f(w′(t))− 1

2µ
∥∇f(w′(t))∥2, (47)

where w∗ is the convergent global model of w(t).

Based on Eq. (45) and Eq. (47), we have

f (w′ (t+ 1)) ≤ f (w′ (t))− 2µm (f (w′ (t))− f (w∗)) +

√
2L1

K

(√
rτ0 +

√
d
√
hCσ

)
, (48)

and thus

f (w′ (t+ 1))− f (w∗) ≤ (1− 2µm) (f (w′ (t))− f (w∗)) +

√
2L1

K

(√
rτ0 +

√
d
√
hCσ

)
. (49)

Taking t from 0 to T − 1 in Eq. (49),

f (w′ (1))− f (w∗) ≤ (1− 2µm) (f (w′ (0))− f (w∗)) +

√
2L1

K

(√
rτ0 +

√
d
√
hCσ

)
. (50)

f (w′ (2))− f (w∗) ≤ (1− 2µm) (f (w′ (1))− f (w∗)) +

√
2L1

K

(√
rτ0 +

√
d
√
hCσ

)
. (51)

· · ·

f (w′ (T ))− f (w∗) ≤ (1− 2µm) (f (w′ (T − 1))− f (w∗)) +

√
2L1

K

(√
rτ0 +

√
d
√
hCσ

)
. (52)

and subsequently substituting each resulting expression one by one, we obtain

f (w′ (T ))− f (w∗) ≤ (1− 2µm)
T
(f (w′ (1))− f (w∗)) +

√
2L1

K

(√
rτ0 +

√
d
√
hCσ

) 1− (1− 2µm)
T

2µm
. (53)

When selecting a sufficiently large T and satisfying 0 < m < 1/µ, we have

ϵu = f (w′)− f (w∗) ≤
√
2L1

K

(√
rτ0 +

√
d
√
hCσ

) 1

2µm
. (54)
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where w′ is the convergent global model of w′(t).

Overall, with the choice of m, τ and T specified in the theorem, we have

ϵu = O(

√
r +

√
d

K
), (55)

where r is the rank of the parameter tensor after our processing and d is the dimension of input data.

Especially, When we choose an appropriate truncation threshold (regularization coefficient) such that the resulting parameter
tensor is low-rank, we have

ϵu = O(

√
d

K
). (56)

B.4. Proof of Theorem 4.5 (Privacy Analysis of Our FedCEO)

Proof. Let M : D → R denote algorithm 1 that satisfies user-level (ϵ, δ)-DP. Based on its definition, we know for any two
adjacent datasets D,D′ ∈ D that differ by an individual user’s data and all outputs S ⊆ R it holds that

Pr[M(D) ∈ S] ≤ eϵ Pr [M (D′) ∈ S] + δ. (57)

By theorem 3.1 and Algorithm A.4, we know our low-rank proximal optimization is equivalent to the truncated tSVD
algorithm, so it is a deterministic function, denoted as F : R → R′.

Fix any pair of neighboring datasets D,D′ with ∥D − D′∥ ≤ 1, and fix any output S ⊆ R′. Let Z = {z ∈ R|F(z) ∈ S},
we have

Pr[F(M(D)) ∈ S] = Pr[M(D) ∈ Z]

≤ exp(ϵ) Pr[M(D′) ∈ Z] + δ

= exp(ϵ) Pr[F(M(D′)) ∈ S] + δ

(58)

C. Experiments Setup and More Results
C.1. Local Model and Hyperparameters

Models. In the paper, we employ a two-layer MLP for the EMNIST dataset and a LeNet-5 for the CIFAR-10 dataset. The
specific network architectures are as follows.

MLP:

(1) (input layer): Linear(in features=d, out features=64, bias=False)

(2) (dropout layer): Dropout(p=0.5, inplace=False)

(3) (activation layer): ReLU()

(4) (hidden layer): Linear(in features=64, out features=num classes, bias=False)

(5) (activation layer): Softmax(dim=1)

LeNet-5:

(1) (conv1): Conv2d(3, 32, kernel size=(5, 5), stride=(1, 1))

(2) (pool): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)

(3) (conv2): Conv2d(32, 64, kernel size=(5, 5), stride=(1, 1))

(4) (pool): MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)

(5) (fc1): Linear(in features=1600, out features=512, bias=True)
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(6) (activation layer): ReLU()

(7) (fc2): Linear(in features=512, out features=512, bias=True)

(8) (activation layer): ReLU()

(9) (fc3): Linear(in features=512, out features=10, bias=True)

Hyperparameters. For each dataset, we uniformly set the global communication rounds T to 300, the total number of
clients N to 100, and the sampled client number K to 10, resulting in a sampling rate p of 0.1. Local training employs
stochastic gradient descent (SGD) with 30 epochs (E), a learning rate η of 0.1, and a batch size B of 64.

Other personalized hyperparameters: initial coefficient λ, common ratio ϑ, and interval I (searched within a grid range),
whose values can be qualitatively guided by practical application scenarios, and their impact on model utility is robust. For
λ, the search range is [55, 100, 5] when σg = 1.0; [0.1, 10, log] when σg = 1.5; and [0.01, 1, log] when σg = 2.0. For
scenarios with stricter privacy requirements (larger noise), we need to choose a smaller λ to achieve a smoother semantic
space. For ϑ, the search range is [1.01, 1.10, 0.01]. For I , the search range is [10, 15, 20, 25, 30]. Their specific values are
listed in Table 2.

Table 2. Our focused hyperparameters for three privacy settings on EMNIST and CIFAR-10.
Dataset Model Setting Hyperparameter

EMNIST MLP-2-Layers
σg = 1.0 λ = 70, ϑ = 1.08, I = 30
σg = 1.5 λ = 0.5, ϑ = 1.04, I = 20
σg = 2.0 λ = 0.03, ϑ = 1.06, I = 20

CIFAR-10 LeNet-5
σg = 1.0 λ = 85, ϑ = 1.03, I = 15
σg = 1.5 λ = 10, ϑ = 1.07, I = 10
σg = 2.0 λ = 0.6, ϑ = 1.04, I = 10

Partial parameter analysis results are as follows:

Table 3. Testing accuracy on CIFAR-10 of different intervals I under various privacy settings with three common σg .

Dataset Model Setting I = 10 I = 15 I = 20 I = 25 I = 30

CIFAR-10 LetNet-5
σg = 1.0 53.62% 54.16% 53.01% 52.81% 52.80%
σg = 1.5 50.00% 49.71% 48.90% 47.41% 47.98%
σg = 2.0 45.35% 44.37% 44.81% 43.75% 43.20%

C.2. More Empirical Results

C.2.1. MODEL TRAINING EFFICIENCY

To validate the efficiency of our server-side low-rank proximal optimization, we conduct a comparative analysis of the
runtime between our FedCEO and other methods in Table 4. We observe that the training efficiency of our method
significantly surpasses PPSGD and CENTAUR, approaching the efficiency of UDP-FedAvg without any utility improvement.

Table 4. Runtime for our FedCEO and other methods on EMNIST and CIFAR-10 (One NVIDIA GeForce RTX 4090).
Time / h UDP-FedAvg PPSGD CENTAUR FedCEO
EMNIST 5.436 > 24 > 24 5.445
CIFAR-10 3.876 > 24 > 24 3.908

C.2.2. UTILITY FOR HETEROGENEOUS FL SETTINGS

To validate the effectiveness of our model in heterogeneous federated learning (Li et al., 2020; Huang et al., 2025; Fu et al.,
2025), we conduct experiments using an MLP as the local model on CIFAR-10 in Table 5. We report the testing accuracy for
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both iid and non-iid 1 scenarios. It can be observed that our FedCEO maintains state-of-the-art performance. Additionally,
in non-iid scenarios, we typically choose a larger λ to reduce the global semantic smoothness, preserving more personalized
local information.

Table 5. Testing accuracy (%) on CIFAR-10 under iid setting and non-iid setting.
Dataset Heterogeneity Setting UDP-FedAvg PPSGD CENTAUR FedCEO

CIFAR-10

iid
σg = 1.0 40.21% 41.34% 42.17% 42.76%
σg = 1.5 35.79% 37.28% 38.21% 39.16%
σg = 2.0 31.62% 33.51% 33.86% 35.93%

non-iid
σg = 1.0 33.09% 34.91% 34.56% 36.10%
σg = 1.5 28.92% 31.40% 30.87% 32.39%
σg = 2.0 26.54% 28.01% 28.11% 29.13%

C.2.3. UTILITY FOR OTHER LOCAL ARCHITECTURE AND DATASET

To further validate the applicability of our framework, we conduct experiments using more complex local architectures and
other types of datasets, as shown in Table 6. Specifically, we use AlexNet as the local model on CIFAR-10 and LSTM on
the text dataset Sentiment140 (Sent140) (Caldas et al., 2018). It can be observed that our FedCEO still maintains SOTA
performance.

Table 6. Testing accuracy (%) on CIFAR-10 and Sent140 under δ = 10−5 and various privacy settings with three common σg .

Dataset Model Setting UDP-FedAvg PPSGD CENTAUR FedCEO

CIFAR-10 AlexNet
σg = 1.0 50.67% 56.58% 58.44% 60.73%
σg = 1.5 41.11% 51.07% 50.20% 55.49%
σg = 2.0 33.38% 39.93% 43.95% 49.06%

Sent140 LSTM
σg = 1.0 60.31% 61.04% 63.33% 65.70%
σg = 1.5 57.62% 57.87% 59.05% 60.22%
σg = 2.0 50.94% 55.12% 54.88% 56.65%

C.2.4. MORE DETAILS FOR PRIVACY EXPERIMENTS

In the three federated learning frameworks, we consider a semi-honest adversary at the server, engaging in a gradient
inversion attack on the model (gradient) uploaded by a specific client in a given round. This adversarial action is based on
the DLG algorithm, and the detailed attack procedure is presented in Figure 6 to 8.

1non-iid means the data among clients are not independent and identically distributed (iid).
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Figure 6. Privacy attack process on three FL frameworks based on DLG. We set the attack target as the image with the index 25 in
CIFAR-10. For UDP-FedAvg and our FedCEO, we configure the local model as LeNet with a noise parameter of σg = 1.0.

Figure 7. Privacy attack process on three FL frameworks based on DLG. We set the attack target as the image with the index 50 in
CIFAR-10. For UDP-FedAvg and our FedCEO, we configure the local model as LeNet with a noise parameter of σg = 1.5.

Figure 8. Privacy attack process on three FL frameworks based on DLG. We set the attack target as the image with the index 100 in
CIFAR-10. For UDP-FedAvg and our FedCEO, we configure the local model as LeNet with a noise parameter of σg = 2.0.
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