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Abstract

In this paper, we tackle a novel federated learn-
ing (FL) problem for optimizing a family of X-
risks, to which no existing FL algorithms are
applicable. In particular, the objective has the
form of E,s, f(Ezns,l(W;z,2')), where two
sets of data S7, S, are distributed over multiple
machines, ¢(+; -, -) is a pairwise loss that only de-
pends on the prediction outputs of the input data
pairs (z,2z’). This problem has important appli-
cations in machine learning, e.g., AUROC maxi-
mization with a pairwise loss, and partial AUROC
maximization with a compositional loss. The chal-
lenges for designing an FL algorithm for X-risks
lie in the non-decomposability of the objective
over multiple machines and the interdependency
between different machines. To this end, we
propose an active-passive decomposition frame-
work that decouples the gradient’s components
with two types, namely active parts and passive
parts, where the active parts depend on local data
that are computed with the local model and the
passive parts depend on other machines that are
communicated/computed based on historical mod-
els and samples. Under this framework, we design
two FL algorithms (FeDXL) for handling linear
and nonlinear f, respectively, based on federated
averaging and merging and develop a novel the-
oretical analysis to combat the latency of the pas-
sive parts and the interdependency between the
local model parameters and the involved data for
computing local gradient estimators. We establish
both iteration and communication complexities
and show that using the historical samples and
models for computing the passive parts do not
degrade the complexities. We conduct empirical
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studies of FeDXL for deep AUROC and partial
AUROC maximization, and demonstrate their per-
formance compared with several baselines.

1. Introduction

This work is motivated by solving the following optimiza-
tion problem arising in many ML applications in a federated
learning (FL) setting:
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where &1 and S denote two sets of data points that are
distributed over many machines, w denotes the model of a
prediction function h(w,-) € R%, f(-) is a deterministic
function that could be linear or non-linear (possibly non-
convex), and {(w,z,z') = {(h(w,z), h(w,2z’)) denotes a
pairwise loss that only depends on the prediction outputs of
the input data z, z’. The above problem belongs to a broader
family of machine learning problems called deep X-risk
optimization (DXO) (Yang, 2022). We provide details of
some X-risk minimization applications in Appendix B.

When f is a linear function, the above problem is the classic
pairwise loss minimization problem, which has applications
in AUROC (AUC) maximization (Gao et al., 2013; Zhao
et al., 2011; Gao & Zhou, 2015; Calders & Jaroszewicz,
2007; Charoenphakdee et al., 2019; Yang et al., 2021b;
Yang & Ying, 2022), bipartite ranking (Cohen et al., 1997;
Clémencon et al., 2008; Kotlowski et al., 2011; Dembczyn-
ski et al., 2012), and distance metric learning (Radenovié
et al., 2016; Wu et al., 2017). When f is a non-linear
function, the above problem is a special case of finite-
sum coupled compositional optimization problem (Wang &
Yang, 2022), which has found applications in various perfor-
mance measure optimization such as partial AUC maximiza-
tion (Zhu et al., 2022), average precision maximization (Qi
et al., 2021; Wang et al., 2022), NDCG maximization (Qiu
et al., 2022), p-norm push optimization (Rudin, 2009; Wang
& Yang, 2022) and contrastive loss optimization (Gold-
berger et al., 2004; Yuan et al., 2022).

This is in sharp contrast with most existing studies on FL.
algorithms (Yang, 2013; Konecny et al., 2016; McMahan
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et al., 2017; Kairouz et al., 2021; Smith et al., 2018; Stich,
2018; Yu et al., 2019a;b; Khaled et al., 2020; Woodworth
et al., 2020b;a; Karimireddy et al., 2020b; Haddadpour et al.,
2019), which focus on the following empirical risk mini-
mization (ERM) problem with the data set S distributed
over different machines:
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The major differences between DXO and ERM are (i) the
ERM’s objective is decomposable over training data, while
the DXO is not; and (ii) the data-dependent losses in ERM
are decoupled between different data points; in contrast the
data-dependent loss in DXO couples different training data
points. These differences pose a big challenge for DXO
in the FL setting where the training data are distributed
on different machines and are prohibited to be moved to a
central server. In particular, the gradient of X-risk cannot be
written as the sum of local gradients at individual machines
that only depend on the local data in those machines. Instead,
the gradient of DXO at each machine not only depends on
local data but also on data in other machines. As a result,
the design of communication-efficient FL algorithms for
DXO is much more complicated than that for ERM. In
addition, the presence of non-linear function f makes the
algorithm design and analysis even more challenging than
that with linear f. There are two levels of coupling in
DXO with nonlinear f with one level at the pairwise loss
l(h(w,z), h(w,z’)) and another level at the non-linear risk
of f(g(w,z,8Sz)), which makes estimation of stochastic
gradient more tricky.

Although DXO can be solved by existing algorithms in a
centralized learning setting (Hu et al., 2020; Wang & Yang,
2022), extension of the existing algorithms to the FL set-
ting is non-trivial. This is different from the extension of
centralized algorithms for ERM problems to the FL set-
ting. In the design and analysis of FL algorithms for ERM,
the individual machines compute local gradients and up-
date local models and communicate periodically to average
models. The rationale of local FL algorithms for ERM is
that as long as the gap error between local models and the
averaged model is on par with the noise in the stochastic
gradients by controlling the communication frequency, the
convergence of local FL algorithms will not be sacrificed
and is able to enjoy the parallel speed-up of using multiple
machines. However, this rationale is not sufficient for de-
veloping FL algorithms for DXO optimization due to the
challenges mentioned above.

To address these challenges, we propose two novel FL algo-
rithms named FeDXL1 and FeDXL2 for DXO with linear
and non-linear f, respectively. The main innovation in the
algorithm design lies at an active-passive decomposition
framework that decouples the gradient of the objective into

two types, active parts and passive parts. The active parts
depend on data in local machines and the passive parts de-
pend on data in other machines. We estimate the active parts
using the local data and the local model and estimate the
passive parts using the information with delayed communi-
cations from other machines that are computed at historical
models in the previous round. In terms of analysis, the chal-
lenge is that the model used in the computation of stochastic
gradient estimator depends on the (historical) samples for
computing the passive parts at the current iteration, which
is only exacerbated in the presence of non-linear function
f- We develop a novel analysis that allows us to transfer the
error of the gradient estimator into the latency error of the
passive parts and the gap error between local models and
the global model. Hence, the rationale is that as long as the
latency error of the passive parts and the gap error between
local models and the global model is on par with the noise
in the stochastic gradient estimator we are able to achieve
convergence and linear speed-up.

The main contributions of this work are as follows:

* We propose two novel communication-efficient algo-
rithms, FeDXL1 and FeDXL2, for DXO with linear and
nonlinear f, respectively, based on federated averaging
and merging. Besides communicating local models for
federated averaging, the proposed algorithms need to com-
municate local prediction outputs only periodically for
federated merging to enable the computing of passive
parts. The diagram of the proposed FeDXL algorithms is
shown in Figure 1.

* We perform novel technical analysis to prove the conver-
gence of both algorithms. We show that both algorithms
enjoy parallel speed-up in terms of the iteration complex-
ity, and a lower-order communication complexity.

* We conduct empirical studies on two tasks for federated
deep partial AUC optimization with a compositional loss
and federated deep AUC optimization with a pairwise
loss, and demonstrate the advantages of the proposed
algorithms over several baselines.

2. Related Work

FL for ERM. The challenge of FL is how to utilize the
distributed data to learn a ML model with light commu-
nication cost without harming the data privacy (Kone¢ny
et al., 2016; McMahan et al., 2017). To reduce the com-
munication cost, many algorithms have been proposed to
skip communications (Stich, 2018; Yu et al., 2019a;b; Yang,
2013; Karimireddy et al., 2020b) or compress the communi-
cated statistics (Stich et al., 2018; Basu et al., 2019; Jiang
& Agrawal, 2018; Wangni et al., 2018; Bernstein et al.,
2018). Tight analysis has been performed in various stud-
ies (Kairouz et al., 2021; Yu et al., 2019a;b; Khaled et al.,



FeDXL: Provable Federated Learning for Deep X-Risk Optimization

th
The rth round Machine 1

(r-1)t

: Active parts

N/

Machine 2

S
l
/

Communications

Figure 1. Illustration of the proposed Active-Passive Decomposition Framework of FeDXL, which is enabled by Federated Averaging
and Merging, where the merged prediction outputs from previous rounds are used for computing the passive parts in stochastic gradient
estimator, and its active parts are computed by using local model and local data.

2020; Woodworth et al., 2020b;a; Karimireddy et al., 2020b;
Haddadpour et al., 2019). However, most of these works
target at ERM.

FL for Non-ERM Problems. In (Guo et al.,, 2020;
Yuan et al., 2021a; Deng & Mahdavi, 2021; Deng et al.,
2020; Liu et al., 2020; Sharma et al., 2022), feder-
ated minimax optimization algorithms have been stud-
ied, which are not applicable to our problem when f is
non-convex. Gao et al. (2022) considered a much sim-
pler federated compositional optimization in the form of
>k ]ECNDI; fx (EgNDI; gx(w; €); €), where k denotes the ma-
chine index. Compared with the X-risk, their objective does
not involve interdependence between different machines. Li
et al. (2022); Huang et al. (2022) analyzed FL algorithms
for bi-level problems where only the low-level objective
involves distribution over many machines. Tarzanagh et al.
(2022) considered another federated bilevel problem, where
both upper and lower level objective are distributed over
many machines, but the lower level objective is not cou-
pled with the data in the upper objective. Xing et al. (2022)
studied a federated bilevel optimization in a server-clients
setting, where the central server solves an objective that
depends on optimal solutions of local clients. Our problem
cannot be mapped into these federated bilevel optimization
problems. There are works that optimize non-ERM prob-
lems using local data or data from other machines, which
are mostly adhoc and lack of theoretical guarantees (Han
et al., 2022; Zhang et al., 2020; Wu et al., 2022; Li & Huang,
2022).

Centralized Algorithms for DXO. In the centralized set-
ting DXO has been considered in recent works (Qi et al.,
2021; Wang et al., 2022; Wang & Yang, 2022; Qiu et al.,
2022). In particular, Wang & Yang (2022) have proposed
a stochastic algorithm named SOX for solving (1) and
achieved state-of-the-art sample complexity of O(|Sy|/e*)
to ensure the expected convergence to an e-stationary point.
Nevertheless, it is non-trivial to extend the centralized al-
gorithms to the FL setting due to the challenges mentioned
earlier. Recently, (Jiang et al., 2022) further proposed an
advanced variance-reduction technique named MSVR to
improve the sample complexity of solving finite-sum cou-
pled compositional optimization problems. We provide a
summary of state-of-the-art sample complexities for solving
DXO in both centralized and FL setting in Table 1.

3. FeDXL for DXO

We assume S, Ss are split into N non-overlapping sub-
sets that are distributed over N clients !, i.e., S; = S} U
SZ2...USN and S; = S; US2...USY. We denote by
Eyus = Fll > ,cs- Denote by V1/(-,-) and V2/(-,-) the
partial gradients in terms of the first argument and the sec-
ond argument, respectively. Without loss of generality, we
assume the dimensionality of h(w,z) is 1 (i.e., d, = 1) in
the following presentation. Notations used in the algorithms
are summarized in Appendix A.

'We use clients and machines interchangeably.
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Table 1. Comparison for sample complexity on each machine for solving the DXO problem to find an e-stationary point, i.e.,
E[||F(w)|*] < €. n is the number of finite-sum components in outer finite-sum setting, which is the number of data on the outer
function. ni, denotes the number of finite-sum components for the inner function g when it is of finite-sum structure. In federated learning
setting, n; denotes the number components in the outer function of machine .

Method Sample Complexity | Setting
BSGD (Hu et al., 2020) O(1/€%) Inner Expectation + Outer Expectation
BSpiderBoost (Hu et al., 2020) O(1/¢€%) Inner Expectation + Outer Expectation
Centralized SOX (Wang & Yang, 2022) O(n/e*) t Inner Expectation + Outer Finite-sum
MSVR (Jiang et al., 2022) O(max(1/€*,n/€®)) | Inner Expectation + Outer Finite-sum
MSVR (Jiang et al., 2022) O(ny/nin/€*) Inner Finite-sum + Outer Finite-sum
Federated This Work O(max; n; /%) Inner Expectation + Outer Finite-sum

3.1. FeDXL1 for DXO with linear f
We consider the following FL objective for DXO:

NZEZEy Z E, it (h(w,2), h(w,2")).

3

To highlight the challenge and motivate FeDXL, we decom-
pose the gradient of the objective function into:

VF(w) =

min F(w
weRd

N N
1 ’
N ZEzes Z esi Vil(h(w,z), h(w,z"))Vh(w,z)
=1 j=1
Ag1
N
NZEZ 651NZ ses; V2l(h(w,2), h(w,2 ) Vh(w, 7).
Aj2
Let VFZ(W) = A171 + A7;72. Then VF(W) =
N

With the above decomposition, we can see that the main
task at the local client ¢ is to estimate the gradient terms
A1 and A;s. Due to the symmetry between A;; and Ao,
below, we only use A;; as an illustration for explaining the
proposed algorithm. The difficulty in computing A;; lies
at it relies on data in other machines due to the presence of
E, . s for all j. To overcome this difficulty, we decouple

the data—dependent factors in A;; into two types marked by
green and blue shown below:

N
B esi = > Ez'esg Vil( h(w,z) , h(w,z") ) Vh(w,z) .
=il \ ,
locall local2 global2 local3
globall
“

It is notable that the three green terms can be estimated
or computed based the local data. In particular, locall can
be estimated by sampling data from S? and local2 and lo-
cal3 can be computed based on the sampled data z and the
local model parameter. The difficulty springs from esti-
mating and computing the two blue terms that depend on
data on all machines. We would like to avoid communi-
cating h(w;z') at every iteration for estimating the blue

terms as each communication would incur additional com-
munication overhead. To tackle this, we propose to lever-
age the historical information computed in the previous
round 2. To put this into context of optimization, we con-
sider the update at the k-th iteration during the r-th round,
where k = 0, . — 1. Let w} ;. denote the local model
in ¢-th client at the k-th 1terat1on within r-th round. Let

Zi 1 € Si,z! Z; ko € Si denote the data sampled at the k-th
iteration from S? and S, respectively. Each local machine
will compute h(W} ;.27 ;) and h(w] ., 2z}, ,), which will
be used for computing the active parts. Across all iterations
k=0,...,K — 1, we will accumulate the computed pre-
diction outputs over sampled data and stored in two sets
Hip = {h(wf,k»z§,k,1)vk =0,...,K =1} and Hj, =
{h(W] ko2l g 0) K =0,..., K —1}. Attheendofroundr
we will communicate Wi i and H; 1 and H; 5 to the central
server, which will average the local models to get a global
model w,. and also merge Hj = H7 UH5, ...UH] ; and
Hy =Hi o UHS5... UH] 5. These merged information
will be broadcast to each individual client. Then, at the k-th
iteration in the r-th round, we estimate the blue term by
sampling hg? € H5~! without replacement and compute
an estimator of A;; by

Giyn = Vil( h(Wi .20, )  hhe ) VR(WE 28, 1)
N——— ——— ——

active passive active
&)

where ¢ (4, t, z;;12) represents a random variable
that captures the randomness in the sampled client 7 €
{1,...,N } iteration index k € {0,. — 1} and data
sample z;, 2 € 82, which is used for estlmatmg the globall
in (4). We refer to the green factors in G 1 as the ac-
tive parts and the blue factor in G; ;1 as the passive part.
Similarly, we can estimate A;3 by G; . 2

z‘r,k’z;,k,Z) ) Vh(wf,k,zzr,k,z) )

active

Gi o= Val(hig', h(w
N——

passive

active

6)

2A round is defined as a sequence of local updates between two
consecutive communications.



FeDXL: Provable Federated Learning for Deep X-Risk Optimization

where h’q_1 € ’Hr_l is a randomly sampled prediction

output in the previous round with ¢ = (', ¢/, 2", I3 tl, ) rep-
resenting a random variable including a client sample J
and iteration sample ¢ and the data sample z i t, . Then
we will update the local model parameter w; by using a
gradient estimator G ;. | + G} . 5. o

We present the detailed steps of the proposed algorithm
FeDXL1 in Algorithm 1. Several remarks are following: (i)
at every round, the algorithm needs to communicate both
the model parameters w” i and the historical prediction
outputs #, 7" and ’Hl 5, where 7—[;;1 is constructed by
collecting all or sub- sampled computed predictions in the
(r — 1)-th round. The bottom line for constructing 7—[;;1
is to ensure that 47 ~! contains at least K independently
sampled predictions that are from the previous round on all
machines such that the corresponding data sam}gles involved
in H”~! can be used to approximate ~ Zl 1Ezes: K
times. Hence, to keep the communication costs minimal,
each client at least needs to sample O([K/N]) sampled
predictions from all iterations £ = 0,1,..., K — 1 and
send them to the server for constructing #”~!, which is
then broadcast to all clients for computing the passive parts
in the round r. As a result, the minimal communication
costs per-round per-client is O(d + Kd,/N). Nevertheless,
for simplicity in Algorithm 1 we simply put all historical
predictions into ’HZ;l.

Similar to all other FL algorithms, FeDXL.1 does not re-
quire communicating the raw input data, hence protects the
privacy of the data. However, compared with most FL algo-
rithms for ERM, FeDXL1 for DXO has an additional com-
munication overhead at least O(d,K/N) which depends
on the dimensionality of prediction output d,,. For learning
a high-dimensional model (e.g. deep neural network with
d > 1) with score-based pairwise losses (d, = 1), the addi-
tional communication cost O(K/N) could be marginal. For
updating the buffer B; ; and B; 2, we can simply flush the
history and add the newly received R} ! and RTQI with
random shuffling to B; ; and B; », respectlvely

For analysis, we make the following assumptions regarding
the DXO with linear f problem, i.e., problem (3).

Assumption 3.1.
* ((-) is differentiable, Ly-smooth and Cy-Lipschitz.

* h(-,z) is differentiable, L;-smooth and C},-Lipschitz
onw forany z € 51 U Ss.

° Ezes;Eje[LN}Ez,eSgHVM(h(W,z),h(w
+Vol(h(w,z), h(w,2'))Vh(w,z' )~V F;(w)|*<o2.

* 3D such that | VF;(w) — VF(w)||? < D% Vi.

z'))\Vh(w,z)

Algorithm 1 FeDXL1: FL for DXO with linear f
1: On Client i: Require parameters 7, K
2: Initialize model WR x and initialize Buffer B; 1, B; » =
0
3: Sample K points from Si, compute their predictions
using model w? . denoted by H
4: Sample K points from S%, compute their predictions
using model wg x denoted by HY,
forr=1,. R do
Sends wl K ! to the server
Receives w” from the server and set w

Send H; | L HTQ to the server
Receive R} | L Ris ! from the server
10:  Update buffer B;1,B;2 using R;’Il, Rgl with

o %2 W
Il
s
Y

shuffling © see text for updating the buffer
1: SetH, =0,Hj,=10
122 fork=0,..,K —1do
13: Sample z] ; , from S}, sample 2 ;. , from S o or
sample two mini-batches of data
14: Take next hg_l and hz_l from B; 1 and BB; 2, resp.
15: Compute h( :k, z; 1) and h(W} ;27 )
16: Add  h(wj,,z]; ) into 71 and add
h(W7 z,k,2> into #7 ,
17: Compute G7 . ; and G;’ k2 according to (5) and (6)
18: W1 = Wip —(Glr1 +Glo)
19:  end for
20: end for

21: On Server

22: forr=1,..., Rdo

23:  Receive w:}l, from clients ¢ € [N], compute w" =
+ Zfil W,  and broadcast it to all clients.

24:  Collects H ™' = ’Hfll U Hg_ll ”H;V , and
Hy ' =HI UHSL L UH,

250 SetRi;' = ’HT_l R =Hy

26:  Send R; | LRS! o to client i for all i € [N]

27: end for

The first three assumptions are standard in the optimization
of DXO problems (Wang & Yang, 2022). The last assump-
tion embodies the data heterogeneity that is also common
in federated learning (Yu et al., 2019a; Karimireddy et al.,
2020b). Next, we present the theoretical results on the con-
vergence of FeDXL1.

Theorem 3.2. Under Assumption 3.1, by setting n =
O( Rz/g) and K = O(“5— R/ ), Algorithm I ensures that

| ZHVF-”H (ms) @

Remark. To getE[% S ||VF( ~1)||?] < €2, we just
need to set R = O(%), n = Ne? and K = 3. The num-
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ber of communications is much less than the total number of
iterations i.e., O( =) as long as N < O(1). And the sam-
ple complexity on each machine is ﬁ, which is linearly
reduced by the number of machines V.

Novelty of Analysis. As the passive parts are computed in
different machines in a previous round, the gradient estima-
tors G7 ;. 1 and G7 ; , will involve the dependency between
the local model parameter w? i 1, and the historical data con-
tained in &, ¢ used for computing G .1 and G7 5, which
makes the analysis more involved. We need to make sure
that using the gradient estimator based on them can still
result in “good” results. To this end, we borrow an analysis
technique in (Yang et al., 2021b) to decouple the dependence
between the current model parameter and the data used for
computing the current gradient estimator, in which they used
data in previous iteration to couple the data in the current
iteration in order to compute a gradient of the pairwise loss
C(h(wy;24), h(wy; z.—1)). Nevertheless, in federated DXO
controlling the error brought by the passive parts is more
challenging since the delay is much longer and they were
computed on different machines. In our analysis, we replace
w; , with w" ! to decouple the dependence between the
model parameter w” ! and the historical data &, ¢, then we
need to control the latency error |[Ww”~! — w"||? and the gap
error between different machines ), >-, E[w" — w7, [|?
such that the complexities are not compromised.

3.2. FeDXL2 for optimizing DXO with nonlinear f

With nonlinear f, we consider the following FL problem of
DXO minimization,
N

N
1 ’
:NZEzesl ( Z zeSJ ),h(w,z))).
=1 Jj=1
9(w,2,52)
®)
We compute the gradient and decompose it into:

1 Y

VF(w) = i Z(Ai,l +Ai2), ©))

i=1
where

N
1
Ai,l zES‘N Z z eSJ |: (W7Za82)) :

Vil(h(w,z), h(w,z'))Vh(w, z)}

Ai-, = zeslez€S7|:

Val(h(w,z), h(w,z'))Vh(w, z’)] )

(10)
(W, z, 82)) :

Algorithm 2 FeDXL.2: Federated Learning for DXO with
non-linear f
On Client i: Require parameters 7, K
Initialize model w{ ., Uy = {u’(z)
GY i = 0, and buffer B; 1, B; 2,C; = 0
Sample K points from S%, compute their predictions
using model w{ ;- denoted by H?
Sample K points from S%, compute their predictions
using model wy ;- denoted by
forr=1,...,Rdo
Sends wf’;{l, G:}l to the server
Receives w”, G from the server and set Wig =
WGl = G
Send Hf]l, H:gl,uH to the server
Receive R} | L Ris 1P~ from the server
Update the buffer  B;1,B;2,C;  using
Ry L Riy L Pr=1 with shuffling, respectively
Set?—[“—@ Hi,=0,Uf =0
fork=0,..,K —1do
Sample z;k,l from S, sample z] ;. , from S5 o or
sample two mini-batches of data
Take next hg_l, hg_l and ug_l from B; 1 and B, »
and C;, respectively
Compute h(w; 1, 2; . ;) and h(w; ko % i, k. 2)
Compute (w; ., A:k 1) and h(wy 2] kz) and
add them to H; |, H; 5, respectlvely
Compute u] ’k(z ’,M) according to (11) and add
z k( ik, 1) to ur
Compute Gl p1and G7, accordmg to (12,13)
Gip=(01- B)Grk |+ B(G k1t Gigo)
Wz'r,k+1 = Wi,k 77Gz,

= 0,z € Si},

end for

end for

On Server

forr=1,...,Rdo
Rece1ve w: Kl,G from client ¢ € [N], compute
W= 5 Zz’:l Wi,,K’ G" = sz‘:l GZ,K and
broadcast them to all clients.
Collects H;~* = Hi ' UM ... UHY ) and
U-rt=uitu w—l UUy !, where = 1,2
Set Rj;' = Hi~! R;“21 HT Lprtt =yt

and send them to Client i for all i € [N ]
end for

Let VF;(w) = A;1 + A;2. Then we have VF(w) =
N

Compared to that in (4) for DXO with linear f, the A;;
term above involves another factor V f(g(w, z, S2)), which
cannot be computed locally as it depends on S» distributed
over all machines. Similarly, the A;> term above involves
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another non-locally computable factor V f(g(w, z,S3)). To
address the challenge of estimating g(w, z, S2), we leverage
the similar technique in the centralized setting (Wang &
Yang, 2022) by tracking it using a moving average estimator
based on random samples. In a centralized setting, one can
maintain and update u(z) for estimating g(w, z, Sz) by
u(z) < (1= y)u(z) + v(h(w, ), h(w,2)),

where z’ is a random sample from S,. However, this is not
possible in an FL setting as So is distributed over many ma-
chines. To tackle this, we leverage the delay communication
technique used in the last subsection. At the k-th iteration

in the r-th round, we update u(z; , ;) for a sampled z; ; ,
by

ui (27 k1) = (1=7)ug k(2 1) +7E((Wi k255 1), h(gl%;),
where hg‘zl is a random sample from ’Hg_l where £ =
('t 2} t, ) captures the randomness in client, iteration
index and data sample in the last round. Then, we can use
Vf(uj,(z],)) inplace of Vf(g(wWi,, 2] ,,S2)) for es-
timating A;;. However, it is more nuanced for estimat-
ing Vf(g(w,2,82)) in Ay; since z € S7 is not local ran-
dom data. To address this, we propose to communicate
= {uj, Yz zkl) € [N],k € [K] — 1}. Then at
the k-iteration in the 7-th round of the i-th client, we can
estimate V f (g(w, z, Sz)) with a random sample from "1

denoted by uz_l, where ¢ = (§/,t/, 2], o 1), i.e., by using

Vf(uzfl). Then we estimate Ay; and Ay; by

;,k,l =

Vi x(zik1)) Vil (Wi, 2i51) s h;,_gl ) V(W] g, 27 k1)

active active passive active
(12)

Giko=

Vf(uz_l) Vol ( by gl s h(Wik,Zik2) ) V(W k, 2]k 2)
N——— SN——"

passive passive active active

13)
where 4, £, 7',  are random variables. Another difference
from DXO with linear f is that even in the centralized
setting directly using Gy, ; + G, » will lead to a worse
complexity due to that non-linear f make the stochastic
gradient estimator biased (Wang et al., 2017). Hence, in
order to improve the convergence, we follow existing state-
of-the-art algorithms for stochastic compositional optimiza-
tion (Ghadimi et al., 2020; Wang & Yang, 2022) to compute
a moving average estimator for the gradient at local ma-
chines, i.e., Step 17 in Algorithm 2. With these changes, we
present the detailed steps of FeDXL2 for solving DXO with
non-linear f in Algorithm 2. The buffers B; . and C; are up-
dated similar to that for FeDXL1. Different from FeDXL1,
there is an additional communication cost for communicat-
ing ;! and an additional buffer C; at each local machine
to store the received P, ~! from aggregated 4" ~!. Never-

theless, these additional costs are marginal compared with
communicating H~! and maintaining the buffer B; ..

We make the following assumptions regarding problem (8).

Assumption 3.3.  « /(-) is differentiable, L,-smooth and
Cy-Lipschitz. |¢(-)] < Cp.

* f(-) is differentiable, L s-smooth and C'¢-Lipschitz.

* h(-,z) is differentiable, L;-smooth and C},-Lipschitz
onw forany z € S1 USs.

EZESiEﬂ'E[l:N]Ez’eS"
[Vf(g(w,2,82))Vil(h(w,z), h(w,2"))VI(w,z)
+Vf(g(W,Z,82))V2£( ( 7Z)7h( W, /)>Vh(w Z)
VE(w)|]? <o

* 3D such that | VF;(w) — VF(w)||?> < D?,Vi.

We present the convergence result of FeDXL.2 below.

Theorem 3.4. Under Assumption 3.3, denoting M =

max; |S}| as the largest number of data on a single ma-
. . ML/3 1
chine, by setting v = O(fpzm), B = O(gp765zm3);

n = O(5prgrs) and K = O(MY3RY3), Algorithm
2 ensures that

fZEIIVF P < 075
Remark. To get B[} Zr:l IVE(WT)[]?] < €2, we just
setR:O(%;ﬂ), n= O(i),q/: O(e ),ﬁ: Wand

K=X :/ The number of communications R = O( M )
is less than the total number of iterations i.e., O( ) by a
factor of O(M'/?/¢). And the sample complexity on each
machine is €M4, which is less than that in (Wang & Yang,
2022) which has a sample complexity of O(Zf[:l ISt /).
When the data are evenly distributed on different machines,
we have achieved a linear speedup property. And in an
extreme case where all data are on one machine, the sam-
ple complexity of FeDXL2 matches that in (Wang & Yang,
2022), which is expected. Compared with FeDXL1, the
analysis of FeDXL2 has to deal with extra difficulties. First,
with non-linear f, the coupling between the inner function
and outer function adds to the complexity of interdepen-
dence between different rounds and machines. Second, we
have to deal with the error for the passive part related to u.

Our analysis for FeDXL2 with moving average gradient esti-
mator is different from previous studies for local momentum
methods for ERM problems(Yu et al., 2019a; Karimireddy
et al., 2020a), which used a fixed momentum parameter.
In contrast, in FeDXL2 the momentum parameter (3 is de-
creasing as R increases, which is similar to centralized
algorithms compositional problems (Ghadimi et al., 2020;
Wang & Yang, 2022).
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Table 2. Comparison for Federated Deep Partial AUC Maximization. All reported results are partial AUC scores on testing data.

K—32 N—16 Centralized Local SGD CODASCA Local Pair FeDXL2
’ (OPAUC Loss) (CE Loss) (Min-Max AUC) | (OPAUC Loss) | (OPAUC Loss)
Cifarl0 FPR < 0.3 | 0.765540.0039 || 0.6825+0.0047 | 0.7288+0.0035 | 0.7487+0.0059 | 0.7580+0.0034
FPR < 0.5 | 0.80324+0.0039 || 0.7279+0.0050 | 0.7702+0.0029 | 0.7888+0.0052 | 0.7978+0.0026
Cifar100 FPR < 0.3 | 0.6287+0.0037 || 0.5875+0.0016 | 0.6131£0.0054 | 0.6281+0.0032 | 0.6332+0.0024
FPR < 0.5 | 0.6487+0.0026 || 0.6124+0.0021 | 0.6406+0.0041 | 0.6569+0.0017 | 0.6623+0.0022
CheXpert FPR < 0.3 | 0.722040.0035 || 0.6495+0.0039 | 0.6903+0.0059 | 0.6902+0.0053 | 0.7344+0.0042
FPR < 0.5 | 0.7861£0.0040 || 0.70174+0.0042 | 0.7770+£0.0071 | 0.7483+0.0033 | 0.7918+0.0037
ChestMNIST FPR < 0.3 | 0.634440.0053 || 0.5904+0.0012 | 0.6071£0.0040 | 0.5802+0.0039 | 0.6228+-0.0048
FPR < 0.5 | 0.6622+0.0029 || 0.60724+0.0034 | 0.6272+0.0038 | 0.6026+0.0025 | 0.6490-+0.0039

Table 3. Comparison for Federated Deep AUC maximization under corrupted labels. All reported results are AUC scores on testing data.

K =32 N =16 Centralized Local SGD CODASCA Local Pair FeDXL1

’ (PSM Loss) (CE Loss) ( Min-Max AUC) (PSM Loss) (PSM Loss)
Cifarl0 0.735240.0043 || 0.6501+0.0024 | 0.6407+0.0044 | 0.7287+0.0027 | 0.7344+0.0038
Cifar100 0.6114+0.0038 || 0.5700+0.0031 | 0.5950+0.0039 | 0.6175+£0.0045 | 0.6208-£0.0041
CheXpert 0.8149+0.0031 || 0.6782+0.0032 | 0.7062+0.0085 | 0.7924+0.0043 | 0.8431+0.0027
ChestMNIST 0.7227£0.0026 || 0.5642+0.0041 | 0.6509+0.0033 | 0.6766£0.0019 | 0.6925-+£0.0030

4. Experiments

To verify our theories, we experiment on two tasks: fed-
erated deep partial AUC maximization and federated deep
AUC maximization with a pairwise surrogate loss, which
corresponds to (1) with non-linear and linear f, respec-
tively. Code is released at https://github.com/
Optimization—-AI/ICML2023_FeDXL.

Datasets and Neural Networks. We use four datasets: Ci-
far10, Cifar100 (Krizhevsky et al., 2009), CheXpert (Irvin
etal., 2019), and ChestMNIST (Yang et al., 2021a), where
the latter two datasets are large-scale medical image data.
For Cifarl0 and Cifar100, we sample 20% of the training
data as validation set, and construct imbalanced binary ver-
sions with positive:negative = 1:5 in the training set similar
to (Yuan et al., 2021b). For CheXpert, we consider the
task of predicting Consolidation and use the last 1000 im-
ages in the training set as the validation set and use the
original validation set as the testing set. For ChestMNIST,
we consider the task of Mass prediction and use the pro-
vided train/valid/test split. We distribute training data to
N = 16 machines unless specified otherwise. To increase
the heterogeneity of data on different machines, we add ran-
dom Gaussian noise of A/(11,0.04) to all training images,
where 1 € {—0.08 : 0.01 : 0.08} that varies on different
machines, i.e., for the i-th machine out of the N = 16
machines, its ;p = —0.08 4 ¢ * 0.01. We train ResNet18
from scratch for CIFAR-10 and CIFAR-100 data, and ini-
tialize DenseNet121 by an ImageNet pretrained model for
CheXpert and ChestMNIST. We use the PyTorch framework
(Paszke et al., 2019).

Baselines. We compare our algorithms with three local
baselines: 1) Local SGD which optimizes a Cross-Entropy
loss using classical local SGD algorithm; 2) CODASCA -
a state-of-the-art FL algorithm for optimizing a min-max
formulated AUC loss (Yuan et al., 2021a); and 3) Local

Pair which optimizes the X-risk using only local pairs. As a
reference, we also compare with the Centralized methods,
i.e., mini-batch SGD for DXO with linear f and SOX for
DXO with non-linear f. We tune the initial step size in
[1e=3,1] using grid search and decay it by a factor of 0.1
every 5K iterations. All algorithms are run for 20k iterations.
The mini-batch sizes Bi, B (as in Step 11 of FeDXL1
and FeDXL.2) are set to 32. The § parameter of FeDXL2
(and corresponding Local Pair and Centralized method) is
set to 0.1. In the Centralized method, we tune the batch
size By and By from {32, 64, 128,256,512} in an effort to
benchmark the best performance.For CODASCA and Local
SGD which are not using pairwise losses, we set the batch
size to 64 for fair comparison with FeDXL. For all the non-
centralized algorithms, we set the communication interval
K = 32 unless specified otherwise. In every run, we use
the validation set to select the best performing model and
finally use the selected model to evaluate on the testing set.
For each algorithm, we repeat 3 times with different random
seeds and report the averaged performance.

FeDXL.2 for Federated Deep Partial AUC Maximization.
We consider the task of one way partial AUC maximization,
which refers to the area under the ROC curve with false
positive rate (FPR) restricted to be less than a threshold. We
consider the KL-OPAUC loss function proposed in (Zhu
etal., 2022)N

N
o1 1 /
vzr;éld N E 1 EzeS{AIOg (N E 1EZ,GS§K(W,Z,Z ))7 (14)
1= J=

where 8{ denotes the set of positive data, Sg denotes the
set of negative data and ¢(w, z,z’) = exp((h(w,z) + 1 —
h(w,z'))3/)) where A is a parameter tuned in [1 : 5]. The
experimental results are reported in Table 2. We can see: (i)
FeDXL2 is better than all local methods (i.e., Local SGD,
Local Pair and CODASCA), and achieves competitive per-
formance as the Centralized method, which indicates the our
algorithm can effectively utilize data on all machines. The
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better performance of FeDXL2 on CIFAR100 and CheXpert
than the Centralized method is probably due to that the Cen-
tralized method may overfit the training data; (ii) FeDXL2 is
better than the Local Pair method, which implies that using
data pairs from all machines are helpful for improving the
performance in terms of partial AUC maximization; and (iii)
FeDXL2 is better than CODASCA, which is not surprising
since CODASCA is designed to optimize AUC loss, while
FeDXL2 is used to optimize partial AUC loss.

FeDXL1 for Federated Deep AUC maximization with
Corrupted Labels. Second, we consider the task of fed-
erated deep AUC maximization. Since deep AUC maxi-
mization for solving a min-max loss (an equivalent form
for the pairwise square loss) has been developed in pre-
vious works (Yuan et al., 2021a), we aim to justify the
benefit of using the general pairwise loss formulation. Ac-
cording to (Charoenphakdee et al., 2019), a symmetric loss
can be more robust to data with corrupted labels for AUC
maximization, where a symmetric loss is one such that
0(z) + ¢(—=z) is a constant. Since the square loss is not
symmetric, we conjecture that that min-max federated deep
AUC maximization algorithm CODASCA is not robust to
the noise in labels. In contrast, our algorithm FeDXL1
can optimize a symmetric pairwise loss; hence we expect
FeDXL1 is better than CODASCA in the presence of cor-
rupted labels. To verify this hypothesis, we generate cor-
rupted data by flipping the labels of 20% of both the posi-
tive and negative training data. We use FeDXL1/Local Pair
to optimize the symmetric pairwise sigmoid (PSM) loss
(Calders & Jaroszewicz, 2007), which corresponds to (1)
with linear f(s) = s and ¢(a,b) = (1 + exp(a — b))},
where a is a positive data score and b is a negative data
score. Specifically,

N N

1 1

min N Z EZGS{ N Z ]Ezlesg e(h(wv Z)7 h(W, Z/)),
=1 j=1

weRd

where S denotes the set of positive data, SJ denotes
the set of negative data and ¢(h(w,z), h(w,z")) = (1 +
exp(h(w,z) — h(w,z’)))~!. The results are reported in
Table 3. We observe that FeDXL1 is more robust to label
noises compared to other local methods, including Local
SGD, Local Pair, and CODASCA that optimizes a min-max
AUC loss. As before, FeDXL1 has competitive performance
compared with the Centralized method.

The running time comparison, statistics of data, and ablation
studies are in Appendix C.

5. Conclusion

We have considered federated learning (FL) for deep X-risk
optimization. We have developed communication-efficient
FL algorithms to alleviate the interdependence between dif-

ferent machines. Novel convergence analysis is performed
to address the technical challenges and to improve both
iteration and communication complexities of proposed al-
gorithms. We have conducted empirical studies of the pro-
posed FL algorithms for solving deep partial AUC maxi-
mization and deep AUC maximization and achieved promis-
ing results compared with several baselines.

6. Limitations and Potential Negative Societal
Impacts

While the current communication complexity is O(1/¢€?),
there may still be room for improvement to further re-
duce the communication cost because the state-of-the-art
communication complexity for federated ERM problems
is O(1/€?). Our experimental results indicate that FeDXL
may offer better generalization performance than centralized
algorithms. However, a more rigorous analysis is necessary
to better understand this phenomenon and leverage it ef-
fectively. While this work has verified the performance of
FeDXL on partial AUC maximization and AUC maximiza-
tion problems, more studies are needed to test FeDXL on
other federated DXO problems and beyond. We do not see
any potential negative societal impact.
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A. Notations

Table 4. Notations

w Model parameters of the neural network, variables to be trained
Wik Model parameters of machine 7 at round r, iteration k
Z A data point
Z; A data point from machine %
zf & A data point sampled on machine i, at round r iteration k
Z k1> Bk Two independent data points sampled on machine 4, at round r iteration k
h(w,z) The prediction score of data z by network w
G} 115Gl o Stochastic estimators of components of gradient
HiHio Collected historical prediction scores on machine 4 at round r
u(z) Moving average estimator of the inner function g(w, z, S>)
u}, (z) Moving average estimator of the inner function g(w, z, S>) on machine i at round r, iteration &
uy Collected historical u on machine ¢ at round r
hrt }1’ ! Predictions scores sampled from the collected scores of round r — 1
ug’l Moving average estimator sampled from the collected moving average estimator of round r — 1

B. Applications of DXO Problems

We now present some concrete applications of the DXO problems, including AUROC maximization, partial AUROC
maximization and AUPRC maximization. A more comprehensive list of DXO problems is discussed in the Intrduction
section and can also be found in a recent survey (Yang, 2022).

AUROC Maximization The area under ROC curve (AUROC) is defined (Hanley & McNeil, 1982) as
AUROC(w) = E[I(h(w,z) > h(w,z))ly = +1,y" = —1], (15)

where z, z’ are a pair of data features and y, v’ are the corresponding labels. To maximize the AUROC, there are a number
of surrogate losses £(-), e.g. £(w;z,2') = (1 — h(w,z) + h(w,z))?, that have proposed in the literature (Gao et al., 2013;
Zhao et al., 2011; Gao & Zhou, 2015; Calders & Jaroszewicz, 2007; Charoenphakdee et al., 2019; Yang et al., 2021b), which

formulates the problem into
i 2 g o (W), (16)
z; €St z; €S2

where S is the set of data with positive labels and Ss is the set of data with negative labels. This is a DXO problem of (1)
with f(z) =

Partial AUROC Maximization In medical diagnosis, high false positive rates (FPR) and low true positive rates (TPR) may
cause a large cost. To alleviate this, we will also consider optimizing partial AUC (pAUC). This task considers to maximize
the area under ROC curve with the restriction that the false positive rate to be less than a certain level. In (Zhu et al., 2022),
it has been shown that the partial AUROC maximization problem can be solved by the

1 U(w,2;,2;)
mm Aog | — exp(——2222Y | 17
|81 xze;s g |S2|z;2 xp(——7) (17)

where &7 is the set of positive data, Ss is the set of negative data, 0 (+) is surrogate loss, and ) is associated vyith the tolerance
level of false positive rate. This is a DXO problem of (1) with f(z) = Alog(x), and {(w,z;,z;) = exp(w).

AUPRC Maximization According to (Boyd et al., 2013), the area under the precision-recall curve (AUPRC) can be approxi-
mated by

I(y; = DI(h(w,2:) = h(w,2;))

1 ( Z) S
1 Ll — 1 Z;,Y;)€E .
(Z“yl)GS (Zj,y]’)es
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Then using a surrogate loss, the AUPRC maximization problem becomes

2

I(y; = 1){(w,2;,2;))

)(zj,yj)ES

2

(z5,y;)€S

I(y; = 1 : (19)

Uw,2z;,2;)

. 1
min—rer >
(zi7y¢)68

which is a DXO problem of (1) with ((w, z;, z;) = [(Ly;=1)l(W, z;,2;), {(W, 2;,2;)] and f(z1,22) = T+ (Qietal, 2021).

C. Experiments

C.1. Statistics of Data

Statistics of used data sets are summarized in Table 5.

Table 5. Statistics of the Datasets

# of Training Data | # of Validation Data | # of Testing Data
Cifar10 24000 10000 10000
Cifar100 24000 10000 10000
CheXpert 190027 1000 202
ChestMNIST 78468 11219 22433

C.2. Running Time Comparison

Running time is reported in Tabel 6. Each algorithm was run on 16 client machines connected by InfiniBand where each
machine uses a NVIDIA A100 GPU.

Table 6. Running time comparison of federated algorithm on partial AUC maximization task in 4. We report the average number of
communication rounds and runtime (in seconds) for each algorithm to converge to a region that for FR < 0.5, the training pAUC > its
best training pAUC—0.01.

Local SGD CODASCA Local Pair FeDXL2

(CE Loss) | (Min-Max AUC) | (OPAUC Loss) | (OPAUC Loss)
Cifar10 157 (664s) 147 (955s) 168 (740s) 160 (819s)
Cifar100 160 (644s) 163 (974s) 162 (688s) 159 (758s)
CheXpert 162 (2465s) 151 (3501s) 175 (2838s) 182 (3246s)
ChestMNIST | 172 (1537s) 165 (3176s) 164 (1484s) 171 (1763s)

C.3. Ablation Study.

We show an ablation study to further verify our theory. In particular, we show the benefit of using multiple machines and the
lower communication complexity by using K > 1 local updates between two communications. To verify the first effect, we
fix K and vary IV, and for the latter we fix N and vary K. We conduct experiments on the CIFAR-10 data for optimizing
the X risk corresponding to partial AUC loss and the results are plotted in Figure 2. The left two figures demonstrate that our
algorithm can tolerate a certain value of K for skipping communications without harming the performance; and the right
two figures demonstrate the advantage of FL by using FeDXL2, i.e., using data from more sources can dramatically improve
the performance.

Cifar10, pAUC, FPR < 0.3 Cifar10, pAUC, FPR = 0.5

Cifar10, pAUC, FPR < 0.3

Cifar10, pAUC, FPR = 0.5
3 FFg——y

c
S 0.60

ti

°

3
Validation pAUC
Validation pAUC

é 0.55 --- Centralized © - Centralized
s i K=16 = 055 =6
= o0 +- k=32 > osot —+ K=32
045 —+— K=64 3 K64
—— K=128 0.45 o

20 40 60 80 100 20 40 60 80 100 : 20 40 60 B

100
Number of Iterations (*100) Number of Iterations (*100) Number of Iterations (*100)

Number of Iterations (*100)

Figure 2. Ablation study: Left two: Fix N and Vary K; Right two: Fix K and Vary N
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D. Analysis of FeDXL1 for solving DXO with Linear f

In this section, we present the analysis of the FeDXL1 algorithm. For z € S} and z’ € SJ, we define
Gi(w,z,w',2') = Vil(h(w,z),h(w,2)) " Vh(w, z) 20)
Go(w,z,w',2') = Vol (h(w,2),h(w,2)) Vh(w,2).

Therefore, the
f,k,l = vlé(h(wir,kazzr,k,l)vh )Vh( Wik Z; k,1)7

defined in (4) is equivalent to G1(W; ;.2 ; 1, w}’;l, 22;12), where h;gl = h(w}} L z;, 1) is a scored of a randomly

sampled data that in computed in the round  — 1 at machine j and iteration . Technically, notations j and ¢ are associated
with ¢ and k, but we omit this dependence when the context is clear to simplify notations.

Similarly, the

G;,kz = v2£(h; 4‘17 h( Wi k> Z;,lc,2)7 Vh(wzr,m er,lc,2))7

. . . r—1 _r—1
defined in (6) is equivalent to G5 (Wj/_’t,, z], 1 Wi g zi7k72).

Proof. Under Assumption 3.1, it follows that F'(-) is Lp-smooth, with L := 2(L,Cy + C¢Lyp,). Simiarly, G1, G also
Lipschtz in w and w’ with some constant L, that depend on C},, Cy, Ly, Ly,. Let L := max{Lp, L1 }.

Denote 77 = nK and suppose 77L < O(1)by proper setting of 77 and K. Using the L-smoothness of F(w), we have

P = F@) < VFW) (07 = W)+ 2w -
—7‘ E _r —r
= —AVF(w ( KZZ zk1+sz2)>+2|w+1_W|2
~ — 7 _ r— _ r— 1 r T Z _ _r
=—q(VF(W") = VF(w 1) + VF(w 1))T <NK ZZ(Gi,k,l + Gi,k,2)> + §||W o w ||2

1 . L i
< S IVEW) ~ VF(w HI? +22L\| ZZ Gipn+Gira)l? @1

~ —r—1\T 1 T T L _r+1 — 72
—gVEW" ™) (NK Z;(Gim +Gi,k,2)> + 5““’ -w

— T —7‘ ~ ~ — T— 1 T T
R i S W YRR AL (V5 3) SRR

7 k

<

|

L
H r+1 7"||2
Where

—E |fVF(w"™ )T (NlK ZZ(G;k,l + Gf,k,2))]

:—E|:’I7VF(WT ! <NKZZG1 wzk7 'Lk17 t ) ]t2)+G2( /t/7Z]/t/1aW1k7 z,k,2)

r—1 - r—1 r—l

- GI(W 7Z¢,k,17W s J t, 2) GQ( »Z]/ 1 W :Z:,k,2)

+ GI(WT_17Z:,IC,17WT_17 J t, 2) + GZ(W _lvzjl tl/ 17W7>_17Z:,k,2))>:|
N K
=0 1 _ _ _ e
<AL= N B(lwip =W TP wit =W TP w = W T fwl s - W)

+ ZEHVF(WM)HQ ~E [ﬁVF(v*v"‘l)T (ﬁ Z Zk: VFi<V’V’“’1))}

- _ -5 1 : -5 1 _ _ i _
<16AL°E||w" —w"1]? + 877L2ﬁ SO EIwWT - wil® + 877L2ﬁ SN EwT - wi - gEHVF(W HIZ,
i k A k

(22)
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where first inequality uses Young’s inequality, Lipschitz of G'1, G2, and the fact that data samples z ;. |,z 7 P PR i, tl, 1020 .2

are independent samples after w" !, therefore

E[(Gi(W'™ " 2f 1, W 2 ) + Go(W' 2l W g, ) — VE (W )] = 0. (23)

To bound the updates of w" after one round, we have

E||W7+1_WT“2—~2E‘| ZZ Gilpa + Gyl
~2IE” ZZGl zk? zk17 g?la ;t12)+G2( 'tHZ]’ fl/ N g,kvzzr,k,Q))HQ

S3772EHNKZZ[Gl<w:,k,zak,1, 1)+ Gk A W 7))
i k

, (24)
1 1 o1 - 1 =r—1
KZZ[Gl(WT azz,k,hwr ) ]t2)+G2( vZ;/ t’, 1 W w" azg,k:,Q)]
ik
2
1
=2 _r—1 —r—1 —1 o=l r —r—1
+377]E’NKZZ[G1(W7 7er,k,17WT 7]t2)+G2( 7Z’t’1’ ! 7Z;,k,2) VE;(w"™)]
ik
- 12
+ 3B || VF(w" )
Using the Lipschtz property of G1, G2, we continue this inequality as
Ellw " — |
E2 ~2 L2 r—1 —'r 1 2 —r —r—12
< 07 g 2 D EIwLe = w4 07 e 3 S EIWE - w0 LB
[ k
2
+3~2WEH[G1< W) Ga W ) - VRG]
+37°E[ F(w )|
~2 L s — 72 ~2 i/2 r—1 —r—12 ~272 — T —r—12
<67 ZEuwi,k—w 124+ 67 S S Bliwiy — % P + 672 L E W — w7
i k
~2 —r—1y(2
+ 37 e + 3B P
Thus,
1R
—rtl _ 7|2
72 EIW -]
T: (25)

R
=5 1
§ ~2T2 § E 2 ~2 2

Using Assumption 3.1, we know that ||G1]|?, || G2]|? are both less than CZC?. Then, to bound the updates in one round of
one machine as

E[[w" —wi,|* < 27°C{C}. (26)
Recalling (21) and (22), we obtain
R _
1 o 20F(Wl) - F.) - _ o2
i ElF(w"™ 12 < i S A 2120202 — ). 27
j 2 EF I < 0 (M s piec i @

By setting parameters as in the theorem, we conclude the proof. Besides, if we set n = O(Ne?), K = O(1/Ne), thus

7 = O(e), to ensure + Z E||F(w"=1)||? < €2, it takes communication rounds of R = O( ), and sample complexity on
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each machine O(

N154 )

E. FeDXL2 for Solving DXO with Non-Linear f

In this section, we define the following notations:
Gi(W1,21,u,Wa,22) = Vf(u)Vil(h(w1,21), h(Wa,22))Vh(W1,21),
Gi2(W1,21,u,Wa,22) = Vf(u)Val(h(wi,2z1), h(Ws,22)) Vh(Ws, z2).

(28)

Based on Assumption 3.3, it follows that G; 1, G; 2 are Lipschitz with some constant modulus L; and ||G; 1||?, ||G; 2||* are
bounded by C?Cg C?, F is Lp-smooth, where L1, L are some proper constants depend on Assumption 3.3. We denote

L = max{Ly, Ly} to simplify notations.

Forz, € Si,zy € SJ, define g(w1,z1, Wa, 25) = Z(h(wl; z1), h(wa,22)) and for z; € Si, we define

9(W1,21,w2,82) = — E: m5ﬂ7 (wi321), h(wa,2))

It follows that g is also I?-Lipschitz in wy and wa.

E.1. Analysis of the moving average estimator u

Lemma E.1. Under Assumption 3.3, the moving average estimator u satisfies

NZ

Z Ellu;k<z) - Q(W27Z5W2782)||2

|Sil z€|Si|
N
< (- g5 Z 12 Bl (2) oV W, S
1 i=1 zElS’\
20|3ﬂ 2= 2 2 16%62[(203
+ U2 W w2 4 8 (0 4 C2) 4 — 0

+8L2(|w" — WP+ SiQHW - WZH2

+8(y?

1
S W Wi 207

Proof. By update rules of u, we have

T (z) = { uf,kﬂ(z) - ’Y(uzr,kq(z) - E(h(wf,kvzf,m)v h(W;;la iﬁlz))) Z=12];,

u:
bk i,k 1(2) Z#Z7k1
Or equivalently,
u . (z) = { u:,kfl(z) - V(U;'ﬂ,kfl(z) - g(wf,k7zg,k,1v ;tl’ A; tlz)) Z= er,k,l
ok u;k—l(z) z 7 Z;,k,l

N
_ o _ o 1 .
Define uj; = (uf ;, uj y, ..., uly ), W = 5 > w; . Then it follows that

N
1 1 r g —r 2
ﬁ; |S7'| Z ]EHuZ,k(Z) _g(wlmZ:WImSQ)H

z€| S
=S L ST B[l () — g(Wh 2 WE, o)
N 2s 2 Pt % W,
1 ZE i

T — T — T T ™ 1 ” ’F
+ (Ui x—1(z) — 9(Wg, 2, Wi, S2), u; 1 (2) — Ui p_1(2)) + §||u1;7k(z) - um_l(z)H? )
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which is
Z Z El|ui x(2) — (W, 2, Wk, S2)|°
Z—l Z€|S“
9N Z S| Z Elluir-1(2) *Q(kazawk,&)”
25!
1 T r _ T T _ T T T T T
+ N Z @E<ui,k—l(zi,k,1) = 9(Wi, Zi 15 Wi, S2), W5 1o (Zik,1) — Wi k—1(Zi0,1))
- 1
1
1 1 r r r r 2
TN Z WEHui,k(zi,k,l) — Ui p-1(Zi k1)l
(33)
2N Z ‘S ‘ Z E'luz k— 1( ) _g(wk7szk782)||
2€8}
Z |Sl u;, -1 z,k,l) - Q(W;m Zz,k,u w;,?i?,?,lg), u?,k(Z§,k,1) - u:,kfl(zzk,l»
N Z |$i E(Q(W;mZ:,k,hW;;lvi;;,lz) - g(W27Z£k,17W2782)7u;k(zzk,l) - uz,kﬂ(zf,k@))
Z 2|S |E||Uz k Zz k 1) u:,k—l(Z:,k,l)‘|27
where
<u:,k—1(zg,k,1) - g(wz‘,wz;‘,k,la 3, tlvi§t12) :k(zak,l) - uf,k—l(zf,k,l»
=(u; s 1(2] 1) — Q(Wf,kvzf7k,1ij,t1a ij,t,Q)vg(WLZg,k?l’Wzv82) — i 1(20 1))
+ (i o125 1) — 9(Wi ks 20 g1 §t laz§t,2), w; (27 61) — 9(Wi, 27 41, Wi, S2))
= <u€,k—1(zzr,k,1) - g(wzr,kvzzr,k,lv 7, t a ] t 2)79(W27Z;‘,k,17‘7v£782) - uf,k—1(zf,k,1)>
1, . X X X oy . 34
+ ;<u2,k71(22,k,1) — 0 (2] 1), 05 (2] 1) — 9(WE, 20 415 Wi, S2)) (34)
= <U:,k—1(zf,k,1) - g(Wf,kvzf,k,p ﬁla A; té)?g(WZ?Zg,k,hWZvSQ) - uf,k—1(zf,k,1)>
1
+ Z(”uz,k—l(Z:,k,l) —g9(Wyg, 2z Z; L, 1awk782)|| - ||uzr,k(zzr,k,1) - uzr,k—l(zz,k,l)nz
— g (27 41) — 9(Wi, 2 41, Wi, S2) 1)
If v < i, we have
1/1 v+1
=5 (31 Lo Bl ) ~ s ()P
+ E<9(W£k7 Z;,k,l) 75t 1’ A; t, 12) Q(Wza Zg,lc,lawzv 82)v u;,k(zg7k,1) - u;k—l (Z;l@l»
1 _ _ _
< *EEHuak(ZZm) - u:,k—l(z;,k,l)Hz + VEHQ(W:,kazr,k,la gt 1, Z;t 2) g(WZ,ZZ,k,l,WZ,Sz)HQ
1
+ @]Elluﬁk(zz?k,l) —uf (27 )l 35)

<AE|g(WE g1 W2 h) — 9(Wh a1 WES2) P

<HE|g(w" zr,k,h"_vr_l’z;;,lz) —g(w" g, Wt JS)|I? + Ay LPE|w" — w2
+ Ay L2E||W, — W2+ Ay LR W -

< 4y0? + LB — w2 4 DR, — w2 + 4y DRl — w2
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Then, we have

1 N

Z Ellu:k(z) - g(WI:7Z7WI:782)||2

zE\S1
1 N
Sﬁii 2 Bl — g9 W )P
=1 ZElS"
ij oI (20) = 0 21, W o) (36)
1

1 _ _ v+1
- 5EIIU§,;€(Z£&1) — 9(Wh, 2] 11, Wi, So) |1 — 5

+ DW= WP+ 4y LE|wy — W+ 4 LB wy, -

0] k(27 41) = 0y (274 0) P 4707

+ ]E<u;‘,k—1(zg,k,1) - g(wg,ka Z:,k,lﬁ j t 17 A;t 12) g(WZ7 Z:,k,h Wza 82) - u:,k—l(zg,k:,l» .

Note that Zz;ﬁz:kl ||u;,k—1(z) - g(V_VTk, z, V_V;cl782)||2 = Zz;ﬁz;k 1 ||ll£k(Z) - g(W;cv Z"X’Z’ 82)||2’ which lmphes

1 _ _ _ _
% (”uzkfl(zzr,k,l) - g(W£7Z’W£7S2)H2 - Huzr,k(zzr,k,l) - Q(WZ7Z7WZ732)||2)

~ ~ 37
o Z ” U; 1 (kaz WIwS?)” - ||u£k(z) —Q(WZaZ»WZasz)HQ)-
ZESZ

Since £(-) < Cp, we have that ||g(-)||? < C2, um(z)H2 < C2 and
[ (2) — uio(2)|* < B2K>CF

. Besides, we have

E<u:k—1(ZZk,1) - g(wzkvzz,k,lijzl, A;t12)7
E(u; 1( Te1) —g(W Tzl W
<g(W B Z’Z(‘k lvwrilai;;}?) - g(wi,k7zi,k,l7 j,t 7Zj,;,12)7g(v_VZ7Z;‘,k,lvv_V£782) - u:k 1(Z:k 1)>

r—1 ~r—1

<u Jk— 1(Z1 k, 1) (Wrilazz,k,laviv azj,t,2)7g(W£az:,k,1aWZNSQ) - g(WT71 Zz k1, W 82)>

9(Wi, 2{ k1, Wi, S2) —uf 1 (27 1))
i)

9(Wi, 2] 1, Wi, S2) — uf _1(27 k1))

—1 A7

+E<Uz o—1(Zi k1) — (W’”*?zz’»}k,hw’"*l,i??é) g(Veril Z k 1,‘7‘/7'71732) —ui51(2zi 1))

+2L°E[|w" —WT Y2+ 2L%E (W — wil® + LPElw ™ — wi )
1 —r _r _r r r (38)
+ ZEHQ(W Vi g1, W, S2) — Ui,k—1(zi,k,1)”

1 -
< 29C3 + —||w PP

v
+ B po1 (i) —g(W 2, W2 ), (W T 2, W S2) —uf (2 k)
FRLE w4 2L Wi PR P

1 _ _
+ ZEHQ(Wr:Z:,k,hWZ,Sﬂ - u:,kﬂ(zf,k,l)ﬂ )
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where
E(u} ;. _1(2f 1) — g(w 1, Zi k15 W 2;;,12)79(er1, Z 1, W Sa) — —1(Z{ 1))
=E(uj,_1(2i 1) — uf,al(zf,m) + uf,al(z;k,l) —g(w 2] Zi g1, W - §t 12)
g(W' 2], W T Ss) — u?,al(z;k,ﬁ + u?,al(ZZk,l) —ui (20 1))
SE(ui, 1(2f k1) — u%l(z;m)vQ(Wr_lvzzr,k,pWT_l»&) - ug,gl(zf,m))
+Ef (2 1) — :761(zf,k,1) :ol(zz k1) — Wi p1(Zf k1))
+E(uig (2l 1) — (W2l W20 0), g (W 2l W Sa) —uig (2 )
+ E(“fﬁl(zzm) - Q(V_"T_17er,k,hV_VT_l»i;;lz)a u, o '(z Zipa) — W g_1(Zi 1)) (39)
< 4E||ugk—1(zf,k,1) - u:ﬁl(zgk DIP+ E]EHQ(V_VT_la z] 1, W, Ss) — uZ,Bl( el
—Ellg(w" ! 2] 1, W So) —uigt (2] )P
+ E]EHQ(V_VT_laZz,k,1="—"r_1782) —-u, 01( ik, DIP + AE[|[uf ;1 (27 k1) — ; 01( Z 1, DI?
< AE[u oy (2] g1) —uiy (2] 00)]1° — IE||9(V_VT_17 2] W Se) —uig (2] )P
+8B2K2C3.
Noting
—Ellg(w" 2], W, Sa) — w2 )|

= —Ellg(w" 7lazi,k,1awrfl,52) =01 (2 1) T (20 g) — u%l(zv k, DI?

= —E||9(Wr_laZf,k,17wr_1a52) - ug,k—l(zzr,k,l)“2 —Elujy_1(zi k1) —uio (Zi,k,1)||2
+ 2E(g(w" 1, Zz,kJ?V_VT_la S2) =0 1(2i 1) 0 o1 (2] 1) — U—:,Bl(zz,m»

1 — T — T — T — T T ks T T— ' (40)
< —§EH9(W 17Zi,k,17W 1732) - ui,k—1(zi,k,1)||2 + 8||ui,k—1(zi,k,1) - ui,Ol(Zi,k,l)HQ
1 T — T = T — r r
< _§EH9(W L2l W Se) =g (2 )P+ 887 KACE
1 =T T — T r r 1= = r— — T
< _ZEHQ(kazi,k,lvwka?) - ui,k—l(zi,k,l)nz + §L2||W t- Wk||2 + 852[(203
Then by multiplying v to every term and rearranging terms using the setting of v < O(1), we can obtain
7+11
2 Z Z E’Huzk (Wlmz Wk782)||
z€|S1
(1 - s|51 )+11 _ _
<———— Z 7] > Elluj,_y(2) — g(Wi, 2z, W, So)|°
1 zelsi| 41)
42 8yB2K2(C? ~ ~
+ ’Yi (0_2 + Cg) + 7[3 - 0 —|—4L2E”WT _ var71||2 +4L2E||Wr _W£H2
|51 |51
1 K
FA07 + gL ZEHW — Wil + (0 N—ZZ [t = wi”
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7+1 on both sides gives

¥

7(1 8|$z +1 1
= —1 Z Z E”uzk 1 (Wk,z Wk,SQ)”
vt S 1|

Dividing

> Eluj(z) - g(wg, 2z, Wi, )|
|

zE\Sl

z€|Si| (42)
2 16 2K2C2 B B
71’ (02 +C2) + p + 8L ||w" — w2 + 8L2||w" — wi||?
|Si] S
2 —r 1_ —r 12
80 I S w20 S S B

=1 k=1
Using Young’s inequahty,

NZ‘ S| Y Eluii(z) - g(wi,z, Wi, S2)|?
1

z€|Si|
< ( . - e
>~ 8‘81| NZ |81 Z l: + 16|82‘) H zk 1( ) g(wk_hz’wk_h 2)”
z€|S}|
16/Si] .
w0 g - wpe]
2 16 2K2O2 5 )
+ 8o+ O+ L 812w w2 8P — w |
il 8]
7 72l o NoE
80T P I il 207+ g 2 0 Bl - W
S DY

N
i 1 1 2
<( ) ; [Elluf ;—1(2) — g(Wi_1,2, Wj_1,S2)||
16|81‘ NX_:|SI|Z§‘S;| i,k—1 k—1 k—1
1
208 . _ ~2 16vB2K2C?
20841 72 gy = WP+ 8 (0% + CB) + 0
1 1

+ 8L ||W" — W% + 8L2 || W — wi?

2
+80% + g NZHW — Wil + 2002

1 N K
~2 = 7—12
i 2D Bl W

E.2. Analysis of the estimator of gradient

2

With update G7, = (1 — 8)G,_; + B(G} ., + G ,.5), we define G}, := % Y G7,, and A}, := ||G}, — VF(wp)|?.
: K, 2 &,
Then it follows that G}, = (1 — 8)G}_; + B3 > (Gl iy + Gly o)

Lemma E.2. Under Assumption 3.3, Algorithm 2 ensures that

( 520.2
1
205

Ap < Gio1 = VFE(W_)|” +

N

1 " T —r—
NZ APPE|wi, — w7 + AEPE[[w" — w1 + Z4L2E||w,t/ - 1|2>
Z(LQEHUM 2] 01) — GWEzh s W S|+ PPEA () — ol 1x;,;1,wt,182>||2)
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Proof.
k= Gk = VF(wy)|?

~T 1 T ™ — T
=[(1-8)Gr-1 + 5N Z(Gi,k,l +Gip2) — VF(wh)|?

- H(l CB)(Gs — V(W) + (1 — B)(VF(W_) — VE(W]))

1 1,
+ ﬂ(ﬁ Z(Gl(w;k7z;k,lyu’;,k(zz‘,k,l)7wj t17 ;t12) + G2(W i’ t’vzj’ tl’ 1:“ ' tl’ (Z i’ tl’ 1)y Wik, Zik2))

i

1

- N (GI(WT—17Z;k,17g(w7‘_17Z:,k,17WT_1782)7‘7"7‘_172;;,12)
+ GQ(W7.71722":151/,17g(wriaig/jtl/,la WT71782)7V7VT‘717 Z;‘,k,Q)))
1 _ r— r _ r— r _ r— —r—1 ar—
+ﬁ(ﬁ Z(GI(W 17Zi,k,l7g(w 17Zi,k,17w 1,82),W 1azj,t,12)
2
_r—1 ~r—1 _r—1 ar—1 —r—1 —r—1 T _ T
+ GQ(W 7Zj/7t/,1ag(w azjlyt’ﬂla w ,SQ),W azi,k,2)) - VF(WIC))
Using Young’s inequality and L-Lipschtzness of G, G, we can then derive
AL < (1+8)||(1 = B)(Gr-1 = VF(Wk_1))
1 —r— T — r— T — r— _r—1 ~r—
+ﬁ<ﬁ Z(GI(W 17Zi,k,l7g(w 1azi,k,law 1782)7W 17zj,t,12)
2
+ GQ(W - ,Z:/ tl’ 17g(WT_17Z;’_,tl/y]_7w7‘_l782)7v_vy‘_17Z;‘,k,Z)) - VF(WT_l))
1 1 T r _ 7 T _ T —7‘ 77"
+ 1+ B) : (N > ALE|lwiy — w'|* +4LE|w" —w | + Z4L Ellwj s — w7 >
1 2 1 T2 r r _r r _ T 2
+(1+ B)ﬁ ~ L7E|uj x(zik,1) — 9(Wk, Zi 5,1, Wi, S2) |
+ LQEHU it (Z i’ tl' 1)~ g(v_"t’ 7Z]’ t 1:W:’_1:$2)||2>~
By the fact that
1 o1 o1 1 1 sr—1
E[N Z(Gl(wr aZ;‘:k;,lag(Wr ,Z;k,l)wr a82)7wr 7Z;’t72)
i
G —1 —r—1 sr—1 —r—1 S —r—1 _r _VF —r—1 =0
+ Ga(w" 7Zg' v g(W T2 W 80), W 75 5) (W' )] =0,
and

1 o o IS — AT —
Bl Y (Gi (% 2 1 g (W zhy W So) w2 )

%
+ GQ(WT717Z§’_¢1/,1’9(WT 1a ;’ tl’ 1° 7T71782)3WT717Z£1€,2)) - VF(Wril)”z S AT

we obtain

(1-
1
N

6202

A
<
Ak < N

BIIGE 1 = VF(Wi_y)|* +

Z\H

Z ALPE| i), —w"||? + AL’E[[w" — w' % + Z‘lLQEIIWlt - 7_1|2>

+28

22

43)

(44)

(45)

(46)

Z(L2E||u 2L 1) — 9y W S2) 2 EPEN & 1) — g(w0 1,z;,t%1,wt/182>||2)
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E.3. Analysis of Theorem 3.4
Proof. By updating rules,
W = wil? < P K2C3CECE,

and

z
>
=

W = w1 = Pl S0 D0 Gl < P Y IGh, — VE(w) + VE( )

i=1 m=1 m=1

Similarly, we also have
1 N K 1 K
[t =W = 7 N—ZZG;‘HF <P Y G = VE(w ) + VE(w .
i=1 k=1

Lemma E.2 gives that

1 =r 2 0
R _ W < -
RK Zk EllGk = VEW)[™ < BRK TN

1 72 T _ 72 72 _ 7 —'r 1 2 —'r 1
2<NZ4L Ellw}, — w"|* + 4L’E||w" — I+ = Z4L E|lwl ) — W |>
+2*ZNKZ|31 > Eluii(z) — g(w',z, %", S)|°

65‘
“ﬁzﬁzw 3 It g9 S
T E’L
which by setting of  and S leads to
1 ~ 2A9  4B0?
— > E|G; - VF *< —— +1087*C7C3 + 27) VEWwW ™ H|]?
RKZ |G} = VPRI < Shi + - + 108 CFC; + R;n (W)
2

GS’

RZNKZLS" ZH“f} irftlf —g(w"™ 1,A;Tt,1,82 ||2+5RZ ZH‘T L_wit

't 681

Using Lemma E.1 yields

N K
RZNK ZZ Ié}l > Elu 4 (2) — g(Wi,z, Wi, S2)|1?

ZES’
16M 1 )
= RNKZW ;EH‘%O (W8, 2, %), S5)||?
400M? 1

5 RE Z LWy — wh||? + 1507(0? + C2) + 25682 K2 C?
S
+128L2|Py1|(||r_r 1||2—|—||W W' 1” )

+150(y[S{| + 1)L lew — Wi l? +32(vISi] + 1)L

HMZ

2 L
NK

K
S CE[wT =W
1 k=1
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Combining this with previous five inequalities and noting the parameters settings, we obtain

B 23 o X Eluale) i v )

i=1 k=1 zES’
M M M 1 B8
< o M~ r 2 2 72 2
<0 g+ iSRGk~ VRGO 1 K+ T e+ )
272 ~2 —r—1y((2
MR+ SR )
and
1 _
R E T F(w" 2
AR 2 EIGE — VF ()|
’ " " 5 (51)
1 1
< 2 7~2 M 2K2 - ~2 F —r—1\(2 .
_O<RK+7+6 T (GRE t ) M +RZ””V (W )II)
Then using the standard analysis of smooth function, we derive
, L
F(wH) = F(w") < VR(W) T (% = w") 4 J e+ - w2
r —7r I~’ —r+1 — 2
= -—nVF(w (NKZZG )+ VF(w )>+2||w —w'
= —q|VF(w")|?* + IIVF(" )+ *II ZZG (wh)?
L
I
7 (52)
< —5IVE") ||2+77|| ZZ (Wi))?
+ 17l Z (VE(w;) = VE(W")|* + II”"+1 w|[?
1
—r\ 12 ~ T — T 2
< - Diwr@) +n§2nﬁ;< Lo = VP
r 2 —r+1 r 2
+77K Z [wy, —w"[|" + || [
Combining with (51), (47), (48), and (49), we derive
1 _ (12 M 252 4 M_, 1 B 2 72
_ < _ i .
R S EIVFNIE <0 (i 04 8 SR e + )+ MK

By setting parameters as in the theorem, we can conclude the proof. Further, to get -, E[[VF(w")||? < €2, we just need
tosety = O(e?), B = O(=), K = O(¥2), n = 0(§;), R = O(*41). O

F. FeDXL with Partial Client Participation

Considering that not all client machines are available to work at each round, in this section, we provide an algorithm that
allows partial client participation in every round. The algorithm is given in Algorithm 3. We use the Assumption 3.3. The
convergence results will be presented in Theorem F.3.
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Algorithm 3 FeDXI.2: Federated Learning for DXO with non-linear f
1: On Client i: Require parameters 7, K

2: Initialize model WY ., U = {u°(z) = 0,z € S{}, G ;- = 0, and buffer B; 1, B; 2,C; = 0
3: Send Hy |, Hy o, U to the server
4: Sample K points from S, compute their predictions using model W o denoted by 7-[
5: Sample K points from S&, compute their predictions using model w o denoted by ’H
6: forr=1,...,Rdo
7. if i € P then skip this round, otherwise do the following
8:  Receives w", G" from the server and set wTJrl = W,, Gﬂ;l =Gr
9:  Receive R} 1, Ris !, P71 from the server
10:  Update the buffer B; 1, B; 2, C; using Rﬁl, R;’gl, Pr—1 with shuffling, respectively
1: SetH[, =0, H, =0,Ul =0
122 fork=0,..,K —1do
13: Sample z; ; | from S, sample z; ), o from S © or sample two mini-batches of data
14: Take next hg_l, hz_l and uz_l from B; 1 and B; » and C;, respectively
15: Compute h(w Tk, :k 1) and h(wi .z, )
16: Compute h(w; k, i) and h(wy 27, ) and add them to H} |, H{ o, respectively
17: Compute u; ; (2] ;. 1) according to (11 and add it to U/
18: Compute G7 . | and GY o according to (12), (13)
19: G:k:(l_ﬂ)Grk |+ B(G 0+ Glo)
20: Wi, k+1 - nGz k
21:  end for

22:  Sends w; x, G . to the server
23: Send H; 1, H; 2,2/{ to the server
24: end for

25: On Server

26: Collects HY = HY , UHY, ... UHY , andU® = U UUY ... UUY, where = 1,2

27: forr=1,..., Rdo

28:  Sample a set P" of clients to participant this round

29:  Receive W;}(l,GZ}(l from client i € P!, compute W" = ﬁ Y iepr-1 W;}(l, G" = ﬁ Y iepr—t G’i";(l
30: Broadcast w” and G to clients in P”"

31 SetRi; =H{" R, =Hy ', P/~ =1~ and send them to Client i for all i € P"

32:  Collects H} = U’H:*Ni € PrandU" = UU;,Vi € P", where x = 1,2

33: end for

F.1. Analysis of the moving average estimator u

Lemma F.1. Under Assumption 3.3, the moving average estimator U satisfies

N
1 1 _ _
AT 3 EHu:,k(Z) _g(W£7Z7W£7SQ)HQ
N2 5 2
=1 z€|S|
N
7|PT 1 § § r =7 — 7
< (]‘ 16|81|N N P et E”ui,kfl(z) - g(wk717szk71782)”2
QO‘SﬂN 72l |Pr| o2 2 16762K2C§\P’"|
—— L 1= 8 C -

+8|N|L2”Wr _Wr—1||2 +8E2|N‘ er _WZHQ

+ 8(+*

PLS o et Pl S S et - wp

i€EPT i€EPT k=1
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Proof. Denote P as the clients that are sampled to take participation in the r-th round. By update rules of u, we have

uf,(z) = { ui 1 (z) —y(uf i (z) — L(h(W] k2] g 1), R(W Wiy 'z ALE))), i€ Pandz =1z,

uy, (), otherwise.
Or equivalently,
u’,(z) = uf,kﬂ(z) - ’Y(uf,kq(z) - g(wak’zg,k,l’ ﬁlvi;tlz)) i€ P andz = Z g1
ik uy, 4 (2z), otherwise.
Define @, = (uj ;. uh j, .., Wy 1), Wj = 155 ‘ZF:’ w/ .. Then it follows that
epPr
| X
TVZ Z Elluj . (2z) — g(Wy, 2, Wk782)||
1=1 zE\SI
B
=D e D [uik—1(2) = g(Wi, 2, Wi, Sa) |
NS 2t
ztler

_ _ 1
+ <U§,k71(2) = 9(Wi, 2, Wi, 82), W (2) = w1 (2)) + 5 [0 4 (2) — i (2)

Z |5‘ > Elul, o (2) — g(Wh. 2, W, S2)||?

z€S}

N Z |$1 W1 (27 1) — 9(Wi, 20 15 Wi, S2), 05 (27 1) — W) o 1(Z7 1))
t Z mEHuzk(Zam) —uy (2]l

2NZ|S‘ ZE”u1k 1 (WkazwkaSQ)H

z€S;]

1 1 N
JFE[* Z |Sl|< Z,k—l(zf,k,l) *Q(W:,kvzf,k,u ]tlvzg,té) : (er,m) *uzr,k—1(zg,k,1)>]
iepr

1 e _ _
+ E[i Z |S’| < ( {,kv Z;’:k,lv g t 17 ;t 12) g(lev Z;k,lﬁ W£7 82)7 u;’:k(zl‘n,k,l) - uz,kfl(zl’n,k,l))]
ZEP*

1 T I s ‘s
+ E[N Z m”ui,k(zi,k,l) - ui,kq(zi,k,ﬂ”z},

iepPr
where for ¢ € P it has

<uzr,k71(zzr,k,1) - Q(W;k» zg,k,p W;;lv 22212), u;,k(zz,k,l) - u:,kq(zzr,k,ﬂ)
= <u§,k—1(zzr,k,1) - Q(ervzgk LW 7‘71 i;?é)vg(W272§,k,17W2732) - uf,k—l(zf,k,l»

+ (U 1(zi 1) — 9(Wi g 20 1, W t17 ;?12) u; (2 1) — 9(Wk, 2] 1, W, S2))
—1 _
= <uz?k71(Z?,k,1) —g(w; Wiks i,k,lv j,t az;,t,lz)vg(wmz;,k,leZv82) - uz,kfl(zg,k‘,l»

1 _ _
+ ;(ug,k—l(zam) — 0 (2] 1), 05 (2] 1) — 9(WE, 20 k15 Wi, S2))

= <u’zc,k—1(zzr,k,1) - Q(W:';k’ er,k,la W;,;lﬂ 2;;,12)7 g(W£7 Z;‘,k,lv ‘TVZ? 82) - u:,k—1(zf,k,1)>

1 ) ) . . . . .
+ %(Hu;,kq(zz,k,ﬂ - Q(W;WZZIC,UWL&)HQ — |} (2 5 1) — u;,k71(zz,k,1)||2

— |} (2 5 1) — 9(Wk, 27 11, W, S)[1%)
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1 .
Ifv < g,wehaveforz e P

1/1 v+1
-5 (G- 1= L) Bttt ) - e s

+E{g(Wi 1,20 1 W;;la 2;;12) —9(Wiy 2 1, Wiy S2), 05 1 (27 4 1) — WG g 1(27 41))

1
< _HE||uf,k(Zf,k,1) — ()l

+ VEHQ(W:,M Z;;,k,lv W;,;17 23,1,12) - g(wza Z;,'A,k’,la W27 52)”2

1 r r T T 2 (57)
+ @E”ui,k(zi,k,l) —u; s 1(2z 1)l

<AENg(WS ks 21 Wit 5 250 5) — 9(Wis 2] g1, Wiy S2) |12

<AVE|g(w  z] 0, W20 — g(W g, W So)|P 4 Ay LPE|wT — W
+ 4V LPE|wy — W[ + 4y LRl wi - w2

< 4yo® + Ay LR — w2 + 4 L°E||w)y, — W12 + 4y LPE|wi T — w1

Then, we have

N
1 1 _ _
=Y = > Ellui,(2z) - g(Wh, 2z, Wi, So)|?
2N |St] .
=1 z€|5i]
1L
< T Z |Sl| Z E”u;’:k71<z) - g(WIZ7ZaWI:782)||2
i=1 71 zesj)|
i L L]EH 7” T _ =T T 7S 2
7 ;g1 (2] k1) — 9(Wi, 20 11, Wi, S2) | (58)
N |31| 2y
i€eP"
1 _ _ v+1
- ZE”uzk(zz,k,l) — (Wi, 2 41, Wy Sa2)||P —

8 g (27 4 1) — 0 o1 (274 0) [P +4v0?
+ Ay PRI — WY 4 Ay L2E|wl, — w2 + 4y LPE|w!

_ wr—1||2

+Euy 12 k1) — 9(Wi 1,20 g 1 W;,Zlv 2;712)7 I(Wis 27 o1, W S2) — i g1 (27 1)) |-

Note that for i € P", 3, ,,» i, _i(2) — (Wi, 2, W, S)|1? = 30, .,p 0 ,(2) — g(wj,z, Wi, )|, which
implies for s € P" '

1

% (Huzr,kfl(zzr,k,l) - Q(V_VZa zzr,k,lﬂv_‘12782)||2 - ||u;k(z£k’1) - g(wzvz;k,lﬂv_‘/LSQ)”z)
1 T — 7 — 7 2 T — 7 — T 2 (59)
= % (Hui,kfl(z) - g(wkvszk782)|| - ”ui,k(z) - g(wkﬂszkﬂSQ)H ) .
z€ES]

Since ¢(-) < Cy, we have that ||g(-)||*> < C2,

uj . (2)[? < Cf and

[ i (2) — uio(2)|* < B°K>C.
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Besides, we have for 7 € P" that

where

E(‘*‘;;k—l(zg,k,l) - g(WZk, Z:k 1 W§;17 A;;12)7 g(W27 Z;,k,h Wza 82) - u;’:k—l(zg,k,l»

=E(u], (2] p1) —g(W ™z, W' 1ai;;é)ﬂ(""%»Zz‘r,ic,l,"_vizv&)—ugkq(zzm»

+]E< (W', ik1»WT_172;,t,12)—Q(Wi,kvZ:,k,pW;,;lv2;;,12)79("7"2»%?,1@,17‘7"2782)_ u; 1( k1))
E(uj (2] 41) —g(W" 2]y W 2075), (W27 g 1, W, Sa) — g(W' 2y 1, W' S0)
E(uj 1( Zi k1) — (V_Vr_17Zf,k,pV_Vr_lvi;;,lz)aQ(V_"r_lazf7k,1av_"r_la32)—ui,k—l(zi,k,l»
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With the client sampling and data sampling, we observe that

1 1
—E [ Z ‘SZ|||g<Wk:’ zkl’WIwSz)_uzk: 1( lk,l)2‘|
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(63)
]' |PT| 1 =T T =T T T
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i=1 ' 1
Then by multiplying 'y to every term and rearranging terms using the setting of v < O(1), we can obtain
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Dividing 7+1 on both sides gives
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Using Young’s inequality,
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which yields
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F.2. Analysis of the estimator of gradient

With update G ), = (1 — B)G} j_y + B(G] 1y + G o). we define Gf, := 5 3 G} o and A} o= [|G], — VE(wp) >

icPr
Then it follows that Gt = (1 — 8)G%_, + ﬁﬁ 'EP (G;-"’kJ + G;k’Q).
1eEP”
Lemma F.2. Under Assumption 3.3, Algorithm 3 ensures that
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Using Young’s inequality and E-Lipschtzness of G1, G4, we can then derive

A < (1+8)((1 = B)(Gi—1 = VF(Wi_1))
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F.3. Convergence Result

Theorem F.3. Suppose Assumption 3.3 holds, and assume there are at least | P| machines take participation in each round.
Denoting M = max; |S}| as the largest number of data on a single machine, by setting -y = O(]gz—l//;), b= O(W),

n= O(%) and K = O(%i}%w), Algorithm I ensures that E [% Zle [VE(wWT)|?| < O(ﬁ).

Proof. By updating rules, we have that for i € P,

[W" —wi,|I> <n’K*C}C}CE, (70)
and
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Similarly, we also have

p i€PT k=1 (72)
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Lemma F.2 yields that
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Using Lemma F.1 yields
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Combining this with previous five inequalities and noting the parameters settings, we obtain
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Then using the standard analysis of smooth function, we derive
, L
F(w™1) = F(w") < VF(W") (w1 = w") + 2 [ =
r —7r I~’ —r+1 — 2
= -—nVF(w (NKZZG )+ VF(w )>+2||w —w'
= —q|VF(w")|?* + IIVF(" )+ *II ZZG (wh)?
L
I
P (75)
< —5IVE") ||2+77|| ZZ (Wi)ll?
+ 17l ZVF VEW")|? + II”"+1 w|[?
1
— 7\ |2 ~ r — 7 2
< - Diwr@) +n§2nﬁz< Lo = VP
r 2 —r+1 r 2
+77K lewk I°+ || [
Combining with (74) (70), (71), and (72), we derive
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— ) E|VFw")|? < O( +y+ 2K+ — + + M2K2).
Z [ ol “RKTD) B n(ﬁRK ) M

By setting parameters as in the theorem, we can conclude the proof. Further, to get > E[|[VF(w")||> < €2, we just need

tosety = O(e2), 8 = O(<=), K = O(3), n = Oy R = (L), O
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