
Under review as a conference paper at ICLR 2024

WHAT DO GNNS ACTUALLY LEARN? TOWARDS UN-
DERSTANDING THEIR REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Although prior work has shed light on the expressiveness of Graph Neural
Networks (GNNs) (i. e., whether they can distinguish pairs of non-isomorphic
graphs), it is still not clear what structural information is encoded into the node
representations that are learned by those models. In this paper, we address this
gap by studying the node representations learned by four standard GNN models.
We find that some models produce identical representations for all nodes, while
the representations learned by other models are linked to some notion of walks
of specific length that start from the nodes. We establish Lipschitz bounds for
these models with respect to the number of (normalized) walks. Additionally, we
investigate the influence of node features on the learned representations. We find
that the representations learned at the k-the layer of the models are related to the
initial features of nodes that can be reached in exactly k steps. We bound the Lip-
schitz constant of these models with respect to an optimization problem matching
nodes’ sets of walks. Our theoretical analysis is validated through experiments on
synthetic and real-world datasets. We also apply our findings to understand the
phenomenon of oversquashing that occurs in GNNs.

1 INTRODUCTION

Graphs arise naturally in a wide variety of domains such as in bio- and chemo-informatics (Stokes
et al., 2020), in social network analysis (Easley & Kleinberg, 2010) and in information sci-
ences (Hogan et al., 2021). There is thus a need for machine learning algorithms that can operate
on graph-structured data, i. e., algorithms that can exploit both the information encoded in the graph
structure but also the information contained in the node and edge features. Recently, graph neural
networks (GNNs) emerged as a very promising method for learning on graphs, and have driven the
rapid progress in the field of graph representation learning (Wu et al., 2020).

Even though different types of GNNs were proposed in the past years, message passing models
undoubtedly seem like a natural approach to the problem. These models, known as message pass-
ing neural networks (MPNNs) (Gilmer et al., 2017) employ a message passing (or neighborhood
aggregation) procedure where each node aggregates the representations of its neighbors along with
its own representation to produce new updated representations. For graph-related tasks, MPNNs
usually apply some permutation invariant readout function to the node representations to produce
a representation for the entire graph. The family of MPNNs has been studied a lot in the past few
years, and there are now available dozens of instances of this family of models. A lot of work has
focused on investigating the expressive power of those models. It was recently shown that stan-
dard MPNNs are at most as powerful as the Weisfeiler-Leman algorithm in terms of distinguishing
non-isomorphic graphs (Xu et al., 2019; Morris et al., 2019).

The recent success of GNNs put graph kernels, another approach for graph–based machine learn-
ing, into the shade. Unlike GNNs, graph kernels generate representations (implicit or explicit) that
consist of substructures of graphs. Such substructures include random walks (Kashima et al., 2003;
Gärtner et al., 2003), shortest paths (Borgwardt & Kriegel, 2005) and subgraphs (Shervashidze et al.,
2009; Kriege & Mutzel, 2012). Therefore, the properties and the graph representations produced by
graph kernels are fully-understood. This is not however the case for MPNNs since, despite the
great activity in the field, still little is known about the properties of graphs that are captured in the
representations learned by those models.

1

Under review as a conference paper at ICLR 2024

In this paper, we fill this gap by studying the node representations learned by MPNNs. We first in-
vestigate what structural properties of graphs are captured in the learned representations of standard
models. To that end, we annotate all nodes with the same features, and show that GAT (Veličković
et al., 2018) and DGCNN (Zhang et al., 2018) embed all nodes into the same vector, thus they
capture no structural properties of the neighborhoods of nodes. Furthermore, we show that the rep-
resentations that emerge at the k-th layer of GCN (Kipf & Welling, 2017) and GIN (Xu et al., 2019)
are related to some notion of walks of length k over the input graph. We bound the Lipschitz con-
stant of those models with respect to the sum of (normalized) walks. This suggests that MPNNs
suffer from the following limitation: structurally dissimilar nodes can have similar representations
at some layer k where k > 1. We also study the impact of node features on the learned representa-
tions. We show that the node representations at the k-th layer of GCN, DGCNN, GAT and GIN are
all related to the initial features of the nodes that can be reached in exactly k steps from the node.
We bound the Lipschitz constant of those models with respect to the solution of some optimization
problem that given two nodes matches walks of the one node with walks of the other. We verify our
theoretical analysis in experiments conducted on synthetic and real-world datasets. We also study
the problem of oversquashing (Alon & Yahav, 2021) from the lens of our theoretical findings.

2 RELATED WORK

While GNNs have been around for decades (Sperduti & Starita, 1997; Scarselli et al., 2009; Micheli,
2009), it is only in recent years that the scientific community became aware of their power and
potential. The increased scientific activity in the field led to the development of a large number of
models (Bruna et al., 2014; Li et al., 2015; Duvenaud et al., 2015; Atwood & Towsley, 2016; Deffer-
rard et al., 2016). Those models were categorized into spectral and spatial approaches depending on
which domain the convolutions (neighborhood aggregations) were performed. Later, it was shown
that all these models follow the same design principle and can be seen as instances of a single com-
mon framework (Gilmer et al., 2017). These models, known as message passing neural networks
(MPNNs), use a message passing scheme where nodes iteratively aggregate feature information
from their neighbors. Then, to compute a representation for the entire graph, MPNNs typically
employ some permutation invariant readout function which aggregates the representations of all the
nodes of the graph. The family of MPNNs has been studied a lot in the past few years and there
have been proposed several extensions and improvements to the MPNN framework. Most studies
have focused on the message passing procedure and have proposed more expressive or permuta-
tion sensitive aggregation functions (Murphy et al., 2019; Seo et al., 2019; Chatzianastasis et al.,
2022; Buterez et al., 2022), schemes that incorporate different local structures or high-order neigh-
borhoods (Jin et al., 2020; Abu-El-Haija et al., 2019), non-Euclidean geometry approaches (Chami
et al., 2019), while others have focused on efficiency (Gallicchio & Micheli, 2020). Fewer works
have focused on the pooling phase and have proposed more advanced strategies for learning hierar-
chical graph representations (Ying et al., 2018; Gao & Ji, 2019). Note also that not all GNNs belong
to the family of MPNNs (Niepert et al., 2016; Nikolentzos & Vazirgiannis, 2020; Nikolentzos et al.,
2023b)

A considerable amount of recent work has focused on characterizing the expressive power of GNNs.
Most of these studies compare GNNs against the WL algorithm and its variants (Kiefer, 2020) to
investigate what classes of non-isomorphic graphs they can distinguish. For instance, it has been
shown that standard GNNs are not more powerful than the 1-WL algorithm (Xu et al., 2019; Morris
et al., 2019). Other studies capitalized on high-order variants of the WL algorithm to derive new
models that are more powerful than standard MPNNs (Morris et al., 2019; 2020). Recent research
has investigated the expressive power of k-order GNNs in terms of their ability to distinguish non-
isomorphic graphs. In particular, it has been shown that k-order GNNs are at least as powerful as
the k-WL test in this regard (Maron et al., 2019). Recently, various approaches have been proposed
to enhance the expressive power of GNNs beyond that of the WL test. These include encoding
vertex identifiers (Vignac et al., 2020), incorporating all possible node permutations (Murphy et al.,
2019; Dasoulas et al., 2020), using random features (Sato et al., 2021; Abboud et al., 2020), utilizing
node features (You et al., 2021), incorporating spectral information (Balcilar et al., 2021), utilizing
simplicial and cellular complexes (Bodnar et al., 2021b;a) and directional information (Beaini et al.,
2021). It has also been shown that extracting and processing subgraphs can further enhance the
expressive power of GNNs (Nikolentzos et al., 2020; Zhang & Li, 2021; Bevilacqua et al., 2021) .
For instance, it has been suggested that expressive power of GNNs can be increased by aggregating

2

Under review as a conference paper at ICLR 2024

the representations of subgraphs produced by standard GNNs, which arise from removing one or
more vertices from a given graph (Cotta et al., 2021; Papp et al., 2021). The above studies mainly
focus on whether GNNs can distinguish pairs of non-isomorphic graph. However, it still remains
unclear what kind of structural information is encoded into the node representations learned by
GNNs. Some recent works have proposed models that aim to learn representations that preserve
some notion of distance of nodes (Nikolentzos et al., 2023a), however, they do not shed light into
the representations generated by standard models. The work closest to ours is the one proposed
by Chuang & Jegelka (2022), where the authors propose the Tree Mover’s Distance, a pseudometric
for node-attributed graphs, and study its relation to the generalization of GNNs. Our work is also
related to the work of Xu et al. (2018) where the authors use the concept of walks to define the
effective range of nodes that any given node’s representation draws from. However, while this work
studies the range of nodes whose features affect a given node’s representation, we focus on the exact
node representations that are learned by the model and the distances between them. Finally, Yehudai
et al. (2021) capitalize on local computation trees and graph patterns similar to the ones studied in
this paper to investigate the GNNs’ ability to generalize to larger graphs

3 PRELIMINARIES

3.1 NOTATION

Let N denote the set of natural numbers, i. e., {1, 2, . . .}. Then, [n] = {1, . . . , n} ⊂ N for n ≥ 1.
Let also {{}} denote a multiset, i. e., a generalized concept of a set that allows multiple instances for
its elements. Let G = (V,E) be an undirected graph, where V is the vertex set and E is the edge
set. We will denote by n the number of vertices and by m the number of edges, i. e., n = |V | and
m = |E|. The adjacency matrix A ∈ Rn×n is a symmetric matrix used to encode edge information
in a graph. The elements of the ith row and jth column is equal to 1 if there is an edge between vi and
vj , and 0 otherwise. Let N (v) denote the the neighbourhood of vertex v, i. e., the set {u | {v, u} ∈
E}. The degree of a vertex v is d(v) = |N (v)|. A walk is a sequence of nodes (v1, v2, . . . , vk+1)
where vi ∈ V and (vi, vi+1) ∈ E for 1 ≤ i ≤ k. The length of the walk is equal to the number
of edges in the sequence, i. e., k in the above case. We denote by w

(k)
v the number of walks of

length k starting from node v. Let w̃(k)
v denote the sum of normalized walks of length k where each

walk (v1, v2, . . . , vk) is normalized as follows 1/
(
(1+d(v2))...(1+d(vk−1))

√
(1+d(v1))(1+d(vk))

)
. Given

a walk w = (v1, v2, . . . , vk+1) of length k, we denote by w̄
(k)
w the probability of getting from node

v1 to node vk+1 via walk w. Finally, let w̃(k)
w denote a normalization term for walk w computed as

follows w̃(k)
w = 1/

(
(1+d(v2))...(1+d(vk))

√
(1+d(v1))(1+d(vk+1))

)
.

3.2 MESSAGE PASSING NEURAL NETWORKS

As already discussed, most GNNs can be unified under the framework MPNN framework (Gilmer
et al., 2017). These models follow a neighborhood aggregation scheme, where each node represen-
tation is updated based on the aggregation of its neighbors representations. Let h(0)

v denote node v’s
initial feature vector. Then, for a number K of iterations, MPNNs update node representations as
follows:

m(k)
v = AGGREGATE(k)

(
{{h(k−1)

u |u ∈ N (v)}}
)
, h(k)

v = COMBINE(k)
(
h(k−1)
v ,m(k)

v

)
where AGGREGATE(k) is a permutation invariant function. By defining different AGGREGATE(k)

and COMBINE(k) functions, we obtain different MPNN instances. In this study, we consider
the neighborhood aggregation schemes of four models, namely (1) Graph Convolution Network
(GCN) (Kipf & Welling, 2017); (2) Deep Graph Convolutional Neural Network (DGCNN) (Zhang
et al., 2018); (3) Graph Attention Network (GAT) (Veličković et al., 2018); and (4) Graph Isomor-
phism Network (GIN) (Xu et al., 2019). The aggregation schemes of the four models are illustrated
in Table 1.

For node-level tasks, final nodes representation h
(K)
v can be directly passed to a fully-connected

layer for prediction. For graph-level tasks, a graph representation is obtained by aggregating its

3

Under review as a conference paper at ICLR 2024

Table 1: Neighborhood aggregation schemes of the four considered models.

Model Update Equation

GCN h(k)
v = ReLU

(∑
u∈N(v)∪{v}

W(k)h
(k−1)
u√

(1+d(v))(1+d(u))

)

DGCNN h(k)
v = f

(∑
u∈N(v)∪{v}

1
d(v)+1

W(k)h(k−1)
u

)

GAT h(k)
v = σ

(∑
u∈N(v) αvuW

(k)h(k−1)
u

)

GIN-ϵ h(k)
v = MLP(k)

((
1 + ϵ(k)

)
h(k−1)

v +
∑

u∈N(v) h
(k−1)
u

)

nodes final representations: hG = READOUT
(
{{h(K)

v |v ∈ G}}
)

. The READOUT function is
typically a differentiable permutation invariant function such as the sum or mean operator.

4 WHAT DO MPNNS ACTUALLY LEARN?

We next study the node representations learned by the considered model. We focus on two different
scenarios: (1) when nodes are not annotated with any features; and (2) when nodes are annotated
with discrete node labels or continuous attributes. The first scenario will shed light on what kind of
structural properties of graphs are captured in the representations learned by GNNs. In the second
part, we will investigate what is the impact of the initial node features on the learned representations.

4.1 CAN MPNNS CAPTURE THE STRUCTURE OF GRAPHS?

We next investigate what structural properties of nodes these four considered models can capture.
Nodes are usually annotated with features that reveal information about their neighborhoods. Such
features include their degree or even more sophisticated features such as counts of certain substruc-
tures (Bouritsas et al., 2022) or those extracted from Laplacian eigenvectors (Dwivedi et al., 2020).
We are interested in identifying properties that are captured purely by these models. Thus, we as-
sume that no such features are available, and we annotate all nodes with the same feature vector or
scalar.
Theorem 4.1. Let G = {G1, . . . , GN} be a collection of graphs. Let also V = V1 ∪ . . . ∪ VN

denote the set that contains the nodes of all graphs. All nodes are initially annotated with the same
representation. Without loss of generality, we assume that they are annotated with a single feature
equal to 1, i. e., h(0)

v = 1 ∀v ∈ V . Then, after k neighborhood aggregation layers:

1. DGCNN and GAT both map all nodes to the same representation, i. e., h(k)
v = h

(k)
u ∀v, u ∈

V .

2. GCN maps nodes to representations related to the sum of normalized walks of length k
starting from them: ∣∣∣∣∣∣h(k)

v − h(k)
u

∣∣∣∣∣∣
2
≤

k∏
i=1

L
(i)
f

∣∣∣∣∣∣w̃(k)
v − w̃(k)

u

∣∣∣∣∣∣
2

where L
(i)
f denotes the Lipschitz constant of the fully-connected layer of the i-th neighbor-

hood aggregation layer.

3. Under mild assumptions (biases of MLPs are ignored), GIN-0 maps nodes to representa-
tions that capture the number of walks of length k starting from them:∣∣∣∣∣∣h(k)

v − h(k)
u

∣∣∣∣∣∣
2
≤

k∏
i=1

L
(i)
f

∣∣∣∣∣∣w(k)
v − w(k)

u

∣∣∣∣∣∣
2

where L(i)
f denotes the Lipschitz constant of the MLP of the i-th neighborhood aggregation

layer.

4

Under review as a conference paper at ICLR 2024

0 5000 10000 15000 20000 25000
wu wv

0

500

1000

1500

2000

2500

h u
h v

r = 0.99

IMDB BINARY : GIN

0 5000 10000 15000 20000 25000
wu wv

0

500

1000

1500

2000

2500

3000

h u
h v

r = 1.00

IMDB BINARY : GIN(NoBias)

0.0 0.5 1.0 1.5 2.0 2.5
wu wv

0.0

0.2

0.4

0.6

0.8

1.0

1.2

h u
h v

r = 1.00

IMDB BINARY : GCN

0 100 200 300 400
wu wv

0

10

20

30

40

50

60

h u
h v

r = 0.99

ENZYMES : GIN

0 100 200 300 400
wu wv

0

10

20

30

40

h u
h v

r = 1.00

ENZYMES : GIN(NoBias)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
wu wv

0.0

0.1

0.2

0.3

h u
h v

r = 1.00

ENZYMES : GCN

Figure 1: Euclidean distances of the representations generated at the third layer of the different
models vs. Euclidean distances of the number of walks (or sum of normalized walks) of length 3
starting from the different nodes.

Figure 2: The number of walks of length 2 starting from the red nodes of the three graphs is equal
to 10. These three nodes could be embedded closely to each other even though they are structurally
dissimilar.

The above result highlights the limitations of the considered models. Specifically, our results imply
that the DGCNN and GAT models encode no structural information of the graph into the learned
node representations. Furthermore, combined with a sum readout function, these representations
give rise to a graph representation that can only count the number of nodes of the graph. If the
readout function is the mean operator, then all graphs are embedded into the same vector. With
regards to the other two models, we have bounded the Lipschitz constant of GIN-0 and GCN with
respect to the number of walks and sum of normalized walks starting from the different nodes,
respectively.

To experimentally verify the above theoretical results, we trained the GIN-0 and GCN models on
the IMDB-BINARY and the ENZYMES graph classification datasets. For all pairs of nodes, we
computed the Euclidean distance of the number of walks (resp. sum of normalized walks) of length
3 starting from them. We also computed the Euclidean distance of the representations of the nodes
that emerge at the corresponding (i. e., third) layer of GIN-0 (resp. GCN). We finally computed
the correlation of the two collections of Euclidean distances and the results are given in Figure 1.
Clearly, the results verify our theoretical results. The distance of the number of walks is perfectly
correlated with the distance of the representations generated by GIN-0 with no biases, while the dis-
tance of the sum of normalized walks is perfectly correlated with the distance of the representations
produced by GCN. We also computed the Euclidean distance of the representations of the nodes that
emerge at the third layer of the standard GIN-0 model (with biases), and we compared them against
the distances of the number of walks. We can see that on both datasets, the emerging correlations
are very high (equal to 0.99). We observed similar values of correlation on other datasets as well,
which indicates that the magnitude of the bias terms of the MLPs might be very small and that our
assumption of ignoring biases is by no means unrealistic.

Based on the above theoretical and empirical findings, it is clear that two nodes can have dissimilar
representations at the k-th layer, but obtain similar representations at the (k + 1)-th layer of some

5

Under review as a conference paper at ICLR 2024

MPNN model. For instance, for GIN-0, this can be the case if the two nodes have different numbers
of walks of length k, but similar numbers of walks of length k + 1. We give in Figure 2 an example
of three nodes (the three red nodes) that have structurally dissimilar neighborhoods, but their rep-
resentations produced by GIN-0 after two neighborhood aggregation layers are very similar to each
other (or identical in the case where biases are omitted). In all three cases, the number of walks of
length 2 starting from the red nodes is equal to 10. It is also clear that the three nodes have different
values of degree from each other.

4.2 WHAT IS THE ROLE OF THE INITIAL NODE FEATURES?

We next investigate what is the impact of the initial node features on the learned node represen-
tations. We assume that the nodes of all graphs are annotated with d-dimensional feature vectors.
These feature vectors usually do not capture structural properties of nodes. Instead, they provide ad-
ditional information about nodes which needs to be taken into account by the model. For instance,
in chemo-informatics, such features could correspond to continuous atomic properties, while in the
case of social networks, they could correspond to vector representations of text.

We next introduce some notations and preliminary concepts which will be used later. More specifi-
cally, we first define for each node v of a graph some sets that contain the weighted representations
of the nodes that can be reached in exactly k steps. Let W(k)

v denote a set of ordered pairs where
each pair contains a walk of length k starting from node v along with the initial node feature of
the last node of the walk. Formally, W(k)

v =
{
(w1,hw1

), . . . , (wm,hwm
)
}

where m is the number
of walks of length k that start from node v. Given a walk w, hw denotes the initial node feature
of the last node of the walk. For example, for some walk w = (v1, v2, . . . , vk+1), we have that
hw = h

(0)
vk+1 . We also define two other sets W̄(k)

v and W̃(k)
v which also contain all walks of length

k starting from node v along with the normalized representation of the last visited node. Thus,
we have that W̄(k)

v =
{
(w1, h̄w1

), . . . , (wm, h̄wm
)
}

where for some walk w = (v1, v2, . . . , vk+1),
h̄w = w̄

(k)
w h

(0)
vk+1 and as discussed in section 3, w̄(k)

w is equal to the probability of getting from
node v1 to node vk+1 via walk w. We also have that W̃(k)

v =
{
(w1, h̃w1

), . . . , (wm, h̃wm
)
}

where
for some walk w = (v1, v2, . . . , vk+1), h̃w = w̃

(k)
w h

(0)
vk+1 where w̃

(k)
w is computed as follows

w̃
(k)
w = 1/

(
(1+d(v2))...(1+d(vk))

√
(1+d(v1))(1+d(vk+1))

)
. Given two walks w1 and w2, let CSL(w1,w2)

denote the length of the common subsequence of nodes of the two walks starting from the first
node. For instance, let w1 = (v1, v2, v4, v8, . . . , vk) and w2 = (v1, v2, v4, v10, . . . , vk). Then,
CSL(w1,w2) = 3. Let also w3 = (v1, v2, v4, v5, . . . , vk) and w4 = (v1, v3, v4, v5, . . . , vk). Then,
CSL(w3,w4) = 1.

We next introduce the walk distance (WD), a distance for sets of walks that corresponds to the solu-
tion of an optimization problem. Specifically, given two sets of walks W(k)

v and W(k)
v′ from nodes v

and v′, respectively, where |W(k)
v | = n and |W(k)

v′ | = m, we will denote by WD(W(k)
v ,W(k)

v′) the
solution of the following problem:

WD(W(k)
v ,W(k)

v′) =min
T

(n∑
i=1

m∑
j=1

Tij ||hwi
− hw′

j
||2 +

m∑
j=1

T(n+1)j ||hw′
j
||2 +

n∑
i=1

Ti(m+1)||hwi
||2
)

(1)

s.t. T ∈ {0, 1}(n+1)×(m+1),

m+1∑
j

Tij = 1,∀i ∈ [n],

n+1∑
i

Tij = 1,∀j ∈ [m],

Tij +Tıȷ ≤ 1,∀i, ı ∈ [n] and ∀j, ȷ ∈ [m] where CSL(wi,wı) ̸= CSL(w′
j ,w

′
ȷ)

Note that we can use the same formulation and compute the distance of the other sets of walks that
were defined above (i. e., WD(W̄(k)

v , W̄(k)
v′) and WD(W̃(k)

v , W̃(k)
v′)) The last constraint ensures that

each non-terminal node of the walks of the one set is matched with at most a single non-terminal
node of the walks of the other set. To make this clear, we provide an example in Figure 4. Suppose
that h(0)

v6 = h
(0)
u7 , h(0)

v7 = h
(0)
u8 and h

(0)
v8 = h

(0)
u9 . Therefore, we have that hw1

= hw′
1
, hw2

= hw′
2

6

Under review as a conference paper at ICLR 2024

and hw3
= hw′

3
. Then, we can match walk w3 with walk w′

3 (i. e., T33 = 1). Suppose we also
match walk w1 with walk w′

1 (i. e., T11 = 1). Then, we cannot match walk w2 with walk w′
2 since

CSL(w1,w2) = 3 while CSL(w′
1,w

′
2) = 2, and thus T11 +T22 ≤ 1.

Although one could solve the above optimization problem to compute the distance of two nodes, its
computational complexity is prohibitive for real-world problems. Determining the exact complexity
of the above problem is out of the scope of this paper. We only need to note that the number of walks
increases significantly as k increases in the case of dense graphs. For instance, in a complete graph,
exhaustive enumeration of the walks that start from some node is prohibitively expensive, scaling as
O(nk) where n is the number of nodes of the graph.

We now provide the main result of this subsection.
Theorem 4.2. Let G = {G1, . . . , GN} be a collection of graphs. Let also V = V1 ∪ . . . ∪ VN

denote the set that contains the nodes of all graphs. We assume that the nodes of all N graphs are
annotated with d-dimensional feature vectors, i. e., h(0)

v Rd ∀v ∈ V . Then, after k neighborhood
aggregation layers:

1. DGCNN and GAT map nodes to representations such that:∣∣∣∣∣∣h(k)
v − h(k)

u

∣∣∣∣∣∣
2
≤

k∏
i=1

L
(i)
f WD(W̄(k)

v , W̄(k)
u)

where L
(i)
f denotes the Lipschitz constant of the fully-connected layer of the i-th neighbor-

hood aggregation layer.

2. GCN maps nodes to representations such that:∣∣∣∣∣∣h(k)
v − h(k)

u

∣∣∣∣∣∣
2
≤

k∏
i=1

L
(i)
f WD(W̃(k)

v , W̃(k)
u)

where L
(i)
f denotes the Lipschitz constant of the fully-connected layer of the i-th neighbor-

hood aggregation layer.

3. Under mild assumptions (biases of MLPs are ignored), GIN-0 maps nodes to representa-
tions such that: ∣∣∣∣∣∣h(k)

v − h(k)
u

∣∣∣∣∣∣
2
≤

k∏
i=1

L
(i)
f WD(W(k)

v ,W(k)
u)

where L
(i)
f denotes the Lipschitz constant of the fully-connected layer of the i-th neighbor-

hood aggregation layer.

Once again, the above result highlights the limitations of the considered models. Specifically, our
results imply that the representations of all models learned at the k-th neighborhood aggregation
layer depend only on the nodes that can be reached in exactly k steps and not on the intermediate
nodes along each walk. Furthermore, we have bounded the Lipschitz constant of all the models with
respect to the different types of walks starting from the different nodes.

We also empirically validate the theoretical analysis with experiments conducted on a synthetic
dataset. As discussed above, the computational cost of solving the problem of equation 1 can become
prohibitive. Therefore, we constructed a synthetic dataset where graphs are generated by applying
perturbations to a perfectly balanced tree of height 2 with branching factor 10. More specifically,
each node of the tree is initially annotated with a unique feature (a 7-dimensional binary vector).
Then, nodes are randomly removed from the tree (and then any remaining disconnected nodes are
also removed). Gaussian noise is then added to the feature vector of each node (zero mean and
variance equal to 0.1). When no normalization of the features takes place (as in the case of GIN-0),
we can compute the WD of the roots of two trees since we know from construction which nodes
of each tree match with the nodes of some other tree. We train the GIN-0 model on those trees in
the task of predicting the number of nodes of each tree based on the root node’s representation. We
visualize the relation between the WD of two roots and their respective distance in the embedding

7

Under review as a conference paper at ICLR 2024

0 50 100 150 200
WD((k)

u , (k)
v)

0

20

40

60

80

100

120

h(k
)

u
h(k

)
v

r = 0.78

Synthetic : GIN(NoBias)

0 50 100 150 200
WD((k)

u , (k)
v)

0

20

40

60

80

100

120

h(k
)

u
h(k

)
v

r = 0.74

Synthetic : GIN

Figure 3: Euclidean distances of the repre-
sentations generated at the second layer of
the GIN-0 model vs. WD of the nodes.

v1

v2

v4

v6

v1

v2

v4

v7

v1

v3

v5

v8

w1 w2 w3

u′
1

u′
2

u′
4

u′
7

u′
1

u′
2

u′
5

u′
8

u′
1

u′
3

u′
6

u′
9

w′
1 w′

2 w′
3

W(3)
v′
1

=W(3)
v1 =

Figure 4: Example of two
sets of walks W(3)

v1 ={
(w1,hw1

), (w2,hw2
), (w3,hw3

)
}

and
W(3)

u′
1

=
{
(w′

1,hw′
1
), (w′

2,hw′
2
), (w′

3,hw′
3
)
}

starting from nodes v1 and v′1, respectively.
Suppose that hw1

= hw′
1
, hw2

= hw′
2

and
hw3

= hw′
3
. Then, we can match walk w3

with walk w′
3. If we also match walk w1 with

walk w′
1, then, we cannot match walk w2

with walk w′
2 since CSL(w1,w2) = 3

while CSL(w′
1,w

′
2) = 2. Thus,

WD
(
W(3)

v1 ,W(3)
v′
1

)
= ||hw2

||2 + ||hw′
2
||2.

space (at the second message passing layer) in Figure 3. We observe that WD strongly correlates
with the distance of the embeddings of the root nodes, supporting our theoretical results of defining
the Lipschitz constant with respect to WD.

4.3 LINK TO OVERSQUASHING

Our theoretical results are also related to the phenomenon of oversquashing (Alon & Yahav, 2021;
Topping et al., 2021) which occurs in MPNNs due to large information compression through bot-
tlenecks. Specifically, messages that are propagated from distant nodes through certain bottle-
necks of the graph, turn out to have negligible impact on the root node’s representation. Our
theoretical results suggest that given two nodes v and u, the smaller the value of the fraction
w(k)

vu/w(k)
v (where w

(k)
vu denotes the number of walks of length k from node v to node u), the less

the impact of the message(s) from node u to node v. To verify our claim, we constructed a
graph classification task to investigate whether an MPNN model can capture the interaction be-
tween two nodes. All the generated graphs are instances of a single family of graphs. Specif-
ically, each graph consists of two components: (1) a complete graph with n nodes; and (2) a
perfectly balanced r-ary tree of height 2. The two components are connected by an edge, be-
tween one of the nodes of the complete graph and the root of the tree. We use CBT(n, r)
to denote such a graph with parameters n and r. Figure 5 illustrates the CBT(4, 2) graph.

v1
v2
v3

v4v5

v6

v7

v8
v9

v10

v11

Figure 5: An example of the
CBT(4, 2) graph.

Each graph belongs to one out of two classes. The class label de-
pends on the features of the nodes. We annotate all nodes with
an 8-dimensional feature vector. One of the nodes of the complete
graph (not the one connected with the root of the tree) is annotated
with a vector full of 5s and Gaussian noise is further added point-
wise (zero mean and variance equal to 0.1). For graphs that belong
to class 0, the rest of the nodes are annotated with vectors randomly
sampled from the standard normal distribution. For graphs that be-
long to class 1, a single leaf of the tree is annotated with a vector full
of −5s and Gaussian noise is further added pointwise (zero mean
and variance equal to 0.1). We create three datasets in total where
in each case n and r take the following values: (1) CBT(5 − 10, 5 − 8) where n ∈ {5, 6, . . . , 10}
and r ∈ {5, 6, 7, 8}; (2) CBT(2 − 3, 1 − 5) where n ∈ {2, 3} and r ∈ {1, 2, . . . , 5}; and (3)
CBT(5− 20, 1) where n ∈ {5, 6, . . . , 20} and r ∈ {1}. For each dataset, we construct 200 graphs.
Graphs of each class are generated with equal probability. We split each dataset into a training set

8

Under review as a conference paper at ICLR 2024

16 32 64 128
hidden dimension size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
g.

 a
cc

ur
ac

y

Test set

16 32 64 128
hidden dimension size

Training set

CBT(5-10,5-8)
CBT(2-3,1-5)
CBT(5-20,1)

Figure 6: Average training and test accuracies achieved by the GIN-0 model on the three generated
datasets.

(80%), a validation set (10%), and a test set (10%), and train the GIN-0 model on each of these
datasets. We set the number of neighborhood aggregation layers to 4 (i. e., shortest path distance
between nodes that interact with each other). To update the node features, we use in each neighbor-
hood aggregation layer a multi-layer perceptron that consists of 2 fully connected layers. Each fully
connected layer is followed by the ReLU activation function, while batch normalization is applied
to the node representations that are produced by the first fully connected layer. To make a predic-
tion, we feed the representation of the node of the complete graph that is annotated with a vector
full of 5s (along with noise) to a fully connected layer. We set the hidden dimension size to 16, 32,
64, and 128 and provide different results for each one of these values. We train the model for 300
epochs and use the model that achieved the lowest loss on the validation set to make predictions for
the test samples. We repeat each experiment 10 times and we report the average accuracies on the
training and test sets. The results are provided in Figure 6. Let v and u be the node of the complete
graph and the node of the tree that interact with each other in the graphs that belong to class 1. We
observe that the model achieves very high levels of performance on both the training and test sets
of the CBT(2 − 3, 1 − 5) dataset. Note that in these graphs, the number of walks w

(4)
v of length

4 that start from node v is not very large since the complete graph consists only of 2 or 3 nodes.
The model also achieves average accuracies close to 1 on the training sets of the other two datasets
(i. e., CBT(5 − 10, 5 − 8) and CBT(5 − 20, 1)), however, on the respective test sets, the accura-
cies are very close to 0.5 which demonstrates that the model cannot capture the interaction between
nodes v and u. The increase in the hidden dimension size does not seem to improve the model’s
performance. In the graphs that are contained in both these datasets, the number of walks w

(4)
v of

length 4 that start from node v is much larger than the respective number in the graphs contained
in the CBT(2 − 3, 1 − 5) dataset. We need to mention that, in contrast to previous studies which
claim that oversquashing is a result of bottlenecks that exist in the graph, our results suggest that it
is mainly because of the large number of walks that originate at the different nodes. This is clearly
evidenced in our empirical findings since no bottlenecks exist between nodes v and u in the graphs
of the CBT(5−20, 1) dataset, but still, GIN-0 was unable to encode their interaction into v’s learned
representation. This result redefines our understanding of oversquashing and its implications in the
context of graph-based learning.

5 CONCLUSION

In this paper, we focused on four well-established GNN models and we investigated what properties
of graphs these models can capture. First, we considered the case where no node features are avail-
able and nodes are annotated with the same features. We found that two of the models capture no
structural properties of graphs since they embed all nodes into the same feature vector. We further
show that nodes with divergent structural characteristics can have similar representations when they
share similar k-length walk patterns. Finally, we showed that oversquashing is not exclusively a
product of bottlenecks within the graph structure. Instead, it predominantly arises when the number
of walks from one node to another is disproportionally small compared to the total walks originating
from the latter, regardless of bottleneck presence.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power
of graph neural networks with random node initialization. arXiv preprint arXiv:2010.01179,
2020.

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. MixHop: Higher-Order Graph Convolutional
Architectures via Sparsified Neighborhood Mixing. In Proceedings of the 36th International
Conference on Machine Learning, pp. 21–29, 2019.

Uri Alon and Eran Yahav. On the Bottleneck of Graph Neural Networks and its Practical Implica-
tions. In 9th International Conference on Learning Representations, 2021.

James Atwood and Don Towsley. Diffusion-Convolutional Neural Networks . In Advances in Neural
Information Processing Systems, volume 29, pp. 1993–2001, 2016.

Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien Adam, and Paul
Honeine. Breaking the limits of message passing graph neural networks. In International Con-
ference on Machine Learning, pp. 599–608. PMLR, 2021.

Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and Pietro
Liò. Directional graph networks. In International Conference on Machine Learning, pp. 748–
758. PMLR, 2021.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation net-
works. arXiv preprint arXiv:2110.02910, 2021.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
Michael Bronstein. Weisfeiler and Lehman Go Cellular: CW Networks. In Advances in Neural
Information Processing Systems, pp. 2625–2640, 2021a.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio, and
Michael Bronstein. Weisfeiler and lehman go topological: Message passing simplicial networks.
In International Conference on Machine Learning, pp. 1026–1037. PMLR, 2021b.

Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Proceedings of
the 5th IEEE International Conference on Data Mining, pp. 74–81, 2005.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving Graph
Neural Network Expressivity via Subgraph Isomorphism Counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657–668, 2022.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral Networks and Locally
connected networks on Graphs. In 2nd International Conference on Learning Representations,
2014.

David Buterez, Jon Paul Janet, Steven J Kiddle, Dino Oglic, and Pietro Liò. Graph neural networks
with adaptive readouts. arXiv preprint arXiv:2211.04952, 2022.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic Graph Convolutional
Neural Networks. In Advances in Neural Information Processing Systems, volume 33, pp. 4868–
4879, 2019.

Michail Chatzianastasis, Johannes F Lutzeyer, George Dasoulas, and Michalis Vazirgiannis. Graph
ordering attention networks. arXiv preprint arXiv:2204.05351, 2022.

Ching-Yao Chuang and Stefanie Jegelka. Tree Mover’s Distance: Bridging Graph Metrics and
Stability of Graph Neural Networks. In Advances in Neural Information Processing Systems,
2022.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph repre-
sentations. Advances in Neural Information Processing Systems, 34:1713–1726, 2021.

10

Under review as a conference paper at ICLR 2024

George Dasoulas, Ludovic Dos Santos, Kevin Scaman, and Aladin Virmaux. Coloring Graph Neural
Networks for Node Disambiguation. In Proceedings of the 29th International Joint Conference
on Artificial Intelligence, pp. 2126–2132, 2020.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks on
Graphs with Fast Localized Spectral Filtering. In Advances in Neural Information Processing
Systems, pp. 3844–3852, 2016.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alan
Aspuru-Guzik, and Ryan P Adams. Convolutional Networks on Graphs for Learning Molecular
Fingerprints. In Advances in Neural Information Processing Systems, volume 28, 2015.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking Graph Neural Networks. arXiv preprint arXiv:2003.00982, 2020.

David Easley and Jon Kleinberg. Networks, crowds, and markets: Reasoning about a highly con-
nected world. Cambridge University Press, 2010.

Claudio Gallicchio and Alessio Micheli. Fast and Deep Graph Neural Networks. In Proceedings of
the 34th AAAI Conference on Artificial Intelligence, pp. 3898–3905, 2020.

Hongyang Gao and Shuiwang Ji. Graph U-Nets. In Proceedings of the 36th International Confer-
ence on Machine Learning, pp. 2083–2092, 2019.

Thomas Gärtner, Peter Flach, and Stefan Wrobel. On Graph Kernels: Hardness Results and Efficient
Alternatives. In Learning Theory and Kernel Machines, pp. 129–143. Springer, 2003.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
Message Passing for Quantum Chemistry. In Proceedings of the 34th International Conference
on Machine Learning, pp. 1263–1272, 2017.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo, Claudio Gutier-
rez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, Axel-Cyrille
Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan Se-
queda, Steffen Staab, and Antoine Zimmermann. Knowledge Graphs. ACM Computing Surveys,
54(4):1–37, 2021.

Yilun Jin, Guojie Song, and Chuan Shi. GraLSP: Graph Neural Networks with Local Structural
Patterns. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, pp. 4361–4368,
2020.

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Marginalized Kernels Between Labeled
Graphs. In Proceedings of the 20th International Conference on Machine Learning, pp. 321–
328, 2003.

Sandra Kiefer. The Weisfeiler-Leman Algorithm: An Exploration of its Powe. ACM SIGLOG News,
7(3):5–27, 2020.

Thomas N Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Net-
works. In 5th International Conference on Learning Representations, 2017.

Nils Kriege and Petra Mutzel. Subgraph Matching Kernels for Attributed Graphs. In Proceedings
of the 29th International Coference on International Conference on Machine Learning, pp. 291–
298, 2012.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and Equivariant Graph
Networks. In 7th International Conference on Learning Representations, 2019.

Alessio Micheli. Neural Network for Graphs: A Contextual Constructive Approachs. IEEE Trans-
actions on Neural Networks, 20(3):498–511, 2009.

11

Under review as a conference paper at ICLR 2024

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-order Graph Neural Net-
works. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, pp. 4602–4609,
2019.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and Leman go sparse: Towards
scalable higher-order graph embeddings. In Advances in Neural Information Processing Systems,
volume 34, 2020.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational Pooling
for Graph Representations. In Proceedings of the 36th International Conference on Machine
Learning, pp. 4663–4673, 2019.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning Convolutional Neural Net-
works for Graphs. In Proceedings of the 33rd International Conference on Machine Learning,
pp. 2014–2023, 2016.

Giannis Nikolentzos and Michalis Vazirgiannis. Random Walk Graph Neural Networks. In Ad-
vances in Neural Information Processing Systems, pp. 16211–16222, 2020.

Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. k-hop graph neural networks.
Neural Networks, 130:195–205, 2020.

Giannis Nikolentzos, Michail Chatzianastasis, and Michalis Vazirgiannis. Weisfeiler and Leman
go Hyperbolic: Learning Distance Preserving Node Representations. In Proceedings of the 26th
International Conference on Artificial Intelligence and Statistics, pp. 1037–1054, 2023a.

Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. Permute Me Softly: Learning
Soft Permutations for Graph Representations. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 45(4):5087–5098, 2023b.

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: random
dropouts increase the expressiveness of graph neural networks. Advances in Neural Information
Processing Systems, 34:21997–22009, 2021.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random Features Strengthen Graph Neural
Networks. In Proceedings of the 2021 SIAM International Conference on Data Mining, pp. 333–
341, 2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The Graph Neural Network Model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Younjoo Seo, Andreas Loukas, and Nathanaël Perraudin. Discriminative structural graph classifica-
tion. arXiv preprint arXiv:1905.13422, 2019.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Ef-
ficient graphlet kernels for large graph comparison. In Proceedings of the 12th International
Conference on Artificial Intelligence and Statistics, pp. 488–495, 2009.

Alessandro Sperduti and Antonina Starita. Supervised Neural Networks for the Classification of
Structures. IEEE Transactions on Neural Networks, 8(3):714–735, 1997.

Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M
Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann, et al.
A deep learning approach to antibiotic discovery. Cell, 180(4):688–702, 2020.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In 9th Inter-
national Conference on Learning Representations, 2021.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph Attention Networks. In 6th International Conference on Learning Representa-
tions, 2018.

12

Under review as a conference paper at ICLR 2024

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Clement Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant graph
neural networks with structural message-passing. Advances in Neural Information Processing
Systems, 33:14143–14155, 2020.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, 2020.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation Learning on Graphs with Jumping Knowledge Networks. In Proceedings
of the 35th International Conference on Machine Learning, pp. 5453–5462, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In 7th International Conference on Learning Representations, 2019.

Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From Local Struc-
tures to Size Generalization in Graph Neural Networks. In Proceedings of the 38th International
Conference on Machine Learning, pp. 11975–11986, 2021.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hi-
erarchical Graph Representation Learning with Differentiable Pooling. In Advances in Neural
Information Processing Systems, volume 32, pp. 4800–4810, 2018.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, pp.
10737–10745, 2021.

Muhan Zhang and Pan Li. Nested Graph Neural Networks. In Advances in Neural Information
Processing Systems, pp. 15734–15747, 2021.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An End-to-End Deep Learning
Architecture for Graph Classification. In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence, pp. 4438–4445, 2018.

A PROOF OF THEOREM 4.1

We assume that all the nodes of the graph are initially annotated with a single feature equal to 1.

A.1 DGCNN

The DGCNN model that updates node representations as follows (Zhang et al., 2018):

h(k)
v = f

(∑
u∈N (v)∪{v}

1

deg(v) + 1
W(k)h(k−1)

u

)
Once again, we assume that all the nodes of the graph are initially annotated with a single feature
equal to 1. We will show by induction that the model maps all nodes to the same vector representa-
tion. We first assume that hk−1

v = hk−1
u = hk−1 for all v, u ∈ V . This is actually true for k = 1

since h0
v = 1 for all v ∈ V . Then, we have that W(k)h

(k−1)
v = W(k)h

(k−1)
u = W(k)h(k−1) for all

v, u ∈ V . We also have that: ∑
u∈N (v)∪{v}

1

deg(v) + 1
= 1

Thus, we finally have that:

h(k)
v = f

(∑
u∈N (v)∪{v}

1

deg(v) + 1
W(k)h(k−1)

u

)
= f

(
W(k)h(k−1)

)

13

Under review as a conference paper at ICLR 2024

for all v ∈ V . We have shown that this variant of the GCN model produces the same represen-
tation for all nodes of all graphs and thus, it cannot capture any structural information about the
neighborhood of each node.

A.2 GAT

The GAT model updates node representations as follows:

h(k)
v = σ

(∑
u∈N (v)

αvuW
(k)h(k−1)

u

)
where αvu is an attention coefficient that indicates the importance of node u’s features to node
v. Once again, we assume that all the nodes of the graph are initially annotated with a single
feature equal to 1. We will show by induction that the model maps all nodes to the same vector
representation. We first assume that hk−1

v = hk−1
u = hk−1 for all v, u ∈ V . This is actually true for

k = 1 since h0
v = 1 for all v ∈ V . Then, we have that W(k)h

(k−1)
v = W(k)h

(k−1)
u = W(k)h(k−1)

for all v, u ∈ V . Since the attention coefficients are normalized, we have:∑
u∈N (v)

αvu = 1

Thus, we finally have that:

h(k)
v = σ

(∑
u∈N (v)

αvuW
(k)h(k−1)

u

)
= σ

(
W(k)h(k−1)

)
for all v ∈ V . We have shown that the GAT model produces the same representation for all nodes
of all graphs and thus, it cannot capture any structural information about the neighborhood of each
node.

A.3 GCN

The GCN model updates node representations as follows:

h(k)
v = ReLU

(∑
u∈N (v)∪{v}

W(k)h
(k−1)
u√

(1 + deg(v))(1 + deg(u))

)
Note that the GCN model (as decribed in the original paper (Kipf & Welling, 2017)) does not per-
form an affine transformation of the node features, but instead a linear transformation. In other
words, no biases are present. Thus, the following holds:

h(k)
v = ReLU

(∑
u∈N (v)∪{v}

W(k)h
(k−1)
u√

(1 + deg(v))(1 + deg(u))

)
= ReLU

(
W(k)

∑
u∈N (v)∪{v}

h
(k−1)
u√

(1 + deg(v))(1 + deg(u))

)
(2)

Let L(k)
f denote the Lipschitz constant associated with the fully connected layer of the k-th neigh-

borhood aggregation layer of GCN. In what follows, we set d(v) = 1 + deg(v) and also denote the
set N (v) ∪ {v} by Ñ (v). Then, we have:

||h(1)
v − h

(1)
v′ ||2 =

∣∣∣∣∣
∣∣∣∣∣ReLU

(∑
u∈Ñ (v)

W(1)h
(0)
u√

d(v)d(u)

)
− ReLU

(∑
u′∈Ñ (v′)

W(1)h
(0)
u′√

d(v′)d(u′)

)∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣ReLU

(
W(1)

∑
u∈Ñ (v)

h
(0)
u√

d(v)d(u)

)
− ReLU

(
W(1)

∑
u′∈Ñ (v′)

h
(0)
u′√

d(v′)d(u′)

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

1√
d(v)d(u)

−
∑

u′∈Ñ (v′)

1√
d(v′)d(u′)

∣∣∣∣∣
∣∣∣∣∣
2

14

Under review as a conference paper at ICLR 2024

= L
(1)
f

∣∣∣∣∣∣w̃(1)
v − w̃

(1)
v′

∣∣∣∣∣∣
2

||h(2)
v − h

(2)
v′ ||2 =

∣∣∣∣∣
∣∣∣∣∣ReLU

(∑
u∈Ñ (v)

W(2)h
(1)
u√

d(v)d(u)

)
− ReLU

(∑
u′∈Ñ (v′)

W(2)h
(1)
u′√

d(v′)d(u′)

)∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣ReLU

(
W(2)

∑
u∈Ñ (v)

h
(1)
u√

d(v)d(u)

)
− ReLU

(
W(2)

∑
u′∈Ñ (v′)

h
(1)
u′√

d(v′)d(u′)

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(2)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

1√
d(v)d(u)

ReLU

(∑
w∈Ñ (u)

W(1)h
(0)
w√

d(u)d(w)

)

−
∑

u′∈Ñ (v′)

1√
d(v′)d(u′)

ReLU

(∑
w′∈Ñ (u′)

W(1)h
(0)
w′√

d(u′)d(w′)

)∣∣∣∣∣
∣∣∣∣∣
2

= L
(2)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

1√
d(v)d(u)

ReLU

(
W(1)

∑
w∈Ñ (u)

h
(0)
w√

d(u)d(w)

)

−
∑

u′∈Ñ (v′)

1√
d(v′)d(u′)

ReLU

(
W(1)

∑
w′∈Ñ (u)

h
(0)
w′√

d(u′)d(w′)

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(2)
f L

(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

1√
d(v)d(u)

∑
w∈Ñ (u)

1√
d(u)d(w)

−
∑

u′∈Ñ (v′)

1√
d(v′)d(u′)

∑
w′∈Ñ (u′)

1√
d(u′)d(w′)

∣∣∣∣∣
∣∣∣∣∣
2

= L
(2)
f L

(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

∑
w∈Ñ (u)

1

d(u)
√

d(v)d(w)
−

∑
u′∈Ñ (v′)

∑
w′∈Ñ (u′)

1

d(u′)
√

d(v′)d(w′)

∣∣∣∣∣
∣∣∣∣∣
2

= L
(2)
f L

(1)
f

∣∣∣∣∣∣w̃(2)
v − w̃

(2)
v′

∣∣∣∣∣∣
2

...

||h(K)
v − h

(K)
v′ ||2 =

∣∣∣∣∣
∣∣∣∣∣ReLU

(∑
u∈Ñ (v)

W(K)h
(K−1)
u√

d(v)d(u)

)
− ReLU

(∑
u′∈Ñ (v′)

W(K)h
(K−1)
u′√

d(v′)d(u′)

)∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣ReLU

(
W(K)

∑
u∈Ñ (v)

h
(K−1)
u√
d(v)d(u)

)
− ReLU

(
W(K)

∑
u′∈Ñ (v′)

h
(K−1)
u′√

d(v′)d(u′)

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(K)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

1√
d(v)d(u)

ReLU

(∑
w∈Ñ (u)

W(K−1)h
(K−2)
w√

d(u)d(w)

)

−
∑

u′∈Ñ (v′)

1√
d(v′)d(u′)

ReLU

(∑
w′∈Ñ (u′)

W(K−1)h
(K−2)
w′√

d(u′)d(w′)

)∣∣∣∣∣
∣∣∣∣∣
2

= L
(K)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

1√
d(v)d(u)

ReLU

(
W(K−1)

∑
w∈Ñ (u)

h
(K−2)
w√

d(u)d(w)

)

−
∑

u′∈Ñ (v′)

1√
d(v′)d(u′)

ReLU

(
W(K−1)

∑
w′∈Ñ (u′)

h
(K−2)
w′√

d(u′)d(w′)

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(K)
f L

(K−1)
f . . . L

(2)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

1√
d(v)d(u)

∑
w∈Ñ (u)

1√
d(u)d(w)

. . .ReLU

(∑
a∈Ñ (b)

W(1)h
(0)
a√

d(b)d(a)

)

15

Under review as a conference paper at ICLR 2024

−
∑

u′∈Ñ (v′)

1√
d(v′)d(u′)

∑
w′∈Ñ (u′)

1√
d(u′)d(w′)

. . .ReLU

(∑
a′∈Ñ (b′)

W(1)h
(0)
a′√

d(b′)d(a′)

)∣∣∣∣∣
∣∣∣∣∣
2

= L
(K)
f L

(K−1)
f . . . L

(2)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

1√
d(v)d(u)

∑
w∈Ñ (u)

1√
d(u)d(w)

. . .ReLU

(
W(1)

∑
a∈Ñ (b)

h
(0)
a√

d(b)d(a)

)

−
∑

u′∈Ñ (v′)

1√
d(v′)d(u′)

∑
w′∈Ñ (u′)

1√
d(u′)d(w′)

. . .ReLU

(
W(1)

∑
a′∈Ñ (b′)

h
(0)
a′√

d(b′)d(a′)

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(K)
f L

(K−1)
f . . . L

(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

1√
d(v)d(u)

∑
w∈Ñ (u)

1√
d(u)d(w)

. . .
∑

a∈Ñ (b)

1√
d(b)d(a)

−
∑

u′∈Ñ (v′)

1√
d(v′)d(u′)

∑
w′∈Ñ (u′)

1√
d(u′)d(w′)

. . .
∑

a′∈Ñ (b′)

1√
d(b′)d(a′)

∣∣∣∣∣
∣∣∣∣∣
2

= L
(K)
f L

(K−1)
f . . . L

(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

∑
w∈Ñ (u)

. . .
∑

a∈Ñ (b)

1

d(u)d(w) . . . d(b)

1√
d(v)d(a)

−
∑

u′∈Ñ (v′)

∑
w′∈Ñ (u′)

. . .
∑

a′∈Ñ (b′)

1

d(u′)d(w′) . . . d(b′)

1√
d(v′)d(a′)

∣∣∣∣∣
∣∣∣∣∣
2

= L
(K)
f L

(K−1)
f . . . L

(1)
f

∣∣∣∣∣∣w̃(K)
v − w̃

(K)
v′

∣∣∣∣∣∣
2

It turns out that the node representations learned at the k-th layer of a GCN model are related to
the normalized number of walks of length k starting from each node. Given a walk of length k
consisting of the following nodes (v1, v2, . . . , vk), the walk is normalized by the product of the
degrees of nodes v2, . . . , vk−1 each increased by 1 and of the square root of the degrees of nodes
v1 and vk also increased by 1. Thus, the contribution of each walk is inversely proportional to the
degrees of the nodes of which the walk is composed.

A.4 GIN-0

The GIN-0 model updates node representations as follows:

h(k)
v = MLP(k)

((
1 + ϵ(k)

)
h(k−1)
v +

∑
u∈N (v)

h(k−1)
u

)
= MLP(k)

(∑
u∈N (v)∪{v}

h(k−1)
u

)
(3)

We make the following assumption.
Assumption A.1. We assume that the biases of the fully-connected layers of all MLPs are equal to
zero vectors.

Our results are also valid when given fully-connected layers of the form fc(x) = Wx + b, the
following holds ||b|| ≪ ||Wx||. This is a reasonable assumption which is common in real-world
machine learning settings. Note that the activation function of the MLPs of the GIN-0 model is
the ReLU function (Xu et al., 2019). Without loss of generality, we assume that the MLPs consist
of two fully-connected layers. Given the above, the update function of the GIN-0 model takes the
following form:

MLP(k)(x) = ReLU

(
W

(k)
2 ReLU

(
W

(k)
1 x

))
(4)

We next prove the following Lemma which will be useful in our analysis.
Lemma A.2. Let MLP denote the model defined in Equation equation 4 above. Let also X =
{x1, . . . ,xM} denote a set of vectors such that given any two vectors from the set, one is a scalar

16

Under review as a conference paper at ICLR 2024

multiple of the other, i. e., if xi,xj ∈ X , then xi = axj where a > 0. Then, the following holds:
M∑
i=1

MLP(xi) = MLP
(M∑

i=1

xi

)

Proof. For a > 0, we have that W(ax) = aWx. Furthermore, we also have that ReLU(ax) =
aReLU(x). Then, we have:

MLP(ax) = ReLU

(
W2 ReLU

(
W1(ax)

))
= aReLU

(
W2 ReLU

(
W1(x)

))
= aMLP(x)

We have assumed that x2 = a2x1, x3 = a3x1, . . ., xM = aMx1. Then, we have that:
M∑
i=1

MLP(xi) = MLP(x1) +

M∑
i=2

MLP(aix1)

= MLP(x1) +

M∑
i=2

aiMLP(x1)

= (1 + a2 + . . .+ aM)MLP(x1)

= MLP
(
(1 + a2 + . . .+ aM)x1

)
= MLP

(M∑
i=1

xi

)

It is trivial to generalize the above Lemma to MLPs that contain more than two layers. We also
prove the following Lemma.
Lemma A.3. Let the MLPs of the GIN-0 model be instances of the MLP of Equation equation 4
above. Let V denote the set of nodes of all graphs and let X (k−1) = {{h(k−1)

1 , . . . ,h
(k−1)
|V| }}

be the multiset of node representations that emerged at the (k − 1)-th layer of the model. Sup-
pose that given any two vectors from this multiset, one is a scalar multiple of the other, i. e., if
h
(k−1)
i ,h

(k−1)
j ∈ X (k−1), then h

(k−1)
i = ah

(k−1)
j where a > 0. Then, the same holds for

the node representations that emerge at the k-th layer of the model, i. e., for any two vectors
h
(k)
i ,h

(k)
j ∈ X (k) = {{h(k)

1 , . . . ,h
(k)
|V|}}, we have that h(k)

i = ah
(k)
j where a > 0.

Proof. For a > 0, we have that W(ax) = aWx. Furthermore, we also have that ReLU(ax) =
aReLU(x). Then, we have:

MLP(ax) = ReLU

(
W2 ReLU

(
W1(ax)

))
= aReLU

(
W2 ReLU

(
W1(x)

))
= aMLP(x)

We have assumed that given some node w ∈ V , then for any node u ∈ V , we have that h(k−1)
u =

auh
(k−1)
w . Then, given any node v ∈ V , its representation is updated as follows:

h(k)
v = MLP(k)

(∑
u∈N (v)∪{v}

h(k−1)
u

)
= MLP(k)

(∑
u∈N (v)∪{v}

auh
(k−1)
w

)

=
∑

u∈N (v)∪{v}

auMLP(k)

(
h(k−1)
w

)

= cMLP(k)

(
h(k−1)
w

)
which concludes the proof.

17

Under review as a conference paper at ICLR 2024

Thus, the above Lemma suggests that for MLPs of the form of Equation equation 4, the node rep-
resentations produced by GIN-0 are either scalar multiples of each other and they point in the same
direction or are all equal to the all-zeros vector.

Let L(k)
f denote the Lipschitz constant associated with the MLP of the k-th neighborhood aggrega-

tion layer of GIN-0. We assume that all the nodes of the graph are initially annotated with a single
feature equal to 1. We also denote the set N (v) ∪ {v} by Ñ (v). Then, we have:

||h(1)
v − h

(1)
v′ ||2 =

∣∣∣∣∣
∣∣∣∣∣MLP(1)

(∑
u∈Ñ (v)

h(0)
u

)
− MLP(1)

(∑
u′∈Ñ (v′)

h
(0)
u′

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

1 −
∑

u′∈Ñ (v′)

1

∣∣∣∣∣
∣∣∣∣∣
2

= L
(1)
f

∣∣∣∣∣∣(deg(v) + 1)− (deg(v′) + 1)
∣∣∣∣∣∣
2

= L
(1)
f

∣∣∣∣∣∣w(1)
v − w

(1)
v′

∣∣∣∣∣∣
2

||h(2)
v − h

(2)
v′ ||2 =

∣∣∣∣∣
∣∣∣∣∣MLP(2)

(∑
u∈Ñ (v)

h(1)
u

)
− MLP(2)

(∑
u′∈Ñ (v′)

h
(1)
u′

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(2)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

MLP(1)

(∑
w∈Ñ (u)

h(0)
w

)
−

∑
u′∈Ñ (v′)

MLP(1)

(∑
w′∈Ñ (u′)

h
(0)
w′

)∣∣∣∣∣
∣∣∣∣∣
2

= L
(2)
f

∣∣∣∣∣
∣∣∣∣∣MLP(1)

(∑
u∈Ñ (v)

∑
w∈Ñ (u)

h(0)
w

)
− MLP(1)

(∑
u′∈Ñ (v′)

∑
w′∈Ñ (u′)

h
(0)
w′

)∣∣∣∣∣
∣∣∣∣∣
2

(Lemma A.2)

≤ L
(2)
f L

(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

∑
w∈Ñ (u)

h(0)
w −

∑
u′∈Ñ (v′)

∑
w′∈Ñ (u′)

h
(0)
w′

∣∣∣∣∣
∣∣∣∣∣
2

= L
(2)
f L

(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

∑
w∈Ñ (u)

1−
∑

u′∈Ñ (v′)

∑
w′∈Ñ (u′)

1

∣∣∣∣∣
∣∣∣∣∣
2

= L
(2)
f L

(1)
f

∣∣∣∣∣∣w(2)
v − w

(2)
v′

∣∣∣∣∣∣
2

...

||h(K)
v − h

(K)
v′ ||2 =

∣∣∣∣∣
∣∣∣∣∣MLP(K)

(∑
u∈Ñ (v)

h(K−1)
u

)
− MLP(K)

(∑
u′∈Ñ (v′)

h
(K−1)
u′

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(K)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

MLP(K−1)

(∑
w∈Ñ (u)

h(K−2)
w

)
−

∑
u′∈Ñ (v′)

MLP(K−1)

(∑
w′∈Ñ (u′)

h
(K−2)
w′

)∣∣∣∣∣
∣∣∣∣∣
2

= L
(K)
f

∣∣∣∣∣
∣∣∣∣∣MLP(K−1)

(∑
u∈Ñ (v)

∑
w∈Ñ (u)

h(K−2)
w

)
− MLP(K−1)

(∑
u′∈Ñ (v′)

∑
w′∈Ñ (u′)

h
(K−2)
w′

)∣∣∣∣∣
∣∣∣∣∣
2

(Lemma A.2)

≤ L
(K)
f L

(K−1)
f . . . L

(2)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

∑
w∈Ñ (u)

. . . MLP(1)

(∑
a∈Ñ (b)

h(0)
a

)

−
∑

u′∈Ñ (v′)

∑
w′∈Ñ (u′)

. . . MLP(1)

(∑
a′∈Ñ (b′)

h
(0)
a′

)∣∣∣∣∣
∣∣∣∣∣
2

18

Under review as a conference paper at ICLR 2024

= L
(K)
f L

(K−1)
f . . . L

(2)
f

∣∣∣∣∣
∣∣∣∣∣MLP(1)

(∑
u∈Ñ (v)

∑
w∈Ñ (u)

. . .
∑

a∈Ñ (b)

h(0)
a

)

− MLP(1)

(∑
u′∈Ñ (v′)

∑
w′∈Ñ (u′)

. . .
∑

a′∈Ñ (b′)

h
(0)
a′

)∣∣∣∣∣
∣∣∣∣∣
2

(Lemma A.2)

≤ L
(K)
f L

(K−1)
f . . . L

(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

∑
w∈Ñ (u)

. . .
∑

a∈Ñ (b)

h(0)
a −

∑
u′∈Ñ (v′)

∑
w′∈Ñ (u′)

. . .
∑

a′∈Ñ (b′)

h
(0)
a′

∣∣∣∣∣
∣∣∣∣∣
2

= L
(K)
f L

(K−1)
f . . . L

(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

∑
w∈Ñ (u)

. . .
∑

a∈Ñ (b)

1−
∑

u′∈Ñ (v′)

∑
w′∈Ñ (u′)

. . .
∑

a′∈Ñ (b′)

1

∣∣∣∣∣
∣∣∣∣∣
2

= L
(K)
f L

(K−1)
f . . . L

(2)
f

∣∣∣∣∣∣w(K)
v − w

(K)
v′

∣∣∣∣∣∣
2

It turns out that for k = 1, deg(v) and deg(u) are equal to the number of walks of length 1
starting from nodes v and u, respectively. Likewise, for k = 2,

∑
w∈N (v)∪{v}

∑
x∈N (w)∪{w} 1

and
∑

w∈N (u)∪{u}
∑

x∈N (w)∪{w} 1 are equal to the number of walks of length 2 starting from
nodes v and u, respectively. And more generally, for k = K,

∑
w∈N (v)∪{v}

∑
x∈N (w)∪{w} . . .∑

z∈N (y)∪{y} 1 and
∑

w∈N (u)∪{u}
∑

x∈N (w)∪{w} . . .
∑

z∈N (y)∪{y} 1 are equal to the number of
walks of length K starting from nodes v and u, respectively. Thus, the representations learned by
GIN-0 are related to the number of walks emanating from each node.

B PROOF OF THEOREM 4.2

We assume that the nodes of all graphs are annotated with d-dimensional feature vectors. No as-
sumptions are made about those vectors. In what follows, we make use of the following inequal-
ity: ||

∑n
i=1 xi||2 ≤

∑n
i=1 ||xi||2 where xi ∈ Rd ∀i ∈ [n]. We will also assume that we know

the solution of the optimization problem of equation 1 and re-arrange the terms such that nodes
that are matched with each other form pairs. For example, let N (v) = {u1, u2, u3, u4, u5} and
N (v′) = {u′

1, u
′
2, u

′
3, u

′
4}. Suppose that nodes u1, u3, u4 are macthed with nodes u′

2, u
′
4, u

′
3, re-

spectively, while the rest of the nodes are left unmatched. Then, we would have that:

d =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

u∈N (v)

h(k)
u −

∑
u′∈N (v′)

h
(k)
u′

∣∣∣∣∣∣
∣∣∣∣∣∣
2

=
∣∣∣∣∣∣(h(k)

u1
− h

(k)
u′
2

)
+
(
h(k)
u3

− h
(k)
u′
4

)
+
(
h(k)
u4

− h
(k)
u′
3

)
+ h(k)

u2
+ h(k)

u5
− h

(k)
u′
1

∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣h(k)

u1
− h

(k)
u′
2

∣∣∣∣∣∣
2
+
∣∣∣∣∣∣h(k)

u3
− h

(k)
u′
4

∣∣∣∣∣∣
2
+
∣∣∣∣∣∣h(k)

u4
− h

(k)
u′
3

∣∣∣∣∣∣
2
+
∣∣∣∣∣∣h(k)

u2

∣∣∣∣∣∣
2
+
∣∣∣∣∣∣h(k)

u5

∣∣∣∣∣∣
2
+
∣∣∣∣∣∣h(k)

u′
1

∣∣∣∣∣∣
2
(5)

B.1 DGCNN

Let L(k)
f denote the Lipschitz constant associated with the fully connected layer of the k-th neigh-

borhood aggregation layer of DGCNN. We set d(v) = 1+deg(v) and also denote the set N (v)∪{v}
by Ñ (v). We also choose the ReLU as the model’s activation function. Then, we have:

||h(1)
v − h

(1)
v′ ||2 =

∣∣∣∣∣
∣∣∣∣∣ReLU

(∑
u∈Ñ (v)

W(1)h
(0)
u

d(v)

)
− ReLU

(∑
u′∈Ñ (v′)

W(1)h
(0)
u′

d(v′)

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

h
(0)
u

d(v)
−

∑
u′∈Ñ (v′)

h
′(0)
u

d(v′)

∣∣∣∣∣
∣∣∣∣∣
2

19

Under review as a conference paper at ICLR 2024

≤ L
(1)
f WD

(
W̄(1)

U (v), W̄(1)
U (v′)

)

||h(2)
v − h

(2)
v′ ||2 =

∣∣∣∣∣
∣∣∣∣∣ReLU

(∑
u∈Ñ (v)

W(2)h
(1)
u

d(v)

)
− ReLU

(∑
u′∈Ñ (v′)

W(2)h
(1)
u′

d(v′)

)∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣ReLU

(
W(2)

∑
u∈Ñ (v)

h
(1)
u

d(v)

)
− ReLU

(
W(2)

∑
u′∈Ñ (v′)

h
(1)
u′

d(v′)

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(2)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

1

d(v)
ReLU

(∑
w∈Ñ (u)

W(1)h
(0)
w

d(u)

)
−

∑
u′∈Ñ (v′)

1

d(v′)
ReLU

(∑
w′∈Ñ (u′)

W(1)h
(0)
w′

d(v′)

)∣∣∣∣∣
∣∣∣∣∣
2

= L
(2)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

ReLU

(
W(1)

∑
w∈Ñ (u)

h
(0)
w

d(v)d(u)

)
−

∑
u′∈Ñ (v′)

ReLU

(
W(1)

∑
w′∈Ñ (u′)

h
(0)
w′

d(v′)d(u′)

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(2)
f

(∣∣∣∣∣
∣∣∣∣∣ReLU

(
W(1)

∑
w∈Ñ (u1)

h
(0)
w

d(v)d(u1)

)
− ReLU

(
W(1)

∑
w′∈Ñ (u′

1)

h
(0)
w′

d(v′)d(u′
1)

)∣∣∣∣∣
∣∣∣∣∣
2

+ . . .

. . .+

∣∣∣∣∣
∣∣∣∣∣ReLU

(
W(1)

∑
w∈Ñ (um)

h
(0)
w

d(v)d(um)

)
− ReLU

(
W(1)

∑
w′∈Ñ (u′

m)

h
(0)
w′

d(v′)d(u′
m)

)∣∣∣∣∣
∣∣∣∣∣
2

)

≤ L
(2)
f

(
L
(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈Ñ (u1)

h
(0)
w

d(v)d(u1)
−

∑
w′∈Ñ (u′

1)

h
(0)
w′

d(v′)d(u′
1)

∣∣∣∣∣
∣∣∣∣∣
2

+ . . .

. . .+ L
(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈Ñ (um)

h
(0)
w

d(v)d(um)
−

∑
w′∈Ñ (u′

m)

h
(0)
w′

d(v′)d(u′
m)

)∣∣∣∣∣
∣∣∣∣∣
2

)

= L
(2)
f L

(1)
f

(∣∣∣∣∣
∣∣∣∣∣ ∑
w∈Ñ (u1)

h
(0)
w

d(v)d(u1)
−

∑
w′∈Ñ (u′

1)

h
(0)
w′

d(v′)d(u′
1)

∣∣∣∣∣
∣∣∣∣∣
2

+ . . .

. . .+

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈Ñ (um)

h
(0)
w

d(v)d(um)
−

∑
w′∈Ñ (u′

m)

h
(0)
w′

d(v′)d(u′
m)

)∣∣∣∣∣
∣∣∣∣∣
2

)

= L
(2)
f L

(1)
f WD

(
W̄(2)

U (v), W̄(2)
U (u)

)
...

||h(K)
v − h

(K)
v′ ||2 =

∣∣∣∣∣
∣∣∣∣∣ReLU

(∑
u∈Ñ (v)

W(K)h
(K−1)
u

d(v)

)
− ReLU

(∑
u′∈Ñ (v′)

W(K)h
(K−1)
u′

d(v′)

)∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣ReLU

(
W(K)

∑
u∈Ñ (v)

h
(K−1)
u

d(v)

)
− ReLU

(
W(K)

∑
u′∈Ñ (v′)

h
(K−1)
u′

d(v′)

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(K)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

1

d(v)
ReLU

(∑
w∈Ñ (u)

W(K−1)h
(K−2)
w

d(u)

)

−
∑

u′∈Ñ (v′)

1

d(v′)
ReLU

(∑
w′∈Ñ (u′)

W(K−1)h
(K−2)
w′

d(u′)

)∣∣∣∣∣
∣∣∣∣∣
2

= L
(K)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

ReLU

(
W(K−1)

∑
w∈Ñ (u)

h
(K−2)
w

d(v)d(u)

)
−
∑

u′∈Ñ (v′)

ReLU

(
W(K−1)

∑
w′∈Ñ (u′)

h
(K−2)
w′

d(v′)d(u′)

)∣∣∣∣∣
∣∣∣∣∣
2

20

Under review as a conference paper at ICLR 2024

≤ L
(K)
f L

(K−1)
f . . . L

(2)
f

(∣∣∣∣∣
∣∣∣∣∣ 1

d(v)d(u) . . .
ReLU

(∑
a∈ ˜N (b)

W(1)h
(0)
a

d(b)

)

− 1

d(v′)d(u′) . . .
ReLU

(∑
a′∈ ˜N (b′)

W(1)h
(0)
a′

d(b′)

)∣∣∣∣∣
∣∣∣∣∣
2

+ . . .

)

= L
(K)
f L

(K−1)
f . . . L

(2)
f

(∣∣∣∣∣
∣∣∣∣∣ReLU

(
W(1)

∑
a∈ ˜N (b)

h
(0)
a

d(v)d(u) . . . d(b)

)

− ReLU

(
W(1)

∑
a′∈ ˜N (b′)

h
(0)
a′

d(v′)d(u′) . . . d(b′)

)∣∣∣∣∣
∣∣∣∣∣
2

+ . . .

)

≤ L
(K)
f L

(K−1)
f . . . L

(2)
f

(
L
(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
a∈ ˜N (b)

h
(0)
a

d(v)d(u) . . . d(b)
−

∑
a′∈ ˜N (b′)

h
(0)
a′

d(v′)d(u′) . . . d(b′)

∣∣∣∣∣
∣∣∣∣∣
2

+ . . .

)

=≤ L
(K)
f L

(K−1)
f . . . L

(1)
f

(∣∣∣∣∣
∣∣∣∣∣ ∑
a∈ ˜N (b)

h
(0)
a

d(v)d(u) . . . d(b)
−

∑
a′∈ ˜N (b′)

h
(0)
a′

d(v′)d(u′) . . . d(b′)

∣∣∣∣∣
∣∣∣∣∣
2

+ . . .

)

= L
(K)
f L

(K−1)
f . . . L

(1)
f WD

(
W̄(K)(v), W̄(K)(v′)

)
Note that in the above formulation, we have assumed that the problem of equation 1 is minimized
when nodes v, u, b and a are matched with nodes v′, u′, b′ and a′, respectively, while for clarity of
presentation, the rest of the matched nodes and the unmatched nodes are omitted.

B.2 GAT

In the previous section, we assumed that DGCNN is applied to an unweighted graph and that the
random walk is uniform, i. e., every neighbor of the current node has an equal chance of being
selected as the next node in the walk. The GAT model instead employs an attention mechanism to
assign weights to the edges of the graph. The weight of the edge from node v to node u is denoted
by αvu and we have that

∑
u∈N (v) αvu = 1. Therefore, the analysis of the previous section also

holds for GAT. Instead of weighting the vector hw of a walk w by the product of the inverse of the
degrees of the nodes along the walk, the vector is weighted by the product of the learned attention
coefficients.

B.3 GCN

Let L(k)
f denote the Lipschitz constant associated with the fully connected layer of the k-th neigh-

borhood aggregation layer of GCN. We set d(v) = 1 + deg(v) and also denote the set N (v) ∪ {v}
by Ñ (v). Then, we have:

||h(1)
v − h

(1)
v′ ||2 =

∣∣∣∣∣
∣∣∣∣∣ReLU

(∑
u∈Ñ (v)

W(1)h
(0)
u√

d(v)d(u)

)
− ReLU

(∑
u′∈Ñ (v′)

W(1)h
(0)
u′√

d(v′)d(u′)

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

h
(0)
u√

d(v)d(u)
−

∑
u′∈Ñ (v′)

h
′(0)
u√

d(v′)d(u′)

∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(1)
f WD

(
W̃(1)

U (v), W̃(1)
U (v′)

)

||h(2)
v − h

(2)
v′ ||2 =

∣∣∣∣∣
∣∣∣∣∣ReLU

(∑
u∈Ñ (v)

W(2)h
(1)
u√

d(v′)d(u′)

)
− ReLU

(∑
u′∈Ñ (v′)

W(2)h
(1)
u′√

d(v′)d(u′)

)∣∣∣∣∣
∣∣∣∣∣
2

21

Under review as a conference paper at ICLR 2024

=

∣∣∣∣∣
∣∣∣∣∣ReLU

(
W(2)

∑
u∈Ñ (v)

h
(1)
u√

d(v)d(u)

)
− ReLU

(
W(2)

∑
u′∈Ñ (v′)

h
(1)
u′√

d(v′)d(u′)

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(2)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

1√
d(v)d(u)

ReLU

(∑
w∈Ñ (u)

W(1)h
(0)
w√

d(u)d(w)

)

−
∑

u′∈Ñ (v′)

1√
d(v)d(u)

ReLU

(∑
w′∈Ñ (u′)

W(1)h
(0)
w′√

d(u′)d(w′)

)∣∣∣∣∣
∣∣∣∣∣
2

= L
(2)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

ReLU

(
W(1)

∑
w∈Ñ (u)

h
(0)
w

d(u)
√
d(v)d(w)

)

−
∑

u′∈Ñ (v′)

ReLU

(
W(1)

∑
w′∈Ñ (u′)

h
(0)
w′

d(u′)
√
d(v′)d(w′)

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(2)
f

(∣∣∣∣∣
∣∣∣∣∣σ
(
W(1)

∑
w∈Ñ (u1)

h
(0)
w

d(u1)
√

d(v)d(w)

)
− σ

(
W(1)

∑
w′∈Ñ (u′

1)

h
(0)
w′

d(u′
1)
√
d(v′)d(w′)

)∣∣∣∣∣
∣∣∣∣∣
2

+ . . .

. . .+

∣∣∣∣∣
∣∣∣∣∣σ
(
W(1)

∑
w∈Ñ (um)

h
(0)
w

d(um)
√

d(v)d(w)

)
− σ

(
W(1)

∑
w′∈Ñ (u′

m)

h
(0)
w′

d(u′
m)
√

d(v′)d(w′)

)∣∣∣∣∣
∣∣∣∣∣
2

)

≤ L
(2)
f

(
L
(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈Ñ (u1)

h
(0)
w

d(u1)
√

d(v)d(w)
−

∑
w′∈Ñ (u′

1)

h
(0)
w′

d(u′
1)
√
d(v′)d(w′)

∣∣∣∣∣
∣∣∣∣∣
2

+ . . .

. . .+ L
(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈Ñ (um)

h
(0)
w

d(um)
√
d(v)d(w)

−
∑

w′∈Ñ (u′
m)

h
(0)
w′

d(u′
m)
√
d(v′)d(w′)

)∣∣∣∣∣
∣∣∣∣∣
2

)

= L
(2)
f L

(1)
f

(∣∣∣∣∣
∣∣∣∣∣ ∑
w∈Ñ (u1)

h
(0)
w

d(u1)
√

d(v)d(w)
−

∑
w′∈Ñ (u′

1)

h
(0)
w′

d(u′
1)
√
d(v′)d(w′)

∣∣∣∣∣
∣∣∣∣∣
2

+ . . .

. . .+

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈Ñ (um)

h
(0)
w

d(um)
√

d(v)d(w)
−

∑
w′∈Ñ (u′

m)

h
(0)
w′

d(u′
m)
√

d(v′)d(w′)

)∣∣∣∣∣
∣∣∣∣∣
2

)

= L
(2)
f L

(1)
f WD

(
W̃(2)(v), W̃(2)(u)

)
...

||h(K)
v − h

(K)
v′ ||2 =

∣∣∣∣∣
∣∣∣∣∣ReLU

(∑
u∈Ñ (v)

W(K)h
(K−1)
u√

d(v)d(u)

)
− ReLU

(∑
u′∈Ñ (v′)

W(K)h
(K−1)
u′√

d(v′)d(u′)

)∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣ReLU

(
W(K)

∑
u∈Ñ (v)

h
(K−1)
u√
d(v)d(u)

)
− ReLU

(
W(K)

∑
u′∈Ñ (v′)

h
(K−1)
u′√

d(v′)d(u′)

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(K)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

1√
d(v)d(u)

ReLU

(∑
w∈Ñ (u)

W(K−1)h
(K−2)
w√

d(u)d(w)

)

−
∑

u′∈Ñ (v′)

1√
d(v′)d(u′)

ReLU

(∑
w′∈Ñ (u′)

W(K−1)h
(K−2)
w′√

d(u′)d(w′)

)∣∣∣∣∣
∣∣∣∣∣
2

= L
(K)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

ReLU

(
W(K−1)

∑
w∈Ñ (u)

h
(K−2)
w

d(u)
√
d(v)d(w)

)

22

Under review as a conference paper at ICLR 2024

−
∑

u′∈Ñ (v′)

ReLU

(
W(K−1)

∑
w′∈Ñ (u′)

h
(K−2)
w′

d(u′)
√
d(v′)d(w′)

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(K)
f L

(K−1)
f . . . L

(2)
f

(∣∣∣∣∣
∣∣∣∣∣ 1

d(u) . . .
√

d(v)d(b)
ReLU

(∑
a∈ ˜N (b)

W(1)h
(0)
a√

d(b)d(a)

)

− 1

d(u′) . . .
√
d(v′)d(b′)

ReLU

(∑
a′∈ ˜N (b′)

W(1)h
(0)
a′√

d(b′)d(a′)

)∣∣∣∣∣
∣∣∣∣∣
2

+ . . .

)

= L
(K)
f L

(K−1)
f . . . L

(2)
f

(∣∣∣∣∣
∣∣∣∣∣ReLU

(
W(1)

∑
a∈ ˜N (b)

h
(0)
a

d(u) . . . d(b)
√
d(v)d(a)

)

− ReLU

(
W(1)

∑
a′∈ ˜N (b′)

h
(0)
a′

d(u′) . . . d(b′)
√
d(v′)d(a′)

)∣∣∣∣∣
∣∣∣∣∣
2

+ . . .

)

≤ L
(K)
f L

(K−1)
f . . . L

(2)
f

(
L
(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
a∈ ˜N (b)

h
(0)
a

d(u) . . . d(b)
√

d(v)d(a)

−
∑

a′∈ ˜N (b′)

h
(0)
a′

d(u′) . . . d(b′)
√
d(v′)d(a′)

∣∣∣∣∣
∣∣∣∣∣
2

+ . . .

)

=≤ L
(K)
f L

(K−1)
f . . . L

(1)
f

(∣∣∣∣∣
∣∣∣∣∣ ∑
a∈ ˜N (b)

h
(0)
a

d(u) . . . d(b)
√

d(v)d(a)

−
∑

a′∈ ˜N (b′)

h
(0)
a′

d(u′) . . . d(b′)
√
d(v′)d(a′)

∣∣∣∣∣
∣∣∣∣∣
2

+ . . .

)

= L
(K)
f L

(K−1)
f . . . L

(1)
f WD

(
W̃(K)(v), W̃(K)(v′)

)

B.4 GIN-0

The GIN-0 model updates node representations as shown in Equation equation 3. We also make
once again Assumption equation A.1.

Let L(k)
f denote the Lipschitz constant associated with the MLP of the k-th neighborhood aggrega-

tion layer of GIN-0. We denote the set N (v) ∪ {v} by Ñ (v). Then, we have:

||h(1)
v − h

(1)
v′ ||2 =

∣∣∣∣∣
∣∣∣∣∣MLP(1)

(∑
u∈Ñ (v)

h(0)
u

)
− MLP(1)

(∑
u′∈Ñ (v′)

h
(0)
u′

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

h(0)
u −

∑
u′∈Ñ (v′)

h
(0)
u′

∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(1)
f

∣∣∣∣∣
∣∣∣∣∣WD

(
W(1)(v),W(1)(v′)

)∣∣∣∣∣
∣∣∣∣∣
2

||h(2)
v − h

(2)
v′ ||2 =

∣∣∣∣∣
∣∣∣∣∣MLP(2)

(∑
w∈Ñ (v)

h(1)
w

)
− MLP(2)

(∑
w∈Ñ (u)

h(1)
w

)∣∣∣∣∣
∣∣∣∣∣
2

23

Under review as a conference paper at ICLR 2024

≤ L
(2)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

MLP(1)

(∑
w∈Ñ (u)

h(0)
w

)
−

∑
u′∈Ñ (v′)

MLP(1)

(∑
w′∈Ñ (u′)

h
(0)
w′

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(2)
f

(∣∣∣∣∣
∣∣∣∣∣MLP(1)

(∑
w∈Ñ (u1)

h(0)
w

)
− MLP(1)

(∑
w′∈Ñ (u′

1)

h
(0)
w′

)∣∣∣∣∣
∣∣∣∣∣
2

+ . . .

+

∣∣∣∣∣
∣∣∣∣∣MLP(1)

(∑
w∈Ñ (um)

h(0)
w

)
− MLP(1)

(∑
w′∈Ñ (u′

m)

h
(0)
w′

)∣∣∣∣∣
∣∣∣∣∣
2

)

≤ L
(2)
f

(
L
(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈Ñ (u1)

h(0)
w −

∑
w′∈Ñ (u′

1)

h
(0)
w′

∣∣∣∣∣
∣∣∣∣∣
2

+ . . .+ L
(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈Ñ (um)

h(0)
x −

∑
w′∈Ñ (u′

m)

h
(0)
w′

∣∣∣∣∣
∣∣∣∣∣
2

)

= L
(2)
f L

(1)
f

(∣∣∣∣∣
∣∣∣∣∣ ∑
w∈Ñ (u1)

h(0)
w −

∑
w′∈Ñ (u′

1)

h
(0)
w′

∣∣∣∣∣
∣∣∣∣∣
2

+ . . .+

∣∣∣∣∣
∣∣∣∣∣ ∑
w∈Ñ (um)

h(0)
w −

∑
w′∈Ñ (u′

m)

h
(0)
w′

∣∣∣∣∣
∣∣∣∣∣
2

)

≤ L
(2)
f L

(1)
f WD

(
W(2)(v),W(2)(v′)

)
...

||h(K)
v − h

(K)
v′ ||2 =

∣∣∣∣∣
∣∣∣∣∣MLP(K)

(∑
u∈Ñ (v)

h(K−1)
u

)
− MLP(K)

(∑
u′∈Ñ (v′)

h
(K−1)
u′

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(K)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
u∈Ñ (v)

MLP(K−1)

(∑
w∈Ñ (u)

h(K−2)
w

)
−

∑
u′∈Ñ (v′)

MLP(K−1)

(∑
w′∈Ñ (u′)

h
(K−2)
w′

)∣∣∣∣∣
∣∣∣∣∣
2

≤ L
(K)
f L

(K−1)
f . . . L

(2)
f

(∣∣∣∣∣
∣∣∣∣∣MLP(1)

(∑
a∈ ˜N (b)

h(0)
a

)
− MLP(1)

(∑
a′∈ ˜N (b′)

h
(0)
a′

)∣∣∣∣∣
∣∣∣∣∣
2

+ . . .

)

≤ L
(K)
f L

(K−1)
f . . . L

(2)
f

(
L
(1)
f

∣∣∣∣∣
∣∣∣∣∣ ∑
a∈ ˜N (b)

h(0)
a −

∑
a′∈ ˜N (b′)

h
(0)
a′

∣∣∣∣∣
∣∣∣∣∣
2

+ . . .

)

=≤ L
(K)
f L

(K−1)
f . . . L

(1)
f

(∣∣∣∣∣
∣∣∣∣∣ ∑
a∈ ˜N (b)

h(0)
a −

∑
a′∈ ˜N (b′)

h
(0)
a′

∣∣∣∣∣
∣∣∣∣∣
2

+ . . .

)

= L
(K)
f L

(K−1)
f . . . L

(1)
f WD

(
W(K)(v),W(K)(v′)

)

24

	Introduction
	Related Work
	Preliminaries
	Notation
	Message Passing Neural Networks

	What Do MPNNs Actually Learn?
	Can MPNNs Capture the Structure of Graphs?
	What is the Role of the Initial Node Features?
	Link to Oversquashing

	Conclusion
	Proof of Theorem 4.1
	DGCNN
	GAT
	GCN
	GIN-0

	Proof of Theorem 4.2
	DGCNN
	GAT
	GCN
	GIN-0

