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Abstract

In online applications with streaming data, awareness of how far the empirical
training or test data has shifted away from its original data distribution can be crucial
to the performance of the model. However, historical samples in the data stream
may not be kept either due to space requirements or for regulatory reasons. To
cope with such situations, we propose Continual Density Ratio Estimation (CDRE),
for estimating density ratios between the initial and latest distributions (p/qt) of
a data stream without the need of storing past samples, where qt shifted away
from p after a time period t. In particular, CDRE is more accurate than standard
Density Ratio Estimation (DRE) when the two distributions are less similar, despite
not requiring samples from the reference distribution. CDRE can be applied in
scenarios of online or continual learning, such as importance weighted covariate
shift, measuring dataset changes for better decision making.

1 Introduction

Online applications are ubiquitous in practice since large amounts of data are generated and processed
in a streaming manner. There are two types of machine learning scenarios commonly deployed for
such streaming data: 1) train a model online on the streaming data (e.g. online learning [8] and
continual learning [5]) – in this case the training set may be shifting over time; 2) train a model offline
and deploy it online – in this case the test set may be shifting over time. In both cases, the main
problem is data distribution shift, i.e. the data distribution changes gradually over time. Awareness
of how far the training or test set has shifted can be crucial to the performance of the model [6].
For example, when the training set is shifting, the latest model may become less accurate on test
samples from earlier data distributions. In the other case, the performance of a pre-trained model may
gradually degrade when the test set shifts away from the training set over time. It will be beneficial to
trace the distribution difference caused by such shift so that we can decide when to update the model
for preventing degradation in performance.

Density Ratio Estimation (DRE) [10] is a methodology for estimating the ratio between two prob-
ability distributions that can reflect the difference between the two distributions. In particular, it
can be applied to settings in which only samples of the two distributions are available, which is
usually the case in practice. However, under certain restrictive conditions in online applications – e.g.,
unavailability of historical samples in an online data stream – existing DRE methods are no longer
applicable. More importantly, DRE exhibits difficulties for accurate estimations when there exists
significant differences between the two distributions [10, 4, 7].
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In this paper, we propose a new framework of density ratio estimation called Continual Density Ratio
Estimation (CDRE) which is capable of coping with the online scenarios and gives better estimation
than standard DRE when the two distributions are less similar.

2 Continual Density Ratio Estimation

We first give the problem setting of CDRE. Suppose we want to estimating density ratios between
two distributions rt(x) = p(x)/qt(x), t ≥ 1, where t is the index of time steps. We refer to p(x) as
the reference distribution and qt(x) as the dynamic distribution of p(x). The dynamic distribution is
assumed to be shifting away from its reference distribution gradually over time. We assume when
t > 1 the samples of p(x) are not necessarily available, instead, samples of qt−1 and qt are available.

2.1 The basic form of CDRE

Denote the true density ratio r∗t (x), p(x)/qt(x), it can be decomposed as follows:

r∗t (x) =
qt−1(x)
qt(x)

p(x)
qt−1(x)

= r∗st (x)r
∗
t−1(x), r∗st (x),

qt−1(x)
qt(x)

=
r∗t (x)

r∗t−1(x)
, t > 1, (1)

where r∗st (x) represents the true density ratio between the two latest dynamic distributions. Using
this decomposition we can estimate p(x)/qt(x) in an iterative manner without the need of storing
samples from p(x) when t increases. The key point is that we can estimate r∗t (x) by estimating r∗st (x)
when the estimation of r∗t−1(x) is known. In particular, this introduces a constraint:

∫
r∗st (x)qt(x)dx =∫

(r∗t (x)/r∗t−1(x))qt(x)dx = 1. Existing methods of DRE can be applied to estimating the initial
ratio r∗1(x) and the latest ratio r∗st (x),∀t > 1, as the basic ratio estimator of CDRE. Let rt(x) be the
estimation of r∗t (x), where rt−1 is already obtained, then the objective of CDRE can be expressed as:

JCDRE(rt) = JDRE

(
rt

rt−1

)
, s.t.

1
N

N

∑
n=1

rt(xn)

rt−1(xn)
= 1, xn ∼ qt(x). (2)

where JDRE can be the objective of any method used for standard DRE.

2.2 An effective solution for CDRE: Continual KLIEP

Kullback-Leibler Importance Estimation Procedure (KLIEP) is a basic method for density ratio
estimation introduced in [11]. We introduce the essential idea of KLIEP in the following. Let
r∗(x) = p(x)/q(x) be the (unknown) true density ratio, then p(x) can be estimated by p̃(x) = r(x)q(x),
where r(x) is an estimation of r∗(x). Hence, we can optimize r(x) by minimizing the KL-divergence
between p(x) and p̃(x). The empirical objective of optimizing r(x) is as follows:

Jr = max
r

1
N

N

∑
i=1

logr(xi), xi ∼ p(x), s.t.
1
M

M

∑
j=1

r(x j) = 1, x j ∼ q(x), r(x)≥ 0. (3)

One convenient way of parameterizing r(x) is by using a log-Neural-Network (log-NN) model with
normalization, which then automatically satisfies the constraints in Eq. (3):

r(x;β ) =
exp(ψβ (x))

1
M ∑

M
j=1 exp(ψβ (x j))

, x j ∼ q(x), ψβ : RD→ R, (4)

where ψβ can be any deterministic function: we use a neural network as ψβ in our implementations,
β then representing parameters of the neural network.

We now demonstrate how to instantiate CDRE by KLIEP, which we call Continual KLIEP (CKLIEP).
Define rt(x),rt−1(x) by the log-NN form as in Eq. (4), let Nt = Nt−1 = N as the sample size of each
distribution, xt,i ∼ qt (x), xt−1, j ∼ qt−1(x), then rst is as follows:

rst (x) =
rt(x)

rt−1(x)
= exp{ψβt (x)−ψβt−1(x)}×

1
N ∑

N
j=1 exp{ψβt−1(xt−1, j)}

1
N ∑

N
i=1 exp{ψβt (xt,i)}

, (5)
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where βt ,βt−1 represent parameters of rt(x),rt−1(x), respectively. We then have the following equality
by substituting Eq. (5) into the constraint in Eq. (2):

∑
N
i=1 exp{ψβt (xt,i)}

∑
N
j=1 exp{ψβt−1(xt−1, j)}

=
1
N

N

∑
i=1

exp{ψβt (xt,i)−ψβt−1(xt,i)} (6)

rst can then be rewritten in the same form of Eq. (4) by combining Eq. (6) and Eq. (5):

rst (x) =
exp{φβt (x)}

1
N ∑

N
i=1 exp{φβt (xi)}

, φβt (x), ψβt (x)−ψβt−1(x). (7)

Now we can instantiate JCDRE in Eq. (2) by the objective of KLIEP (Eq. (3)) and adding the equality
constraint (Eq. (6)) into the objective with a hyperparameter λc, which gives the objective as follows:

L ∗
t (βt) = max

βt

1
N

N

∑
j=1

logrst (xt−1, j)+λc

(
Ψt(xt)

Φt(xt)Ψt−1(xt−1)
−1
)2

,

Φt(xt),
1
N

N

∑
i=1

exp{φβt (xt,i)}, Ψt(xt),
1
N

N

∑
i=1

exp{ψβt (xt,i)}

where t > 1, xt ∼ qt(x), xt−1 ∼ qt−1(x),

(8)

Here βt−1 is the estimated parameter of rt−1(x) and hence a constant in the objective. We provide
theoretical analysis of asymptotic normality of this objective in Appx. A.1.

3 Related Work

There are existing methods for detecting changing points online by direct DRE [2, 3, 1], which
estimate density ratios between distributions of two consecutive time intervals. These prior work
were proposed for detecting abrupt changes in an online data stream. In contrast, CDRE estimates
density ratios between distributions of the initial and latest time intervals without storing historical
samples. Hence, CDRE is more suitable for cases in which the difference between two consecutive
intervals is subtle but the accumulated difference is notable.

A concurrent work [7] has developed Telescoping Density Ratio Estimation (TRE) by a consecutive
decomposition that is similar with our method (Eq. (1)) but with the following main differences:

1) TRE simultaneously optimizes m ratio estimators as below:

LT RE(r) =
1
m

m

∑
k=1

L (rk), r =
p0

pm
=

p0

p1

p1

p2
· · · pm−1

pm
, rk =

pk−1

pk
, k ∈ {1, . . . ,m}

where m is the number of decomposed ratios of the target ratio (p0/pm). The intermediate
distributions ({p1, . . . , pm−1}) are designed by gradually changing from p0 to pm. L (rk)
is the loss function of estimating the k-th ratio rk = pk/pk+1. Estimating the intermediate
ratios would be easier than directly estimating p0/pm because the two adjacent distributions
are more similar to each other. TRE attempts to estimate the m ratios at the same time. In
comparison, CDRE estimates p0/pm in an iterative fashion and at each time step (∀m≥ 1)
CDRE only optimizes the latest ratio estimator rm = pm−1/pm ;

2) According to the optimization objective, TRE requires samples of all intermediate distribu-
tions as well as the reference distribution. Applying TRE to online applications would need
to retain m estimators and mN samples due to the nature of its algorithm, where m increases
over time. In contrast, CDRE only requires samples of the two latest distributions, which
leads to a constant memory cost at every time step.

3) TRE applies the logistic loss that is commonly used in binary classifiers for estimating the
ratios, which does not include the constraint of exact density ratio estimation: Eq(x)[r(x)] = 1.

Limitation of CDRE: In the ideal case that we obtain the true ratio function r∗st at a time step t,
we have rt(x) = r∗st (x)rt−1(x), then logr∗t (x)− logrt(x) = logr∗t−1(x)− logrt−1(x), which means the
error inherited from rt−1(x) will be the intrinsic error for estimating r∗t (x). This intrinsic error from
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(a) Comparing MAE of log ratios esti-
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Figure 1: Comparing the performance of CKLIEP and KLIEP by synthetic data. (a) & (b) compare
the Mean Absolute Error (MAE) of log ratios and estimated KL-divergences. CKLIEP-d1 estimates
p(x)/qt(x) at each time step; CKLIEP-d4 estimates p(x)/qt(x) at every 4 steps. The true values of
KL-divergences are computed by true ratios. The error bar is the standard deviation of 10 runs.

rt−1(x) represents the accumulated estimation error from time step 1 to t−1 because the objective of
CDRE is iterative. TRE has the same error accumulation problem since it uses the same consecutive
decomposition. Due to this reason, we would prefer smaller difference between each intermediate qτ

and qτ−1 (∀1 < τ ≤ t) because it leads to a smaller estimation error at each step. We demonstrate
this in Figs. 1a and 1b by CKLIEP-d1 and CKLIEP-d4. Moreover, Fig. 3 shows the variance of the
estimation may grow rapidly when the difference between the two distributions exceeds a certain
value. CDRE could prevent such an issue by ensuring the difference between any intermediate pairs
of distributions is relatively small, e.g., when the data distribution changes fast we could set smaller
time intervals for collecting samples to give smaller changes at each step. Regarding applying CDRE
in static scenarios that are not online, i.e., the goal is estimating the final ratio between p(x) and qT (x)
where T is the index of the last step, it would require more computational time than TRE or standard
DRE since the procedure cannot be paralleled. However, the memory cost and computational time
would be the same as DRE in the online setting because the ratio between p(x) and qt(x) at each step
t needs to be estimated anyway.

4 Experimental Results

In this section we demonstrate the effectiveness of CDRE by several experiments. We apply CKLIEP
to instantiate CDRE in our implementation. Due to the limitation of space, we put details of
experimental setting and experiments of backward covariate shift in Appx. A.3.

4.1 Measuring distribution shifts via KL-divergence

We first demonstrate that CDRE can provide reliable estimations by comparing the results with
true ratios using synthetic data. We can approximate KL-divergence between two distributions by
estimating density ratios: DKL(p||q) = Eq

[
− log

(
p(x)
q(x)

)]
≈ 1

N ∑
N
i=1− log(r(xi)), where xi ∼ q(x).

Thus, we can measure the distribution shifts by approximating the KL-divergence between p(x)
and qt(x). We compare the performance of CKLIEP with KLIEP and true values using synthetic
Gaussian data, where KLIEP has access to samples of reference distributions at all time. The sample
size of each distribution in these experiments is 50,000.

We first simulate the data distribution by a 64-D Gaussian distribution p(x) = N (µ0,σ
2
0 I), where

µ0 = 0,σ0 = 1. At each step, we shift the distribution by a constant change on its mean and
variance: qt(x) = N (µt ,σ

2
t I),µt = µ0 +∆µ ∗ k ∗ t,σt = σ0−∆σ ∗ k ∗ t,∆µ = ∆σ = 0.02, k is the

number of steps within one estimation time interval. We set the total number of steps to 20. We
estimate p(x)/qt(x) by applying CKLIEP with two different time intervals: (1). CKLIEP-d1 estimates
p(x)/qt(x) at each step, i.e. k = 1; (2). CKLIEP-d4 estimates p(x)/qt(x) at every four steps, i.e. k = 4.
We compare the Mean Absolute Error (MAE) of log ratios (LMAE = 1

N ∑
N
n=1|logr∗(xn)− log r̂(xn)|)

estimated by CKLIEP and KLIEP in Fig. 1a. We also compare the estimated KL-divergence with
the true value in Fig. 1b. According to Theorem 2 in Appx. A.1, the difference between qt−1(x) and
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Figure 2: Monitoring stock data by CDRE. (a) shows the MAPE given by the regression model
without and with re-training triggered by CDRE. (b) shows KL divergence between the training set
of the regression model and samples from the latest time window. The blue line is without restart
during the progress of CDRE (the regression model has not been updated), the orange line is with
restart (the regression model has been retrained by latest samples when the KL divergence shows a
significant increase at time index 6). The shaded area is plotted by the standard deviation of 5 runs.

qt(x) plays an important role in the estimation convergence, which explains why CKLIEP-d4 gets
worse performance than CKLIEP-d1 in later steps since qt−1(x) and qt(x) are much less similar in
the case of CKLIEP-d4. KLIEP can be viewed as a special case of CKLIEP when qt−1(x) = p(x).
We can see that in Figs. 1a and 1b KLIEP has become much worse at the last two steps due to the two
distributions are too far away from each other and thus causes serious difficulties in its convergence
with a fixed sample size.

4.2 Monitoring real stock data for a regression model

We demonstrate the effectiveness of CDRE in practice by real stock data. The dataset consists of
one-day transactions of the Microsoft stock. It includes the transaction time, price, volume and
direction (initiated by selling or buying). We augment each transaction by concatenating it with its
five previous transactions (excluding timestamps) and then treat all of them as i.i.d. samples. We
draw samples from a two-hour time window of the data and slide the window with a 30-minute step
size. We first train a Gaussian process regression model by samples from the initial two-hour time
window to predict the price of a future transaction , then we apply CKLIEP to detect the data shift
every 30 minutes. When the KL divergence between the training set (p(x)) and the data from the
latest two-hour window (qt(x)) shows a significant increase (i.e. an abrupt spike appears) and the
KL-divergence larger than 0.5 (according to previous experience in 64D-Gaussian), we retrain the
regression model by samples from the latest two hours. We also restart the progress of CKLIEP by
replacing the reference distribution p(x) by qt(x) when we retrain the regression model at time t. This
procedure can also be done by applying other DRE methods rather than KLIEP into the framework
of CDRE, such as a discriminator used in GANs. A more sophisticated strategy for deciding the
restart step would be required in a more complicated setting.

We use the last 500 transactions of each two-hour window as the test set of each time step, which
are excluded from the training set. And the training sample size is 6000 for each distribution. We
evaluate the performance of the regression model by Mean Absolute Percentage Error (MAPE)
(LMAPE = 1

N ∑
N
n=1 100×|yn− ŷn|/yn) and provide the experiment results in Fig. 2. Fig. 2a shows

that using CDRE to monitor the training data shift can effectively prevent large degradation of the
performance. The restart strategy of CDRE also helps with reducing the estimation variance in latter
steps as shown in Fig. 2b because the new reference distribution is much closer to the dynamic
distribution after the restart.

5 Further Discussions

Although we just provide the analysis of asymptotic normality for CKLIEP, it seems common
properties are shared across different DRE methods when applying them in CDRE. It could be
possible to have a general theoretical analysis of CDRE and even TRE. We will leave this for future
work.
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A Appendix

A.1 Asymptotic normality of CKLIEP

Define β̂t as the estimated parameter that satisfies:

L
′

t (β̂t), ∇βt Lt(βt)|βt=β̂t
= 0 (9)

Assumptions: Assume φβt (x) (Eq. (7)) includes the correct function that there exists β ∗t recovers the
true ratio over the population:

r∗st (x) =
qt−1(x)
qt(x)

=
exp{φβ ∗t (x)}

Eqt [exp{φβ ∗t (x)}]
, where φβ ∗t (x) = ψβ ∗t (x)−ψβt−1(x), (10)

Assume qt(x) and qt−1(x) are independent, nt = nt−1 = n, where nt is the sample size of qt(x). Let
St be the support of qt , we assume St−1 ⊆ St in all cases.

Notations:  and P−→ mean convergence in distribution and convergence in probability, respectively.
oP(1) means convergence to zero in propability.

Lemma 1. Let `
′
r(β
∗
t ),

1
n ∑

n
j=1 ∇βt logrst (xt−1, j)|βt=β ∗t , we have

√
n`
′
r(β
∗
t ) N (0,σ2), where

σ
2 =Covqt−1 [∇βt φβ ∗t (x)]+

Covqt [∇βt exp{φβ ∗t (x)}]
Eqt [exp{φβ ∗t (x)}]

2

Proof. Because

∇βt logrst (x) = ∇βt φβt (x)−
∑

n
i ∇βt exp{φβt (xt,i)}
∑

n
i exp{φβt (xt,i)}

(11)

then
√

n`
′
r(βt) =

√
n

n

n

∑
j=1

∇βt φβt (xt−1, j)−
√

n
1
n ∑

n
i ∇βt exp{φβt (xt,i)}

1
n ∑

n
i exp{φβt (xt,i)}

(12)

By the central limit theorem we have:
1
n

n

∑
j=1

∇βt φβt (xt−1, j) N

(
Eqt−1 [∇βt φβt (x)],

Covqt−1 [∇βt φβt (x)]
n

)
,

1
n

n

∑
i

∇βt exp{φβt (xt,i)} N

(
Eqt [∇βt exp{φβt (x)}],

Covqt [∇βt exp{φβt (x)}]
n

]

)
,

(13)

and by the weak law of large numbers:
1
n

n

∑
i

exp{φβt (xt,i)}
P−→ Eqt [exp{φβt (x)}] (14)

Because qt(x) and qt−1(x) are assumed independent, combine the above results we get:
√

n`
′
r(β
∗
t ) N (µ,σ2),

µ =
√

n

(
Eqt−1 [∇βt φβ ∗t (x)]−

Eqt [∇βt exp{φβ ∗t (x)}]
Eqt [exp{φβ ∗t (x)}]

)
,

σ
2 =Covqt−1 [∇βt φβ ∗t (x)]+

Covqt (∇βt exp{φβ ∗t (x)})
Eqt [exp{φβ ∗t (x)}]

2

(15)

Taking derivatives from both sides of 1 =
∫

r∗st (x)qt(x)dx:

0 = ∇βtEqt [r
∗
st (x)] =

∫
∇βt r

∗
st (x)qt(x)dx =

∫
∇βt r

∗
st (x)

r∗st (x)
r∗st (x)qt(x)dx

=
∫

∇βt logr∗st (x)qt−1(x)dx = Eqt−1 [∇βt logr∗st (x)]

= Eqt−1 [∇βt φβ ∗t (x)]−
Eqt [∇βt exp{φβ ∗t (x)}]
Eqt [exp{φβ ∗t (x)}]

(16)

which gives µ = 0. This completes the proof.
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Lemma 2. Let `
′′
r (β

∗
t ),

1
n ∑

n
j=1 ∇2

βt
logrst (xt−1, j)|βt=β ∗t , then `

′′
r (β

∗
t )

P−→−Iβ ∗t , where

Iβ ∗t ,Covqt−1 [∇βt φβ ∗t (x)].

Proof. According to Eq. (11)

(∇βt logrst (x))
2 =

(
∑

n
i ∇βt exp{φβt (xt,i)}
∑

n
i exp{φβt (xt,i)}

)2

− 2∇βt φβt (x)
∑

n
i ∇βt exp{φβt (xt,i)}
∑

n
i exp{φβt (xt,i)}

+(∇βt φβt (x))
2

(17)
By the law of large numbers,

1
n

n

∑
j=1

(∇βt logrst (xt−1, j))
2 P−→

(Eqt [∇βt exp{φβt (xt,i)}]
Eqt [exp{φβt (xt,i)}]

)2

−2Eqt−1 [∇βt φβt (x)]
Eqt [∇βt exp{φβt (xt,i)}]
Eqt [exp{φβt (xt,i)}]

+Eqt−1 [(∇βt φβt (x))
2]

(18)

Substituting Eq. (16) to the right side of the above equation, we can get:

1
n

n

∑
j=1

(∇βt logrst (xt−1, j))
2|βt=β ∗t

P−→Eqt−1 [(∇βt φβ ∗t (x))
2]−Eqt−1 [∇βt φβ ∗t (x)]

2

=Covqt−1 [∇βt φβ ∗t (x)] = Iβ ∗t

(19)

Because

∇
2
βt

logrst (x) =
∇2

βt
rst (x)

rst (x)
− (∇βt logrst (x))

2, (20)

then according to Eq. (19)

`
′′
r (β

∗
t )

P−→ Eqt−1

[
∇2

βt
r∗st (x)

r∗st (x)

]
− Iβ ∗t =

∫
∇

2
βt

r∗st (x)qt(x)dx− Iβ ∗t (21)

Under mild assumptions we can interchange the integral and derivative operators:∫
∇

2
βt

r∗st (x)qt(x)dx = ∇
2
βt

∫
r∗st (x)qt(x)dx = ∇

2
βt

∫ qt−1(x)
qt(x)

qt(x)dx = 0 (22)

which completes the proof.

Lemma 3. 3 Let `c(βt), λc

(
Ψt (xt )

Φt (xt )Ψt−1(xt−1)
−1
)2

, and `
′
c(β
∗
t ),∇βt `c(βt)|βt=β ∗t , if we set λc =

A√
n ,

where A is a positive constant, then
√

n`
′
c(β
∗
t )

P−→ 0.

Proof.
√

nt−1`
′
c(βt) = 2A

(
Ψt(xt)

Φt(xt)Ψt−1(xt−1)
−1
)
×
(

∇βt

Ψt(xt)

Φt(xt)Ψt−1(xt−1)

)
By the law of large numbers,

Ψt(xt)

Φt(xt)Ψt−1(xt−1)

∣∣∣∣
βt=β ∗t

P−→
Eqt [exp{ψβ ∗t (x)}]

Eqt [exp{φβ ∗t (x)}]Eqt−1 [exp{ψβt−1(x)}]

Define r̃t−1(x),
exp{ψβt−1

(x)}
Eqt−1 [exp{ψβt−1

(x)}] , by the definition of r∗st (x) (Eq. (10)):∫
r̃t−1(x)r∗st (x)qt(x)dx =

∫
r̃t−1(x)

qt−1(x)
qt(x)

qt(x)dx =
∫

r̃t−1(x)qt−1(x)dx = 1

Substituting the right side of Eq. (10) into the left side of the above equation, we can get:
Eqt [exp{ψβ ∗t (x)}]

Eqt [exp{φβ ∗t (x)}]Eqt−1 [exp{ψβt−1(x)}]
= 1 (23)

which completes the proof.
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Theorem 1. Suppose λc =
A√
n , where A is a positive constant, assume β̂t −β ∗t = op(1), let `t,x(βt)

denote the loss at a point x, assume it satisfies the Lipshitz condition: ‖`′t,x(β
(1)
t )− `

′
t,x(β

(2)
t )‖≤

‖`′′t,x(βt)‖‖β (1)
t −β

(2)
t ‖, where β

(1)
t ,β

(2)
t are in a neighborhood of β ∗t , E[‖`′′t,x(βt)‖2]< ∞, then we

have: √
n(β̂t −β

∗
t ) N (0,ν2),

ν
2 = I−1

β ∗t
+Eqt [exp{φβ ∗t (x)}]

−2× I−1
β ∗t

Covqt [∇βt exp{φβ ∗t (x)}]I
−1
β ∗t

(24)

Proof. By combining the results of Lemmas 1 to 3 we can get
√

nL
′

t (β
∗
t ) =

√
n(`

′
r(β
∗
t )+`

′
c(β
∗
t )) 

N (0,σ2), L
′′

t (β
∗
t ) = (`

′′
r (β

∗
t )+`

′′
c(β

∗
t ))

P−→−Iβ ∗t . According to Theorem 5.21 in [12] and the results
of Lemmas 1 to 3:√

n(β̂t −β
∗
t ) N (0,ν2),

ν
2 = I−1

β ∗t
σ

2I−1
β ∗t

,

= I−1
β ∗t

+Eqt [exp{φβ ∗t (x)}]
−2× I−1

β ∗t
Covqt [∇βt exp{φβ ∗t (x)}]I

−1
β ∗t

,

(25)

We make the assumption β̂t − β ∗t = op(1) here which relies on the parameterization of rst . We
define rst by neural networks because they have the flexibility to simulate arbitrary functions. The
experimental results show that a simple two-layer MLP can work well for Gaussian distributions. For
more complex distributions, a more sophisticated network architecture might be preferred.
Theorem 2. Suppose p(x) and qt(x) (∀t) are from the exponential family, define r∗st (x)= exp{φβ ∗t (x)},
φβ ∗t (x) = β ∗t T (x)+C, T (x) is a sufficient statistic of x, C is a constant, then

√
n(β̂t−β ∗t ) N (0,ν2

e ),
where T (x) is a column vector, T (x)2 = T (x)T (x)T , Iβ ∗t =Covqt−1 [T (x)]:

ν
2
e = I−1

β ∗t
+ I−1

β ∗t
(Eqt−1 [r

∗
st (x)T (x)

2]−Eqt−1 [T (x)]
2)I−1

β ∗t
(26)

Proof. Because φ ∗t (x), ψβ ∗t (x)−ψβ ∗t−1
(x), then ∇βt φ

∗
βt
(x) = T (x), we have

Iβ ∗t =Covqt−1 [∇βt φ
∗
βt
(x)] =Covqt−1 [T (x)], (27)

Because r∗st (x) = exp{φ ∗t (x)},
Eqt [exp{φ ∗

βt
(x)}] = Eqt [r

∗
st (x)] = 1,

In addition,

Covqt [∇βt exp{φ ∗
βt
(x)}] =Covqt [r

∗
st (x)T (x)] = Eqt [(r

∗
st (x)T (x))

2]−Eqt [r
∗
st (x)T (x)]

2 (28)

where

Eqt [(r
∗
st (x)T (x))

2] =
∫

qt(x)(r∗st (x)T (x))
2dx =

∫
qt−1(x)r∗st (x)T (x)

2dx = Eqt−1 [r
∗
st (x)T (x)

2],

Eqt [r
∗
st (x)T (x)] =

∫
qt(x)r∗st (x)T (x)dx =

∫
qt−1(x)T (x)dx = Eqt−1 [T (x)]

(29)

Substitute above results into 1, this proves the theorem.

Theorem 1 shows how the covariance matrix ν2 depends on the latest density ratio (r∗st ) and Theorem
2 is the specific case when the two distributions are from a same exponential family. In Eq. (26)
all terms are solely decided by qt−1(x) except Eqt−1 [r

∗
st (x)T (x)

2]. Since a smaller variance is better
for convergence, we would prefer r∗st (x) = qt−1(x)/qt(x) is not large, which means when qt−1(x)
is large qt(x) should be also large. In this case, r∗st is less likely to explode and thus the variance
of the estimated parameter would be likely confined. We demonstrate this by experiments with
1-D Gaussian distributions. We fix qt−1(x) = N (0,1), testing different qt(x) = N (µt ,1), where
µt = δk,δ = 0.1,k ∈ {0,1, . . . ,20}. In this case, T (x) = {x,x2}, βt = {βt,1,βt,2}. When µt is larger,
qt is farther to qt−1. We display the diagonal of ν2

e (variance of βt,1,βt,2) in Fig. 3. It is clear that the
variance of βt is getting larger when qt is farther to qt−1. It indicates that smaller difference between
each intermediate qτ and qτ−1 (∀1 < τ ≤ t) leads to a better estimation. We demonstrate in Sec. 4.1
that it is often the case in practice even when ψβ ∗t (x) is approximated by a non-linear model.
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Figure 3: Demonstration of the variance of estimated parameters in Theorem 2 by 1-D Gaussian
distributions: fix qt−1(x) = N (0,1) and vary qt(x) = N (µt ,1) by setting µt = δk,δ = 0.1,k ∈
{0,1, . . . ,20}. When µt is larger the two distributions are less similar and the variance is larger, which
aligns with Theorem 2.

A.2 Multiple reference distributions in CDRE

We can trace multiple reference distributions by CDRE as well. It avoids building separated estimators
for tracing different reference distributions in an application (e.g. seasonal data). It also matches the
setting of training generative models in continual learning as the model needs to learn generating
samples from a new data distribution at each task whilst it can still generate samples from all seen
distributions. In this case a new pair of original and dynamic distributions will be added into the
training process of the estimator at some time point. Here we refer to an reference distribution as
pτ(x), where τ is the time index of starting tracing the reference distribution. And samples of pτ(x)
are not available when t > τ . Similarly, qτ,t(x) denotes the dynamic distribution that corresponding
to pτ(x) at time t, thus r∗τ,t(x) = r∗sτ,t (x)r

∗
τ,t−1(x), where r∗sτ,t (x) = qτ,t−1(x)/qτ,t(x). In this case, we

optimize the estimator at time t by an averaged objective:

max
βt

L̄t(βt) = max
βt

1
|T| ∑

τ∈T
Lt(βt ;τ) (30)

where T is the set of time indices of adding reference distributions, |T| is the size of T. Lt(βt ;τ) is
as the same as the loss function of a single reference distribution ( Eq. (8)) for a given τ . Further,
rsτ,t (x) is also defined by the same form of Eq. (7), the difference is that ψβt (x) becomes ψβt (x;τ):

rsτ,t =
exp{φβt (x;τ)}

1
N ∑

N
i=1 exp{φβt (xi;τ)}

, where φβt (x;τ), ψβt (x;τ)−ψβt−1(x;τ). (31)

In our implementation, we concatenate the time index τ to each data sample as the input of the ratio
estimator. In addition, we set the output of ψβt (·) as a |T|-dimensional vector {o1, . . . ,oi, . . . ,o|T|}
where oi corresponds to the output of ψβt (x;τ = Ti). Thus, we can avoid learning separate ratio
estimators for multiple reference distributions. Note that with CDRE we have the flexibility to extend
the model architecture since the latest estimator function φβt only needs the output of the previous
estimator function ψβt−1 . This can be beneficial when the model capacity becomes a bottleneck of
the performance.

A.3 Experiments

We provide details of our experimental settings and more experimental results in this section.

A.3.1 Experimental Settings

In all of our experiments, ψ(·) is a neural network with two and three dense layers for a single and
multiple reference distributions respectively, each layer having 256 hidden units and ReLU activations.
λc (the hyperparameter used for controlling the strength of the constraint in Eq. (8)) is set to 10 for
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Figure 4: Demo experiment of backward covariate shift. (a) shows the data distribution of training
set at τ = 1 and τ = t. (b) displays the regression lines learnt by the model at τ = t, the cyan and red
lines are fitted by Dt with and without importance weights, respectively.

experiments with a single reference distribution, and set to 100k for experiments with the multiple
reference distributions, where k is the number of joined reference distributions at each time step.

The real stock data used in our experiments can be downloaded from https://lobsterdata.com/
info/DataSamples.php, which is sample data for free. We only used the one level data.

A.3.2 Backward covariate shift

We demonstrate that CDRE can be applied in backward covariate shift, where the training set shifts
and the test set is from a previous distribution. It just swaps the situation of training and test set in
the scenario of common covariate shift [11, 9, 6]. We assume a linear regression model defined as
ŷ = wx+b+ ε0, where the noise ε0 ∼N (0,0.01). At time τ , the training data x ∈ Dτ and Dτ shifts
away from D1 gradually, where τ ∈ {1,2, . . . , t} and t = 10 is the latest time index. Fig. 4a displays
the data distribution at time τ = 1 and τ = t in which we can see there exists notable difference
between the two distributions. When the model is trained by Dt , it will not be able to accurately
predict on test samples from D1 unless we adjust the loss function by importance weights (i.e. density
ratios) as in handling covariate shift:

L = Ex∼qt (x)

[
q1(x)
qt(x)

(y− ŷ)2
]

Fig. 4b shows the regression lines learned by the model at τ = t with and without the importance
weights, where the weights q1(x)/qt(x) are estimated by CKLIEP. We can see that the line learned
with importance weights fits D1 more accurately than the one without the weights. This enables the
model to make reasonable predictions on test samples from D1 when the training set drifts to Dt and
D1 is not available. We demonstrate that CDRE can be applied in backward covariate shift, where the
training set shifts and the test set is from a previous distribution. It just swaps the situation of training
and test set in the scenario of common covariate shift [11, 9, 6]. We assume a linear regression model
defined as ŷ = wx+ b+ ε0, where the noise ε0 ∼N (0,0.01). At time τ , the training data x ∈ Dτ

and Dτ shifts away from D1 gradually, where τ ∈ {1,2, . . . , t} and t = 10 is the latest time index.
Fig. 4a displays the data distribution at time τ = 1 and τ = t in which we can see there exists notable
difference between the two distributions. When the model is trained by Dt , it will not be able to
accurately predict on test samples from D1 unless we adjust the loss function by importance weights
(i.e. density ratios) as in handling covariate shift:

L = Ex∼qt (x)

[
q1(x)
qt(x)

(y− ŷ)2
]

Fig. 4b shows the regression lines learned by the model at τ = t with and without the importance
weights, where the weights q1(x)/qt(x) are estimated by CKLIEP. We can see that the line learned
with importance weights fits D1 more accurately than the one without the weights. This enables the
model to make reasonable predictions on test samples from D1 when the training set drifts to Dt and
D1 is not available.
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Figure 5: Comparing average KL-divergence estimated by CKLIEP and KLIEP in the scenario of
multiple reference distributions. The true values of KL-divergences are computed by true ratios. The
error bar is the standard deviation of 10 runs.

A.3.3 Tracing multiple reference distributions

Here we provide the experimental results of multiple reference distributions. We also simulate
the scenario of multiple reference distributions by 64-D Gaussian data: pτ(x) = N (µτ ,σ

2
τ I), τ ∈

{1,2, . . . , t},µτ = 2τ,στ = 1, in which cases we add a new reference distribution (pt(x)) at each time
step. We shift each joined reference distribution (pτ(x),∀τ < t) by a constant change as the same as
the single pair scenario and set k = 1,∆µ = ∆σ = 0.01. In Appx. A.3.3, we compare the averaged
KL-divergences (D̄ = 1

t ∑
t
τ=1 DKL(qτ,t ||pτ)) estimated by CKLIEP and KLIEP with the true value.

CKLIEP outperforms KLIEP when the dynamic distributions getting farther away from the reference
distributions, which aligns with the scenario of a single reference distribution.
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