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Abstract
Adapting pretrained diffusion models to new ob-
jectives at inference remains an open problem
in generative modeling. Existing steering meth-
ods yield biased estimates at high noise levels
due to inaccurate value estimation, and discard
information from prior computations, leading to
inefficient use of compute. We address these lim-
itations by casting inference-time alignment as
a search problem that reuses past computations.
Inspired by Monte Carlo Tree Search, we pro-
pose Diffusion Tree Sampling (DTS), a novel
inference-time alignment approach that samples
from the reward-aligned target density by prop-
agating terminal rewards back through the diffu-
sion chain and iteratively refining value estimates
with each additional generation. DTS recovers
exact samples from the reward-weighted target,
while its greedy variant, Diffusion Tree Search
(DTS⋆), efficiently finds high-reward samples.
On MNIST and CIFAR-10 class-conditional gen-
eration, DTS matches best-performing baseline
with 5× less compute. In text-to-image and lan-
guage completion tasks, DTS⋆ matches best-of-N
with 2× less compute. Our method is an anytime
algorithm, which turns additional compute budget
into better samples, providing a scalable frame-
work for inference-time diffusion alignment.

1. Introduction

Diffusion models have become a dominant framework for
generative modeling, achieving state-of-the-art results in
image synthesis, molecular conformer generation, and text
generation (Ho et al., 2020; Hoogeboom et al., 2022; Sa-
hoo et al., 2024). Yet guiding a pretrained diffusion model
to satisfy new objectives at inference—without costly re-
training—remains an open challenge, as existing steering
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Figure 1: Sample text-image pairs using Stable Diffusion
v1.5 (Rombach et al., 2022) and ImageReward (Xu et al.,
2023) as the guiding function, with generated samples
picked at random for each method and prompt.

approaches struggle to adapt dynamically to user-defined
rewards (Uehara et al., 2025).

Most alignment tasks can be cast as drawing samples from
the diffusion prior weighted by exponentiated rewards. How-
ever, since rewards are only observed at the final denois-
ing step, inference-time alignment must guide intermediate
states based on unseen terminal feedback. This delayed-
reward setting poses a credit-assignment problem (Minsky,
1961): how can we estimate the value of noisy states using
rewards only observed at the end?

Prior methods approximate terminal values in different
ways: gradient-based guidance perturbs denoising via re-
ward gradients (Dhariwal & Nichol, 2021), sequential
Monte Carlo (SMC) maintains particle sets and resamples
based on predicted rewards (Wu et al., 2023a), and recent
search schemes perform local greedy trajectory optimization
(Li et al., 2024). All rely on intermediate reward proxies,
which biases decision-making at high noise levels.

Beyond value estimation, effective inference-time alignment
should also leverage information from past rollouts to refine
future samples. This raises two core questions: (i) how to
obtain low-bias, low-variance value estimates under delayed
feedback; and (ii) how to systematically reuse computations
across rollouts in a scalable sampling process?

Monte Carlo Tree Search (MCTS), a classical reinforcement
learning algorithm, addresses both of these issues for se-
quential decision-making (Browne et al., 2012). We observe
that during denoising, the model acts can be viewed as a de-
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terministic policy, while the Gaussian reverse step serves as
a stochastic environment transition. This suggests applying
tree search to inference-time diffusion alignment.

We introduce Diffusion Tree Sampling (DTS), a novel
inference-time alignment method that casts the denoising
process as a finite-horizon tree, where similar to MCTS,
rollouts are used to continuously improve value estimates
for intermediate noisy states. For applications requiring op-
timization rather than sampling, we propose a search variant
Diffusion Tree Search (DTS⋆), that identifies the modes
within high-volume regions of the target density.

Our contributions can be summarized as follows:
• We formulate inference-time alignment of diffusion

models as a tree search problem for sampling from
the reward-aligned distribution or optimizing for high
reward samples.

• We develop a general tree-based algorithm that yields
asymptotically exact samples from the target distribu-
tion in the limit of infinite rollouts.

• We demonstrate that DTS significantly reduces bias
and variance in value estimation compared to common
approximations used by many existing methods.

• We show that DTS and DTS⋆ scale more favorably
compared to leading baselines and match their perfor-
mance with up to 5× less compute on class-conditional
image generation, and 2× less compute on text-to-
image alignment and language completion tasks.

2. Background and Problem Setting

Diffusion models (Ho et al., 2020; Song et al., 2021) define
a generative process via a Markov chain that gradually adds
noise to data x0 ∼ pdata(x),

xt =
√
αt xt−1 +

√
1− αt ϵ, ϵ ∼ N (0, I),

so that at t = T , xT ∼ N (0, I). A learned reverse pro-
cess then denoises samples sequentially with the following
transition and join density:

pθ(xt−1 | xt) = N
(
xt−1; µθ(xt, t), σ

2
t I
)
,

pθ(x0) = p(xT )

T∏
t=1

pθ(xt−1 | xt).

To steer a pretrained model toward desirable outputs, we
assume a reward function r(x) and define the target density

π∗(x) ∝ pθ(x) exp
(
r(x)

)
, (1)

from which we wish either to sample or to identify high-
reward modes. Since r(x) is only observed at the end of
the denoising chain, guiding intermediate steps requires
estimating, for each noisy state xt, the expected terminal
reward under the reverse model.

Figure 2: One-step prediction using Tweedie’s formula for
different time steps, along with average mean squared error
with the ground truth data samples. Close to t = 0, the
predictions are fairly accurate, but towards the maximum
timestep T = 99, they devolve into random predictions.

We can view this as a finite-horizon Markov decision pro-
cess, with the denoising network acting like a policy. The
corresponding soft value function

Vt(xt) = logEpθ(x0:t−1|xt)

[
exp
(
r(x0)

)]
Vt(xt) =

1

λ
logEpθ(xt−1|xt) [exp (λVt−1(xt−1))] , (2)

satisfies a soft-Bellman recursion analogous to RL, and the
Boltzmann density corresponding to this soft value defines
the optimal sampling policy at any timestep t (Ziebart et al.,
2008; Haarnoja et al., 2017).

Existing inference-time alignment methods approximate
Vt(xt) in two stages: first by Jensen’s inequality,

Vt(xt) ≈ Epθ(x0:t−1|xt)[ r(x0) ],

and then by a one-step proxy E[ r(x0) ] ≈ r
(
x̂0

)
, where

x̂0 = 1√
αt

(
xt + (1− ᾱt)∇xt log pt(xt)

)
,

where x̂0 is the obtained using Tweedie’s formula (Efron,
2011; Chung et al., 2023). In practice, this single-step esti-
mate is accurate at low noise but degrades to near-random
at high t, biasing guidance (see Figure 2).

Moreover, gradient guidance (Chung et al., 2023; Song et al.,
2023), SMC (Wu et al., 2023a; Kim et al., 2025), or search
methods (Li et al., 2024; 2025; Yoon et al., 2025) treat
each sample run independently, discarding all intermediate
evaluations. Consequently, they can only scale by increas-
ing particle or rollout counts, without any mechanism to
reuse past computations to correct value-estimate errors or
improve sample quality over time.

3. Diffusion Tree Sampling and Search

The pitfalls above suggest two complementary desiderata
for an effective inference–time sampler:

(D1) Use information from low-noise timesteps, where
the reward signal is reliable, to refine decisions made
at high-noise timesteps.

(D2) Reuse information from previous trajectories so that
additional compute improves sample quality – a prop-
erty characteristic of an anytime algorithm.
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3.1. Denoising tree

The Markov property of the reverse diffusion chain naturally
induces a finite horizon tree in Rd, where d is the dimen-
sionality of the space over which we are diffusing. Here, the
nodes at depth t represent noisy states xt and the edges rep-
resent a denoising step. Each node xt can be stochastically
denoised into multiple children xt−1 ∼ pθ(· | xt).

This framing allows us to track information across multiple
denoising trajectories, including estimates of the soft value
function, which helps with global credit assignment. The
tree structure also gives us the flexibility to sample from the
target density or search for the highest reward sample with
minimal changes to the underlying algorithm.

3.2. Tree-based sampling

Similar to MCTS, we construct a tree T , where nodes repre-
sent states xt and edges represent transitions pθ(xt−1 | xt)
following the base diffusion model. Each node maintains
the current state and timestep (xt, t), an estimate of the soft
value function v̂(xt), and the visit count N(xt). Since we
do not have a fixed starting state, we introduce a dummy
state as the root xT+1 that transitions to the prior in our dif-
fusion model – i.e., p(xT | xT+1) = N (0, I). Additionally,
we use C(xt) to denote the set of children of node xt.

The goal is to expand this tree while improving value esti-
mates as we expand it, so that it can be used for approximate
sampling from the target distribution at any time during the
construction. The resulting tree sampling process provably
samples from the target distribution π∗ in the limit of infi-
nite rollouts. The tree-building procedure of DTS repeats
the following steps iteratively:

1. Selection. Starting from the root x0, sample a child
xt−1 ∈ C(xt) from Boltzmann distribution of the val-
ues ∝ exp (λ v̂(xt−1)) recursively until either an unex-
panded node is reached or t = 0.

2. Expansion. If we reach a node xt such that the number
of children is less than the maximum allowed value and
t > 0, we create a new child node xt−1 ∼ pθ(· | xt)
and initialize v̂(xt−1) = 0, N(xt−1) = 1.

3. Rollout. From the newly created node, we perform a
rollout till terminal states x0 by recursively sampling
from pθ(· | xt′) for t′ = t − 1, . . . , 0. An important
distinction from traditional MCTS is that we add the
rollout path to T .

4. Backup. Evaluate the terminal node using the reward
function v̂(x0) = r(x0) and use soft Bellman equation
(Equation (2)) to update parent node values using the
children node values recursively for t = 0, . . . , T . The
visit counts for all nodes in the path are also updated.

Each traversal from the root to the backup of the value func-
tion constitutes one tree-building iteration. For sampling
from T , we simply start from the root and perform selection
steps until we reach a terminal node. A formal algorithm is
provided in Appendix F and design choices in Appendix G.
We now show that DTS is asymptotically consistent, i.e., it
samples from the correct distribution in the limit of infinite
iterations. The proof is provided in Appendix E.

Proposition 3.1 (Asymptotic consistency). Let r be
bounded and λ > 0, then DTS produces a sequence of ter-
minal states whose empirical distribution converges to the
optimal policy π∗ as the number of tree iterations M →∞.

4. Experiments

4.1. Class-conditional posterior sampling

We evaluate DTS on the task of sampling from a class-
conditioned posterior distribution p(x | c) ∝ pθ(x)p(c | x)
where pθ(x) is a pretrained unconditional diffusion model
and p(c | x) is a classifier. This would correspond to setting
r(x) = log p(c | x) in Equation (1).

Figure 3: Samples generated from the CIFAR-10 (upper left) and MNIST (lower left) base diffusion models, and posterior
samples using different methods at 106 NFEs. Gradient-based guidance like DPS can be unstable leading to samples that
lie outside the support of the prior. SMC-based methods struggle to accurately sample from multi-modal distributions –
for MNIST even digits, TDS oversamples from the digit two and undersamples from the digit four, and for CIFAR-10 car,
both SMC and TDS suffer from mode collapse. (Right) FID versus number of function evaluations for different methods
on MNIST single digit and CIFAR-10 single class, averaged over all 10 classes. All methods were evaluated with 5000
generated samples per class.
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Setting. We use MNIST and CIFAR-10 datasets and train
prior unconditional diffusion model from scratch on MNIST
and use an off-the-shelf model1 for CIFAR-10. For MNIST,
we consider two settings: sampling from individual digits,
and sampling from even/odd digits. The latter is a multi-
modal posterior with r(x) = max{i=0,2,4,6,8} log p(c = i |
x) for even digits and similarly for odd. For CIFAR-10, we
sample from individual classes.

We compare the performance of DTS with DPS (Chung
et al., 2023), SMC/FK (Singhal et al., 2025), TDS (Wu
et al., 2023a) and DAS (Kim et al., 2025). DPS, TDS, and
DAS use reward gradients, while SMC/FK is derivative-
free. We report Fréchet Inception Distance (FID) – that
compare generated samples with ground truth samples from
the dataset. Additional metrics are in Appendix J.1.

Results. Figure 3 shows that DTS achieves very low FID
across different NFEs and has better scaling properties with
more compute compared to some of the baselines. We
provide additional results in Appendix J.1 and Table 2. In all
three settings, DTS achieves the lowest FID and CMMD by
a considerable margin, indicating it closely matches the true
posterior. TDS and SMC in particular show characteristics
of mode collapse with very high average rewards and low
diversity, whereas DPS often generates samples outside the
support of the base model.

4.2. Text-to-image generation

Figure 4: Samples generated using SD-v1.5 for simple ani-
mal prompts and Aesthetic Score as the reward at 50k NFEs.
(Left) For each prompt, DTS⋆ faithfully matches the prompt
while achieving high reward, whereas SMC samples score
higher but visibly over-optimize. Numbers in the corner
show aesthetic scores. (Right) Maximum aesthetic score
vs. compute (NFEs) per prompt, averaged over 45 common
animal prompts, and maximum ImageReward vs. compute
(NFEs) per prompts, averaged over 200 prompts from Draw-
Bench. Additional samples in Appendix J.2..

Setting. We use Stable Diffusion v1.5 (Rombach et al.,
2022), a latent diffusion model, as the prior over 512× 512
images x ∼ pθ(x | y) where y denotes the text prompt. We
evaluate on two different settings: (a) DrawBench (Saharia
et al., 2022), comprising of 200 prompts, with ImageReward
(Xu et al., 2023) r(x,y) that encodes prompt accuracy and
human preferences; and (b) 45 common animals as prompts

1https://huggingface.co/google/ddpm-cifar10-32

following Black et al. (2024), with the LAION aesthetics
predictor (Schuhmann, 2022) r(x) that encodes aesthetic
quality of an image but does not check for prompt accuracy.

Results. A strong baseline for high-reward generation is
best-of-N , which draws N samples from the base model and
keeps the one with the highest reward. SMC has also been
applied to this problem (Singhal et al., 2025), but (a) as dis-
cussed in Section 2, it relies on inaccurate value estimates,
and (b) Section 4.1 shows that it often collapses onto narrow
modes. Because DTS⋆ backs up soft values, each node
aggregates posterior mass rather than peak density. Conse-
quently, a reward spike that lies in a vanishing-probability
region of the prior contributes negligibly to the value esti-
mates (cf. Section 2). In our experiments, DTS⋆ delivers
higher-reward samples than best-of-N without reward over-
optimization, as demonstrated in Figures 1 and 4 and scales
more favorably with compute.

4.3. Text generation

Figure 5: Samples generated by MDLM using infini-
gram perplexity as reward. (Left) Typical samples gen-
erated by DTS⋆ and FK/SMC for the prompt “The city”
at 131k NFEs. FK/SMC seems more prone to reward-
hacking by producing repetitive outputs. (Right) Max infini-
gram reward and distinct trigrams vs. compute (NFEs).
DTS⋆ obtains the highest reward while avoiding reward-
hacking like FK/SMC. Additional samples in Appendix J.3.

Setting. We evaluate DTS⋆ on text generation using
MDLM (Sahoo et al., 2024), a discrete diffusion language
model. We generate three text completions of length 64
for each of 15 prompts introduced by Han et al. (2023).
As a reward function, we use the perplexity assigned by
Infini-gram (Liu et al., 2025), which is more robust against
reward hacking than alternative approaches (Singhal et al.,
2025). We also report diversity by computing the number of
distinct trigrams in each generated sequence. For decoding,
we find that using DTS⋆ with max-backup (λ→∞) yields
the best performance. We compare our method against two
baselines: FK/SMC (Singhal et al., 2025) and best-of-N .

Results. As shown in Figure 5, DTS⋆ consistently
achieves the highest rewards as the number of function eval-
uations (NFEs) increases. Notably, reward functions in text
domains are particularly susceptible to over-optimization,
often resulting in repetitive outputs, observed with FK/SMC.
By contrast, DTS⋆ produces outputs that have both high
rewards and high diversity.
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Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Related work

Gradient-based guidance. One way to sample from the optimal policy π∗ is to use the first-order Taylor ex-
pansion of Vt−1 around the pretrained mean µθ(xt, t). This yields the gradient-based denoising step x̃t−1 ∼
N
(
µθ(xt, t) + λσ2

t ∇xVt−1(xt−1), σ
2
t I
)
. This can be considered a form of classifier guidance (Dhariwal & Nichol,

2021) and is used in many proposed inference-time steering methods (Chung et al., 2023; Bansal et al., 2023; He et al.,
2024). The gradient approximation can be improved by using Monte Carlo samples for estimation (Song et al., 2023).

Sequential Monte Carlo. Particle-based methods are another very popular approach, where a population of samples is
maintained to approximately sample from the desired distribution. Sequential Monte Carlo (SMC) (Del Moral et al., 2006)
uses potential functions, which usually approximate the soft value function, to assign weights to particles and resample them
at every step. Different variations of SMC have been proposed for diffusion model alignment (Wu et al., 2023a; Trippe et al.,
2023; Cardoso et al., 2024; Dou & Song, 2024; Kim et al., 2025). Classical SMC guarantees exact sampling in the limit of
infinite particles and exact value estimation. In practice, however, the repeated sampling procedure can reduce diversity due
to weight variance and inaccurate value estimates.

Search-based methods. Recently, there has been a growing interest in using search-based methods to align diffusion
models (Ma et al., 2025). Most of these methods propose doing a local search (Li et al., 2024; 2025) by obtaining multiple
denoising candidates at each step and selecting the best one based on their value. More recently, tree search has been
combined with best-of-N (Zhang et al., 2025), and an MCTS-based approach (Yoon et al., 2025) has been applied in the
specific context of diffusion forcing (Chen et al., 2024) over sequences for planning. However, these methods either do
not use an explicit backup mechanism, resulting in a limited local search(Li et al., 2024; 2025; Zhang et al., 2025; Ma
et al., 2025), or they rely on inaccurate value estimates (Yoon et al., 2025). DTS , on the other hand, performs global credit
assignment using all trajectories for asymptotically exact sampling.

B. Illustrative experiments in 2D

In this section, we perform experiments on simple 2D settings to answer the following questions:

• Does DTS sample accurately from the target distribution?
• Does reward backup in DTS result in more accurate value estimates (desideratum D1)?
• Does sample quality of DTS improve with more inference-time compute (desideratum D2)?

Setting. We compare against several inference-time steering methods including some which were originally proposed for
posterior sampling in inverse problems, and adapt them to the reward-guidance setting: (1) DPS-RG (our reward-guided
version of DPS (Chung et al., 2023)) = gradient-based guidance only, (2) SMC (Singhal et al., 2025), (3) TDS-RG (reward-
guided version of TDS (Wu et al., 2023a)) = SMC + gradient guidance, (4) DAS (Kim et al., 2025) = SMC + gradient
guidance + tempering. We also implement a version of SMC, which we call SMC-Rollout, where the values are estimated
via one full DDIM (Song et al., 2020) rollout. For fair comparison, we benchmark all methods with respect to number of
function evaluations (NFEs) of the diffusion model.

Figure 6: Samples from the prior p(x0), target p(x0) exp(r(x0)) /Z and different sampling methods at 106 NFEs. (Top)
The prior is an equal-weighted mixture of Gaussians, and the reward function distributes mass unevenly. (Bottom) The
prior has support on alternate square regions in a checkerboard pattern, and the reward function r(x, y) = −0.5(x2 + y2) is
negative distance from the origin.

9



Diffusion Tree Sampling

Figure 7: Maximum mean discrepancy (MMD) between generated samples and target ground truth samples as a function
of number of function evaluations of the prior diffusion model (left). Bias and variance of value estimates for different
approaches (right).

Results. Figure 6 plots the samples obtained using different methods for two different settings. In both cases,
DTS approximates the ground truth target density more accurately, with other methods distributing mass inaccurately
to different areas of the support. In particular, gradient-based methods like DPS-RG and TDS-RG suffer from instability and
require gradient clipping to stabilize denoising steps. We present the plots of maximum mean discrepancy (MMD), which is
a kernel-based statistical test used to determine whether two distributions are the same. From Figure 7, we observe that
DTS scales more efficiently compared to other methods as the number of function evaluations (NFEs) of the pre-trained
diffusion model increases. This empirically validates that the sample quality of DTS improves with more compute, satisfying
desideratum D2.

Bias-variance analysis of value estimates. We estimate ground truth soft value estimates at different timesteps by
performing 1000 rollouts from noisy states using the base model and then taking log-sum-exp of the rewards. We then
compute the relative mean squared error with the value estimates obtained using different approximations and decompose
it into bias and variance. Figure 7 shows this for different diffusion timesteps using DTS , Tweedie’s formula (SMC +
variants), and a single full DDIM rollout (SMC-Rollout). We see that backing up reward information greatly reduces the
bias and variance, especially for higher timesteps.

C. Sequential Monte Carlo for diffusion sampling

Many existing methods for inference-time diffusion alignment (Wu et al., 2023a; Trippe et al., 2023; Cardoso et al., 2024;
Dou & Song, 2024; Kim et al., 2025) apply sequential Monte Carlo (SMC) (Del Moral et al., 2006) to the reverse diffusion
chain. SMC maintains a population of K particles to approximately sample from a sequence of intermediate targets
{πt(xt:T )}0t=T , culminating in the desired π∗(x0) ∝ pθ(x0) exp(λr(x0)). In diffusion alignment, one usually sets

πt(xt:T ) ∝ p(xT )

T∏
s=t+1

pθ(xs−1 | xs) exp (λ v̂t(xt)) , (3)

where v̂t is a potential approximating the soft value Vt. Each SMC iteration for t = T, T − 1, . . . , 0 has three steps:

1. Propagation. Sample particles x̃(k)
t−1 ∼ qt( · | x(k)

t ), for k = 1, . . . ,K where qt is the proposal distribution, often set
to be the diffusion transition pθ(· | xt).

2. Weighting. Assign importance weights

w
(k)
t−1 =

pθ(x̃
(k)
t−1 | x

(k)
t )

qt(x̃
(k)
t−1 | x

(k)
t )︸ ︷︷ ︸

importance ratio

× exp
(
λ v̂t−1(x̃

(k)
t−1)

)
. (4)

The first factor corrects for using a proposal and the second tilts weights toward high estimated value.
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3. Resampling. Resample {x̃(k)
t−1}Kk=1 proportional to {w(k)

t−1}Kk=1 to obtain an equally weighted particle set {x(k)
t−1}Kk=1

for the next iteration.

Classical SMC guarantees that, as K→∞ and if the potentials are exact, the empirical measure
∑

k w
(k)
0 δ

(
x
(k)
0

)
converges

to the target distribution π∗, where δ(x) is the Dirac delta at x. In practice, however, this repeated sampling procedure can
reduce the diversity of samples, especially when the weights have high variance. This results in an effective sample size
which is much lower than K.

Another major issue when applying SMC to diffusion models is that estimating the soft value function Vt is not straightfor-
ward and errors in the approximation can lead to inaccurate sampling. The next subsection discusses the value-estimation
problems in more detail.

D. Connection with Generative Flow Networks

Diffusion Tree Sampling can be viewed as an on-the-fly, non-parametric realization of the ideas behind Generative Flow
Network (GFlowNet) (Bengio et al., 2021). Both frameworks ultimately seek to sample from an unnormalised density:

π∗(x) =
1

Z
f(x), Z =

∫
f(x) dx,

but they do so with different machinery and at different points in the learning–inference pipeline. GFlowNets define a
probability over complete paths τ = (s0→· · ·→sT = x) through

Pθ(τ) =

T∏
t=1

Pθ(st | st−1),

and train the parameters θ so that the forward flow leaving every non-terminal state equals the backward flow entering it plus
injected terminal reward r(x) = log f(x). In log form, this constraint is a soft Bellman equation with F (s) the learned
log-flow function:

F (s) =
1

λ
log

∑
s′∈Child(s)

Pθ(s
′ | s) exp (λF (s′)) .

DTS satisfies the same soft Bellman recursion (cf. Equation (2)), but does so without learning parameters. During tree
construction, DTS estimates the soft value Vt by Monte-Carlo log-sum-exp backups; selection then samples children
proportionally to exp(λv̂t−1), where v̂t−1 is the estimated soft value. Repeated roll-outs make the empirical terminal
distribution converge to the reward-tilted posterior π∗(x0) ∝ pθ(x0) exp (λr(x0)), just as a perfectly trained GFlowNet
would.

The key differences between DTS and GFlowNets are summarized below.

• Proposal. DTS uses a fixed, pretrained diffusion pθ as a proposal, whereas GFlowNets learn the forward policy Pθ.
• Learning vs. search. DTS performs pure inference without updating any parameters, whereas GFlowNets learn the

parameters of the sampler to amortize future sampling.
• Computational regime. DTS excels when one has a strong prior and large inference budget for new rewards;

GFlowNets shine when the reward is fixed and repeated queries amortize the training cost.

Because DTS is a search procedure, it is ideal for adapting a pretrained diffusion model to different unseen reward functions
without retraining. GFlowNets, in contrast, learn a fast parametric sampler for a single reward.

E. Theoretical proofs

E.1. Derivation of soft Bellman equation and optimal policy

We derive the recursive relation satisfied by the soft value function in Section 2 as well as the optimal policy for completeness.
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Soft value function. This recursive relation is analogous to the soft Bellman equation in maximum entropy RL (Ziebart
et al., 2008; Haarnoja et al., 2017). Starting from the definition of Vt(xt):

Vt(xt) =
1

λ
logEpθ(x0:t−1|xt) [exp (λr(x0))]

=
1

λ
log

∫
p(x0,x1, . . . ,xt−1|xt) exp (λr(x0)) dx0dx1 . . . dxt−1

=
1

λ
log

∫
p(x0,x1, . . .xt−2|xt−1) p(xt−1|xt) exp (λr(x0)) dx0dx1 . . . dxt−1

=
1

λ
log

∫
p(xt−1|xt)

(∫
p(x0,x1, . . .xt−2|xt−1) exp (λr(x0)) dx0dx1 . . . dxt−2

)
︸ ︷︷ ︸

=exp(λV (xt−1))

dxt−1

=
1

λ
log

∫
p(xt−1|xt) exp (λV (xt−1)) dxt−1 =

1

λ
logEp(xt−1|xt) [exp (λV (xt−1))] .

The above relation combined with the terminal condition V0(x0) = r(x0) gives Equation (2).

Optimal policy. The joint target density over the full chain (x0, . . . ,xt−1,xt) is given by:

π∗(x0, . . . ,xt−1,xt) =
1

Z
pθ(x0, . . . ,xt−1,xt) exp (λr(x0)) ,

where Z represent the normalization constant of this joint density.

The marginal joint density of (xt,xt−1) under π∗ is:

π∗(xt,xt−1) =
1

Z

∫
pθ(x0, . . . ,xt−1,xt) exp (λr(x0)) dx0 . . . dxt−2

=
1

Z
pθ(xt) pθ(xt−1 | xt)

(∫
pθ(x0, . . . ,xt−2 | xt−1) exp (λr(x0)) dx0 . . . dxt−2

)
=

1

Z
pθ(xt) pθ(xt−1 | xt) exp (λV (xt−1))

Similarly, the marginal density of xt under π∗ is:

π∗(xt) =
1

Z
pθ(xt) exp (λV (xt))

By dividing these two marginals, we get the transitions under the optimal policy:

π∗(xt−1 | xt) =
π∗(xt,xt−1)

π∗(xt)
=

pθ(xt−1 | xt) exp (λV (xt−1))

exp (λV (xt))

=
pθ(xt−1 | xt) exp (λVt−1(xt−1))∫

pθ(xt−1 | xt) exp (λVt−1(xt−1)) dxt−1
. (5)

The above relation gives the optimal policy.

E.2. Proof of Proposition 3.1

Proposition E.1 (Asymptotic consistency). Let r be bounded and λ > 0, then DTS produces a sequence of terminal states
whose empirical distribution converges to the optimal policy π∗ as the number of tree iterations M →∞.

Proof. We use p(· | xt) to denote a general proposal distribution. For application to diffusion alignment, this would
correspond to transitions under the pretrained model pθ(· | xt). Additionally, we use q̂(· | xt) to denote the transition
density of DTS .
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Step 1: Transition probability under DTS . Recall that under DTS , given a node xt, we create each child by sampling
from the base model p(· | xt). During tree traversal, we select the next state xt−1 proportional to the exponentiated soft
value function. Thus, the transition probability of DTS from xt to xt−1 is given by:

q̂(xt−1 | xt) =
p(xt−1 | xt) exp (λv̂(xt−1))∫

p(xt−1 | xt) exp (λv̂(xt−1)) dxt−1
=

p(xt−1 | xt) exp (λv̂(xt−1))

exp (λv̂(xt))
, (6)

where the second equality follows from the definition of the soft Bellman equation:

v̂(xt) =
1

λ
logExt−1∼p(·|xt) [exp (λv̂(xt−1))] .

Step 2: Joint density of trajectory. Recall that the root node of DTS contains a dummy state xT+1 that transitions to the
diffusion process prior q̂(xT | xT+1) = N (0, I). Then, the joint density of a full trajectory {xT ,xT−1, . . . ,x0} under
DTS is given by:

q̂(xT ,xT−1, . . . ,x0) =

T+1∏
t=1

q̂(xt−1 | xt) =

T+1∏
t=1

p(xt−1 | xt) exp (λv̂(xt−1))

exp (λv̂(xt))

=
exp (λv̂(x0))

exp (λv̂(xT+1))

T+1∏
t=1

p(xt−1 | xt)

=
exp (λv̂(x0))

exp (λv̂(xT+1))
p(xT ,xT−1, . . . ,x0).

Step 3: Marginalizing. Marginalizing over intermediate states x1, . . . ,xT , we get the distribution of terminal state x0:

q̂(x0) =

∫
q̂(xT ,xT−1, . . . ,x0) dxT dxT−1 . . . dx1

=
exp (λv̂(x0))

exp (λv̂(xT+1))

∫
p(xT ,xT−1, . . . ,x0) dxT dxT−1 . . . dx1

=
exp (λv̂(x0))

exp (λv̂(xT+1))
p(x0).

By definition, the soft value function at the terminal node is v̂(x0) = r(x0). Plugging this and using the definition of value
function from Equation (2), we have:

q̂(x0) =
exp (λr(x0)) p(x0)∫

p(xT ,xT−1, . . . ,x0 | xT+1) exp (λr(x0)) dxT dxT−1 . . . dx1dx0

=
exp (λr(x0)) p(x0)∫

p(x0) exp (λr(x0)) dx0
.

This has the form of the target distribution in Equation (5), except that it uses the value estimates v̂ that are calculated based
on rollouts starting from each state xt. In the limit of infinite rollouts, these value estimates approach the true soft values,
confirming that the sampling distribution q̂ from DTS exactly matches the target distribution π∗.

Therefore, DTS is consistent, as it correctly generates samples from the desired target distribution asymptotically.
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F. DTS and DTS⋆ Algorithm

Algorithm 1 Diffusion Tree Sampling (DTS) and Diffusion Tree Search (DTS⋆)

1: Input: base policy pθ, reward function r, number of iterations M , inverse temperature λ, parameters C,α, cuct
2: Initialize root node xT+1 with dummy value, v̂(xT+1) = 0, N(xT+1) = 1
3: Initialize tree T with root node xT+1

4: for m = 1, . . . ,M do
5: P ← {xT+1}
6: Set t← T + 1
7: // Selection
8: while |C(xt)| ≥ C ·N(xt)

α and t > 0 do
9: [DTS] select child probabilistically: xt−1 ∼ exp(λv̂(xt−1))∑

x′∈C(xt)
exp(λv̂(x′))

10: [DTS⋆] select child maximizing UCT: xt−1 = argmaxx′∈C(xt) v̂(x
′) + cuct

√
logN(xt)
N(x′)

11: P ← P ∪ {xt−1}
12: t← t− 1
13: end while
14: // Expansion: expand xt by sampling a new child
15: if t > 0, and |C(xt)| < C ·N(xt)

α then
16: // Rollout: from new node xt−1 sample rollout path to terminal x0

17: while t > 0 do
18: xt−1 ∼ pθ(· | xt), v̂(xt−1) = 0, N(xt−1) = 1
19: P ← P ∪ {xt−1}
20: t← t− 1
21: end while
22: end if
23: Evaluate terminal reward: v̂(x0) = r(x0)
24: // Backup: update value along path P
25: for t = 0, . . . , T do
26: Soft backup: v̂(xt+1)← 1

λ log
∑

xt∈C(xt+1)
exp(λv̂(xt))

27: Update visits: N(xt+1)← N(xt+1) + 1
28: end for
29: end for
30: return T

G. Design choices for DTS and DTS⋆

The algorithm discussed above can be applied to any Markov chain. However, in this work, we apply it to the problem of
inference-time alignment of diffusion models. We discuss various considerations and design choices below, with more
implementation details in Appendix F.

Sampling or Search. DTS is designed to sample from the target distribution π∗, but for settings where a single high-quality
sample is required, we introduce a search variant, DTS⋆ . It keeps the same soft value backup but modifies the selection step
by always selecting the child with the largest soft value estimate instead of Boltzmann sampling. Since DTS⋆ uses soft
values, this is different from standard MCTS – it implements a marginal-MAP (max–sum) inference scheme (Robert et al.,
1999) over the tree. At every noise step, the algorithm selects the branch whose subtree carries the greatest mass under π⋆

and, once t = 0 is reached, returns the highest-density leaf inside that dominant region. As we will see in the Section 4, this
volume-based selection helps avoid reward over-optimization.

Branching. Extensions of MCTS to continuous spaces commonly use progressive widening (Couëtoux et al., 2011) to
decide the maximum number of branches B(xt) allowed per node based on the number of visits: B(xt) = C ·N(xt)

α, C >
0, α ∈ (0, 1). The high-level intuition is that nodes that are visited more often should be expanded more, since they represent
more promising directions for denoising. We adopt the same strategy and during tree traversal, if we encounter a node such
that |C(xt)| < B(xt) and t > 0, we will always expand.
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Exploration. There is a rich literature on search methods for classical MCTS, and the most popular approach, UCT
(Kocsis & Szepesvári, 2006), is an application of upper-confidence bounds (Auer et al., 2002) to trees. We employ this
exploration strategy for DTS⋆ , i.e. we choose the child xt−1 ∈ C(xt) with the maximum value of the UCT estimate:

UCT(xt−1) = v̂(xt−1) + cuct

√
logN(xt)

N(xt−1)
, cuct > 0. (7)

For DTS, we do not employ explicit exploration, because, in practice we observe that sampling obviates the need for an
exploration bonus or handcrafted mechanism.

Efficient implementation. The main computational cost is incurred when using the diffusion model proposal to sample
new children or perform rollouts. We implement an efficient batched version of the algorithm by collecting nodes by
timestep and performing one forward pass for all nodes at the same timestep. The selection and backup steps involve
simple tensor operations and pointer manipulation with negligible cost. Therefore, while the control flow of our method is
sequential, the practical algorithm can be parallelized. Note that once the tree has been built, sampling is near instantaneous
by repeatedly selecting children without any model calls.

H. Implementation details for DTS and DTS⋆

H.1. Tree structure

The algorithm presented in Section 3.2 and Appendix F allows every state xt along the denoising trajectory to be considered
for branching. However, in practice, we only branch every few timesteps. We noticed very little difference in performance
between the two cases for the same number of function evaluations, however, we expect branching at every step to outperform
for a very high compute budget. We match the tree branching schedule with the resampling schedule for all baselines with
SMC, similar to the setting from Singhal et al. (2025). The exact setting for each experiment is presented in Table 1, where
we always branch at the root node corresponding to t = T .

Table 1: Branching schedule for DTS and DTS⋆ , which is also the resampling schedule used for SMC-based methods –
SMC/FK (Singhal et al., 2025), TDS (Wu et al., 2023a), DAS (Kim et al., 2025).

Domain Total denoising steps Branching schedule

Two-dimensional 100 100(root), 80, 60, 40, 20
Image pixels (MNIST, CIFAR-10) 50 50(root), 40, 30, 20, 10
Image latents (SD-v1.5) 50 50(root), 40, 30, 20, 10
Text tokens (MDLM) 256 256(root), 216, 176, 136, 96, 56

Apart from this, we have hyperparameters associated with progressive widening that control the maximum number of
branches at any node. We used α = 0.8 and C = 2 for all two-dimensional and image experiments and α = 0.7 and C = 2
for text generation. There is a scope of improving the performance of DTS and DTS⋆ further by tuning these parameters for
specific tasks.
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H.2. Experiment details

Illustrative 2D

Base diffusion model: The denoising network is an MLP that takes as input the 2-dimensional data xt and the timestep
t and outputs a 2-dimensional noise prediction. The timestep is transformed using sinusoidal embeddings (Vaswani
et al., 2017). The network has four hidden layers of 128 dimension each with the sigmoid linear unit (SiLU, (Hendrycks
& Gimpel, 2016)) activation. We used the linear noise schedule with βmin = 0.001 and βmax = 0.07 and the score
matching objective. The optimizer used for training was Adam (Kingma, 2014) with a learning rate of 3× 10−3. We
train the model for 500 epochs on a training set of 10000 samples.

Reward function: Gaussian mixture: The reward function is:

r(x) = log

(
8∑

i=1

wi exp
(
−∥x− µi∥2/2σ2

))
,

where wi = exp(1.5 i), µi = 4
(
cos 2π(i−1)

8 , sin 2π(i−1)
8

)
, i = 1, . . . , 8, with σ = 0.3. Checkerboard: The reward

is negative distance from the center r(x) = −0.5∥x∥2.

Class-conditional MNIST

Base diffusion model: The denoising network is a Unet architecture (Ronneberger et al., 2015) that operates on images
of size 32× 32× 1 (upscaled from 28× 28× 1) with block channels {32, 64, 128, 256}. We use the DDIMSchedulera

from diffusers library with default parameters, except we set η = 1.0 so the inference process is stochastic like DDPMs
(Ho et al., 2020). We use the AdamW optimizer with a learning rate of 10−4 for 100 epochs on the MNIST training set.

Reward function: We train a classifier p(c | x) on the MNIST training set. The classifier is a convolutional neural
network (LeCun et al., 2015) using two 5× 5 kernels with (16, 32) channels followed by 2× 2 max pooling operation
with ReLU activations. The features are then flattened and followed by a linear layer with 10 outputs corresponding to
the classes. The network was trained using Adam optimizer with learning rate 10−3. The reward function for single
class generation is the log likelihood of the class ri(x) = log p(c = i | x) for i ∈ {0, 1, . . . , 9}. For the even or odd
generation, it is defined as r(x) = maxi∈S log p(c = i | x), where S = {0, 2, 4, 6, 8} for even digit generation and
S = {1, 3, 5, 7, 9} for odd digit generation.

ahttps://huggingface.co/docs/diffusers/en/api/schedulers/ddim

Class-conditional CIFAR-10

Base diffusion model: We used the pre-trained diffusion model ddpm-cifar10-32a from Hugging Face, which
uses a Unet architecture and diffuses over 32× 32× 3 images in pixel-space. We use the DDIMScheduler with η = 1.0
for stochastic denoising.

Reward function: We train a classifier p(c | x) on the CIFAR-10 training set. The classifier uses a ResNet-18 (He
et al., 2016) backbone that outputs an embedding which is average pooled, flattened, and passed to a single linear layer
with 10 outputs. The network is trained using Adam optimizer with learning rate 10−3. Similar to MNIST single class
generation, the reward function is the log likelihood of the class ri(x) = log p(c = i | x) for i ∈ {0, 1, . . . , 9}.

ahttps://huggingface.co/google/ddpm-cifar10-32
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Text-to-image

Base diffusion model: We use Stable Diffusion v1.5a from Hugging Face, which is a latent diffusion model (Rombach
et al., 2022). The diffusion process is defined over 64 × 64 × 4 latent variables, which are obtained by encoding
512 × 512 × 3 images using a variational autoencoder. The model uses CLIP (Radford et al., 2021) to encode text
prompts into embeddings which are then used to condition the generative process via classifier-free guidance (Ho &
Salimans, 2021). We use the DDIMScheduler with η = 1.0.

Reward function: We use pre-trained models as reward functions including ImageRewardb r(x,y) that encodes prompt
accuracy as well as human preferences the LAION aesthetic score predictorc r(x) that encodes aesthetic quality of an
image.

ahttps://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
bhttps://github.com/THUDM/ImageReward
chttps://github.com/LAION-AI/aesthetic-predictor

Conditional text

Base diffusion model: We use MDLMa for our text generation experiments. This is a discrete diffusion model with
110M parameters that directly predicts the tokens. We define the diffusion process over a context length of 64 tokens
with 256 sampling steps and use the standard discrete unmasking update for stochastic denoising.

Reward function: We use ∞-gram language modelb. In particular, we use the perplexity from the
v4 dolmasample olmo version trained on the Dolma-v1.6-sample corpus with the OLMo tokenizer. This reward
function r(x) encodes the linguistic plausibility of a given string x.

ahttps://huggingface.co/kuleshov-group/mdlm-owt
bhttps://infini-gram.io/

H.3. Compute

We report execution times on a single A100 GPU with 80 gigabytes of memory.

• Each 2D experiment including all methods runs in 15 minutes. Adding up the time over five seeds and two different
datasets, the combined run time is approximately 2.5 GPU hours.

• The MNIST and CIFAR-10 class-conditional experiments use approximately 3 GPU hours per class including all
methods. Over all 22 tasks (10 MNIST single digit + 2 MNIST even/odd + 10 CIFAR-10 classes) equals approximately
66 GPU hours.

• The text-to-image experiments using Stable Diffusion v1.5 require roughly 30 minutes per prompt across all methods.
Adding up all 200 prompts from DrawBench and 45 animal prompts, reproducing all experiments requires approximately
123 GPU hours.

• The text generation experiments using MDLM requires roughly 30 minutes per prompt. Thus, generating 3 completions
per prompt for the 15 prompts requires roughly 22.5 GPU hours.

I. Details of baselines

We re-implemented all baseline methods in our unified codebase since most of them use SMC as a backbone and share
the same underlying infrastructure. Each implementation was validated by reproducing the quantitative results reported in
its original paper. Appendix C provides a concise primer on SMC for reference. The complete source code including all
baselines will be released publicly upon publication of this work.

DPS. Diffusion Posterior Sampling (Chung et al., 2023) was originally proposed for noisy inverse problems such as image
super-resolution and de-blurring using the gradient of the final objective. To adapt this method for general reward functions,
we make a minor modification by replacing the gradient of the inverse problem objective with the gradient of the reward
function:

x̃t−1 ∼ N
(
µθ(xt, t) + λσ2

t ∇xt
r(x̂0(xt)), σ

2
t I
)
, (8)
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where x̂0 is obtained using Tweedie’s formula (cf. ??), µθ is the predicted mean of the base diffusion model, and r(x) is the
reward function in the two-dimensional experiments and classifier log likelihoods log p(c = i | x) for class-conditional
image experiments. The official implementation is provided here.

SMC/FK-Steering. In our paper, SMC refers to the simplest variant, FK-Steering (Singhal et al., 2025), which defines
different weighting schemes and uses the pre-trained diffusion model as the proposal distribution. As per the setting
in Singhal et al. (2025), we perform the resampling step at fixed intervals during denoising (given in Table 1) and use
adaptive resampling to increase diversity of generated samples. Our sampling experiments (two-dimensional and class-
conditional image generation) use the ‘diff’ potential with λ = 1.0, whereas the search experiments (text-to-image and
text generation) use the ‘max’ potential with λ = 10.0. The weights for resampling are given by Equation (4) where the
proposal is equal to the pre-trained diffusion transition and the value estimates are equal to:

v̂diff
t−1(x̃t−1) = r (x̂0(x̃t−1))− r (x̂0(xt)) , v̂diff

T (xT ) = r (x̂0(xT )) .

v̂max
t−1(x̃t−1) = max

{
r(x̂0(x̃t−1)), m

(k)
t

}
, m

(k)
t = max

s≥t
r
(
x̂0(x

(k)
s )
)
.

We adapted the official implementation provided here.

TDS. Twisted Diffusion Sampler (Wu et al., 2023a) comprises of a “twisted” proposal which is used along with SMC to
sample from the target posterior distribution. For general reward functions, the twisted proposal is the same as the one used
in Equation (8) and the final weights are obtained using Equation (4) after plugging in the twisted proposal and the value
estimates:

qt(x̃t−1 | xt) = N
(
x̃t−1 ; µθ(xt, t) + λσ2

t ∇xtr(x̂0(xt)), σ
2
t I
)
.

v̂t−1(x̃t−1) = r (x̂0(x̃t−1))− r (x̂0(xt)) , v̂T (xT ) = r (x̂0(xT )) .

The official implementation is provided here.

DAS. Diffusion Alignment as Sampling (Kim et al., 2025) re-uses the twisted proposal of TDS but multiplies the reward
term by a monotone tempering schedule 0 = γT ≤γT−1≤ . . .≤γ0 = 1 to reduce the bias from inaccurate value estimates
at high noise levels. The weights are given by Equation (4) after plugging in the tempered proposal and value estimates:

qt(x̃t−1 | xt) = N
(
x̃t−1 ; µθ(xt, t) + λ γt−1 σ

2
t ∇xt

r(x̂0(xt)), σ
2
t I
)
.

v̂t−1(x̃t−1) = γt−1 r (x̂0(x̃t−1))− γt r (x̂0(xt)) , v̂T (xT ) = γT r (x̂0(xT )) .

The official implementation is provided here.

J. Additional results

J.1. Class-conditional image experiments

We report two distribution-based metrics – Fréchet Inception Distance (FID) and CLIP maximum mean discrepancy
(CMMD) (Jayasumana et al., 2024) – that compare generated samples with ground truth samples from the dataset, in
addition to average rewards and CLIP diversity (pairwise cosine distance) in Table 2. Figure 8 shows that across the three
settings for most values of NFEs, DTS matches the target distribution more accurately compared to other methods (lowest
FID and CMMD).

We also present random samples for each method and setting in Figures 9 to 10. We observe the same trend as noticed in
Figure 3 – gradient-based guidance like DPS can be unstable leading to unnatural images, while SMC-based methods show
signs of mode collapse with low average diversity and high average rewards. DTS balances both diversity and high rewards
effectively by closely matching the true posterior distribution.
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Table 2: Comparison of inference-time posterior sampling methods. We report the mean±std of each metric across the
relevant classes and highlight ±5% values from the best experimental value.

Dataset → MNIST MNIST even/odd CIFAR-10

Algorithm ↓ FID (↓) CMMD (↓) E[log r(x)] (↑) Diversity (↑) FID (↓) CMMD (↓) E[log r(x)] (↑) Diversity (↑) FID (↓) CMMD (↓) E[log r(x)] (↑) Diversity (↑)

DPS 0.359 ± 0.227 0.441 ± 0.447 -0.323 ± 0.286 0.474 ± 0.051 0.123 ± 0.031 0.293 ± 0.139 -0.002 ± 0.001 0.572 ± 0.053 0.486 ± 0.121 2.609 ± 0.824 -0.002 ± 0.001 0.551 ± 0.024

SMC/FK 0.060 ± 0.051 0.177 ± 0.142 -0.002 ± 0.004 0.422 ± 0.040 0.027 ± 0.009 0.123 ± 0.113 -0.003 ± 0.003 0.583 ± 0.084 0.313 ± 0.070 1.409 ± 0.445 -0.102 ± 0.093 0.487 ± 0.045

TDS 0.087 ± 0.035 0.463 ± 0.260 -0.001 ± 0.001 0.404 ± 0.042 0.053 ± 0.010 0.250 ± 0.056 -0.001 ± 0.000 0.576 ± 0.124 0.487 ± 0.112 2.675 ± 0.665 -0.046 ± 0.055 0.469 ± 0.042

DAS 0.039 ± 0.017 0.179 ± 0.099 -0.016 ± 0.016 0.440 ± 0.041 0.031 ± 0.002 0.079 ± 0.011 -0.015 ± 0.019 0.603 ± 0.094 0.241 ± 0.037 0.822 ± 0.203 -0.584 ± 0.200 0.530 ± 0.023

DTS (ours) 0.014 ± 0.005 0.068 ± 0.030 -0.023 ± 0.006 0.452 ± 0.050 0.007 ± 0.003 0.036 ± 0.029 -0.010 ± 0.004 0.597 ± 0.069 0.195 ± 0.041 0.745 ± 0.201 -0.305 ± 0.116 0.542 ± 0.020

Figure 8: Various distribution level metrics versus number of function evaluations for different methods on MNIST single
digit generation averaged over all 10 digits (left), MNIST odd and even digit generation (center), and CIFAR-10 single class
generation averaged over all 10 digits (right). All methods were evaluated with 5000 generated samples per class. Metrics
reported: FID (lower is better), CMMD (lower is better), average log rewards (higher is better), and average diversity (higher
is better).
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Figure 9: MNIST posterior samples generated using different methods for digits 0-9, even and odd.
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Figure 10: CIFAR-10 posterior samples generated using different methods for all classes.
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J.2. Text-to-image examples

We present more samples for qualitative analysis. Figure 11 shows how samples change with increasing amount of inference-
time compute, providing visual evidence for the quantitative results from Figure 4. Figures 12 to 14 shows text-image pairs
testing different concepts such as artistic style, spatial arrangement and object count.

Figure 11: Text-image pairs from Figure 1 with increasing amount of inference-time compute, measured in number of
function evaluations (NFEs) of the diffusion model.
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Figure 12: Sample text-image pairs using Stable Diffusion v1.5 and ImageReward as the guiding function for prompts
requiring a specific artistic style. Samples are picked at random for each method and prompt.
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Figure 13: Sample text-image pairs using Stable Diffusion v1.5 and ImageReward as the guiding function for prompts
requiring specific spatial relationships between objects. Samples are picked at random for each method and prompt.
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Figure 14: Sample text-image pairs using Stable Diffusion v1.5 and ImageReward as the guiding function for prompts
requiring specific object counts. Samples are picked at random for each method and prompt.
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J.3. Text completion examples

We present additional text completions for the base MDLM model, FK-Steering and DTS⋆ in Figure 15.
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The president… The book… The painting…

The president of the 
country-general The judge of 

the state is the chief magistrate 
of the state. The sheriff of the 

state is the federal official. 
Issue of the states is the U. 
President of U.S.C. of the 
supreme supremear isthe 

Paterna of the U.a

The book then does pose the 
‘heroic’ question. Which 

historical hero / is the biggest 
hero? we have to assume that 

there might be n/a that’s 
meta-y. is a tricky question. 
there is not “proof” there for 

me. no practical

The painting of Lady Faazir by 
the artist Jerome the story of the 

Sister Lady works on and lifts the 
stairs she walks down. When she 

walks at the stairs she lacks a 
certain character. This makes her 
invisible when she walks down 
the stairs. But when she reaches 
the stairs she has a new character

The president of the country.
The president of the country.
The president of the country.
The president of the country.
The president of the country

The book should not be seen 
at any time.
Prediction: 

1.1.2.3.4.4.4.4.4.4.4.4.4.4.4.
4.4.4.5.4.5.5.6.

The painting is a line in it. It is a 
line in the world. There is 
something vast, infinite, of 

course, beyond its borders. This is 
perhaps the most remarkable 

thing about this in my mind. The 
work seems to have returned to 
the instinct of the artist, “This is 

not

The president of the country, 
president of the United States, is 
the leader in the modern world. 
And he is one of those leaders 

who can get out of the situation. 
And when you do something like 

that, you gotta do it 
professionally.

The people who believe, who 
know him, and

The book contains an important 
nuance, but also serves as a 

practice guide. It teaches you 
everything you need to know to 

know how to write. So when you 
read this, you'll discover what 

goes into writing, and I couldn't 
write a book without it. It's a book 

that you will love

The painting is an original 
contribution, much deliberation, 

the expression of love. It is a form 
of expression, whereas painting, 
as its original form, becomes an 

object. This does not take an 
extension in the hands of the 

artist, however, but as a extension 
of the more traditional forms of 

art

Figure 15: Sample text completions using MDLM and infini-gram perplexity as reward. Samples are picked at random for
each method and prompt.

K. Extended related work

We discussed the main approaches that have been proposed for inference-time alignment of diffusion models in ??. Below,
we briefly review three tangentially related areas: fine-tuning of diffusion models, their use in reinforcement learning, and
entropy-regularized variations of Monte Carlo Tree Search.

Fine-tuning of diffusion models. To sample from the target distribution π∗ for a fixed, known reward function, one option
is to amortize the posterior sampling problem and update the model parameters via fine-tuning. The paradigm mirrors the
trajectory of large–language-model alignment (Ziegler et al., 2019; Rafailov et al., 2023; Ahmadian et al., 2024). Supervised
preference finetuning trains directly on synthetic pairs scored by a reward model (Lee et al., 2023; Wu et al., 2023b). Some
early methods exploit differentiable objectives to back-propagate a single scalar all the way to the noise prediction network
(Clark et al., 2024; Prabhudesai et al., 2023), whereas more traditional reinforcement learning approaches cast each reverse
step as an action and optimize expected reward (Black et al., 2024). To avoid over-optimization of the reward, recent works
use KL regularisation (Fan et al., 2023; Uehara et al., 2024; Venkatraman et al., 2024).

Diffusion models in reinforcement learning. Since the introduction of diffusion models as powerful frameworks for
generative modeling, they have become popular for sampling actions or future states in RL. The earliest successes were
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in offline imitation learning, where some approaches model trajectories (Janner et al., 2022; Ajay et al., 2023) or expert
policies (Chi et al., 2023) from offline datasets. Other works maximize a Q-function in addition to behavior cloning (Wang
et al., 2023; Kang et al., 2023), employ an explicit actor–critic scheme (Hansen-Estruch et al., 2023), or treat the critic as an
energy function to guide the denoiser (Lu et al., 2023). Some goal-conditioned extensions have also been proposed (Reuss
et al., 2023; Jain & Ravanbakhsh, 2024). Recent works have explored similar ideas in the online setting (Yang et al., 2023;
Psenka et al., 2024; Jain et al., 2024; Ren et al., 2024). Those methods aim to maximize return for control tasks, while we
aim to draw unbiased samples from the reward-tilted distribution for any chosen reward.

Entropy-regularized MCTS. Monte-Carlo Tree-Search (MCTS) has recently been extended to soft-value objectives
that incorporate an entropy bonus (Xiao et al., 2019), which uses a log-sum-exp value update and samples actions from a
Boltzmann distribution, guaranteeing improved exploration at the cost of converging to the soft rather than the standard
optimum. Follow-up work proposed to adapt the entropy term to a predefined value (Kozakowski et al., 2022) and decay the
entropy term (Painter et al., 2023). Very recently, Morozov et al. (2024) used soft-backup MCTS to improve planning in
Generative Flow Networks (Bengio et al., 2021). Our Diffusion Tree Sampling (DTS) follows the same Boltzmann selection
and soft value backup pattern, it is the first to embed a pre-trained diffusion kernel inside the tree and to prove consistency
for sampling from the KL-regularised posterior, not just selecting a single high-reward action. In this sense, DTS bridges
the gap between entropy-regularized MCTS used for control and unbiased posterior sampling required for inference-time
alignment of generative models.
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