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ABSTRACT

Traditional grid-based fluid simulation is often difficult to control
and costly to perform. Therefore, the ability to reuse previously
computed simulation data is a tantalizing idea that would have sig-
nificant benefits to artists and end-users of fluid animation tools.
We introduce a remarkably simple yet effective copy-and-paste
methodology for fluid animation that allows direct reuse of existing
simulation data by smoothly combining two existing simulation data
sets together. The method makes use of a steady Stokes solver to de-
termine an appropriate transition velocity field across a blend region
between an existing simulated outer target domain and a region of
flow copied from a source simulation. While prior work suffers from
non-divergence and associated compression artifacts, our approach
always yields divergence-free velocity fields, yet also ensures an
optimally smooth blend between the two input flows.

1 INTRODUCTION

The ubiquitous copy-paste metaphor from text and image processing
tools is popular because it is conceptually simple and significantly
reduces the need for redundant effort on the part of the user. A
copy-paste tool for fluid simulation could offer similar benefits
while reducing the total computational effort expended to achieve a
desired results through the reuse of existing simulation data. This
paper proposes exactly such a scheme.

The control of fluids has long been a subject of interest in com-
puter animation: typical strategies that have been explored include
space-time optimization (e.g., [18, 35]), space-time interpolation
(e.g., [26,33]), and approaches that involve the application of some
combination of user-designed forces, constraints, or boundary condi-
tions (e.g., [19,24,32,34,36,37]). Because the last of these families
is typically the least expensive and offers the most direct control, it
has generally been the most effective and widely used in practice.
Our method also falls into this category.

Inspired by Poisson image editing [23], recent work by Sato et
al. [28] hints at the potential power of a copy-paste metaphor for
fluids. Unfortunately, their approach suffers from problematic non-
zero divergence artifacts at the boundary of pasted regions, which
depend heavily on the choice of input fields. We therefore introduce
a new approach that provides natural blends between source and
target regions yet is relatively simple to set up, requires solving only
a standard Stokes problem over a narrow blend region at each time
step, and always produces divergence-free vector fields.

2 RELATED WORK
2.1 Controlling fluid animation

Artistic control of fluid flows has been a subject of interest from the
earliest days of three-dimensional fluid animation research. Foster
and Metaxas [11] proposed a variety of basic control mechanism
through imposition of initial or boundary values on quantities such as
velocity, pressure and surface tension. A wide range of subsequent
methods have been proposed to enable various control methods,
which we review below.

One quite common approach is to apply forces or optimization ap-
proaches to encourage a simulation to hit particular target keyframes
for the density or shape of smoke or liquid [8, 18, 22,29, 34, 35].
Another strategy makes use of multiple scales or frequencies, using

a precomputed or procedural flow to describe the low-resolution mo-
tion and allowing a new physical simulation to add in high-frequency
details [10, 19-21,34].

Other approaches aim to work more directly on the fluid geometry,
rather than the velocity field. For example new editing metaphors
have been proposed, such as space-time fluid sculpting [17] and fluid-
carving [9]; the latter is conceptually similar to seam-carving from
image/video editing [1]. Another direct geometric approach seeks
to directly interpolate the global fluid shape and motion [26, 33].
These strategies generally require the overall simulation to already
be relatively close to the desired target behavior.

Approaches that rely on the direction application of velocity
boundary conditions on the fluid flow are similar to ours in some
respects [24,25,32,36]. Often these have been used to cause liquid
to follow a target motion or character, with varying degrees of
“looseness” allowed in order to retain a fluid-like effect. They have
not been used to combine existing simulations.

Another useful task in liquid animation is to insert a localized
3D dynamic liquid simulation, such as the region around a ship
or swimming character, into a much larger surrounding procedural
ocean or similar model. This has been achieved through the use of
non-reflecting boundary conditions [6,30]. These approaches focus
on simulating the interior surface region of a liquid and smoothly
damping out the surface flow to match the prescribed exterior model.
This contrasts with our copy and paste problem, where both the
interior and exterior are presimulated flows that must be combined
together.

The closest method to ours is of course that of Sato et al. [28], who
first proposed the copy-paste fluid problem. Their work also begins
from the Dirichlet energy; however, through an ad hoc substitution
of the input field’s curl, they arrive at a new energy that minimizes
the squared divergence of the velocity field plus the difference of the
curl of the output and input vector fields. This formulation penalizes
divergence rather than constraining it to be zero, and this likely
accounts for the presence of undesired erroneous divergence in their
results. By contrast, our approach is always strictly divergence-free.

2.2 Stokes flow in computer graphics

Steady (time-independent) Stokes flow is an approximation that is
appropriate when momentum is effectively negligible, as indicated
by a low Reynolds number. In computer graphics this approximation
has been used in the context of paint simulation [4] and for design
of fluidic devices [7]. The unsteady (time-dependent) variant has
also been used as a substep within a more general Navier-Stokes
simulator [16] for Newtonian fluids. Closest to our work is that
of Bhattacharya et al. [5] who use the Stokes equations to fill a
volume with smooth velocities, as an alternative to simple velocity
extrapolation or potential flow approximations; they then use the
generated field as a force to influence a liquid simulation. Their
approach is shown to maintain rotational motion better than those
existing alternative interpolants. We expand on this idea to address
the copy-paste problem.

3 METHOD

Our method takes as input the per-timestep vector field data for
two complete grid-based incompressible fluid simulations (denoted
source and target), along with geometry information dividing the
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domain of the final animation into an inner source region Q;, an
outer target region €, and a blending region ;. In the final time-
varying vector field to be assembled, the data in € and Q; are
simply replayed from the inputs; the central task we must solve is to
generate a “natural” vector field for the blend region Q;, in between
for all time steps.

We would like the vector field we gen-
erate in the blend region to possess a few
key characteristics. First, the velocities at
the boundaries of the blend region (on either Q
FtZQ,ﬂQ;,:BQr Orrs:QsﬂQb:aQs) Qb
should exactly match the velocities of the cor- |Q,
responding input field — this is essentially the
familiar no-slip boundary condition often used for kinematic solids
or prescribed inflows/outflows in Newtonian fluids. Second, the
vector field should be relatively smooth, since our objective is es-
sentially a special kind of velocity interpolant. With only these two
stipulations, a very natural choice is harmonic interpolation [15].
As suggested by Sato et al. [28], this can be expressed as minimizing

the Dirichlet energy:
argmin [[[ [ Va1 M)
u, Qp

subject to u;, = u, on Iy,

u, =u; on [},

The minimizer satisfies V- Vu;, = 0, i.e. a componentwise Laplace
equation on the velocity. (From here on we diverge from Sato et al.
who proceed instead to manipulate the Dirichlet energy into a form
that yields a vector Poisson equation.)

The Dirichlet energy alone is clearly insufficient, because it will
prioritize smoothness at the cost of introducing divergence. Because
we have assumed an incompressible flow model for our input (and
desired output), the velocities in the blend region should not create
or destroy material. A natural solution would be to simply apply
a standard pressure projection as a post-process to convert the har-
monic velocity field above to be incompressible. Unfortunately, this
can cause the velocity field to deviate significantly from the har-
monic input. Moreover, as we show in Section 5, pressure projection
enforces only a free-slip condition (no-normal-flow), which allows
objectionable tangential velocity discontinuities at the blend region’s
boundaries to be introduced.

We instead simultaneously combine the divergence-free stipula-
tion with harmonic interpolation through the following formulation:

argmin /// [[Vup|? (2)
u, Q

subject to V-u;, =0 on
u, =ugonly,

u, =u; on I3},

This optimization problem provides the smoothest velocity field that
interpolates the boundary data while preserving incompressibility.
If we enforce the constraint with a Lagrange multiplier p, the opti-
mality conditions turn out to yield exactly the (constant viscosity)
steady Stokes equations,

V-Vu,—-Vp=0. 3)
V-u, =0, “)

consistent with Helmholtz’s minimum dissipation theorem [2]. We
therefore refer to this construction as Stokes interpolation.

As noted in Section 2, we are not the first to suggest using the
Stokes equations as a fluid interpolant: Bhattacharya et al. [5] first

proposed steady state Stokes flow interpolation. However, our deriva-
tion and discussion above provides additional justification and in-
sight into the variational nature of this approach. More importantly,
Bhattacharya et al. did not consider the fluid cut-and-paste problem
that we address in the current work.

A minor issue is that, for there to exist a valid solution, the
boundary conditions must satisfy a compatibility condition; that is,
the integrated flux across the two boundaries must be consistent with
the condition of incompressibility on the blend region’s interior:

// V~u"+1dv:0:// u§?+1-ndA+// utlndA  (5)
Q r, r,

Fortunately, since the input vector fields both come from simu-
lations that are themselves incompressible, the divergence theorem
ensures that both the source copied patch and the target region to be
pasted over have zero net flux across their respective boundaries —
hence compatibility is guaranteed.

We arrive at the following algorithm. For each timestep, extract
the boundary velocities from the input source and target simulations.
Perform a steady Stokes solve on €, as we have described to produce
uZH. Finally, directly fill in the inner and outer Q and Q, regions

with velocity from the input data u”+! and u/!, respectively. The

resulting time-varying vector field is divergence-free and offers an
attractively smooth blend between source and target flows.

Note that, since the combined vector field differs significantly
from both its inputs, the flow of any passive material (such as smoke
density or tracer particles) must be recomputed from scratch by
advection through the new field in order to yield a consistent visual
result. This can usually be done efficiently and in parallel, since
each (passive) particle’s motion affects no other particles.

4 IMPLEMENTATION

While our concept is very general, our implementation assumes that
all simulations are arranged on a standard staggered (“MAC”) grid
[14]. This provides a natural infrastructure on which to discretize the
Stokes equations on the blend region, via centered finite differences.
The boundary between the blend region and the surrounding source
and target flow fields is assumed to lie on axis-aligned grid faces
between cells (although this could potentially be generalized to
irregular cut-cells if desired [3,16]). Where needed to ensure precise
no-slip velocities conditions at the exact face midpoints on voxelized
boundaries of the blend region, we make use of the usual ghost fluid
method [12] for the Laplace operator in (4). To solve the Stokes
linear system at each step, we use the Least Squares Conjugate
Gradient solver provided by the Eigen library [13], with a tolerance
of 5 x 1073, (Other options for solving indefinite systems, such as
SYMQMR or MINRES would also be appropriate [27].)

5 RESULTS

We now consider some illustrative scenarios to demonstrate the
behaviour of our method. Most of our figures make use of passive
marker particles with alternating colors in initially horizontal rows
to better highlight the developing flow structure, but we strongly
encourage the reader to review our supplemental video to assess the
motion more fully.

Our first scenario (Figure 1) consists of a static solid disk in a
vertical wind-tunnel scenario, with inflow at the top and outflow
at the bottom (particles leaving the bottom boundary re-enter at
the top). We wish to paste the disk and its surroundings from the
source simulation into an even simpler empty vertically translating
wind-tunnel target simulation. This yields a smooth divergence-free
combination of the two flows, where the flow outside of the blend
region is completely undisturbed. Our result necessarily differs from
the source animation, since in the source animation the presence
of the disk globally disturbed the flow; our Stokes interpolation
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approach must therefore deform the flow more strongly in the blend
region to compensate, yet we still achieve a visually plausible flow
(Figure 2).

L

Figure 1: Basic Setup: Our simplest scenario involves copying the
flow around a disk from its source simulation (left, with region to be
copied surrounded in blue) into an obstacle-free target simulation
(middle). The result of our method is a new smoothly combined
flow (right). The blue lines denote the inner and outer borders of the
blend region over which we apply our Stokes interpolation. (The
same frame of animation is shown in all three images.)
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Figure 2: Merged Flow Over Time: A few frames of the edited
animation result of our approach based on the scenario described in
Figure 1.

Next, we consider our method in comparison to two other obvious
alternatives, as discussed in Section 3: componentwise harmonic
interpolation, and post-projected harmonic interpolation. Pure har-
monic interpolation seems effective at first glance, but unfortunately
suffers from non-negligible divergence, as shown in Figure 3.
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Figure 3: Harmonic Interpolation: Harmonic interpolation of the
velocity across the blend region yields a somewhat plausible flow
(left), but suffers from large divergence (right). Red indicates posi-
tive divergence, blue indicates negative divergence. The divergence
gradually induces greater clumping and spreading of the particles,
as seen in the middle of the left image.

A possible improvement is to post-process the harmonic result
with a projection to a divergence-free state. Unfortunately, while this
successfully removes divergence, the natural free-slip conditions of
the pressure projection reintroduce tangential slip along the borders
of the blend region leading to objectionable motion artifacts in
the flow. In the wind-tunnel scenario the vertical component of

velocity suffers from discontinuities at blend region borders, leading
to visible grid-aligned shearing of the flow.
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(b) Projected Harmonic Interpolation
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(a) Stokes Interpolation (ours)

Figure 4: Projected Harmonic Interpolation: Our Stokes interpo-
lation approach (left) yields continuous velocity fields. However,
under projected harmonic interpolation (right), undesirable free-slip
conditions introduce tangential discontinuities in the flow velocity
at blend region borders, seen here as positional discontinuities in the
rows of colored particles at far left and right.

To further stress-test our method, we consider some challenging
scenarios analogous to those suggested by Sato et al. [28]. We
combine flows in which the source and target differ in direction or
speed. In Sato’s approach, both larger speed and angle deviations
lead to more severe failures of the divergence-free condition (we
refer the reader to the secondary supplemental video accompanying
that paper). Figure 5 shows the same test as we performed in our
earlier examples, except that we have changed the ambient flow
direction of the source simulation to have steadily increasing angles,
including an example where the flow direction is completely reversed.
While this leads to an increasingly unnatural look, the resulting flow
field is still continuous, smooth on the blend region interior, and
divergence-free independent, of this artistic decision. Similarly,
Figure 6 performs a test in which the speed of the source (inner)
simulation is slow or faster than the target (outer) simulation. Once
again more severe speed differences lead to more unusual motions
in the blend region in order to compensate. For example, when the
speed ratio between source and target is 3, more elaborate interior
circulation of the flow in the blend region becomes necessary to
satisfy the incompressible condition. However, because the source
and target are divergence-free and therefore provide compatible
boundary conditions, the result is still correctly divergence-free.

A further point to note about these stress tests is that the more
severe cases induce strong vortices that cause gaps to open in the
flow. However, this is not due to divergence; rather, typical small
numerical errors in particle trajectories due to interpolation and
advection cause the particles to spread out from these points.

Lastly, we consider a few slightly more complex scenarios. Figure
7 shows our basic scenario again but using a rectangular obstacle
instead of a disk. Figure 8 shows a scenario in which the user
replaces a rectangular obstacle with a disk. Finally, in Figure 9, we
paste a disk obstacle into a scene containing three rectangles, where
the disk replaces the middle rectangle. Because of the additional
obstacles, the flow structure is more complex. In this example, we
tightened the blend region to fit more closely around the paste region.
In all cases a plausible flow is constructed.

Notably, because a disk and a rectangle lead to different down-
stream motions in their respective wakes, a close inspection of the
motion in these regions of our results reveals slightly unnatural mo-
tions, as our interpolant diligently tries to transition between two
different flow structures. Fortunately, such effects are fairly sub-
tle unless one is specifically looking for them. Ultimately, Stokes
interpolation provides the best available solution under the stated
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Figure 5: Varying Angles: In these scenes, the outer flow is vertical
while the pasted inner flow from the source simulation has flow
direction with a relative angle of: 0° (top-left), 45° (top-right), 90°
(bottom-left), and 180° (bottom-right). In all cases, the flow remains
divergence-free.

constraints (smoothness, incompressibility, interpolation of bound-
ary values), and it is up to the user to apply their judgment regarding
whether a proposed flow edit achieves the desired effect.

6 CONCLUSIONS AND FUTURE WORK

‘We have presented an approach to the fluid copy-paste problem that
guarantees smooth and divergence-free fields by solving a steady
Stokes problem at each time step to fill in a blend region between
the source and target flow regions.

Our work suggests several directions to explore in future work.
First, for simplicity we assumed axis-aligned rectangles for the copy-
paste region, similar to basic region-selection in image editing, but it
could be useful to extend our approach to more general (lasso-type)
selection regions, either in a voxelized fashion or using irregular
cut-cells [3, 16] for smoother shapes. This would add greater artistic
flexibility, and may render the blend-region borders less apparent.

The mathematics underlying our approach extends naturally to
3D, although providing a manageable user interface for selecting
and placing time-dependent volumetric flow regions becomes more
challenging. This would be interesting to explore.

Another intriguing question is whether even better behavior at
blend region borders could be achieved by replacing our Dirichlet
energy with a higher order energy. At present, the no-slip condition
enforces matching of the velocity value at the boundaries, but not its
gradient. Minimizing instead a squared Laplacian energy (see e.g.,
[31]), still subject to incompressibility, would lead to a bilaplacian
operator on velocity. This is conceptually similar to replacing linear
interpolation with cubic interpolation. While it would lead to a more
challenging linear system to solve (in terms of conditioning) it may
be able to offer a value- and gradient-matched divergence-free blend
field.

Finally, a challenging unanswered question in fluid animation
more broadly is to what makes a fluid motion perceptually “realistic”
from a human perspective, and how much deviation from physical
accuracy can safely be tolerated in visual applications. A metric

Figure 6: Varying Speeds: In these scenes, the outer flow has a fixed
speed while the pasted inner flow from the source simulation has a
speed ratio of: 1.0 (top-left), 0.75 (top-right), 1.5 (bottom-left), and
3.0 (bottom-right). In all cases, the flow remains divergence-free.

Figure 7: Pasting a rectangle into a flow. From left to right: source
scene, target scene, result.

of this kind could allow one to quantify more concretely whether a
proposed flow edit is successful or harmful.
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