
Under review as a conference paper at ICLR 2022

INVARIANT CAUSAL MECHANISMS THROUGH DISTRI-
BUTION MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning representations that capture the underlying data generating process is
a key problem for data efficient and robust use of neural networks. One key
property for robustness which the learned representation should capture and which
recently received a lot of attention is described by the notion of invariance. In this
work we provide a causal perspective and new algorithm for learning invariant
representations. Empirically we show that this algorithm works well on a diverse
set of tasks and in particular we observe state-of-the-art performance on domain
generalization, where we are able to significantly boost the score of existing models.

1 INTRODUCTION

Learning structured representations which capture the underlying causal mechanisms generating data
is of central importance for training robust machine learning models (Bengio et al., 2013; Schölkopf
et al., 2021). One particular structure the learned representation should capture is invariance to
changes in nuisance variables. For example, we may want the representation to be invariant to
sensitive attributes such as the race or gender of an individual in order to avoid discrimination or
biased decision making in a downstream task (Creager et al., 2019; Locatello et al., 2019; Träuble
et al., 2021).

While learning invariant representations is thus highly important for fairness applications, it also
appears in seemingly unrelated tasks such as domain adaptation (DA) and domain generalization (DG),
where one aims to be invariant across the different domains (Muandet et al., 2013; Zemel et al., 2013;
Ganin et al., 2016; Peters et al., 2016). For tasks such as DA and DG invariance across domains or
environments implies to being invariant to the domain index, which thus is the "sensitive attribute"
in this case and typically implies a change in the distribution of the data generating process. Being
invariant to the domain index is thus a proxy to being invariant to latent unobserved factors that can
change in distribution.

Established approaches for enforcing invariance in the learned representation usually aim to learn a
representation whose statistical distribution is independent to the sensitive attribute e.g., by including
an adversary during training (Ganin et al., 2016; Xie et al., 2017). As an adversary is essentially a
parametric distributional distance, other approaches minimize different distribution distances, such as
maximum mean discrepancy (MMD) (Louizos et al., 2017; Li et al., 2018b), or optimal transport (OT)
based distances (Shen et al., 2018; Damodaran et al., 2018). To enforce independence, these methods
add a regularizer to the loss that consists in the pairwise distributional distance between all possible
combination of the sensitive attribute, i.e., dist(p(z|d), p(z|d′))∀d, d′ ∈ D. As such, the complexity
of the loss grows quadratically in the size of the support of the sensitive attribute, which can limit the
applicability of these models when the support of D is large (Koh et al., 2021).

Despite the importance of learning invariant representations and their potential societal impact in the
medical domain or fair decision making, most established approaches are still based on heuristics
and specialized for different tasks at hand. We take first steps towards a unifying framework by
viewing invariance as a property of a causal process (Pearl, 2009; Peters et al., 2017) and our key
contributions can be summarized as follows:

• We introduce a unifying causal framework for invariant representation learning, which
allows us to derive a new algorithm to enforce invariance through distribution matching.
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One advantage of our algorithm is that only one distributional distance between two batches
needs to be computed at each step, irrelevant of the size of the support of D.

• We define the notion of style variable and present some necessary and sufficient conditions
under which being invariant to the domain index actually leads to invariance to the style
variables. We argue that our proposal naturally captures most of the existing invariant
representation learning tasks and datasets.

• Finally, we conduct a large number of experiments across different tasks and datasets,
demonstrating the versatility of our framework. We obtain competitive results on the task
of learning fair representations and we are able to significantly boost the performance of
existing models using our proposed algorithm for the task of DG.

2 INVARIANT REPRESENTATION LEARNING ACROSS TASKS

In this section, we highlight how the learning of an invariant representation is a goal that is (implicitly)
pursued in a large spectrum of machine learning tasks.

Domain Adaptation The range of techniques used in Domain Adaptation and the different as-
sumptions followed are vast (see Wilson and Cook (2020) for a more in depth review). Thus, we here
concentrate only on a subset of the literature. A direction that is widely followed in DA, and which
is the closest to our framework, is the alignment of the latent distribution of the source and target
datasets. Under the covariate shift assumption, which assume that the labeling function P (Y |X)
is fixed, and that only P (X) varies across environments, the goal is then to learn a representation
h(X) that is invariant across source and target and that remains useful to learn a discriminator on the
source dataset. Ganin et al. (2016) uses a domain adversarial network to align the two latent spaces,
whereas others uses distributional divergences directly, such as MMD (Baktashmotlagh et al., 2016),
Wasserstein and optimal transport in general (Shen et al., 2018; Damodaran et al., 2018; Redko et al.,
2017). DA under different assumptions, such as the case where both P (Y ) and P (X|Y ), have also
been studied (Gong et al., 2016).

Domain Generalization Though very similar to DA, DG differs in one significant way: the test
domain is not observed at training time. As such, it is a way harder task as the test domain could
exhibit arbitrary shifts in distribution, and the learned model is supposed to handle any reasonable
shifts in distribution. Without any assumptions, there is little hope to obtain models that actually
generalizes. Nevertheless, many inductive biases and models have been proposed, which have
stronger assumptions than classical empirical risk minimization (ERM) (Vapnik, 1998).

Given its similarity to DA, similar models have been proposed, and most models work for both tasks.
Nevertheless, until recently (Albuquerque et al., 2019; Deng et al., 2020), theoretical justification,
e.g., for minimizing the distance between pairs of latent variables coming from different domains,
was missing, as results from domain adaptation assumes that the test domain is observed. Without
some assumptions, there exists no theoretical reasons to infer that a constant distribution of the
latent variables across the training domains leads to better generalization on the test domains.
Indeed, many benchmarks (Gulrajani and Lopez-Paz, 2020; Koh et al., 2021) show that it is difficult
to create algorithms that consistently beat ERM across different tasks. Invariant representations
for DG was first proposed by Muandet et al. (2013). This idea was then extended to use other
distributional distances, such as MMD (Li et al., 2018b), Adversarial (Li et al., 2018d; Deng et al.,
2020; Albuquerque et al., 2019), and Optimal Transport (Zhou et al., 2020) (see Table 1). On the
theoretical side, both Albuquerque et al. (2019) and Deng et al. (2020) attempt to give theoretical
grounding to the use of an adversarial loss by deriving bounds similar to what exists in DA.

Domain Generalization and Causal Inference Many links between causal inference and domain
generalization have been made, arguing that domain generalization is inherently a causal discovery
task. In particular, causal inference can be seen as a form of distributional robustness (Meinshausen,
2018). In regression, one way of ensuring interventional robustness is by identifying the causal
parents of Y , whose relation to Y is stable. This can be achieved by finding a feature representation
such that the optimal classifiers are approximately the same across domains (Peters et al., 2016;
Rojas-Carulla et al., 2018; Arjovsky et al., 2019). Unfortunately, most of these models do not really
apply to classification of structured data such as images, where the classification is predominantly

2



Under review as a conference paper at ICLR 2022

Table 1: Review of invariance across different tasks. Note that the general loss is defined as
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Domain Adaptation Ganin et al. (2016) Baktashmotlagh et al. (2016) Shen et al. (2018)
Hoffman et al. (2017) Damodaran et al. (2018)

Domain Generalization Ganin et al. (2016); Albuquerque et al. (2019) Li et al. (2018b) Zhou et al. (2020)
Li et al. (2018d;c); Deng et al. (2020)

Fair Representation Learning Edwards and Storkey (2015); Xie et al. (2017) Louizos et al. (2017) Jiang et al. (2020)
Roy and Boddeti (2019)

anti-causal and where the wanted invariance is not toward the pixels themselves but towards the
unobserved generating factors. In a similar setting to ours, Heinze-Deml and Meinshausen (2021)
tackles the task of image classification and propose a new model. A significant difference to our work
is that they rely on the observation of individual instances across different views, i.e., the images are
clustered by an ID.

Fair Representation Learning Fair representation learning can also be viewed as an invariant
representation learning task. This task consists in learning a representation that maximizes usefulness
towards predicting a target variable, while minimizing information leakage of a sensitive attribute
(e.g., gender, age, race). The seminal work in this field is Zemel et al. (2013), which aims at learning
a multinomial random variable Z, with associated vectors vk, such as the representation Z is fair.
More recent work directly learns a continuous variable Z that has minimal information about the
sensitive attribute, either through minimizing the MMD distance (Louizos et al., 2017), through
adversarial training (Edwards and Storkey, 2015; Xie et al., 2017; Roy and Boddeti, 2019), or through
a Wasserstein distance (Jiang et al., 2020).

3 INVARIANCE AS THE PROPERTY OF A CAUSAL PROCESS
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Figure 1: A direct acyclic graph (DAG) exhibit-
ing our assumptions on the data generating pro-
cess. We suppose that the data X is a function
of unobserved generative factors G (e.g., back-
ground colors, brightness, noise, shape). There
may exist some confounders Y and D that are
parents of the generative variables. Y is the vari-
able that we want to predict. D is the variable we
want to be invariant to. Only X , D and possibly
Y are observed at training time. The representa-
tion variable Z is a function of the data X that
we create at training time.

In this section, we will first consider the assump-
tions for the causal process underlying the data
generating mechanism using a structural causal
model (SCM) type graph from Causality theory
(Pearl, 2009) and following the causal view of
learning disentangled representations (Suter et al.,
2019), as illustrated in Figure 1.

G1 toGk represents all the factors of variation that
generate the data, i.e., there exists a (one-to-one)
function such that given all the factors, X is fixed:
X ←− g(G1, . . . , Gk)

Y is a target value that we may want to predict
in a downstream task and is either known (super-
vised setting) or unobserved (unsupervised). D is
another confounder that we want to be invariant to.
It can be a domain index, such as in DA and DG,
or a sensitive attribute such as in fairness. We will
assume for now that D does not have an effect on
Y .

Lastly, the generative factors Gi are assumed to
not have any causal relations between them, and
any correlation between some factors may only
come from a hidden confounder. This assumption
is similar to the assumptions in Suter et al. (2019).
Furthermore, in this work, we assume that the
label Y and D directly have an effect on the latent
generating factors. In this setting, Y and D are thus independent.
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Given our data generating framework, we can now give some definitions, especially the notion of
style generating factors.

Definition 3.1. We call style variables the set of variables G that are children of D in the DAG. We
denote this set S.

Observation 3.1. X and Z are independent from D given S, as they are d-separated from D by the
set S in the graph.

To the best of our knowledge there is no consistent and widely accepted definition of an invariant
representation, yet. Using the above framework, we propose the following definition:

Definition 3.2. We say that a representation Z is invariant to a variable D if and only if D has no
total causal effect1on Z.

This definition of invariance is very robust since it guarantees that no intervention on the variable D
can break the independence between Z and D. This is particularly relevant in application such as
fair and private representation learning, as we may not want that intervening on the distribution of a
sensitive variable breaks the property of fairness or privacy of a representation.

The goal of invariant representation learning can then be described as creating a new variable
Z = f(X) such that D has no total causal effect on Z. In a way, we can view it as adding a new
variable in the SCM and learning its structural equation. If we assume that our distribution follows
our proposed SCM (Figure 1), then absence of total causal effect is equivalent to independence, as D
has no parent in the DAG. We use this assumption of D having no causal parents in Theorem 3.1.

Theorem 3.1. Under the assumption of the graph in Figure 1, we have that:

Z is independent from D (equivalently, D has no total causal effect on Z, or p(z|d) = p(z|d′) for all
d, d′) ⇐⇒ p(z|do(d = Nd)) = p(z) for all Nd (intervention on the distribution of D).

In summary, Theorem 3.1 states that no total causal effect is equivalent to independence given the
right assumptions, and that having a constant marginal distribution of Z under different mixtures of
D leads to independence. The proof is presented in Appendix B.

In the case where the full support of D is observed during training, we have the guarantee that
independence in training I(Z;D) = 0 will hold in any test setting. However, in DG for example, we
observe a new value of D at test time. Having p(z|dtraini) = p(z|dtrainj )∀i, j does not guarantee
that p(z|dtest) = p(z|dtraini). Indeed, in this setting, the variable D works more like an index,
where each value indicates a domain where the distribution of X has changed. Invariance to the
variable D is thus a proxy to being invariant to the unobserved style variables (see Definition 3.1).

4 AN ALGORITHM FOR INVARIANT LATENT VARIABLE DISTRIBUTIONS

Necessary Condition for Invariant Representation Learning We first start by studying whether
invariance to D may lead to invariance (or at least independence) to the style variables. For simplicity,
suppose we are given two datasets drawn from two distributions p1 and p2 on X , i.e., D ∈ {1, 2}.
We assume that only the style variables had their distribution changed across the two datasets.

The goal is to learn a representation of X that is invariant to the style variables. We thus need to learn
an encoder f ∈ F , z = f(x).

Theorem 4.1. Independence to D is a necessary condition for the representation to be invariant to
the style variables.

The proof is trivial and can be found in Appendix B. As this theorem shows, having a representation
z that is invariant to D is at least necessary for invariance to the style variables. Unfortunately, it is in
general not sufficient. It may be sufficient under some assumptions on the distribution of the style
variables, but this is a direction we will not follow as it often leads to a very restrictive setting.

1A variable i has a total causal effect on a variable k if and only if: Xi ⊥/⊥ Xk in P do(Xk=Ñk) for some
random variable Ñk (Definition 6.12 in Peters et al. (2017)).
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Sufficient conditions for Invariant Representation Learning We here present an idealistic set-
ting where invariance to D is sufficient. Obviously, this setting is almost never observed in practice. It
nevertheless gives a sense of how difficult the task is and of what kind of direction we should follow.

Theorem 4.2. If we are given a (possibly infinite) number of domains, where each domain exhibits
a different possible intervention on the style variables S, then independence to D implies no total
causal effect of S on Z.

The proof can be found in Appendix B. We here take the view that the variable D indexes an
intervention, which is a common view in causal inference via DG (see Section 2). It also shows that
there may always be a test domain where we observe an intervention to which our representation is
not invariant, especially if it changes the support of the style variables. For examples, if we want to be
invariant to the brightness in an image, we can only do so to a certain extent, as being invariant to full
brightness (i.e., a white image) would force a constant and non-informative representation. This type
of question is similar to what is studied in adversarial robustness. Consequently, we need assumptions
on what types of interventions we may encounter in the wild. One reasonable assumption is that the
full possible support of the style variables is observed during training. We then need to be invariant to
any combination of possible values of the style variables. If the style variables are not observed, we
cannot directly intervene on them. One possibility is thus to use the variable D as a proxy to simulate
interventions on the style variables.

Conjecture 4.3. Given a finite number of domains, we can create new domains via mixtures of the
given domains, which simulates new types of interventions on the style variables S.

The idea is that having these new created domains may facilitate identifiability of a representation Z
invariant to the style variables S, as in a way it gets us closer to the conditions of Theorem 4.2.

A New Algorithm for Invariant Representation Learning Based on the underlying assumptions
of Figure 1, the equivalence proved in Theorem 3.1 and Conjecture 4.3, we present a new algorithm
to learn a representation invariant to interventions on D. This algorithm could be useful for example
when we have a large number of different values of D, where enforcing an invariant p(z|d) is hard
to optimize (pairwise distances between distributions). Instead, we change the distribution of D
across batches (simulated intervention) and take the distribution distance between pairs of batches.
It also follows Conjecture 4.3: as each time we create a batch with a different distribution of D, it
is equivalent to drawing a batch from a created domain, which is a mixture of the initially given
domains. We formulate the optimization goal as follows:

min
Z=f(X)

L(Y, c(Z)), s.t. p(Z) = const ∀Nd.

We relax this constraint by taking the dual formulation and by approximating the maximum distance
between two possible interventions on D by the average distance:

min
Z=f(X)

L(Y, c(Z)) + λ · ENd,N ′d
[dist(p(Z|do(d = Nd), p(Z|do(d = N ′d))] (1)

where dist is a distance between distributions (see Appendix A for possible distances), and Nd, N ′d
are interventions on the distribution of d.

First, this algorithm gives us a new method to learn invariance when our dataset follows the assumption
of Figure 1. If the dataset indeed fulfills our assumptions, we theoretically have that the algorithm
will work asymptotically. Unfortunately, these assumptions are not testable. There is thus two
possible outcomes: either the optimization converges and we cannot reject that the dataset follows
our assumptions, or it does not converge and it probably means that the causal relationships of the
variables of our dataset are different than assumed.

Second, as stated in Conjecture 4.3, being invariant to different distributions of D may lead to greater
invariance to the style variables. This is especially useful in DG. In Section 5, we experimentally
show that our algorithm is indeed a viable method to learn invariance, and that it can also be more
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favorable in settings such as DG. We present a possible practical implementation of our algorithm 1
below.

Algorithm 1: Our algorithm for invariant representation learning.
1 Let d be the number of domains;
2 Let n > 0 be the number of samples drawn from each class at each step;
3 begin
4 Draw a batch bi of n samples for each domain;
5 B1, B2← ∅, ∅;

// We create two batches B1 and B2 that approximate the
interventions Nd and N ′d of eq. (1)

6 for i← 1 to d do
7 s ∼ U(0, n);
8 B1, B2← (B1, bi[: s]), (B2, bi[s :]);

// Concatenate B1 and B2 with a slice of bi
9 end

10 Z1, Z2← f(B1), f(B2);
11 loss← dist(Z1, Z2);
12 return loss;
13 end

5 EMPIRICAL EVALUATION

5.1 FAIR REPRESENTATION LEARNING

In this section, we present some experiments on Fair representation learning. Here, the goal is not
necessarily to obtain better results compared to other baselines. More importantly, we want to show
that: (i) Fair representation learning is also an invariant representation learning task, and it is covered
by our unifying framework; (ii) Our algorithm is applicable to a wide range of tasks, as it also gives
competitive results on this task; (iii) We can control the strength of invariance via the hyperparameter
λ; (iv) Fair representation learning datasets probably also follow our proposed data generation graph.

In the context of fair representation learning, the variable D we want to be invariant to here cor-
responds to what is usually referred to as the sensitive variable. A sensitive variable is a variable
that should not have an effect on the predictions of a classifier or regressor. Some examples are the
sex, the race or the age of an individual. If we can construct a representation that does not contain
information about the sensitive variable, there is no way for a model built on top of this representation
to base its prediction on the sensitive variable. Unfortunately, in most datasets, the sensitive variable
is actually predictive for the target variable, i.e., the value we are trying to predict. This introduces a
trade-off between fairness and accuracy of a model.

Datasets We run experiments on two datasets from the UCI ML-repository (Asuncion and Newman,
2007), the Adult and German dataset. The German dataset consist in predicting whether an individual
has good or bad credit, while the sensitive attribute is the gender. The Adult dataset consists in
predicting whether the annual income of an individual is more or less than 50, 000$, and the sensitive
attribute is the gender. See Table 7 in the Appendix for a summary of the datasets. We also report the
size of the majority class for the sensitive and target attribute for each dataset. A fair model should
have a sensitive accuracy that is close or below the size of the majority sensitive class, while having a
target accuracy as high as possible.

Experiment Design To run our experiments, we reuse the code from Roy and Boddeti (2019)
and add our model. We also empirically modify the default latent representation size such that it is
optimizable using the MMD distance. As for the synthetic experiment, after training of the encoder,
we freeze it and learn two discriminators: one for the target and one for the sensitive attribute. The
target discriminators is trained for 100 epochs and the adversary discriminator for 150 epochs. We
report the best achieved test accuracy. The goal of this setup is to assess how much information can
be extracted from the representation regarding the target and sensitive variables. For each value of
λ regularization, we run the experiment three times, and report mean and standard deviation. We
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Table 2: Comparison to other existing models on the Adult dataset.

Model Target Accuracy Adversary Accuracy

CausIRL with MMD (ours) 85.0 69.8
ML-ARL (Xie et al., 2017) 84.4 67.7
MaxEnt-ARL (Roy and Boddeti, 2019) 84.6 65.5
LFR (Zemel et al., 2013) 82.3 67
VFAE (Louizos et al., 2017) 81.3 67

also report the best obtained model and compare it to other baselines. The goal is to show what
performance we can potentially achieve with our algorithm and see how it compare with existing
models.

5.1.1 ADULT DATASET

The encoder is a neural network with one hidden layer of size 7, and a latent representation size of 2.
It is trained for 150 epochs using the Adam optimizer (Kingma and Ba, 2015), with learning rate of
1× 10−4 and weight decay of 5× 10−2. The discriminators are two-hidden-layer neural networks,
with hidden layers of size 64 and 32. Both are optimized using Adam with learning rate of 0.001 and
weights decay of 0.001. The learning rate of the discriminators is adjusted with Cosine Annealing.
Train batch size is set to 128 and test batch size to 1000.

Results are summarized in Figure 2, as well as a comparison with other baselines in Table 2. The
results are as we expected: stronger regularization leads to stronger invariance towards the sensitive
attribute. We also get that there is a trade-off between target accuracy and adversary accuracy, as the
sensitive attribute is informative towards predicting the target. Compared to other baselines, our best
model performs well, as it has the best target accuracy for a slightly higher adversary accuracy.

(a) Target Accuracy on
the Adult dataset.

(b) Adversary Accuracy
on the Adult dataset.

(c) Target Accuracy on
the German dataset.

(d) Adversary Accuracy
on the German dataset.

Figure 2: Target and adversary Accuracies for the Adult and German dataset for different strength of
regularization.

5.1.2 GERMAN DATASET

The encoder is a neural network with two hidden layers of size 15 and 8, and a latent representation
size of 32. It is trained for 150 epochs using the Adam optimizer, with learning rate of 1× 10−4 and
weight decay of 5× 10−2. The discriminators are two-hidden-layer neural networks, with hidden
layers of size 10. Both are optimized using Adam with learning rate of 0.001 and weights decay of
0.001. The learning rate of the discriminators is adjusted with Cosine Annealing. Train batch size is
set to 64 and test batch size to 100.

Results are summarized in Figure 2, as well as a comparison with other baselines in Table 3. Here, we
observe that 1.0 is a clear optimal value for λ, as it gives the highest target accuracy and the lowest
adversary accuracy. A bit more surprisingly, we observe that higher regularization can give lesser
invariance, which we can interpret as a form of over-regularization. Compared to other methods,
we obtain competitive results as we get the smallest adversary accuracy, even below the majority
prediction, while still obtaining the second best target accuracy.

7



Under review as a conference paper at ICLR 2022

Table 3: Comparison to other existing models on the German dataset.

Model Target Accuracy Adversary Accuracy

CausIRL with MMD (ours) 80.3 67.0
ML-ARL (Xie et al., 2017) 74.4 80.2
MaxEnt-ARL (Roy and Boddeti, 2019) 86.33 72.7
LFR (Zemel et al., 2013) 72.3 80.5
VFAE (Louizos et al., 2017) 72.7 79.7

5.2 DOMAIN GENERALIZATION

Datasets For this experiments, we test on seven datasets: ColoredMNIST (Arjovsky et al., 2019),
RotatedMNIST (Ghifary et al., 2015), VLCS (Fang et al., 2013), PACS (Li et al., 2017), OfficeHome
(Venkateswara et al., 2017), TerraIncognita (Beery et al., 2018) and DomainNet (Peng et al., 2019).
In the Appendix, Table 8 shows sample images for each dataset under different domains and Table 9
presents each dataset’s characteristics.

Experiment Design We run our experiments with the DomainBed (Gulrajani and Lopez-Paz,
2020) testbed, which is a recent widely used testbed for DG. We choose this setup as it allows for a
highly fair and unbiased comparison with other existing models. DomainBed was designed to be
reproducible, to give each algorithm the same amount of hyperparameter search, and to accurately
estimate the variance in performance. Three model selection methods are considered: training-domain
validation (all training models are pooled and a fraction of each of them is used as validaiton set),
leave-one domain-out cross-validation (cross validation is performed using a different domain as
validation, and the best models is retrained on all training domains) and test-domain validation
set (a fraction of the test domain is used as validation set). The first two methods are closer to a
realistic setting, whereas oracle validation allows us to evaluate whether there exists headroom for
improvement. Training-domain validation assumes that all training domains and the test domain
follows a similar distribution, as we pool all the training domains during training. On the other hand,
leave-one domain-out cross-validation is closer to our assumption, as it optimizes for generalization
to an unseen domain that is assumed to follow a different distribution.

Proposed Models We take two existing models, MMD and CORAL, based on matching distribution
across domains, and propose two new models, CausIRL with MMD and with CORAL. These two
new algorithm simply consist in changing how the regularization loss is computed according to our
proposed algorithm, i.e., instead of taking pairwise distances across domains, we compute distances
between batches that follow different domain distributions. We thus want to see if this simple change
in the algorithm leads to better performance, which may be due as we conjecture to greater invariance
to the style variables, as well as the fact that it may be easier to optimize. The hyperparameter λ is
drawn randomly in 10Uniform(−1,1).

5.2.1 MODEL SELECTION: LEAVE-ONE-DOMAIN-OUT CROSS-VALIDATION

We now look at the DG experiment results for the leave-one-domain-out cross-validation model
selection method. The results are summarized in Table 4. The result for this model selection method
are the most relevant as it closely follows our assumptions on the training and test distributions. The
results for the other model selection methods can be found in Appendix E.

Here, the overall performance of CausIRL with CORAL is almost identical to CORAL. Nevertheless,
there are some differences when looking at the performance on individual datasets. CausIRL with
CORAL overperform CORAL on PACS, TerraIncognita and DomainNet, where CORAL performs
better on VLCS and OfficeHome. However we should note that only the overperformance of CausIRL
with CORAL over CORAL on DomainNet is statistically significant when looking at the confidence
intervals of the average accuracies.

For CausIRL with MMD, we observe a significant boost in the overall performance compared to
MMD. CausIRL with MMD performs better on almost all datasets, and we also observe a significant
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Table 4: Domain Generalization experimental results for the leave-one-domain-out cross-validation
model selection method.

Algorithm ColoredMNIST RotatedMNIST VLCS PACS OfficeHome TerraIncognita DomainNet Avg
CausIRL with CORAL (ours) 39.1 ± 2.0 97.8 ± 0.1 76.5 ± 1.0 83.6 ± 1.2 68.1 ± 0.3 47.4 ± 0.5 41.8 ± 0.1 64.9
CORAL 39.7 ± 2.8 97.8 ± 0.1 78.7 ± 0.4 82.6 ± 0.5 68.5 ± 0.2 46.3 ± 1.7 41.1 ± 0.1 65.0
CausIRL with MMD (ours) 36.9 ± 0.2 97.6 ± 0.1 78.2 ± 0.9 84.0 ± 0.9 65.1 ± 0.7 47.9 ± 0.3 38.9 ± 0.8 64.1
MMD 36.8 ± 0.1 97.8 ± 0.1 77.3 ± 0.5 83.2 ± 0.2 60.2 ± 5.2 46.5 ± 1.5 23.4 ± 9.5 60.7

ERM 36.7 ± 0.1 97.7 ± 0.0 77.2 ± 0.4 83.0 ± 0.7 65.7 ± 0.5 41.4 ± 1.4 40.6 ± 0.2 63.2
IRM 40.3 ± 4.2 97.0 ± 0.2 76.3 ± 0.6 81.5 ± 0.8 64.3 ± 1.5 41.2 ± 3.6 33.5 ± 3.0 62.0
GroupDRO 36.8 ± 0.1 97.6 ± 0.1 77.9 ± 0.5 83.5 ± 0.2 65.2 ± 0.2 44.9 ± 1.4 33.0 ± 0.3 62.7
DANN 40.7 ± 2.3 97.6 ± 0.2 76.9 ± 0.4 81.0 ± 1.1 64.9 ± 1.2 44.4 ± 1.1 38.2 ± 0.2 63.4
CDANN 39.1 ± 4.4 97.5 ± 0.2 77.5 ± 0.2 78.8 ± 2.2 64.3 ± 1.7 39.9 ± 3.2 38.0 ± 0.1 62.2
VREx 36.9 ± 0.3 93.6 ± 3.4 76.7 ± 1.0 81.3 ± 0.9 64.9 ± 1.3 37.3 ± 3.0 33.4 ± 3.1 60.6

Table 5: Performance results of our proposed datasets on Camelyon17 and RxRx1 compared to other
baselines.

Algorithm Camelyon17 RxRx1
CausIRL with CORAL (ours) 62.7 ± 9.4 29.0 ± 0.2
CORAL 59.5 ± 7.7 28.4 ± 0.3
CausIRL with MMD (ours) 63.4 ± 11.2 28.9 ± 0.1
MMD 64.6 ± 10.5 28.2 ± 0.2
ERM 70.3 ± 6.4 29.9 ± 0.4
GroupDRO 68.4 ± 7.3 23.0 ± 0.3
IRM 64.2 ± 8.1 9.9 ± 1.4

leap in performance on DomainNet going from 23.4% to 38.9%. This shows that the inductive bias
of our algorithm matches the real inductive bias of DG far more accurately.

6 REAL-WORLD DOMAIN GENERALIZATION

In this section, we run experiments on more realistic distributional shifts. We use the Wilds (Koh
et al., 2021) benchmark and run experiments on two datasets: Camelyon17 (Bandi et al., 2018) and
RxRx1 (Taylor et al., 2019). Camelyon17 consists in predicting whether a region of tissue contains
tumor tissue, while being invariant to the hospitals where the sample was taken. The goal is to obtain
a model that generalizes across hospitals, as hospital specific artifacts of the data collection process
can vary. RxRx1 consists of cell images, where the cells received some genetic treatment (as well as
no treatment). The goal is to predict the genetic treatment among 1, 139 possible treatments. Here,
we want to be invariant to the batch the cells come from, as it is a common observation that batch
effect can greatly alter the results.

We test our two proposed models, CausIRL with CORAL and with MMD on both datasets. For
the RxRx1 dataset, we use the same hyperparameters than for the CORAL model in the Wilds
implementation. For Camelyon17, we change the number of group per batch to three and the batch
size to 60. The results are summarized in Table 5. As for the DG experiments on DomainBed before,
we observe that CausIRL with CORAL performs better than CORAL. Moreover, CausIRL with
MMD performs slightly better than CausIRL with CORAL on Camelyon17 and similarly on RxRx1.
Unfortunately, all models perform worse than simple ERM. Nevertheless, we again observe that our
proposed models work competitively even on a realistic dataset, and that our proposed algorithm to
compute the distributional distance regularization is better than how it is usually done.

7 CONCLUSION AND FUTURE WORK

In this work, we provided a causal perspective on invariant representation learning. We defined style
variables in the context of our framework and developed theory on what conditions are necessary
or sufficient to be invariant towards the style variables. Based on these theoretic insights and
the assumptions on the data generating process, we then proposed a new algorithm for enforcing
invariance to style variables in the learned representations. We empirically demonstrated that our
algorithm is versatile as it works on a diverse set of tasks and datasets. In particular, it performs
strongly in DG, where we obtain state-of-the-art performance.
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8 REPRODUCIBILITY STATEMENT

Regarding the theoretical results, all results are based on the assumptions of Figure 1, and the proofs
can be found in Appendix B. For the fair representation learning experiments, the architectures
and training procedures are precisely described in Section 5.1, and we reused the code of Roy and
Boddeti (2019) to ensure a fair comparison to existing models. For the DG experiments, we used
two benchmarks, DomainBed (Gulrajani and Lopez-Paz, 2020) and Wilds (Koh et al., 2021), which
were designed to be reproducible and unbiased. The hyperparameter used can be found in the main
text. Regarding the implementation of our algorithm, the pseudo-code in algorithm 1 and the python
code snippets in the Appendix should be sufficient to accurately implement our proposed models.
For all experiments, our implementation of the MMD and CORAL distance are taken from the
DomainBed (Gulrajani and Lopez-Paz, 2020) code. Our code implementations are provided with all
the necessary details in the corresponding sections in the appendix. For the implementation details
for fair representation learning we refer to the detailed documentation of the code in section D and
for domain generalization we refer to section E.
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A BACKGROUND

In this chapter, we review some necessary theoretical background that is used for our theoretical
results, new proposed method as well as previous works. We review the main elements of Causality
theory, which is the central theoretical basis used to model the problems we study and to design new
methods and algorithms. We also review some distributional distances used in this work, as our main
goal is to study invariant representation learning via invariant latent variable distribution.

A.1 CAUSALITY

Causality essentially is the study of cause and effects, which goes beyond the study of statistical
associations from observational data. This allows to reason about the notion of interventions, such
as a treatment in medicine. The expected effect of an intervention is in general not equivalent to
statistical conditioning, which calls for a more profound understating of the data generating process
that goes beyond correlations between variables. We here focus on Pearl’s view of causality Pearl
(2009), which mainly relies on DAGs.

A DAG allows to represent the relations between variables, where each variable is represented by a
node in the graph. Consequently, we can interpret directed edges between nodes as the existence of a
causal effect from the parent node (the cause) on the child node (the effect).

Let G = (V,E) be a DAG, and P be a distribution. We say that (G,P ) is a causal DAG model if for
any W ⊂ V , we have:

p(xV |do(XW = x′W )) =
∏

i∈V \W

p(xi|xpai)I(xW = x′W )

where xpai are the parents of node i in graph G, I is the indicator function and do(XW = x′W )
denotes the intervention on the variables XW . As we can see above, one of the properties of a causal
DAG model is that the distribution factorizes according to the parents in the associated graph G.

A.1.1 STRUCTURAL CAUSAL MODELS

A SCM can be seen as a more expressive version of a causal DAG model. Formally, an SCM consists
of a collection S of d structural assignments, one per variable:

Xj ←− fj(Xpaj , Nj)

where Xpaj ∈ X\Xj , and N1 to Nd are called the noise variables (Definition 6.2 of Peters et al.
(2017)). The noise variables are assumed to be jointly independent.

For causal DAG models, we defined an intervention by p(XV |do(XW = x′W )) (sometimes also
written as pdo(XW=x′W )(XV )), where the value of some variables are set to a constant value. With
SCMs, we can give a more precise and general definition of interventions. An intervention now
consists in replacing a subset of the collection S of structural assignments by new functions. An
intervention can thus consist in replacing a variable by a constant, a new random variable or even by
changing the function and its arguments (i.e., its parents). The new distribution over the variables
entailed by the new intervened SCM is denoted by P do(Xk=f̃(Xp̃ak

,Ñk)) (see Definition 6.8 of Peters
et al. (2017) for more details).

With this definition, we are now equipped to reason about interventions, causes and effects. One
important notion is the notion of Total Causal Effect.
Definition A.1. (Definition 6.12 in Peters et al. (2017)) We say that a variable i has a total causal
effect on a variable k if and only if:

Xi ⊥/⊥Xk in P do(Xk=Ñk)

for some random variable Ñk.
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A total causal effect between a variable Xk and Xi may only exist if there is a directed path from i to
k in the DAG associated to our SCM. On the other hand, there may be no total causal effect between
two variable even though there exists a directed path between them in the graph.

A.2 DISTRIBUTIONAL DISTANCES

The main goal of this work is to study how invariance can be enforced by regularizing different latent
spaces to have the same distribution. To this end, we thus need a differentiable distance or divergence
between distributions that can be minimized during training. We here present the most commonly
used distances in the literature.

A.2.1 ADVERSARIAL

Adversarial training was first introduced in Goodfellow et al. (2014) as a new method for Generative
modeling. Based on game theory, it can intuitively be described as a two player game, where
each player is parameterized by a neural network. The Generator is a function that maps its input
distribution to an output distribution. We call it the generated distribution and denote it by pg . On the
other hand, a Discriminator tries to distinguish between samples coming from the target dataset and
samples produced by the Generator. At convergence, the Generator produces data that is distributed
similarly to the target distribution, and thus it becomes impossible for the Discriminator to distinguish
samples.

Formally, the objective of the two-player minimax game reads:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log (1−D(G(z)))] (2)

where z is the input, x comes from the target distributions, and the Discriminator D should output 1
when its input is a samples from the target, and 0 otherwise. If the Discriminator is optimal for a given
G, Equation 2 can be rewritten to show that the Generator actually minimizes the Jensen–Shannon
divergence (JSD) between the generated and target distribution.

JSD (P‖Q) =
1

2
DKL

(
P

∥∥∥∥12 (P +Q)

)
+

1

2
DKL

(
Q

∥∥∥∥12 (P +Q)

)
,

where DKL is the Kullback-Leibler (KLd) divergence. It also can be shown that if both networks
have sufficient capacity, and if the Discriminator is trained to optimality after each optimization step
of the Generator, then the distribution of the Generator converges to the target distribution.

Adversarial training can thus be seen as a proxy distributional distance, which corresponds to the JSD
at convergence. This concept of adversarial training has been extended to be used as a regularizer for
latent spaces. It can for example be used to enforce a prior distribution on the latent space Makhzani
et al. (2015). It can also be used to enforce two latent spaces to have the same distribution. Its use
is often justified as wanting two latent spaces to seem indistinguishable for an adversary, which is
supposed to force the encoder to discard what is not constant across the two input distribution. We
argue that adversarial training is theoretically equivalent to minimizing any distributional divergence,
and that only their optimization properties differentiate them. We will also later clarify the intuition
of trying to discard the idiosyncratic in favor of the universal, and what it actually corresponds to
when we look at the data generation process of a given dataset.

A.2.2 MAXIMUM MEAN DISCREPANCY

MMD Gretton et al. (2006) is a distance based on empirical samples from two distributions, based on
the distance between the means of the two sets of samples mapped into a reproducing kernel Hilbert
space (RKHS). Let {X} ∼ P and {X ′} ∼ Q. Then, we have:
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MMD(X,X ′)2 =

∥∥∥∥∥∥ 1n
n∑
i=1

φ(xi)−
1

n′

n′∑
i=1

φ(x′i)

∥∥∥∥∥∥
=

1

n2

n∑
i,j=1

k(xi, xj) +
1

n′2

n′∑
i,j=1

k(x′i, x
′
j)−

2

n · n′
n∑
i=1

n′∑
j=1

k(xi, x
′
j),

where k(·, ·) is the associated kernel. One commonly used kernel is the Gaussian kernel k(x, x′) =
e−λ‖x−x

′‖2 . Asymptotically, for a universal kernel such as the Gaussian kernel, MMD(X,X ′) = 0
if and only if P = Q. Minimizing the MMD distance during training can thus be used to align two
distributions.

A.2.3 OPTIMAL TRANSPORT

OT has recently gained traction in machine learning research. It is particularly interesting as it defines
multiple distances between distributions.

We present the main formulations of the OT problem and some distances following the notations of
Peyré and Cuturi (2019). We concentrate on distances defined on discrete distributions.

Originally, OT can be described as the problem of transporting the mass from a set of points
{x1, . . . , xn} to a set of destination points {y1, . . . , ym} that have finite capacities. Furthermore,
the cost of transporting from a point to another is fixed by a cost matrix. There is obviously a
natural analogy to logistics and planning. The OT problem thus is to fulfill this mass transport while
minimizing the cost. To recast this as a distance between distribution, the mass of the source points is
now described by an histogram a ∈ {n+:

∑
i ai = 1} and the destination capacities as an histogram

b ∈ {m+ :
∑
i bi = 1}. The cost matrix is C ∈n×m+ where Cij describe the cost of transport from xi

to yj . The Kantorovich formulation of this problem is:

LC(a,b) := min
T∈U(a,b)

〈C, T 〉 :=
∑
i,j

Ci,jTi,j (3)

where

U(a,b) :=
{
T ∈n×m+ : T1m = a, TT1n = b

}
(4)

Ti,j describes how much mass flows from xi to yj . The constrain imposes that all the mass leaves
a and that b is filled. Given the cost matrix, we hence can compute the divergence between two
distributions, and this divergence elegantly comes with an exact description (the coupling matrix
T ) of how to go from the first configuration to the other. Furthermore, if xi, yi ∈ X lie in the same
metric space with distance d and the cost matrix satisfies Ci,j = dp(xi, yj) for some p ≥ 1, then:

Wp(a,b) := LC(a,b)
1/p (5)

is a distance, called the p-Wasserstein distance. This distance has had a large range of applications,
notably for problems related to invariant representation learning (see Section 2).

B PROOFS OF THEOREMS

Theorem 3.1. Under the assumption of the graph in Figure 1, we have that:

Z is independent from D (equivalently, D has no total causal effect on Z, or p(z|d) = p(z|d′) for all
d, d′) ⇐⇒ p(z|do(d = Nd)) = p(z) for all Nd (intervention on the distribution of D).

Proof. =⇒ As z is a descendant of d, the mechanism p(z|d) is invariant to the distribution of d.

pdo(d=Nd)(z) =

∫
pdo(d=Nd)(z, d′)dd′ =

∫
pdo(d=Nd)(z|d′)Nd(d′)dd′ = p(z)

∫
Nd(d

′)dd′

= p(z)
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⇐= As p(z) is constant for all distribution of d, then it is also constant for deterministic distributions,
i.e δd.

p(z) =

∫
p(z|d′)δd(d′)dd′ = p(z|d)

This holds for all values of d, which implies that I(Z;D) = 0.

Theorem 4.1. Independence to D is a necessary condition for the representation to be invariant to
the style variables.

Proof.

p(z|d = 1)− p(z|d = 2) =

∫
p(z|S, d = 1)[p(S|d = 1)dS −

∫
p(z|S, d = 2)p(S|d = 2)]dS

=

∫
p(z|S)[p(S|d = 1)− p(S|d = 2)]dS

= p(z)

∫
[p(S|d = 1)− p(S|d = 2)]dS

= 0

Theorem 4.2. If we are given a (possibly infinite) number of domains, where each domain exhibits
a different possible intervention on the style variables S, then independence to D implies no total
causal effect of S on Z.

Proof. From the definition of total causal effect, let’s suppose by contradiction that there exists an
intervention on S such that pdo(S=Ñs)(z) 6= p(z). Let d̃ denote the domain that correspond to this
intervention. We then have a value of D such that p(z|d̃) 6= p(z), which is a contradiction to Z being
independent to D.

C SYNTHETIC EXPERIMENT

We here implement a simple synthetic experiment to verify that our algorithm effectively enforces
invariance to D in a setting that exactly follows our assumptions. We also simplify the setting by
considering that we directly observe the generative factors.

G1 G2 G3

Y D

Figure 3: Causal DAG associated to our synthetic distribution.

The distribution is generated by the following set of structural equations:

Y ←− Ny;
D ←− Nd;
G1 ←− Y +NG1

;

G2 ←− 2 · Y + 2 ·D +NG2
;

G3 ←− D +NG3
;

where Ny and Nd ∼ Ber(0.5), NGi
∼ N (0, 1). We draw the associated causal DAG in Figure 3.

To create a dataset, we draw 1000 samples from our synthetic distribution and use 200 of them as test
samples.
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Table 6: Results of predictive accuracy for Y (Target Accuracy) and D (Adversary Accuracy) for
different strength of regularization on our synthetic dataset.

Regularization 0.0 0.1 0.5 1.0 5.0 10.0

Target Accuracy 86.0 ± 0.2 86.2 ± 0.5 86.8 ± 0.1 86.7 ± 0.3 52.0 ± 3.2 54.2 ± 5.1
Adversary Accuracy 71.8 ± 0.8 63.8 ± 0.9 63.5 ± 1.2 60.5 ± 0.2 59.8 ± 0.4 51.0 ± 0.0

We then learn a representation that is invariant to D and that is predictive towards Y using our
proposed loss. As a distributional distance, we use the MMD loss with Gaussian kernel. The
architecture of the encoder is a neural network with one hidden layer of size 10 and a representation
size of 5. The hidden layer is followed by a batch normalization and a ReLU activation. We use a
batch size of 64 and train with the Adam optimizer (Kingma and Ba, 2015) for 200 epochs, with a
learning rate of 0.001 and weight decay of 5× 10−5.

After training of the encoder, we freeze it and train two one layer linear discriminators: one to predict
Y and one to predictD. For each discriminators, we report the best achieved test accuracy. We run this
experiment three times for each value of lambda regularization , λ ∈ {0.0, 0.1, 0.5, 1.0, 5.0, 10.0}.
The results are summarized in Table 6 and Figure 4.

As expected, we can observe a strong correlation between the strength of regularization and the
strength of invariance. We achieved perfect invariance with λ = 10.0, where the adversary accuracy
is 50%, but target accuracy is only 54.2%. This is expected: as Y and D are strongly correlated,
removing information on D in the representation also reduces the predictive power of the representa-
tion. There thus is a trade-off between performance and invariance, that can be controlled via the
value of λ. Finally, this experiment confirms that our proposed algorithm is a viable new method to
learn invariance.

Figure 4: Graphical visualization of our results on the synthetic dataset. The values here are the same
than in Table 6.

D FAIR REPRESENTATION LEARNING EXPERIMENT SUPPLEMENTS

Compute Resources We run the experiements on NVIDIA GEFORCE RTX 2080 TI GPUs.

Implementation Here is the implementation of our model, which is a class that we added to the
code2 of Roy and Boddeti (2019) to the train.py file:

class CausIRL_MMD:
def __init__(self, data,

train_loader=None,
test_loader=None,

2https://github.com/human-analysis/MaxEnt-ARL
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total_epoch=200,
alpha=0.1,
epsilon=0.1,
use_cuda=False,
resume=False,
ckpt_filename=None,
resume_filename=None,
privacy_flag=True,
privacy_option=’maxent-arl’,
print_interval_train=10,
print_interval_test=10
):

# data info
self.data = data
self.train_loader = train_loader
self.test_loader = test_loader
self.n_sensitive_class = self.data.n_sensitive_class
self.n_target_class = self.data.n_target_class

# models
self.adv_net = data.adversary_net
self.target_net = data.target_net
self.discriminator_net = data.discriminator_net

# optimizer
self.optimizer = data.optimizer
self.discriminator_optimizer = data.discriminator_optimizer
self.adv_optimizer = data.adv_optimizer
self.target_optimizer = data.target_optimizer

def my_cdist(x1, x2):
x1_norm = x1.pow(2).sum(dim=-1, keepdim=True)
x2_norm = x2.pow(2).sum(dim=-1, keepdim=True)
res = torch.addmm(x2_norm.transpose(-2, -1),

x1,
x2.transpose(-2, -1), alpha=-2).add_(x1_norm)

return res.clamp_min_(1e-30)

def gaussian_kernel(x, y, gamma=[0.001, 0.01, 0.1, 1, 10, 100,
1000]):

D = my_cdist(x, y)
K = torch.zeros_like(D)

for g in gamma:
K.add_(torch.exp(D.mul(-g)))

return K

def mmd(x, y):
Kxx = gaussian_kernel(x, x).mean()
Kyy = gaussian_kernel(y, y).mean()
Kxy = gaussian_kernel(x, y).mean()
return Kxx + Kyy - 2 * Kxy

# loss
self.kl_loss = nn.KLDivLoss()
self.cross_entropy_loss = nn.CrossEntropyLoss()
self.entropy_loss = EntropyLoss()
self.nll_loss = nn.NLLLoss()
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self.mse_loss = nn.MSELoss()
self.mmd_loss = mmd

# filename
self.log_file_name = ckpt_filename+"_log.txt"
self.adv_log_file_name = ckpt_filename+"_adv_log.txt"
self.target_log_file_name = ckpt_filename + "_target_log.txt"
self.checkpoint_filename = ckpt_filename
self.adv_checkpoint_filename = ckpt_filename+"_adv.ckpt"
self.target_checkpoint_filename = ckpt_filename + "_target.ckpt"

# algorithm and visualization parameters
self.alpha = torch.tensor([alpha*1.0], requires_grad=True)
self.resume = resume
self.epoch = 0
self.gamma_param = 0.01
self.plot_interval = 10
self.print_interval_train = print_interval_train
self.print_interval_test = print_interval_test
self.use_cuda = use_cuda
self.privacy_flag = privacy_flag
self.privacy_option = privacy_option

# local variables
self.uniform = torch.tensor(1 / (self.data.n_sensitive_class))
.repeat(self.data.n_sensitive_class)
self.target_label = torch.zeros(0, dtype=torch.long)
self.sensitive_label = torch.zeros(0, dtype=torch.long)
self.sensitive_label_onehot = torch.FloatTensor(0,
self.data.n_sensitive_class)
self.target_label_onehot = torch.FloatTensor(0,
self.data.n_target_class)
self.inputs = torch.zeros(0, 0, 0)
self.inputs.requires_grad = False
self.batch_uniform = torch.FloatTensor(0, self.data.n_sensitive_class)
self.epsilon = torch.tensor([epsilon]).float()

if resume:
assert os.path.isdir(’checkpoint’), ’Error: no checkpoint directory found!’
if self.use_cuda:

checkpoint = torch.load(os.path.join(’checkpoint/’,
resume_filename))

else:
checkpoint = torch.load(os.path.join(’checkpoint/’,resume_filename),
map_location=lambda storage, loc: storage)

self.net = checkpoint[’net’]
self.best_acc = 0 # checkpoint[’acc’]
self.start_epoch = 0 # checkpoint[’epoch’]
self.total_epoch = total_epoch # + self.start_epoch

for param in self.net.parameters():
param.requires_grad = True

else:
self.net = data.net
self.best_acc = 0
self.start_epoch = 0
self.total_epoch = total_epoch

if self.use_cuda:
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self.net = self.net.cuda()
self.discriminator_net = self.discriminator_net.cuda()
self.adv_net = self.adv_net.cuda()
self.target_net = self.target_net.cuda()
self.net = nn.DataParallel(self.net, device_ids=
range(torch.cuda.device_count()))
self.target_net = nn.DataParallel(self.target_net,
device_ids=range(torch.cuda.device_count()))
self.discriminator_net = nn.DataParallel(self.discriminator_net,
device_ids=range(torch.cuda.device_count()))
self.adv_net = nn.DataParallel(self.adv_net,
device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
self.inputs = self.inputs.cuda()
self.target_label = self.target_label.cuda()
self.sensitive_label = self.sensitive_label.cuda()
self.sensitive_label_onehot = self.sensitive_label_onehot.cuda()
self.target_label_onehot = self.target_label_onehot.cuda()
self.uniform = self.uniform.cuda()
self.batch_uniform = self.batch_uniform.cuda()
self.alpha = self.alpha.cuda()

self.best_loss = 1e16
self.adv_best_acc = 0
self.target_best_acc = 0
self.t_losses, self.t_top1, self.d_losses, self.d_top1 =
AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
self.e_losses, self.losses = AverageMeter(), AverageMeter()
self.t_top5, self.d_top5 = AverageMeter(), AverageMeter()
self.adv_losses, self.adv_top1, self.adv_top5,
self.entropy_losses = AverageMeter(),
AverageMeter(), AverageMeter(), AverageMeter()
self.target_losses, self.target_top1, self.target_top5, self.target_entropy_losses =
AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()

def perform_epoch(self, epoch, test_flag=False):
if test_flag:

self.net.eval()
self.discriminator_net.eval()
self.target_net.eval()
loader = self.test_loader
string = "Test"
print_interval = self.print_interval_test
data_size = len(self.test_loader)

else:
self.net.train()
self.discriminator_net.train()
self.target_net.train()
loader = self.train_loader
string = "Train"
print_interval = self.print_interval_train
data_size = len(self.train_loader)

iteration = 0

self.t_losses.reset()
self.e_losses.reset()
self.losses.reset()
self.d_losses.reset()
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self.t_top1.reset()
self.d_top1.reset()
self.t_top5.reset()
self.d_top5.reset()
self.entropy_losses.reset()

for batch_idx, (inputs, target_label, sensitive_label) in enumerate(loader):

batch_size = inputs.size(0)
iteration += 1

self.inputs.resize_(inputs.size()).copy_(inputs)
self.target_label.resize_(target_label.size()).
copy_(target_label)
self.sensitive_label.resize_(
sensitive_label.size()).copy_(sensitive_label)
self.sensitive_label_onehot.resize_([batch_size,
self.data.n_sensitive_class])
self.sensitive_label_onehot.zero_()
self.sensitive_label_onehot.scatter_(1,
torch.unsqueeze(self.sensitive_label, 1), 1)
self.target_label_onehot.resize_([batch_size,
self.data.n_target_class])
self.target_label_onehot.zero_()
self.target_label_onehot.scatter_(1,
torch.unsqueeze(self.target_label, 1), 1)
self.batch_uniform.resize_([batch_size, self.data.n_sensitive_class])
self.batch_uniform[:, :] = 1.0/(self.data.n_sensitive_class)
self.batch_uniform.scatter_(1,
torch.unsqueeze(self.sensitive_label, 1), 0)
self.optimizer.zero_grad()

_, z, e_prob = self.net(self.inputs)
target_outputs, _, t_prob = self.target_net(z)
t_loss = torch.nan_to_num(self.cross_entropy_loss(
target_outputs+1e-16, self.target_label))
entropy_loss = torch.tensor(0)
s_loss = torch.tensor(0)

if self.privacy_flag:
#d_outputs, _, d_prob = self.discriminator_net(z)
#entropy_loss = -self.entropy_loss(d_prob)
first = None
second = None
for i in range(self.n_sensitive_class):

ind = self.sensitive_label == i
z_ = z[ind]
slice = random.randint(0, len(z_))
if first is None:

first = z_[:slice]
second = z_[slice:]

else:
first = torch.cat((first, z_[:slice]), 0)
second = torch.cat((second, z_[slice:]), 0)

if len(first) > 1 and len(second) > 1:
s_loss = torch.nan_to_num(self.mmd_loss(first, second))

loss = t_loss + self.alpha*s_loss
else:

23



Under review as a conference paper at ICLR 2022

loss = t_loss

if not test_flag: # update weights
self.optimizer.zero_grad()
self.target_optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.target_optimizer.step()

# measure accuracy and record loss for learner
t_prec1 = accuracy(t_prob.data, self.target_label.data)
t_prec5 = accuracy(t_prob.data, self.target_label.data,
topk=(int(np.min([5, self.n_target_class])),))
self.t_losses.update(t_loss.data.item(), batch_size)
self.e_losses.update(s_loss.data.item(), batch_size)
self.losses.update(loss.data.item(), batch_size)
self.t_top1.update(t_prec1[0], batch_size)
self.t_top5.update(t_prec5[0], batch_size)
self.entropy_losses.update(s_loss.data.item(), batch_size)

if self.privacy_flag:
if not test_flag:

self.discriminator_net.train()
d_outputs, _, a_prob = self.discriminator_net(z.detach())
d_loss = self.nll_loss(torch.log(a_prob+1e-16),
self.sensitive_label)

if not test_flag:
self.discriminator_optimizer.zero_grad()
d_loss.backward()
self.discriminator_optimizer.step()

d_prec1 = accuracy(a_prob.data, self.sensitive_label.data)
d_prec5 = accuracy(a_prob.data, self.sensitive_label.data,
topk=(int(np.min([5, self.n_sensitive_class])),))
self.d_losses.update(d_loss.data.item(), batch_size)
self.d_top1.update(d_prec1[0], batch_size)
self.d_top5.update(d_prec5[0], batch_size)

if iteration % print_interval == 0:
print(string + ’_Epoch:[{0}][{1}/{2}] |’

’ T_Loss: {3:.2f} |’
’ E_Loss: {4:.2f} |’
’ Loss: {5:.2f} |’
’ T_Prec: {6:.2f} |’
’ T_Prec5: {7:.2f} |’
’ D_Loss: {8:.2f} |’
’ D_Prec: {9:.2f} |’
’ D_Prec5: {10:.2f} |’
’ D_Entropy: {11:.2f} |’

.format(
epoch, batch_idx, data_size,
float(self.t_losses.avg), float(self.e_losses.avg),
float(self.losses.avg),float(self.t_top1.avg.item()),
float(self.t_top5.avg.item()), float(self.d_losses.avg),
float(self.d_top1.avg.item()), float(self.d_top5.avg.item()),
float(self.entropy_losses.avg)))

else:
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if iteration % print_interval == 0:
print(string + ’_Epoch:[{0}][{1}/{2}] |’

’ T_Loss: {3:.2f} |’
’ T_Prec: {4:.2f} |’
’ T_Prec5: {5:.2f} |’

.format(
epoch, batch_idx, data_size,
float(self.t_losses.avg), float(self.t_top1.avg.item()),
float(self.t_top5.avg.item())))

return self.losses.avg, self.t_top1.avg, self.t_top5.avg, self.d_losses.avg,
self.d_top1.avg, self.d_top5.avg, self.entropy_losses.avg

def train(self):
self.logger = Logger(os.path.join(’checkpoint/’,
self.log_file_name), title=’Problem’)
self.logger.set_names([’LR’, ’Train-Loss’, ’Test-Loss’,
’Train-Acc.’, ’Train-Acc5.’, ’Test Acc.’, ’Test Acc5.’,

’D-Train Loss’, ’D-Test Loss’,
’D-Train Acc.’, ’D-Train Acc5.’,
’D-Test Acc.’, ’D-Test Acc5.’,
’D-Train-Entropy’,
’D-Test-Entropy’])

for epoch in range(self.start_epoch, self.total_epoch):
print(’\nEpoch: %d’ % epoch)

train_loss, train_acc, train_acc5, d_train_loss, d_train_acc,
d_train_acc5, d_train_entropy =
self.perform_epoch(epoch=epoch, test_flag=False)

with torch.no_grad():
test_loss, test_acc, test_acc5, d_test_loss, d_test_acc,
d_test_acc5, d_test_entropy = self.perform_epoch(epoch=epoch,

test_flag=True)

self.logger.append([self.optimizer.param_groups[0][’lr’], float(train_loss),
float(test_loss),
float(train_acc), float(train_acc5),
float(test_acc), float(test_acc5),
float(d_train_loss),
float(d_test_loss),
float(d_train_acc),
float(d_train_acc5),
float(d_test_acc),
float(d_test_acc5),
float(d_train_entropy),
float(d_test_entropy)])

# it is optimum only when we reach the end of the game by optimization,
# any other value e.g., current discriminator feedback is non-optimal
if (epoch + 1) % 10:

print(’Saving..’) # Save checkpoint.
state = {

’net’: self.net.module if self.use_cuda else self.net,
’state_dict’: self.net.state_dict(),
’acc’: test_acc,
’epoch’: epoch,
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’optimizer’: self.optimizer.state_dict()
}
if not os.path.isdir(’checkpoint’):

os.mkdir(’checkpoint’)
torch.save(state, ’checkpoint/’ +
self.checkpoint_filename + ’.ckpt’)
self.best_acc = test_acc
self.best_loss = test_loss

self.logger.close()
print("Done")

def perform_epoch_adversary(self, epoch, test_flag=False):
if test_flag:

self.adv_net.eval()
loader = self.test_loader
str = "Test"
print_interval = self.print_interval_test

else:
self.adv_net.train()
loader = self.train_loader
str = "Train"
print_interval = self.print_interval_train

self.net.eval()
iteration = 0
self.adv_losses.reset()
self.adv_top1.reset()
self.adv_top5.reset()
self.entropy_losses.reset()

for batch_idx, (inputs, target_label, sensitive_label) in enumerate(loader):
batch_size = inputs.size(0)
iteration += 1
if self.data.name == ’mnist’:

inputs = torch.unsqueeze(inputs, 1).float()

self.inputs.resize_(inputs.size()).copy_(inputs)
self.target_label.resize_(target_label.size()).copy_(target_label)
self.sensitive_label.resize_(
sensitive_label.size()).copy_(sensitive_label)

with torch.no_grad():
outputs, z, _ = self.net(self.inputs)

d_outputs, _, prob = self.adv_net(z.detach())
d_loss = self.cross_entropy_loss(d_outputs, self.sensitive_label)

with torch.no_grad():
entropy_loss = -self.entropy_loss(prob)

if not test_flag:
self.adv_optimizer.zero_grad()
d_loss.backward()
self.adv_optimizer.step()

d_prec1 = accuracy(prob.data, self.sensitive_label.data)
d_prec5 = accuracy(prob.data, self.sensitive_label.data,
topk=(int(np.min([5, self.n_sensitive_class])),))
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self.adv_losses.update(d_loss.data.item(), batch_size)
self.adv_top1.update(d_prec1[0], batch_size)
self.adv_top5.update(d_prec5[0], batch_size)
self.entropy_losses.update(entropy_loss.data.item(), batch_size)

if iteration % print_interval == 0:
print(str + ’ Epoch:[{0}][{1}/{2}] |’

’ T_Loss: {3:.5f} |’
’ T_Prec: {4:.2f} |’
’ T5_Prec: {5:.2f} |’
’ Entropy: {6:.3f} |’

.format(
epoch, batch_idx, len(self.train_loader),
float(self.adv_losses.avg),
float(self.adv_top1.avg.item()),
float(self.adv_top5.avg),
float(self.entropy_losses.avg)))

return self.adv_losses.avg, self.adv_top1.avg,
self.adv_top5.avg, self.entropy_losses.avg

def train_adversary(self, model_filename=None, total_epoch=100):
self.adv_logger = Logger(os.path.join(’checkpoint/’,
self.adv_log_file_name), title=’Problem’)
self.adv_logger.set_names([’LR’, ’Train-Loss’, ’Test-Loss’, ’Train Acc.’,
’Train Acc5.’, ’Test Acc.’, ’Test Acc5.’,

’Train Entropy’,’Test Entropy’])

self.adv_best_acc = 0
scheduler = CosineAnnealingLR(self.adv_optimizer,
T_max=total_epoch, eta_min=1e-7)
if model_filename is not None:

checkpoint = torch.load(os.path.join(’checkpoint/’, model_filename))
self.net = checkpoint[’net’]
self.net.eval()

for epoch in range(total_epoch):
print(’\nEpoch: %d’ % epoch)
scheduler.step()
train_loss, train_acc, train_acc5, train_entropy =

self.perform_epoch_adversary(epoch=epoch, test_flag=False)
with torch.no_grad():

test_loss, test_acc, test_acc5, test_entropy =
self.perform_epoch_adversary(epoch=epoch, test_flag=True)

self.adv_logger.append([self.adv_optimizer.param_groups[0][’lr’],
float(train_loss), float(test_loss), float(train_acc),

float(train_acc5), float(test_acc),
float(test_acc5),
float(train_entropy),
float(test_entropy)])

# Save checkpoint.
if test_acc > self.adv_best_acc:

print(’Saving..’)
state = {

’net’: self.adv_net.module if self.use_cuda else self.adv_net,
’state_dict’: self.adv_net.state_dict(),
’acc’: test_acc,
’epoch’: epoch,
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’optimizer’: self.adv_optimizer.state_dict()
}
if not os.path.isdir(’checkpoint’):

os.mkdir(’checkpoint’)
torch.save(state, ’checkpoint/’ + self.adv_checkpoint_filename)
self.adv_best_acc = test_acc

self.adv_logger.close()
print("Adversary Done.")

def perform_epoch_target(self, epoch, test_flag=False):
if test_flag:

self.target_net.eval()
loader = self.test_loader
str = "Test"
print_interval = self.print_interval_test

else:
self.target_net.train()
loader = self.train_loader
str = "Train"
print_interval = self.print_interval_train

self.net.eval()
iteration = 0
self.target_losses.reset()
self.target_top1.reset()
self.target_top5.reset()
self.target_entropy_losses.reset()

for batch_idx, (inputs, target_label, sensitive_label) in enumerate(loader):
batch_size = inputs.size(0)
iteration += 1
if self.data.name == ’mnist’:

inputs = torch.unsqueeze(inputs, 1).float()

self.inputs.resize_(inputs.size()).copy_(inputs)
self.target_label.resize_(target_label.size()).copy_(target_label)
self.sensitive_label.resize_(
sensitive_label.size()).copy_(sensitive_label)

with torch.no_grad():
outputs, z, _ = self.net(self.inputs)

d_outputs, _, prob = self.target_net(z.detach())
d_loss = self.cross_entropy_loss(d_outputs, self.target_label)

with torch.no_grad():
entropy_loss = -self.entropy_loss(prob)

if not test_flag:
self.target_optimizer.zero_grad()
d_loss.backward()
self.target_optimizer.step()

d_prec1 = accuracy(prob.data, self.target_label.data)
d_prec5 = accuracy(prob.data, self.target_label.data,
topk=(int(np.min([5, self.n_target_class])),))
self.target_losses.update(d_loss.data.item(), batch_size)
self.target_top1.update(d_prec1[0], batch_size)
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self.target_top5.update(d_prec5[0], batch_size)
self.target_entropy_losses.update(entropy_loss.data.item(), batch_size)

if iteration % print_interval == 0:
print(str + ’ Epoch:[{0}][{1}/{2}] |’

’ T_Loss: {3:.5f} |’
’ T_Prec: {4:.2} |’
’ T5_Prec: {5:.2f} |’
’ Entropy: {6:.3f} |’

.format(
epoch, batch_idx, len(loader),
float(self.target_losses.avg),
float(self.target_top1.avg.item()),
float(self.target_top5.avg),
float(self.target_entropy_losses.avg)))

return self.target_losses.avg, self.target_top1.avg,
self.target_top5.avg, self.target_entropy_losses.avg

def train_target(self, model_filename=None, total_epoch=100):
self.target_logger = Logger(os.path.join(’checkpoint/’,
self.target_log_file_name), title=’Problem’)
self.target_logger.set_names([’LR’, ’Train-Loss’,
’Test-Loss’, ’Train Acc.’, ’Train Acc5.’, ’Test Acc.’, ’Test Acc5.’,

’Train Entropy’,’Test Entropy’])

self.target_best_acc = 0
scheduler = CosineAnnealingLR(self.target_optimizer,
T_max=total_epoch, eta_min=1e-7)
if model_filename is not None:

assert os.path.isdir(’checkpoint’), ’Error: no
checkpoint directory found!’
checkpoint = torch.load(os.path.join(’checkpoint/’, model_filename))
self.net = checkpoint[’net’]
self.net.eval()

for epoch in range(total_epoch):
print(’\nEpoch: %d’ % epoch)
scheduler.step()
train_loss, train_acc, train_acc5, train_entropy =
self.perform_epoch_target(epoch=epoch, test_flag=False)
with torch.no_grad():

test_loss, test_acc, test_acc5, test_entropy =
self.perform_epoch_target(epoch=epoch, test_flag=True)

self.target_logger.append([self.target_optimizer.param_groups[0][’lr’], float(train_loss), float(test_loss), float(train_acc),

float(train_acc5), float(test_acc),
float(test_acc5),
float(train_entropy),
float(test_entropy)])

if test_acc > self.target_best_acc:
print(’Saving..’) # Save checkpoint.
state = {

’net’: self.target_net.module
if self.use_cuda else self.target_net,
’state_dict’: self.target_net.state_dict(),
’acc’: test_acc,
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Table 8: Datasets used in our DG experiments, with sample images for each of them. This table is
taken from Gulrajani and Lopez-Paz (2020).

Dataset Domains
+90% +80% -90%

Colored MNIST

(degree of correlation between color and label)

0◦ 15◦ 30◦ 45◦ 60◦ 75◦

Rotated MNIST

Caltech101 LabelMe SUN09 VOC2007

VLCS

Art Cartoon Photo Sketch

PACS

Art Clipart Product Photo

Office-Home

L100 L38 L43 L46

Terra Incognita

(camera trap location)

Clipart Infographic Painting QuickDraw Photo Sketch

DomainNet

’epoch’: epoch,
’optimizer’: self.target_optimizer.state_dict()

}
if not os.path.isdir(’checkpoint’):

os.mkdir(’checkpoint’)
torch.save(state, ’checkpoint/’ + self.target_checkpoint_filename)
self.target_best_acc = test_acc

self.target_logger.close()
print("Target Done")

Table 7: Main characteristics of the datasets used in our fair representation learning experiments.

Dataset Support of D Target Variable Dataset Size Input Size Majority Sensitive Majority Target

Adult { male, female } Income > 50, 000$ 45, 222 14 67% 75%
German { male, female } Good or bad credit 1, 000 20 69% 71%

E DG SUPPLEMENTS

Compute Resources We run the 10, 560 jobs on NVIDIA GEFORCE RTX 2080 TI GPUs as well
as NVIDIA TITAN RTX GPUs for the more resource intensive jobs.

Baseline models We compare our algorithms to the following existing algorithms:
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Table 9: Description of the datasets used in our DG experiments

Dataset Name Support of D Number of Samples Image Dimensions Number of Classes
ColoredMNIST (Arjovsky et al., 2019) {0.1, 0.3, 0.9} 70, 000 (2, 28, 28) 2
RotatedMNIST (Ghifary et al., 2015) {0, 15, 30, 45, 60, 75} 70, 000 (1, 28, 28) 10
VLCS (Fang et al., 2013) {Caltech101,LabelMe,SUN09,VOC2007} 10, 729 (3, 224, 224) 5
PACS (Li et al., 2017) {art, cartoons, photos, sketches} 9, 991 (3, 224, 224) 7
OfficeHome (Venkateswara et al., 2017) {art, clipart, product, real} 15, 588 (3, 224, 224) 65
TerraIncognita (Beery et al., 2018) {L100,L38,L43,L46} 24, 788 (3, 224, 224) 10
DomainNet (Peng et al., 2019) {clipart, infograph, painting, quickdraw, real, sketch} 586, 575 (3, 224, 224) 345

• Empirical Risk Minimization (ERM, Vapnik (1998)), where the sum of errors is minimized
across domains.

• Group Distributionally Robust Optimization (DRO, Sagawa et al. (2019)), where low
performing domains are giving an increasing weight during training.

• Inter-domain Mixup (Mixup, Yan et al. (2020)).

• Meta-Learning for Domain Generalization (MLDG, Li et al. (2018a)).

• Algorithms based on matching the latent distribution across domains:

– Domain-Adversarial Neural Networks (DANN, Ganin et al. (2016)), where the distri-
butional distance is an adversarial network.

– Class-conditional DANN (C-DANN, Li et al. (2018d)), which is a variant of DANN
matching the class conditional distributions across domains.

– CORAL Sun and Saenko (2016), which aligns the mean and covariance of latent
distributions.

– MMD Li et al. (2018b), which uses the MMD distance.

• Invariant Risk Minimization (IRM Arjovsky et al. (2019)), which looks for a representation
whose optimal linear classifier on top of the representation matches across domains.

• Style Agnostic Networks (SagNet, Nam et al. (2021)), which tries to reduce style bias of
CNNs.

• Adaptive Risk Minimization (ARM, Zhang et al. (2020)), which is based on meta-learning.

• Variance Risk Extrapolation (VREx, Krueger et al. (2021)), where they enforce the training
risk to be similar across domains.

• Representation Self-Challenging (RSC, Huang et al. (2020)).

Implementation To be more concrete, we change the code that computes the distributional distance
penalty from this:

for i in range(nmb):
for j in range(i + 1, nmb):

penalty += self.dist_loss(features[i], features[j])

if nmb > 1:
penalty /= (nmb * (nmb - 1) / 2)

to this:
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first = None
second = None

for i in range(nmb):
slice = random.randint(0, len(features[i]))

if first is None:
first = features[i][:slice]
second = features[i][slice:]

else:
first = torch.cat((first, features[i][:slice]), 0)
second = torch.cat((second, features[i][slice:]), 0)

penalty = self.dist_loss(first, second)

.

Here is the concrete full class of our CausIRL with MMD model:

class CausIRL_MMD(ERM):
def __init__(self, input_shape, num_classes, num_domains, hparams):

super(CausIRL_MMD, self).__init__(input_shape, num_classes, num_domains,
hparams)

self.kernel_type = "gaussian"

def my_cdist(self, x1, x2):
x1_norm = x1.pow(2).sum(dim=-1, keepdim=True)
x2_norm = x2.pow(2).sum(dim=-1, keepdim=True)
res = torch.addmm(x2_norm.transpose(-2, -1),

x1,
x2.transpose(-2, -1), alpha=-2).add_(x1_norm)

return res.clamp_min_(1e-30)

def gaussian_kernel(self, x, y, gamma=[0.001, 0.01, 0.1, 1, 10, 100,
1000]):

D = self.my_cdist(x, y)
K = torch.zeros_like(D)

for g in gamma:
K.add_(torch.exp(D.mul(-g)))

return K

def mmd(self, x, y):
Kxx = self.gaussian_kernel(x, x).mean()
Kyy = self.gaussian_kernel(y, y).mean()
Kxy = self.gaussian_kernel(x, y).mean()
return Kxx + Kyy - 2 * Kxy

def update(self, minibatches, unlabeled=None):
objective = 0
penalty = 0
nmb = len(minibatches)

features = [self.featurizer(xi) for xi, _ in minibatches]
classifs = [self.classifier(fi) for fi in features]
targets = [yi for _, yi in minibatches]

first = None
second = None
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Table 10: DG experimental results for the training-domain validation selection method.

Algorithm ColoredMNIST RotatedMNIST VLCS PACS OfficeHome TerraIncognita DomainNet Avg
CausIRL with CORAL (ours) 51.7 ± 0.1 97.9 ± 0.1 77.5 ± 0.6 85.8 ± 0.1 68.6 ± 0.3 47.3 ± 0.8 41.9 ± 0.1 67.3
CORAL 51.5 ± 0.1 98.0 ± 0.1 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 67.5
CausIRL with MMD (ours) 51.6 ± 0.1 97.9 ± 0.0 77.6 ± 0.4 84.0 ± 0.8 65.7 ± 0.6 46.3 ± 0.9 40.3 ± 0.2 66.2
MMD 51.5 ± 0.2 97.9 ± 0.0 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 63.3

ERM 51.5 ± 0.1 98.0 ± 0.0 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 66.6
IRM 52.0 ± 0.1 97.7 ± 0.1 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 65.4
GroupDRO 52.1 ± 0.0 98.0 ± 0.0 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 64.8
Mixup 52.1 ± 0.2 98.0 ± 0.1 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 66.7
MLDG 51.5 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 66.7
DANN 51.5 ± 0.3 97.8 ± 0.1 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 66.1
CDANN 51.7 ± 0.1 97.9 ± 0.1 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 65.6
MTL 51.4 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 66.2
SagNet 51.7 ± 0.0 98.0 ± 0.0 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 67.2
ARM 56.2 ± 0.2 98.2 ± 0.1 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 66.1
VREx 51.8 ± 0.1 97.9 ± 0.1 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 65.6
RSC 51.7 ± 0.2 97.6 ± 0.1 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 66.1

for i in range(nmb):
objective += F.cross_entropy(classifs[i] + 1e-16, targets[i])
slice = random.randint(0, len(features[i]))
if first is None:

first = features[i][:slice]
second = features[i][slice:]

else:
first = torch.cat((first, features[i][:slice]), 0)
second = torch.cat((second, features[i][slice:]), 0)

if len(first) > 1 and len(second) > 1:
penalty = torch.nan_to_num(self.mmd(first, second))

else:
penalty = torch.tensor(0)

objective /= nmb

self.optimizer.zero_grad()
(objective + (self.hparams[’mmd_gamma’]*penalty)).backward()
self.optimizer.step()

if torch.is_tensor(penalty):
penalty = penalty.item()

return {’loss’: objective.item(), ’penalty’: penalty}

E.0.1 MODEL SELECTION: TRAINING-DOMAIN VALIDATION SET

We present here the results of our DG experiments for the training-domain validation model selection
method. Result are summarized in Table 10. For CausIRL with CORAL, the overall performance
is slightly below vanilla CORAL. CausIRL with CORAL especially underperforms CORAL on
the PACS dataset. On the other hand, CausIRL with CORAL performs better than CORAL on
DomainNet. For CausIRL with MMD, the overall performance is significantly better than MMD.
This overperformance is mainly driven by the results on TerraIncognita and DomainNet, where for
the latter we observe a leap in accuracy from 23.4% to 40.3%.

E.1 MODEL SELECTION: LEAVE-ONE-DOMAIN-OUT CROSS-VALIDATION

We here present the complete results for the leave-one-domain-out cross-validation model selection
method in Table 11.
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Table 11: DG experimental results for the leave-one-domain-out cross-validation model selection
method.

Algorithm ColoredMNIST RotatedMNIST VLCS PACS OfficeHome TerraIncognita DomainNet Avg
CausIRL with CORAL (ours) 39.1 ± 2.0 97.8 ± 0.1 76.5 ± 1.0 83.6 ± 1.2 68.1 ± 0.3 47.4 ± 0.5 41.8 ± 0.1 64.9
CORAL 39.7 ± 2.8 97.8 ± 0.1 78.7 ± 0.4 82.6 ± 0.5 68.5 ± 0.2 46.3 ± 1.7 41.1 ± 0.1 65.0
CausIRL with MMD (ours) 36.9 ± 0.2 97.6 ± 0.1 78.2 ± 0.9 84.0 ± 0.9 65.1 ± 0.7 47.9 ± 0.3 38.9 ± 0.8 64.1
MMD 36.8 ± 0.1 97.8 ± 0.1 77.3 ± 0.5 83.2 ± 0.2 60.2 ± 5.2 46.5 ± 1.5 23.4 ± 9.5 60.7

ERM 36.7 ± 0.1 97.7 ± 0.0 77.2 ± 0.4 83.0 ± 0.7 65.7 ± 0.5 41.4 ± 1.4 40.6 ± 0.2 63.2
IRM 40.3 ± 4.2 97.0 ± 0.2 76.3 ± 0.6 81.5 ± 0.8 64.3 ± 1.5 41.2 ± 3.6 33.5 ± 3.0 62.0
GroupDRO 36.8 ± 0.1 97.6 ± 0.1 77.9 ± 0.5 83.5 ± 0.2 65.2 ± 0.2 44.9 ± 1.4 33.0 ± 0.3 62.7
Mixup 33.4 ± 4.7 97.8 ± 0.0 77.7 ± 0.6 83.2 ± 0.4 67.0 ± 0.2 48.7 ± 0.4 38.5 ± 0.3 63.8
MLDG 36.7 ± 0.2 97.6 ± 0.0 77.2 ± 0.9 82.9 ± 1.7 66.1 ± 0.5 46.2 ± 0.9 41.0 ± 0.2 64.0
DANN 40.7 ± 2.3 97.6 ± 0.2 76.9 ± 0.4 81.0 ± 1.1 64.9 ± 1.2 44.4 ± 1.1 38.2 ± 0.2 63.4
CDANN 39.1 ± 4.4 97.5 ± 0.2 77.5 ± 0.2 78.8 ± 2.2 64.3 ± 1.7 39.9 ± 3.2 38.0 ± 0.1 62.2
MTL 35.0 ± 1.7 97.8 ± 0.1 76.6 ± 0.5 83.7 ± 0.4 65.7 ± 0.5 44.9 ± 1.2 40.6 ± 0.1 63.5
SagNet 36.5 ± 0.1 94.0 ± 3.0 77.5 ± 0.3 82.3 ± 0.1 67.6 ± 0.3 47.2 ± 0.9 40.2 ± 0.2 63.6
ARM 36.8 ± 0.0 98.1 ± 0.1 76.6 ± 0.5 81.7 ± 0.2 64.4 ± 0.2 42.6 ± 2.7 35.2 ± 0.1 62.2
VREx 36.9 ± 0.3 93.6 ± 3.4 76.7 ± 1.0 81.3 ± 0.9 64.9 ± 1.3 37.3 ± 3.0 33.4 ± 3.1 60.6
RSC 36.5 ± 0.2 97.6 ± 0.1 77.5 ± 0.5 82.6 ± 0.7 65.8 ± 0.7 40.0 ± 0.8 38.9 ± 0.5 62.7

Table 12: DG experimental results for the test-domain validation set model selection method.

Algorithm ColoredMNIST RotatedMNIST VLCS PACS OfficeHome TerraIncognita DomainNet Avg
CausIRL with CORAL (ours) 58.4 ± 0.3 98.0 ± 0.1 78.2 ± 0.1 87.6 ± 0.1 67.7 ± 0.2 53.4 ± 0.4 42.1 ± 0.1 69.4
CORAL 58.6 ± 0.5 98.0 ± 0.0 77.7 ± 0.2 87.1 ± 0.5 68.4 ± 0.2 52.8 ± 0.2 41.8 ± 0.1 69.2
CausIRL with MMD (ours) 63.7 ± 0.8 97.9 ± 0.1 78.1 ± 0.1 86.6 ± 0.7 65.2 ± 0.6 52.2 ± 0.3 40.6 ± 0.2 69.2
MMD 63.3 ± 1.3 98.0 ± 0.1 77.9 ± 0.1 87.2 ± 0.1 66.2 ± 0.3 52.0 ± 0.4 23.5 ± 9.4 66.9

ERM 57.8 ± 0.2 97.8 ± 0.1 77.6 ± 0.3 86.7 ± 0.3 66.4 ± 0.5 53.0 ± 0.3 41.3 ± 0.1 68.7
IRM 67.7 ± 1.2 97.5 ± 0.2 76.9 ± 0.6 84.5 ± 1.1 63.0 ± 2.7 50.5 ± 0.7 28.0 ± 5.1 66.9
GroupDRO 61.1 ± 0.9 97.9 ± 0.1 77.4 ± 0.5 87.1 ± 0.1 66.2 ± 0.6 52.4 ± 0.1 33.4 ± 0.3 67.9
Mixup 58.4 ± 0.2 98.0 ± 0.1 78.1 ± 0.3 86.8 ± 0.3 68.0 ± 0.2 54.4 ± 0.3 39.6 ± 0.1 69.0
MLDG 58.2 ± 0.4 97.8 ± 0.1 77.5 ± 0.1 86.8 ± 0.4 66.6 ± 0.3 52.0 ± 0.1 41.6 ± 0.1 68.7
DANN 57.0 ± 1.0 97.9 ± 0.1 79.7 ± 0.5 85.2 ± 0.2 65.3 ± 0.8 50.6 ± 0.4 38.3 ± 0.1 67.7
CDANN 59.5 ± 2.0 97.9 ± 0.0 79.9 ± 0.2 85.8 ± 0.8 65.3 ± 0.5 50.8 ± 0.6 38.5 ± 0.2 68.2
MTL 57.6 ± 0.3 97.9 ± 0.1 77.7 ± 0.5 86.7 ± 0.2 66.5 ± 0.4 52.2 ± 0.4 40.8 ± 0.1 68.5
SagNet 58.2 ± 0.3 97.9 ± 0.0 77.6 ± 0.1 86.4 ± 0.4 67.5 ± 0.2 52.5 ± 0.4 40.8 ± 0.2 68.7
ARM 63.2 ± 0.7 98.1 ± 0.1 77.8 ± 0.3 85.8 ± 0.2 64.8 ± 0.4 51.2 ± 0.5 36.0 ± 0.2 68.1
VREx 67.0 ± 1.3 97.9 ± 0.1 78.1 ± 0.2 87.2 ± 0.6 65.7 ± 0.3 51.4 ± 0.5 30.1 ± 3.7 68.2
RSC 58.5 ± 0.5 97.6 ± 0.1 77.8 ± 0.6 86.2 ± 0.5 66.5 ± 0.6 52.1 ± 0.2 38.9 ± 0.6 68.2

E.1.1 MODEL SELECTION: TEST-DOMAIN VALIDATION SET (ORACLE)

Finally, we here look at the DG experiment results for the test-domain validation set model selection.
The results are summarized in Table 12. This setting is less realistic as we have access to test samples
during training, but it is still useful as it shows the best possible model for each algorithm. It allows us
to evaluate whether there is headroom for improvement for each algorithm and to see which algorithm
has the inductive bias that more closely fit the task.

For both CausIRL with CORAL and CausIRL with MMD, we observe a better overall performance
compared to their vanilla counterparts. We even have that CausIRL with CORAL is the best overall
performing algorithm among the evaluated algorithms. Once again, we observe a large difference
in performance on DomainNet between MMD and CausIRL with MMD, going from an average
accuracy of 23.5% to 40.6%. We also again have that CausIRL with CORAL is the best algorithm
for DomainNet compared to all the other algorithms, which explains why we perform well on this
dataset.
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