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ABSTRACT

We present Tensor-GaLore, a novel method for efficient training of neural net-
works with higher-order tensor weights. Many models, particularly those used
in scientific computing, employ tensor-parameterized layers to capture complex,
multidimensional relationships. When scaling these methods to high-resolution
problems makes memory usage grow intractably, and matrix based optimization
methods lead to suboptimal performance and compression. We propose to work
directly in the high-order space of the complex tensor parameter space using a
tensor factorization of the gradients during optimization. We showcase its ef-
fectiveness on Fourier Neural Operators (FNOs), a class of models crucial for
solving partial differential equations (PDE) and prove the theory of it. Across var-
ious PDE tasks like the Navier Stokes and Darcy Flow equations, Tensor-GaLore
achieves substantial memory savings, reducing optimizer memory usage by up
to 75%. These substantial memory savings across AI for science demonstrate
Tensor-GaLore’s potential.

1 INTRODUCTION

The advent of foundation models has revolutionized AI, demonstrating unprecedented performance
across diverse domains such as natural language processing, computer vision, and scientific com-
puting Brown et al. (2020); Kirillov et al. (2023). However, as these models grow in scale and
complexity, they present significant computational challenges. With parameters often numbering
in the billions, these models demand enormous memory resources for storage and optimization,
making their training and deployment prohibitively expensive for many researchers and organiza-
tions. Recent work (See Section 6) has focused on parameter-efficient fine-tuning and pre-training
methods to address these issues.

Gradients in deep neural networks often exhibit low-rank structures during training, implying that
the most important gradient information can be stored at a fraction of the memory cost. GaLore
(Gradient Low-Rank Projection) Zhao et al. (2024) leveraged this insight to reduce memory usage
in large language model training by projecting large gradients onto low-rank subspaces and opti-
mizing on the low-rank gradients. Specifically, GaLore operates on weight matrices W ∈ Rm×n

and their corresponding gradient matrices G ∈ Rm×n. For a given rank r, GaLore computes the
Singular Value Decomposition (SVD) of the gradient matrix, forms projection matrices using the
first r singular vectors, then projects the gradient onto this low-rank subspace to perform optimiza-
tion. After computing the optimizer update, the gradients are projected back to their full rank for
use in the model. This approach allows GaLore to maintain a low memory footprint by storing and
updating only the low-rank representations of gradients.

However, GaLore’s approach is limited to matrix operations and relies on Singular Value Decompo-
sition (SVD), which may not be optimal for all neural network layers or data structures. In partic-
ular, GaLore faces significant challenges when applied to ”tensor” operations, which are prevalent
in many modern deep learning architectures, especially those used in scientific computing and com-
puter vision. Tensors are multidimensional arrays that offer a natural framework for representing
and manipulating complex, high-dimensional data structures, and the limitations of matrix-based
approaches like GaLore when applied to tensor operations is the fact that many models involve
inherently tensor-structured gradients, where preserving the multidimensional relationships is cru-
cial for capturing complex physical phenomena. Simply flattening or ”matricizing” these tensors
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Figure 1: Left: Test L2 results on Navier-Stokes (128 resolution) vs. optimizer memory usage.
Right: CUDA memory usage for FNO models on Navier-Stokes. GaLore+ includes per-layer opti-
mization and activation checkpointing. Tensor-GaLore significantly reduces memory usage.

into matrices can lead to a loss of important dimension-specific information and may not allow for
maximum compression and memory savings. In certain architectures, different dimensions might
correspond to spatial, temporal, or channel information, each requiring distinct treatment that is best
preserved in the original tensor form.

The field of scientific modeling has seen a significant paradigm shift towards applying AI to it. Neu-
ral operators (NOs) Li et al. (2020) is one of the most promising new architectures in this domain.
The neural operator is a framework for modeling multi-scale processes on continuous domains. Hav-
ing the discretization invariance property, the operator learns a continuum mapping, allowing NOs
to model systems that traditional neural networks cannot accurately capture. The ability to handle
multi-scale processes on continuous domains represents a key advantage of NOs over conventional
neural network approaches in scientific modeling. FNOs are a class of neural operator architecture
designed to learn mappings between function spaces to solve parametric PDEs, a cornerstone of
modern scientific computing.

Unlike traditional neural networks, FNOs involve 4th-order or 5th-order tensor operations. In an
FNO, the spectral convolution layer contracts a weight tensor R ∈ CN1×N2×N3×N4 with functions
in the Fourier domain: (Kvl)(x) = F−1(RFvl)(x), where F and F−1 are the Fourier transform
and its inverse, R is a learnable transformation parameterized by the weight tensor introduced above.

While these tensor operations are powerful for capturing complex, high-dimensional relationships
in scientific data, they pose unique challenges related to memory consumption during training. The
primary issue lies not in the activation memory induced by forward and backward passes but in the
memory overhead required for optimization. This overhead is due to the need to store the Fourier
coefficients and perform operations in the frequency domain Lingsch et al. (2024). This memory
bottleneck is further exacerbated by modern optimizers, which often store multiple tensors for each
weight tensor to track gradients, momentum, and other quantities, as in the case of Adam. Con-
sequently, the optimizer state comprises a significant portion of the memory overhead in training
large-scale NOs. As illustrated in Figure 5, the memory consumption for activations (shown in dark
green) remains relatively constant and low across different numbers of frequency modes in FNOs.
However, the memory usage for individual components, including gradients and optimizer states
(shown in yellow), grows significantly as the number of modes increases. Increasing frequency
modes is crucial for capturing finer details in complex systems like turbulent fluids. Still, it comes
at the cost of higher memory usage, presenting a key challenge in scientific machine learning.

These challenges motivate the need for a tensor-specific approach to gradient projection and op-
timization. Hence we introduce Tensor-GaLore, a novel method for efficiently training NOs
through low-rank gradient projections. To the best of our knowledge, Tensor-GaLore is the first
work to explore low-rank subspace learning for gradients of higher-order tensors that seeks low-
rank representation while offering a significant advancement in memory-efficient optimization and
topologically preserving the structure. Tensor-GaLore utilizes Tucker decomposition to project gra-
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Figure 2: Comparison of our proposed Tensor-GaLore algorithm with standard AdamW and Ga-
Lore. GaLore applies matrix-based low-rank projection after reshaping tensors. Our Tensor-GaLore
method leverages tensor decomposition to perform low-rank projection directly on tensor gradients,
preserving multidimensional structure.

dient tensors onto low-rank subspaces, preserving the multidimensional structure crucial for NOs as
shown in Figure 2. Additionally, we also prove the theory of Tensor-GaLore including convergence
and low-rank gradient behaviour of these tensor weights.

We demonstrate the effectiveness of Tensor-GaLore on a diverse set of PDE tasks, with our largest
case study focusing on the Navier-Stokes equations at 1024x1024 resolution. For this computation-
ally intensive problem, our experiments show significant reductions in memory usage (up to 75%
for optimizer states). Figure 4 illustrates these substantial memory savings across different ranks.
In addition, we validate Tensor-GaLore’s performance on other important PDEs such as Darcy flow,
Burgers’ equation, and electromagnetic wave propagation.

Tensor-GaLore opens new possibilities for developing and deploying advanced AI systems across
various scientific and engineering disciplines by enabling more efficient training of large-scale
tensor-based models. Our approach democratizes access to large-scale Neural Operator training,
allowing researchers with limited computational resources to work on cutting-edge problems in sci-
entific computing and AI-driven scientific discovery.

2 BACKGROUND: GALORE AND NEURAL OPERATORS

2.1 NEURAL OPERATOR

A neural operator Gθ : A× θ → U combines linear integral operators K with pointwise non-linear
activations σ to approximate non-linear operators, mapping initial conditions a ∈ A to solutions
u ∈ U . Its operation is defined as Gθ := Q ◦ (WL +KL) ◦ · · · ◦ σ(W1 +K1) ◦ P , where P and Q
are pointwise neural networks for encoding and decoding, Wl are linear operators, Kl are integral
kernel operators, and σ are activation functions.

The Fourier Neural Operator (FNO) proposes a specific convolution operator for K, defined as
(Kvl)(x) = F−1(R · TKFvl)(x), where F and F−1 are the Fourier transform and its inverse,
R is a learnable transformation, and TK truncates to the lowest K Fourier modes. This formulation
allows FNO to be discretization-invariant, producing high-quality solutions for query points not in
the training grid and enabling transfer between different grid resolutions and discretizations.
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2.2 CHALLENGES OF APPLYING GALORE TO NEURAL OPERATORS

In order to apply standard GaLore to tensor weights, the weights must first be reshaped into a matrix
to compute the SVD for projection into a low-rank space. GaLore takes one rank parameter, r, and
projects high-rank gradients onto the first r basis vectors of the corresponding SVD rotation matrix.
When the weight matrix corresponds to an operator that maps between vectors, a single rank cutoff
can be applied while preserving most information.

However, in the tensor case, weights correspond to higher-order maps between function spaces.
Depending on the chosen strategy for reshaping tensor weights into a matrix, applying a single-
dimension rank cutoff to the matrix may discard key information - for instance, for a tensor W ∈
CA×B×m×m, where A is the number of input channels, B is the number of output channels, and
m is the number of truncated Fourier basis modes along each dimension, reshaping W into W ′ ∈
CABm×m and cutting off the first dimension at rank r may remove all information about Fourier
modes along the first dimension, making function learning impossible. We call this method GaLore
and provide several comparisons to demonstrate its flaws.

One flaw is the Loss of mode-specific information: by collapsing multiple tensor dimensions into
one matrix dimension, we lose the ability to preserve different amounts of information along each
tensor mode. The other is that we have an imbalanced projection: Projecting only on one side of
the reshaped matrix (e.g., only U or only V from the SVD) can severely limit the operator’s capacity.
However, projecting on both sides often leads to training instability and failure to converge. This
method also encounters rank selection issues: Choosing a single rank cutoff for the reshaped matrix
makes it difficult to balance information preservation across all the original tensor dimensions. A
rank that preserves enough information for one dimension may be too restrictive for another.

3 TENSOR-GALORE

3.1 TENSOR DECOMPOSITION

Tensors are multidimensional arrays that generalize the concepts of vectors (first-order tensors) and
matrices (second-order tensors) to higher orders. An N th-order tensor X ∈ CI1×I2×···×IN is an
N -way array where each mode n has dimension In. Like matrices, in tensors, we can decompose
the tensors into low-rank factors using the Tucker decomposition, also known as the higher-order
SVD (HOSVD), which decomposes a tensor into a core tensor multiplied by a matrix along each
mode:

X ≈ G ×1 U
(1) ×2 U

(2) · · · ×N U (N) = JG;U (1), U (2), . . . , U (N)K (1)

where G ∈ CR1×R2×···×RN is the core tensor, U (n) ∈ CIn×Rn are factor matrices, and ×n denotes
the n-mode product. Two critical aspects of the Tucker decomposition make it particularly suitable
for our Tensor-GaLore method:

1. Equivalence to SVD in 2D: In the special case of 2D tensors (matrices), the Tucker decompo-
sition reduces to the familiar SVD. The core tensor G becomes equivalent to the diagonal matrix Σ
in SVD, while the factor matrices correspond to the orthogonal matrices U and V Kolda & Bader
(2009). This property ensures that our method seamlessly extends the principles of matrix-based
techniques to higher-order tensors.

2. Orthogonality of factor matrices: The factor matrices U (n) in Tucker decomposition are or-
thogonal, mirroring the properties of U and V in SVD. This orthogonality is crucial for the efficiency
and stability of the GaLore method. Specifically:

(a) Projection efficiency: The orthogonality allows us to project tensors onto the subspace spanned
by these matrices through simple matrix multiplication, without the need for costly inverse compu-
tations.
(b) Easy inversion: When we need to reverse the projection, we can simply use the transpose of
these orthogonal matrices instead of computing their inverses. This property is expressed mathe-
matically as (U (n))TU (n) = I , where I is the identity matrix.
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(c) Numerical stability: Orthogonal matrices have a condition number of 1, ensuring that the pro-
jection and its inverse are numerically stable operations, even for high-dimensional tensors.

We use TensorLy’s Kossaifi et al. (2019) implementation of Tucker decomposition, which is based
on Higher-Order Orthogonal Iteration (HOI). For an input tensor X , HOI computes approximate
values for the Tucker factor matrices {U (i)}i by approximating the SVD of the unfolding of X
along each mode. HOI updates these factors iteratively to minimize the Frobenius norm between
X and the resulting learned decomposition. These learned factors can be initialized with nonzero
values, meaning that once full HOI is computed once, the decomposition can be ”warm-restarted”
to reduce the number of iterations required for convergence.

In addition to these steps, like in GaLore, we incorporate per-layer weight updates Lv et al. (2024)
and activation checkpointing Chen et al. (2016) to reduce memory usage further. Per-layer weight
updates allow the optimizer to update weights immediately after computing gradients for each layer
rather than storing gradients for all layers before updating. This method reduces the peak mem-
ory requirement during training. Activation checkpointing involves selectively recomputing certain
activations during the backward pass instead of storing them, trading some additional computation
for reduced memory usage. Combined with low-rank gradient projection, these techniques enable
Tensor-GaLore to achieve significant memory savings while maintaining training efficiency and per-
formance. We denote this method as Tensor-GaLore/GaLore +.

Extension: To extend GaLore to methods with learned tensor weights, we replace the matrix-
based SVD with tensor decomposition methods. This extension, called Tensor-GaLore, allows us to
handle multi-dimensional data and complex network architectures more efficiently.

Algorithm 1 Adam with Tensor-GaLore

Require: A layer weight tensor W ∈ CN1×N2×N3×N4 . Step size η, scale factor α, decay rates
β1, β2, rank r, subspace change frequency T .

1: Initialize first-order momentM0 ∈ CN1×N2×N3×N4 ← 0
2: Initialize second-order moment V0 ∈ CN1×N2×N3×N4 ← 0
3: Initialize step t← 0
4: repeat
5: Gt ∈ CN1×N2×N3×N4 ← −∇Wϕt(Wt)
6: if t mod T = 0 then
7: C, {U (n)}4n=1 ← Tucker(Gt, rank = r) ▷ Initialize projector.
8: else
9: C, {U (n)}4n=1 ← Ct−1, {U (n)

t−1}4n=1 ▷ Reuse the previous projector.
10: end if
11: Rt ← Gt ×1 U

(1)⊤ ×2 U
(2)⊤ ×3 U

(3)⊤ ×4 U
(4)⊤ ▷ Project gradient into compact space.

12: UPDATE(Rt) by Adam:
13: Mt ← β1 · Mt−1 + (1− β1) · Rt

14: Vt ← β2 · Vt−1 + (1− β2) · |RtR̄t| ▷ We use the complex conjugate update.
15: Mt ←Mt/(1− βt

1)
16: Vt ← Vt/(1− βt

2)
17: Nt ←Mt/(

√
Vt + ϵ)

18: G̃t ← α · Nt ×1 U
(1) ×2 U

(2) ×3 U
(3) ×4 U

(4) ▷ Project back to original space.
19: Wt ←Wt−1 + η · G̃t
20: t← t+ 1
21: until convergence criteria met.
22: returnWt

For a gradient tensor G ∈ CI1×I2×···×IN , the Tucker-based Tensor-GaLore performs the following
steps:

1. Compute the Tucker decomposition of the gradient tensor:

G ≈ C ×1 U
(1) ×2 U

(2) · · · ×N U (N) = JC;U (1), U (2), . . . , U (N)K (2)

where C ∈ CR1×R2×···×RN is the core tensor and U (n) ∈ CIn×Rn are factor matrices.

5
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2. Project the gradient tensor onto the low-rank subspace and update the optimizer states and
model parameters using the projected gradient Gproj.

Gproj = JGcoreU
(1)T , U (2)T , . . . , U (N)T K (3)

3. Project the gradient back when updating.

Gcore = JGprojU
(1), U (2), . . . , U (N)K (4)

3.2 THEORETICAL RESULTS OF TENSOR-GALORE

We extend the theoretical foundations of GaLore to tensor-structured weights, proving both con-
vergence guarantees and low-rank emergence during training. Our analysis shows that gradients of
FNO models naturally develop low-rank structure in each tensor mode during training, while Tensor-
GaLore achieves convergence through mode-wise projections. All the proofs and background details
are in Appendix sections H, I and J.

Theorem 1 (Tensor-GaLore Convergence) For a gradient tensor Gt ∈ RI1×I2×···×Id , let {Pk ∈
RIk×rk}dk=1 be fixed orthonormal projection matrices for each mode k with ranks {rk}dk=1. Suppose
for each mode k:

• Ai, Bi, Ci have L
(k)
A , L

(k)
B , L

(k)
C mode-k continuity, ∥Wt∥(k) ≤ Dk (mode-k spec-

tral norm bound), B̂(k)it := P⊤
k B

(k)
i (Wt)Pk, Ĉ(k)it := P⊤

k C
(k)
i (Wt)Pk ,κ(k)

t :=
1
N

∑
i λmin(B̂(k)it )λmin(Ĉ(k)it )

Then Tensor-GaLore with ρt ≡ 1 satisfies for each mode k:

∥(Rt)(k)∥F ≤
[
1− η(κ

(k)
t−1 − L

(k)
A − L

(k)
B L

(k)
C D2

k)
]
∥(Rt−1)(k)∥F

As a result, if mint,k κ
(k)
t > L

(k)
A + L

(k)
B L

(k)
C D2

k for all modes k, then Rt → 0 and Tensor-GaLore
converges with the fixed projections {Pk}dk=1. Proof 10.

Remark 1 (Mode-k Continuity) The mode-k continuity assumption on Ai, Bi, Ci is mild and holds
generically for neural network parameters.

3.3 IMPLICIT REGULARIZATION

Tucker decomposition is defined with a separate rank along each mode of the decomposed tensor,
preserving all key information explicitly. Additionally, the resulting decomposition’s factors can be
initialized to non-random values in Tucker decomposition. As learning progresses, results from a
previous decomposition can be used to ’warm-restart’ the process, leading to convergence in fewer
iterations.

The low-rank tensor approximation acts as an implicit regularizer, helping to prevent overfitting
and promoting smoother optimization trajectories. Hence, we observe much better convergence and
generalization in our experiments. In particular, we consistently observed that a rank of around
25% - 50% of the total rank provided optimal performance across various tasks. This observation
suggests that Tensor-GaLore acts as an implicit regularizer, preventing overfitting by constraining
the model to learn more robust, low-rank representations of the underlying physics. These results
align with findings from Razin et al. (2022), demonstrating that tensor factorization naturally tends
towards low-rank solutions. In our experiments, we saw dramatic improvements in convergence
even with a fixed number of epochs, sometimes achieving over 50% improvement in test loss. This
result implies that the regularization effect might be even more significant in higher-order tensors
due to the increased structure and redundancy in these higher-dimensional spaces.

4 EXPERIMENTAL SETUP

We conduct a comprehensive evaluation of GaLore and Tensor-GaLore on a diverse set of bench-
mark datasets for NOs. We select datasets representing a range of PDEs with varying complexity
and dimensionality. These include:
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Figure 3: Memory usage of FNO and GINO on various datasets on an NVIDIA A100. On top of the
bars, we showcase the reduction in optimizer memory in % using Tensor-GaLore.

4.1 DATASETS

Burgers Equation: We consider the one-dimensional Burgers equation on the torus:

∂tu+ uux = νuxx, x ∈ T, t ∈ (0, T ] (5)

with initial condition u0 ∈ L2(T;C) and viscosity ν > 0. We set T = 1 and ν = 0.01. Input
functions are sampled from a Gaussian random field, and solutions are obtained using a pseudo-
spectral method. We use 1000 samples for training and 200 for testing, with 128 resolution.

Navier-Stokes: We use the two-dimensional Navier-Stokes equation in vorticity form:

∂tω +∇⊥ϕ · ω =
1

Re
∆ω + f, x ∈ T2, t ∈ (0, T ]

−∆ϕ = ω,

∫
T2

ϕ = 0, x ∈ T2, t ∈ (0, T ]
(6)

with Reynolds number Re = 1000 and final time T = 5. The domain is discretized on a 1024
× 1024 grid. We generate 10000 training samples and 2000 test samples using a pseudo-spectral
method. We also showcase the effectiveness of our approach at a subsampled resolution of 128 ×
128. Our memory profiling is also done at the full 1024 × 1024 resolution.

Darcy Flow: The Darcy flow problem is defined by the elliptic PDE:

−∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2 (7)

with boundary conditions u(x) = 0 for x ∈ ∂(0, 1)2. The input a is sampled from a Gaussian
random field, and f is fixed. We use 4000 training samples and 1000 test samples, with the domain
discretized on a 421 × 421 grid.

Electromagnetic Wave Propagation: Lastly, we present a dataset that represents complex-valued
data inherently. We consider the propagation of optical pulses in a nonlinear waveguide with second-
order nonlinearity (κ2). The problem is governed by the nonlinear Schrödinger equation (NLSE)
with additional terms for second-harmonic generation:

∂A

∂z
= −iβ2

2

∂2A

∂t2
+ iγ|A|2A+ iκA∗ei∆kz (8)

where A is the complex electric field envelope, i is the imaginary unit, z is the propagation distance, t
is time, β2 is the group velocity dispersion, γ is the nonlinear parameter, κ is the coupling coefficient

7
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for second-harmonic generation, and ∆k is the phase mismatch. Our dataset consists of 800 training
samples and 200 testing samples. The input consists of several parameters: the poling region length
ranging from 2mm to 15mm, the poling period mismatch varying from -50nm to +50nm, and the
pump pulse energy spanning from a few fJ to thousands of fJ. Additionally, the input includes the
complex electric field envelope of the input pulse. The output of the system is the complex electric
field envelope of the resulting output pulse.

4.2 MODEL ARCHITECTURE AND TRAINING

We implement Tensor-GaLore with the FNO architecture. Models are trained using an AdamW
optimizer. Other training details, such as learning rate, batch size, epochs, losses, are detailed in
Appendix 8 for each dataset and model configuration. 1.

For Tensor-GaLore, we investigate the impact of varying the rank of the decompositions. We explore
ranks ranging from 20% to 100% of the total rank, allowing us to assess the trade-off between model
compression and performance. We explore comparable matrix ranks for GaLore to provide a direct
comparison with our method. Detailed results for these ablations are provided in Appendix D.
Additionally, we explore various ways of reshaping the tensor to a matrix for tensor inputs before
applying GaLore. Specifically, we examine each possible ”matricization” dimension, where we
flatten multiple tensor dimensions into a single matrix dimension. This allows us to compare the
effectiveness of different tensor-to-matrix projections. Details are in Appendix D.

Evaluation Metrics We evaluate our models using the L2 and H1 loss to provide a comprehensive
assessment of performance. In PDE’s the H1 loss, accounts for both the function values and their
gradients, providing a more rigorous assessment of the solution’s smoothness and accuracy. The
gain percentage is calculated based on the improvement in L2 test loss compared to the baseline.

Table 1: Evaluating Tensor-GaLore across various tasks.

Model Rank Memory Train Test H1 Test L2 Gain
Ratio (GB) (Loss (×10−2)) (Loss (×10−2)) (Loss (×10−2)) (%)

Darcy
Baseline 1.0 8.88 0.7151 1.6230 0.2050 /
GaLore (d=2) 0.25 7.34 0.4200 1.3210 0.1680 19
Tensor-GaLore 0.25 7.32 0.2930 0.8680 0.1050 48.8
Navier-Stokes
Baseline 1.0 77 1.0630 1.9010 0.6152 /
GaLore (d=1) 0.5 68 4.3340 5.5830 1.9952 -223
Tensor-GaLore 0.5 55 1.2340 2.0850 0.6480 -5.4
ElectroMagnetic
Baseline 1.0 4.83 2.973 0.1902 0.2000 /
GaLore (d=2) 0.25 4.83 2.392 0.1802 0.1900 5
Tensor-GaLore 0.25 4.63 2.132 0.1681 0.1782 11
Burgers
Baseline 1.0 3.94 0.0064 0.0050 0.0026 /
GaLore (d=2) 0.5 3.88 0.0052 0.0100 0.0062 -250
Tensor-GaLore 0.5 3.87 0.0026 0.0041 0.0025 +5

5 RESULTS

Our experiments demonstrate the effectiveness of Tensor-GaLore across various datasets, show-
ing significant improvements in both performance and memory efficiency as shown in Ta-
ble 1. For the Burgers equation, our method consistently outperformed the baseline FNO,
with performance improving as rank increased. On the Darcy flow problem, Tensor-GaLore
achieved up to a 50% gain in test loss at rank 0.25, while reducing optimizer memory

1Code is available at: https://anonymous.4open.science/r/tensorgalore
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Table 2: Model performance on Darcy-flow.

Model Test Loss (1e-2) at Rank Ratio Gain (%)
0.01 0.1 0.25 0.5 0.75 1.0

FNO Baseline - - - - - 0.205 /
FNO - Tensor-GaLore 0.147 0.108 0.105 0.107 0.140 0.173 49
FNO - GaLore (d=1) 0.256 0.232 0.212 0.245 0.201 0.190 8
FNO - GaLore (d=2) 0.203 0.192 0.168 0.178 0.170 0.180 19
FNO - GaLore (d=3) 0.234 0.212 0.201 0.193 0.196 0.182 11

by 76%. The Navier-Stokes experiments showcased Tensor-GaLore’s ability to handle com-
plex problems, maintaining comparable performance at lower ranks while dramatically reduc-
ing memory usage. Electromagnetic wave propagation simulations saw up to 11% gains.

Figure 4: Memory usage of NS 1024 using
an FNO on a A100. Comparison between
Tensor-GaLore and baseline.

Across all tested datasets, Tensor-GaLore also
demonstrated superior performance to GaLore
at comparable ranks, suggesting that preserving
higher-order structures within the weight gradients
can substantially improve model performance. The
results show that Tensor-GaLore can significantly re-
duce the memory footprint of the optimizer states
while improving model performance in many cases.
On Darcy flow (as shown in Table 5), we observed
up to an 48% improvement in test loss with a rank
of 0.25, while reducing the optimizer state mem-
ory from 2.09GB to 0.5GB. On Navier-Stokes, we
achieve even more significant memory savings while
achieving comparable performance to the baseline.

Figure 4 illustrates the memory usage for the Navier-
Stokes 1024x1024 case. Tensor-GaLore signifi-
cantly reduces optimizer memory from 19.92 GB
(baseline) to as low as 0.2 GB (rank 0.01), while
maintaining comparable activation memory. Our ex-
periments reveal a trend in performance gains across problem complexities. For simpler problems
like Darcy flow, Tensor-GaLore achieves substantial improvements, but as problem complexity in-
creases, such as with Navier-Stokes at 128x128 resolution, the performance gains become more
modest but still significant. This pattern suggests that Tensor-GaLore’s effectiveness scales with
problem difficulty. We have a detailed parameter and memory complexity analysis in Appendix G.

6 RELATED WORK

Our work, Tensor-GaLore, introduces a novel approach to efficiently training neural operators by
decomposing gradients. While significant work has been done in related areas, the specific approach
of gradient decomposition in tensors has not been explored. Tensor Methods in Deep Learning:
Tensor decomposition has been widely used to compress and improve deep networks, particularly in
vision tasks Novikov et al. (2015); Lebedev et al. (2015); Kim et al. (2016). These methods typically
focus on decomposing the weight tensors of the network to reduce parameters and computational
complexity. However, they do not address the decomposition of gradients during training.

Neural Operators: Recent advancements in learning-based approaches for solving PDEs have led
to the development of neural operators Li et al. (2020); Kovachki et al. (2021). In particular, FNOs
have shown remarkable success in various scientific computing tasks Li et al. (2021). While these
methods have made significant strides in learning solution operators for PDEs, they have not ex-
plored gradient decomposition to improve memory efficiency.

9
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Efficient Training Techniques: Various approaches have been proposed to reduce the memory
footprint of large-scale models. In the classical case, several techniques have demonstrated success
when model weights are stored as matrices. LoRA Hu et al. (2022) adds a fine-tuning weight matrix
created via a low-rank decomposition to an original pre-trained, frozen weight matrix. In the higher-
order case, FLoRA Si et al. (2024) extends the idea of low-rank adaptation to higher-dimensional
parameter spaces using a Tucker tensor decomposition, which has the demonstrated benefit of ap-
plying a low-rank decomposition to each dimension of a higher-order space. In the context of
neural operators, which include higher-order tensorized weights, previous works have demonstrated
the possibility of model compression via tensor factorization and low-rank weight approximations.
Kossaifi et al. (2024) introduced the Multi-Grid Tensorized Fourier Neural Operator (MG-TFNO),
which combines tensor decomposition with a multi-grid domain decomposition approach. In order
to balance low-rank memory optimization with model performance at higher ranks, the Incremental
Fourier Neural Operator (iFNO) George et al. (2024) incrementally scales both the size and rank of
FNO weights during training in order to boost performance.

Mixed Precision Training Mixed precision training Tu et al. (2024) utilizes lower precision for-
mats (e.g., FP16) for certain operations in NO, reducing memory usage and potentially accelerating
training on compatible hardware.

Tensor-GaLore introduces a novel approach that can complement and enhance many existing tech-
niques, potentially leading to even greater memory benefits. It can be combined with mixed preci-
sion training, integrated with methods like FLoRA or MG-TFNO to provide an additional layer of
optimization for gradient tensors, and incorporated into frameworks like iFNO.

7 APPLICATIONS

Tensor-GaLore has potential applications across various domains where tensor-based models are
prevalent. Large language models (LLMs) could enable the training of tensor-based architectures
that capture higher-order relationships in language data, offering improved memory efficiency and
implicit regularization while preserving the natural tensor structure. Convolutional Neural Networks
(CNNs) also heavily utilize higher-order tensor weights in vision. CNN convolution layers include
4-dimensional tensor weights. As discussed previously, these weight gradients and optimizer states
have high memory requirements, making memory consumption a significant bottleneck in training
deep CNNs Yaqub et al. (2020). Future applications of Tensor-GaLore could scale these methods
and improve their performance in constrained environments.

8 CONCLUSION

The results of our experiments with Tensor-GaLore reveal several key insights into its performance
and potential applications. First, the consistent improvement in convergence across various datasets
is noteworthy. By projecting gradients onto a low-rank subspace, Tensor-GaLore appears to create
a more stable optimization landscape, potentially smoothing out local minima and facilitating faster
convergence to better solutions. These results are particularly evident in the Darcy flow and Navier-
Stokes experiments, where we observed improved test loss even at lower ranks. Additionally, the
ability to warm-start each decomposition using factors from the previous iteration likely contributes
to maintaining stable convergence despite frequent subspace changes. However, Tensor-GaLore
has limitations. The overhead of performing tensor decomposition, while amortized, may still be
significant for some applications, and the optimal rank selection remains a challenge that requires
further investigation. Future work should focus on exploring the application of Tensor-GaLore to an
even broader range of scientific computing tasks.

Lastly, Tensor-GaLore represents a significant advancement in memory-efficient training for large-
scale tensor-based models, particularly in AI for Science. Tensor-GaLore opens up new avenues
for building and scaling foundational models in scientific computing by enabling the training of
more complex neural operators with dramatically reduced memory footprints. Our results demon-
strate that this approach not only preserves performance but often enhances it, suggesting that the
implicit regularization induced by low-rank projections may be particularly beneficial for capturing
the underlying physics of complex systems. This could lead to more accurate and computationally
efficient models for climate prediction, fluid dynamics, and other critical scientific applications.

10
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APPENDIX

A FNO MEMORY USAGE

Figure 5 illustrates the memory usage patterns in Fourier Neural Operators (FNOs) as the number of
modes increases. This analysis provides crucial insights into the scalability challenges faced when
training large FNO models.

Figure 5: Memory usage in FNO as a function of the number of modes

As evident from the figure, the memory consumption is divided into two main categories: activation
memory and optimizer memory. The activation memory, represented by the dark green bars, remains
relatively constant and low across different numbers of modes. This stability in activation memory
is a positive attribute of FNOs, indicating that the forward and backward passes do not significantly
increase memory requirements as the model complexity grows.

However, the optimizer memory, shown in yellow, exhibits a dramatic increase as the number of
modes grows. This exponential growth in optimizer memory becomes particularly pronounced for
models with more than 128 modes. For instance, when the number of modes reaches 1024, the
optimizer memory dominates the total memory usage, far exceeding the memory required for acti-
vations.

This trend highlights a critical bottleneck in scaling FNO models to higher resolutions or more com-
plex problems. The optimizer’s memory footprint, which includes storage for gradients, momentum,
and adaptive learning rate parameters, becomes the primary limiting factor. This observation moti-
vates the need for memory-efficient optimization techniques like Tensor-GaLore, which specifically
target the reduction of optimizer memory usage while maintaining model performance.
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B PROFILING METHODOLOGY

To analyze the performance and memory usage of our Tensor-GaLore method, we implemented a
comprehensive profiling setup using PyTorch’s built-in profiler. This allowed us to gain detailed
insights into the computational and memory requirements of our algorithm compared to baseline
methods.

Detailed Memory Breakdown. We implemented a detailed memory tracking system to distin-
guish between various types of memory usage, including Model parameters, Optimizer states, Input
data, Activations, Gradients, Autograd details, Temporary buffers. To provide a comprehensive
understanding of memory utilization in our experiments, we developed a classification system to
distinguish between different types of memory usage. This granular approach allows us to precisely
identify where memory savings occur when using Tensor-GaLore compared to baseline methods:

• Model Parameters. Model Parameters are udentified by tracking tensors that are registered as
model parameters (instances of ‘nn.Parameter‘). It is typically constant throughout training unless
using techniques like weight decay.

• Optimizer States. Optimizer States are tracked by instrumenting the optimizer to log memory
allocations for momentum buffers, adaptive learning rate parameters, etc. For Adam optimizer,
this includes first and second moment estimates.

• Input Data. Input is monitored by tracking memory allocations that occur during data loading
and preprocessing steps.

• Activations. Activations are identified as temporary tensors created during the forward pass of
the model. it is tracked using hooks on module forward methods to capture intermediate outputs.

• Activations. Activations are identified as temporary tensors created during the forward pass of
the model. it is tracked using hooks on module forward methods to capture intermediate outputs.

• Gradients. Gradients ared recognized as tensors with ‘requires grad=True‘ that are outputs of
operations on model parameters or inputs.

• Autograd Details. It is captured by profiling PyTorch’s autograd engine internals, including mem-
ory used for storing computational graphs and intermediate results needed for backpropagation.

• Temporary Buffers. Temporary Buffers are short-lived tensors that are created and destroyed
within a single operation or a small set of operations. For tensor-galore, it is often used in complex
computations like FFTs or tensor decompositions within galore.

To implement this detailed profiling, we used a combination of PyTorch’s memory-profiler, custom
context managers, and function decorators. Key aspects of our implementation include:

• Wrapping key operations with context managers to track memory allocation and deallocation
• Using PyTorch hooks to monitor intermediate activations and gradients
• Instrumenting the optimizer to log memory usage for each parameter update
• Implementing custom memory tracking for Tensor-GaLore specific operations

The results of this analysis formed the basis for our discussions on memory efficiency in Sections
5 and 6 of the main paper, and provided the data for Figure 4, which illustrates the memory usage
breakdown for different numbers of frequency modes in FNOs.

C GALORE

D ADDITIONAL RESULTS

We evaluate three approaches to matricizing a tensor gradient with shape Cin × Cout ×Mx ×My .
The first, which we call ”rollout=1”, combines the last 3 dimensions into one matrix dimension,
resulting in a matrix of shape Cin × (Cout ∗Mx ∗My). The second, ”rollout=2”, combines the
first two dimensions into the first matrix dimension and the last two dimensions into the second
matrix dimension, resulting in a matrix of shape (Cin ∗ Cout)× (Mx ∗My). The last, ”rollout=3”,

14
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Algorithm 2 GaLore

Require: A layer weight tensor W ∈ CN1×N2×N3×N4 . Step size η, scale factor α, decay rates
β1, β2, rank r, subspace change frequency T , chosen dimension d.

1: Initialize first-order momentM0 ∈ CN1×N2×N3×N4 ← 0
2: Initialize second-order moment V0 ∈ RN1×N2×N3×N4 ← 0
3: Initialize step t← 0
4: repeat
5: Gt ∈ CN1×N2×N3×N4 ← −∇Wϕt(Wt)

6: G
(d)
t ← Reshape(Gt, (Nd,

∏
i ̸=d Ni)) ▷ Reshape tensor to matrix

7: if t mod T = 0 then
8: U,Σ, V ⊤ ← SVD(G

(d)
t ) ▷ Compute SVD

9: P ← V [:, : r]⊤ ▷ Select r right singular vectors
10: end if
11: Rt ← G

(d)
t P⊤ ▷ Project gradient into compact space

12: UPDATE(Rt) by Adam:
13: Mt ← β1 ·Mt−1 + (1− β1) ·Rt

14: Vt ← β2 · Vt−1 + (1− β2) · |Rt|2
15: Mt ←Mt/(1− βt

1)
16: Vt ← Vt/(1− βt

2)
17: Nt ←Mt/(

√
Vt + ϵ)

18: G̃
(d)
t ← α ·NtP ▷ Project back to original space

19: G̃t ← Reshape(G̃(d)
t , (N1, N2, N3, N4)) ▷ Reshape back to tensor

20: Wt ←Wt−1 + η · G̃t
21: t← t+ 1
22: until convergence criteria met
23: returnWt

combines the last three dimensions into the second matrix dimension, resulting in a matrix of shape
Cin × (Cout ∗Mx ∗My).We showcase results and comparisons for all three approaches in Table 6.

All of the subsequent results are with varying rank ratios on the Tensor-GaLore method for all
datasets. We report both the training and testing loss/accuracy.

Table 3: Model performance on Burgers

Model Rank Ratio Train Loss (1e-4) Test Loss(1e-4) Gain (%)
FNO Baseline Full Rank 0.205 0.262 /
FNO - Tensor-GaLore 0.1 0.115 0.321 -19
FNO - Tensor-GaLore 0.25 0.095 0.271 -4
FNO - Tensor-GaLore 0.5 0.086 0.253 +5
FNO - Tensor-GaLore 0.75 0.083 0.246 +8
FNO - Tensor-GaLore 1.00 0.083 0.242 +9

Table 4: Model performance on Darcy-flow

Model Rank Ratio Train Loss (1e-2) Test Loss(1e-2) Gain (%)
FNO Baseline Full Rank 0.715 0.205 /
FNO - Tensor-GaLore 0.01 0.465 0.147 +30
FNO - Tensor-GaLore 0.1 0.323 0.108 +48
FNO - Tensor-GaLore 0.25 0.293 0.105 +49
FNO - Tensor-GaLore 0.5 0.275 0.107 +49
FNO - Tensor-GaLore 0.75 0.379 0.140 +40
FNO - Tensor-GaLore 1.00 0.715 0.173 +16
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Table 5: Model performance on EM.

Model Test Loss (1e-2) at Rank Ratio Gain (%)
0.01 0.1 0.25 0.5 0.75 1.0

FNO Baseline - - - - - 0.200 /
FNO - Tensor-GaLore 0.187 0.185 0.178 0.176 0.174 0.206 11
FNO - GaLore (d=1) 0.213 0.192 0.193 0.189 0.194 0.200 7
FNO - GaLore (d=2) 0.205 0.206 0.195 0.196 0.201 0.199 3

Table 6: Ablation: GaLore and Tensor-GaLore Rank Comparison

Method % orig. parameters GaLore Test L2 (×10−2) Tensor-GaLore Test L2 (×10−2)
GaLore (d=1) 25 2.3410 1.2970

50 1.9950 0.9982
75 4.7530 0.9409

GaLore (d=2) 25 - 1.2970
50 9.9800 0.9980
75 0.1250 0.9409

GaLore (d=3) 25 9.0190 1.2970
50 9.2390 0.9982
75 9.0250 0.9409

Table 7: Model performance on EM

Model Rank Ratio Train Loss Test Loss Gain (%)
Complex FNO Baseline Full Rank 2.973 0.200 /
Complex FNO - Tensor-GaLore 0.01 4.198 0.249 -20
Complex FNO - Tensor-GaLore 0.1 2.936 0.217 -8
Complex FNO - Tensor-GaLore 0.25 2.132 0.178 +11
Complex FNO - Tensor-GaLore 0.5 2.430 0.184 +8
Complex FNO - Tensor-GaLore 0.75 2.719 0.192 +4
Complex FNO - Tensor-GaLore 1.00 2.397 0.185 +8

E ARCHITECTURE AND TRAINING DETAILS

Sobolev Loss for PDE Training In training NOs for PDEs we employ both the L2 and Sobolev
H1 losses to provide a comprehensive assessment of model performance. While the L2 loss mea-
sures point-wise accuracy of predictions, the H1 loss, defined as ∥u− û∥2H1 = ∥u− û∥2L2 + ∥∇u−
∇û∥2L2 , accounts for both the function values and their gradients. This is particularly crucial for
PDEs, as it ensures that the learned solutions not only match the target values but also preserve the
smoothness and differential properties inherent in the physical systems being modeled.

Sobolev Loss for Complex Wave Phenomena The Sobolev H1 loss proves especially valuable
when dealing with complex wave phenomena, as demonstrated in our experiments with the EM
Dataset using Complex-FNOs. In this case, the H1 loss not only measures the accuracy of the
predicted complex electric field envelope but also ensures that its spatial derivatives are correctly
captured. This is crucial for accurately representing the rapid oscillations and sharp peaks charac-
teristic of EM waves. Our results show that Tensor-GaLore with a rank ratio of 0.25 achieved an
11% improvement in overall test loss compared to the baseline, with the H1 loss decreasing from
0.1902 to 0.1681. This improvement is particularly significant given the challenging nature of the
EM dataset, which involves predicting the complex electric field envelope resulting from nonlinear
interactions in waveguides. The enhanced performance in H1 loss indicates that our model not only
matches the amplitude of the EM waves more accurately but also better captures the rapid spatial
variations and peak formations. This is critical in applications such as optical pulse propagation,
where precise modeling of field gradients and peak intensities is essential for predicting phenomena
like second-harmonic generation and phase matching.
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Dataset Model Architecture Details Optimizer &
Scheduler

Burgers FNO
• 4 layers, 90 modes
• 256 hidden channels, 256 projection channels
• Skip Connections: ’linear’
• Positional embedding: ’grid’

Adam with step LR
3e − 4, weight de-
cay 2e − 6 500
epochs, batch size
16. Trained with
H1 loss.

NS128 FNO
• 4 layers, 64 x 64 modes
• 64 hidden channels, 256 projection channels
• Skip: ’linear’
• Use channel MLP: 1
• Channel MLP expansion: 0.5, dropout: 0

Adam with step
LR 3e-4, weight
decay 1e-4, 500
epochs, batch size
8. Trained with H1

loss.

NS1024 FNO
• 4 layers, 100 modes
• 256 hidden channels, 256 projection channels
• Skip: ’linear’

Adam with step LR

Darcy Flow FNO
• 4 layers, 64 modes
• 128 hidden channels, 128 projection channels
• Skip: ’linear’

Adam with step LR
1e − 3, weight de-
cay 1e − 4, 250
epochs, batch size
2. Trained with L2

loss.
EM Wave Complex-

FNO • 8 layers, 128 modes
• 128 hidden channels, 128 projection channels
• Skip: ’linear’
• Complex data: True
• Complex activation function: True

Complex Adam
with step LR 1e-4,
weight decay 2e-6,
batch size 32, 1000
epochs. Trained
with H1 loss.

Table 8: Detailed FNO Architecture Specifications for Different Datasets

F SLOWDOWN IN TRAINING

While Tensor-GaLore does introduce additional computational overhead from the tensor decompo-
sition step, we have carefully analyzed the impact on training speed and efficiency. Our experiments
have shown that the memory savings achieved by Tensor-GaLore often outweigh the slight increase
in computational cost, resulting in an overall improvement in training time and resource utilization.
Specifically, we have measured the training time for Tensor-GaLore compared to the baseline FNO
model and the GaLore approach. Our results indicate that the slowdown in training time is modest,
typically in the range of 5-20%, depending on the dataset and model configuration. This is a rea-
sonable trade-off given the significant memory savings (up to 75% reduction in optimizer memory)
that Tensor-GaLore provides.

Model Rank Time/epoch(s) Slowdown (%)
Baseline 1.0 34.96 –
GaLore 0.20 34.47 -1.40
GaLore 0.25 34.79 -0.48
GaLore 0.50 36.27 3.75
GaLore 0.75 37.50 7.26
Tensor-GaLore (40, 40, 40, 24) 0.20 36.53 5.98
Tensor-GaLore (48, 48, 48, 24) 0.25 38.30 10.08
Tensor-GaLore (56, 56, 56, 24) 0.50 40.63 12.03
Tensor-GaLore (64, 64, 56, 32) 0.75 44.93 19.84

Table 9: Comparison of model execution times, ranks, and relative slowdown
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Moreover, we have incorporated techniques such as ”warm-restart” initialization of the tensor de-
composition to amortize the computational overhead across training iterations. This helps minimize
the impact on the overall training efficiency. We have also explored opportunities to further optimize
the tensor decomposition computations, which could potentially reduce the training time slowdown
even further.

Remark 2 (Real-Valued Analysis) For clarity of presentation, we develop the theory of Tensor-
GaLore assuming all tensors are real-valued, i.e.,Wl,Gt ∈ RN1×N2×N3×N4 and all associated op-
erations are in real space. This simplification allows us to focus on the core geometric and algebraic
properties without the additional complexity of complex conjugates and Hermitian operations. The
extension to complex-valued tensors (as needed for Fourier Neural Operators where weights may be
complex in the frequency domain) is straightforward: inner products become Hermitian inner prod-
ucts, transposes become conjugate transposes, and orthogonality conditions incorporate complex
conjugates. All main results remain valid with these natural modifications.

G PARAMETER COMPLEXITY ANALYSIS

To understand the theoretical advantages of Tensor-GaLore over matrix-based GaLore, we provide a
detailed analysis of the parameter complexity for both approaches. This analysis demonstrates why
tensor decomposition leads to more efficient memory usage while maintaining expressiveness.

G.1 MEMORY ANALYSIS

We provide a theoretical analysis of the memory requirements for Tensor-GaLore compared to base-
line methods and matrix GaLore variants. Consider a weight tensor W ∈ CN1×N2×N3×N4 in a FNO
Spectral layer. Table 10 summarizes the memory requirements for different methods. The baseline
approach stores the full tensor and its corresponding optimizer states. For a rank ratio r (0 < r ≤ 1),
Tensor-GaLore requires storing the factor matrices, resulting in substantial memory savings, espe-
cially for the optimizer states. In this table, we assume the use of a complex-valued Adam optimizer,
which typically requires two additional tensors (first and second moments) for each parameter.

Table 10: Theoretical memory requirements for different methods

Method Weight Parameters Optimizer States (Adam)
Baseline N1N2N3N4 2N1N2N3N4

Matrix GaLore (rollup dim 1) N1N2N3N4 2r(N1 +N2N3N4)
Tensor-GaLore (Tucker) N1N2N3N4 2r(N1 +N2 +N3 +N4)

G.1.1 PROBLEM SETUP

Consider a 4D tensor weightW ∈ RI1×I2×I3×I4 from a Fourier Neural Operator layer, where:

• (I1, I2) correspond to input/output channels
• (I3, I4) correspond to spatial frequency modes

G.1.2 MATRIX-BASED APPROACH (GALORE)

In the matrix-based GaLore approach, we must first reshape the tensor into a matrix. There are
several possible matricization strategies:

1. W(1) ∈ RI1×(I2I3I4)

2. W(12) ∈ R(I1I2)×(I3I4)

For a rank-R SVD approximation of the matricized tensor:

W ≈ UΣVH (9)

The parameter count for storing the low-rank factors is:
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• For W(1): R(I1 + I2I3I4) parameters

• For W(12): R(I1I2 + I3I4) parameters

G.1.3 TENSOR-BASED APPROACH (TENSOR-GALORE)

In Tensor-GaLore, we use Tucker decomposition with ranks (R1, R2, R3, R4):

W ≈ G ×1 U
(1) ×2 U

(2) ×3 U
(3) ×4 U

(4) (10)

where:

• G ∈ RR1×R2×R3×R4 is the core tensor

• U(n) ∈ RIn×Rn are the factor matrices

The total parameter count is:

PTucker = R1R2R3R4 +

4∑
n=1

InRn (11)

G.1.4 COMPARATIVE ANALYSIS

Let’s consider a practical case where:

• N = I1 = I2 (equal input/output channels)

• M = I3 = I4 (equal spatial dimensions)

• For Tucker: rmax = R1 = R2 = R3 = R4 (equal ranks)

• For matrix SVD: R = r2max (equivalent rank)

Then:

1. Matrix GaLore (best case):

PMatrix = r2max(N
2 +M2) (12)

2. Tensor-GaLore:
PTensor = r4max + 2rmaxN + 2rmaxM (13)

In typical neural operator architectures:

• N ≫ rmax (number of channels much larger than rank)

• M ≫ rmax (spatial dimensions much larger than rank)

Therefore:

• Matrix case complexity: O(r2(N2 +M2))

• Tensor case complexity: O(N +M + r4)

G.1.5 MEMORY SAVINGS ANALYSIS

For concrete numbers, consider a typical FNO layer with:

• N = 64 channels

• M = 128 modes

• rmax = 16 (rank)
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Matrix GaLore parameters:

PMatrix = 256(642 + 1282) ≈ 5.2M (14)

Tensor-GaLore parameters:

PTensor = 65, 536 + 2(16)(64) + 2(16)(128) ≈ 70K (15)

This represents a ∼75x reduction in parameter count, which directly translates to memory savings
in the optimizer states. The savings become even more pronounced as the spatial dimensions (M )
increase, which is crucial for high-resolution problems.

G.1.6 IMPACT ON EXPRESSIVENESS

Despite the significant reduction in parameters, Tensor-GaLore maintains expressiveness because:

1. The Tucker decomposition preserves the natural tensor structure of the operator
2. Each mode has its own rank parameter, allowing for more flexible approximation
3. The core tensor captures higher-order interactions between modes

This explains why Tensor-GaLore can achieve comparable or better performance while using sig-
nificantly less memory than matrix-based approaches.

H TENSOR OPERATIONS AND NOTATION

Definition 1 (Tensor) An order-d tensor A ∈ RI1×I2×···×Id is a d-dimensional array with entries
ai1,i2,...,id , where 1 ≤ ik ≤ Ik for k = 1, . . . , d.

Definition 2 (Mode-k Unfolding) The mode-k unfolding of tensor A, denoted as A(k) ∈
RIk×(I1···Ik−1Ik+1···Id), arranges the mode-k fibers as columns of the resulting matrix. Specifically:

(A(k))ik,j = ai1,...,id

where j = 1 +
∑d

m=1,m̸=k(im − 1)
∏m−1

n=1,n̸=k In.

Definition 3 (Mode-k Product) The mode-k product of a tensor A ∈ RI1×···×Id with a matrix
U ∈ RJ×Ik , denoted as A×k U , results in a tensor B ∈ RI1×···×Ik−1×J×Ik+1×···×Id with entries:

(A×k U)i1,...,ik−1,j,ik+1,...,id =

Ik∑
ik=1

ai1,...,iduj,ik

Proposition 1 (Properties of Mode-k Product) For a tensor A and matrices U, V of appropriate
sizes:

1. (U ×k A)(k) = UA(k)

2. A×k U ×l V = A×l V ×k U for k ̸= l

3. A×k U ×k V = A×k (V U)

Definition 4 (Tensor Inner Product) The inner product of two tensors A,B ∈ RI1×···×Id is:

⟨A,B⟩ =
I1∑

i1=1

· · ·
Id∑

id=1

ai1,...,idbi1,...,id

Definition 5 (Tensor Norms) For a tensor A:

1. Frobenius norm: ∥A∥F =
√
⟨A,A⟩
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2. Mode-k spectral norm: ∥A∥(k) = ∥A(k)∥2

3. Spectral norm: ∥A∥ = max∥x(k)∥=1 ∥A ×1 x
(1) ×2 · · · ×d x

(d)∥

Definition 6 (Tensor Outer Product) The outer product of vectors u(k) ∈ RIk for k = 1, . . . , d is
a tensor A = u(1) ◦ u(2) ◦ · · · ◦ u(d) with entries:

ai1,...,id = u
(1)
i1

u
(2)
i2
· · ·u(d)

id

Definition 7 (Tensor Contraction) The contraction of a tensorA ∈ RI1×···×Id along modes p and
q (where Ip = Iq) is:

(Contractp,q(A))i1,...,ip−1,ip+1,...,iq−1,iq+1,...,id =

Ip∑
i=1

ai1,...,ip−1,i,ip+1,...,iq−1,i,iq+1,...,id

H.1 TENSOR TRACE AND INNER PRODUCTS

Definition 8 (Tensor Inner Product) For tensors A,B ∈ RI1×I2×···×Id , their inner product is:

⟨A,B⟩ =
I1∑

i1=1

I2∑
i2=1

· · ·
Id∑

id=1

Ai1,i2,...,idBi1,i2,...,id

Definition 9 (Tensor Trace) For a tensor A, there are several equivalent ways to understand its
trace:

1. Mode-wise trace:

trk(A) =
Ik∑

ik=1

Ai1,...,ik,...,id |ik=ik

2. Using mode-k unfolding:

tr(A(k)) =

Ik∑
i=1

(A(k))i,i

3. Inner product interpretation: When used in expressions like tr(dW⊤
l ×1X×2 Y ), this is actually

computing:
⟨dWl, X ⊗ Y ⟩

Proposition 2 (Key Properties) For the trace operation in tensor gradients:

1. Inner Product Form:
tr(dW⊤ ×1 X ×2 Y ) = ⟨dW, X ⊗ Y ⟩

2. Differential Form: For scalar function ϕ and tensorW:

dϕ = tr(dW⊤ ×1 X ×2 Y ) =⇒ ∂ϕ

∂W
= X ⊗ Y

3. Mode-wise Consistency:

tr(dW⊤ ×1 X ×2 Y ) = tr(X⊤dW(1)Y )

where dW(1) is the mode-1 unfolding.

Example 1 In the logsoftmax gradient computation:

−dϕ = tr(dW⊤
l ×1 (P

⊥
1 y)⊤Jl ×2 f

⊤
l−1)

= ⟨dWl,J⊤
l P⊥

1 y ⊗ fl−1⟩
This leads to the gradient term:

Gl = J⊤
l P⊥

1 y ⊗ fl−1
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Remark 3 (Connection to Matrix Case) When working with matrices, the trace operation reduces
to the familiar form:

tr(A⊤B) = ⟨A,B⟩ =
∑
i,j

AijBij

The tensor trace generalizes this to handle higher-order tensors while preserving the key property
that it relates to directional derivatives through inner products.

H.2 STABLE RANK FOR TENSORS

Definition 10 (Matrix Stable Rank) For a matrix A, the stable rank is defined as:

sr(A) :=
∥A∥2F
∥A∥22

where ∥ · ∥F is the Frobenius norm and ∥ · ∥2 is the spectral norm.

Definition 11 (Tensor Stable Rank) For a non-zero tensor T ∈ RN1×N2×...×Nd , we define the
mode-wise stable rank vector as:

sr(T ) = [sr1(T ), sr2(T ), ..., srd(T )]

where for each mode k:

srk(T ) :=
∥T ∥2F
∥T(k)∥22

Here:

• T(k) is the mode-k unfolding of tensor T

• ∥T ∥2F =
∑

i1,...,id
|Ti1,...,id |2 is the tensor Frobenius norm

• ∥T(k)∥2 is the spectral norm of the mode-k unfolding

Lemma 1 (Tensor-Matrix Norm Relations) For any tensor T and its mode-k unfolding T(k):

∥T ∥F = ∥T(k)∥F
This follows from the fact that unfolding is just a rearrangement of entries.

Proposition 3 (Properties of Tensor Stable Rank) For a non-zero tensor T :

1. Each srk(T ) ≥ 1

2. srk(T ) ≤ rank(T(k))

3. srk(T ) is invariant under orthogonal transformations in mode k

4. For a rank-1 tensor, srk(T ) = 1 for all k

Proof 1 1. For any matrix M , we know ∥M∥2F ≥ ∥M∥22. Therefore:

srk(T ) =
∥T ∥2F
∥T(k)∥22

=
∥T(k)∥2F
∥T(k)∥22

≥ 1

where we used the tensor-matrix norm relation lemma.

2. For any matrix M of rank r:

∥M∥22 ≥
∥M∥2F

r
Applying this to T(k):

srk(T ) =
∥T(k)∥2F
∥T(k)∥22

≤ rank(T(k))
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3. For any orthogonal transformation U in mode k:

∥UT(k)∥F = ∥T(k)∥F and ∥UT(k)∥2 = ∥T(k)∥2

4. For a rank-1 tensor T = a1 ⊗ ...⊗ ad:

• Each mode-k unfolding is rank-1

• For rank-1 matrices, ∥M∥2F = ∥M∥22
• Therefore srk(T ) = 1

Definition 12 (Multilinear Stable Rank) For a tensor T , the multilinear stable rank is:

msr(T ) := min
k

srk(T )

This provides a lower bound on the minimal mode-k rank needed to approximate T .

Remark 4 (Connection to Low-Rank Approximation) The stable rank of a tensor in each mode
provides insight into how well it can be approximated by a low-rank decomposition:

1. If srk(T ) is close to 1 in mode k, then T is nearly low-rank in that mode

2. For a Tucker decomposition:

T ≈ G ×1 U
(1) ×2 U

(2)...×d U
(d)

The stable rank helps determine appropriate ranks for each mode

Remark 5 (Application to FNO) For FNO weight tensorsR ∈ RN1×N2×N3×N4 :

1. Mode-1 and Mode-2 typically correspond to input/output channels 2. Mode-3 and Mode-4 cor-
respond to Fourier modes 3. Stable rank in Fourier modes often naturally decreases due to spectral
decay

H.3 POSITIVE SEMI-DEFINITENESS FOR TENSORS

Definition 13 (Mode-k PSD Tensor) A tensor T ∈ RN1×N2×···×Nd is called mode-k positive
semi-definite if its mode-k unfolding T(k) ∈ RNk×(N1···Nk−1Nk+1···Nd) satisfies:

x⊤T(k)x ≥ 0 ∀x ∈ RNk

Definition 14 (All-modes PSD Tensor) A tensor T is called all-modes positive semi-definite if it is
mode-k PSD for all modes k.

Definition 15 (Strong PSD Tensor) A tensor T ∈ RN1×N2×···×Nd is called strongly positive semi-
definite if:

T ×1 x1 ×2 x2 ×3 · · · ×d xd ≥ 0

for all vectors xk ∈ RNk , k = 1, . . . , d.

Lemma 2 (Hierarchy of PSD Definitions) For a tensor T :

Strong PSD =⇒ All-modes PSD =⇒ Mode-k PSD

The reverse implications do not necessarily hold.

Remark 6 (For Tensor-GaLore) For our generalized gradient analysis, we propose to use:

1. Mode-specific PSD condition:

Bi and Ci are mode-k PSD for relevant modes k

2. This means for each mode k:
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• (Bi)(k) is a PSD matrix

• (Ci)(k) is a PSD matrix

• The tensor operator Sk = 1
N

∑N
i=1 Ci ⊗k Bi is well-defined

3. This ensures:

• The mode-k eigenvalues λ(k)
1 , λ

(k)
2 are real and non-negative

• The projection onto minimal eigenspace is well-defined for each mode

• The stable rank bounds make sense mode-wise

Proposition 4 (For FNO) In FNO, the tensors Bi and Ci naturally satisfy mode-k PSD conditions
because:

1. For channel modes (1,2):

• Unfoldings correspond to standard channel operations

• PSD property follows from network structure

2. For Fourier modes (3,4):

• Unfoldings correspond to frequency domain operations

• PSD property follows from spectral properties

Corollary 1 (Implications for Gradient Analysis) The mode-k PSD property ensures:

1. Each mode has real, non-negative eigenvalues:

0 ≤ λ
(k)
1 < λ

(k)
2 ≤ · · ·

2. Mode-wise stable rank bounds are well-defined:

srk(Gt) ≤ srk(G∥t0) + decay term

3. The gradient naturally becomes low-rank in each mode independently.

Definition 16 (Lipschitz Continuity) A function h : X → Y between normed spaces has L-
continuity (is L-Lipschitz) if for any x1, x2 ∈ X :

∥h(x1)− h(x2)∥Y ≤ L∥x1 − x2∥X
For tensors, this generalizes to mode-wise continuity:

• Matrix case (d = 2): Standard Lipschitz continuity with Frobenius norm

• Tensor case (d > 2): Mode-k Lipschitz continuity for each mode k

• Neural networks: Composition of Lipschitz continuous operations

I REVERSIBILITY OF FOURIER NEURAL OPERATORS

I.1 DEFINITION AND PRELIMINARIES

Definition 17 (Reversibility) A network N that maps input x to output y = N (x) is reversible if
there exists J(x) such that:

1. Forward: y = J(x)x

2. Backward: dx = J(x)⊤dy

where J(x) can be a function of both input and weights.
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I.2 SPECTRAL LAYER

Lemma 3 (Spectral Layer Reversibility) The FNO spectral convolution layer (Kv)(x) =
F−1(R · Fv)(x) is reversible, where R is the learnable weight tensor in Fourier space.

The spectral layer consists of three operations:

1. Fourier transform: F : v 7→ v̂

2. Linear transform in Fourier space: R· : v̂ 7→ Rv̂

3. Inverse Fourier: F−1 : Rv̂ 7→ F−1(Rv̂)

We can express the complete operation as:

Kv = JK(x)v where JK(x) = F−1RF

For the backward pass:

dv = JK(x)⊤dy = F⊤R⊤(F−1)⊤dy

Since F is unitary: F⊤ = F−1 and (F−1)⊤ = F , we have:

dv = F−1R⊤Fdy

Therefore:

• Forward pass: y = JK(x)x

• Backward pass: dx = JK(x)⊤dy

Thus satisfying the reversibility conditions, regardless of the size or rank of R.

I.3 MLP LAYER

Lemma 4 (MLP Layer Reversibility) The MLP layer with weight matrix W mapping v 7→Wv is
reversible.

1. Forward pass: y = Wv

2. Set JW (x) = W

3. Backward pass: dv = W⊤dy = JW (x)⊤dy

The linear layer satisfies reversibility conditions directly, even when W is rank-deficient.

I.4 ACTIVATION FUNCTION

Lemma 5 (Activation Reversibility) If the activation function σ is reversible (e.g., LeakyReLU),
then its application is reversible.

Consider LeakyReLU with parameter 0 < a < 1:

1. Forward: y = max(ax, x)

2. Set Jσ(x) = diag(1[x > 0] + a · 1[x ≤ 0])

3. Backward: dx = Jσ(x)
⊤dy

This matches the required reversibility form.
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I.5 FULL FNO ANALYSIS

Lemma 6 (FNO Block Reversibility) An FNO block consisting of spectral layer (K), MLP layer
(W ), and reversible activation (σ) is reversible.

Let N = (σ ◦W ◦K) be an FNO block.

From previous theorems, we have:

• Spectral layer: v 7→ JK(x)v = F−1(RFv)
• MLP layer: v 7→ JW (x)v = Wv

• Activation: v 7→ Jσ(x)v

By composition:
y = Jblock(x)v

where Jblock(x) = Jσ(x)JW (x)JK(x)

For backward pass:
dv = JK(x)⊤JW (x)⊤Jσ(x)

⊤dy = Jblock(x)
⊤dy

Therefore, the full block is reversible.

Lemma 7 (Full FNO Reversibility) A full FNO network with reversible activations is reversible.

Consider a full FNO with blocks N1, N2, ..., NL:

1. Each block Ni has its Ji(x) from previous theorem

2. By sequential composition:
y = JFNO(x)v

where JFNO(x) = JL(x)JL−1(x)...J1(x)

3. The backward pass follows from composition:

dv = J1(x)
⊤...JL−1(x)

⊤JL(x)
⊤dy = JFNO(x)

⊤dy

Therefore, the full FNO with reversible activations satisfies the reversibility conditions.

Lemma 8 (Gradient Form for Tensor Reversible Models) Consider a chained reversible neural
network N (x) := NL(NL−1(...N1(x))) and define:

• Jl := Jacobian(NL)...Jacobian(Nl+1)

• fl := Nl(...N1(x))

Then the weight tensorWl ∈ RN1×N2×N3×N4 at layer l has gradient Gl in the following form for
batch size 1:

(a) For ℓ2-objective ϕ := 1
2∥y − fL∥22:

Gl = J⊤
l y ⊗ fl−1 − (J⊤

l JlWl ×1 fl−1)⊗ fl−1

(b) For K-way logsoftmax loss ϕ(y; fL) := − log
(

exp(y⊤fL)
1⊤ exp(fL)

)
with small logits ∥P⊥

1 fL∥∞ ≪√
K:

Gl = (JlP⊥
1 y − γK−1J⊤

l P⊥
1 JlWl ×1 fl−1)⊗ fl−1

where:

• γ ≈ 1

• y is a data label with y⊤1 = 1
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• P⊥
1 := I − 1

K11⊤ is the zero-mean PSD projection matrix

• ×k denotes mode-k tensor product

• ⊗ denotes tensor outer product

Proof 2 Note that for layered reversible network, we have

N (x) = NL(NL−1(...N1(x))) = KL(x)KL−1(x)...K1(x)x

Let fl := Nl(Nl−1(...N1(x))) and Jl := KL(x)...Kl+1(x), and for linear layer l, we can write
N (x) = Jl ×1 (Wl ×1 fl−1). Therefore, for the linear layer l with weight tensorWl, we have:

dϕ = (y −N (x))⊤dN (x)

= (y −N (x))⊤(KL(x)...Kl+1(x))(dWl ×1 fl−1) + terms not related to dWl

= (y − Jl ×1 (Wl ×1 fl−1))
⊤Jl ×1 (dWl ×1 fl−1)

= tr(dW⊤
l ×1 (J⊤

l (y − Jl ×1 (Wl ×1 fl−1)))×2 f
⊤
l−1)

This gives the gradient ofWl:

Gl = J⊤
l y ⊗ fl−1 − (J⊤

l Jl ×1 (Wl ×1 fl−1))⊗ fl−1

where:

• ×k denotes the mode-k product between a tensor and a matrix

• ⊗ denotes the tensor outer product

• The gradient Gl has the same dimensionality asWl

Remark 7 (Gradient Form for Tensor Reversible Models with Dimensions) Consider a
chained reversible neural network N (x) where: Input x ∈ RM , Output y ∈ RK , Weight tensor
Wl ∈ RN1×N2×N3×N4 , Layer output fl ∈ RNl and Jacobian Jl ∈ RK×Nl .

Then for batch size 1: (a) For ℓ2-objective ϕ := 1
2∥y − fL∥22:

Gl = J⊤
l y ⊗ fl−1 − (J⊤

l JlWl ×1 fl−1)⊗ fl−1

where J⊤
l y ∈ RNl , fl−1 ∈ RNl−1 and the final gradient Gl ∈ RN1×N2×N3×N4 .

Proof 3 1) Let us start with the initial setup:

N (x) = KL(x)KL−1(x)...K1(x)x

where each Ki maps RNi−1 → RNi

2) For linear layer l:

• fl−1 ∈ RNl−1 is input

• Wl ∈ RN1×N2×N3×N4 is weight tensor

• Wl ×1 fl−1 maps to RNl

• Jl ∈ RK×Nl is Jacobian

3) Then, like before we do the differential computation:

dϕ = (y −N (x))⊤dN (x) [RK × RK → R]

= (y −N (x))⊤Jl(dWl ×1 fl−1) [RK × RK×Nl × RNl → R]

= (y − Jl ×1 (Wl ×1 fl−1))
⊤Jl ×1 (dWl ×1 fl−1)

4) Mode-wise analysis for gradient:
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• First term: J⊤
l y ⊗ fl−1 - J⊤

l y ∈ RNl - fl−1 ∈ RNl−1 - Outer product gives tensor in
RN1×N2×N3×N4

• Second term: (J⊤
l JlWl ×1 fl−1)⊗ fl−1 - J⊤

l Jl ∈ RNl×Nl -Wl ×1 fl−1 ∈ RNl - Result
is tensor in RN1×N2×N3×N4

5) Therefore final gradient:

Gl = J⊤
l y ⊗ fl−1 − (J⊤

l JlWl ×1 fl−1)⊗ fl−1 ∈ RN1×N2×N3×N4

We finally have a gradient tensor of the same shape asWl.

Remark 8 We only wanted to show an example of checking all the dimensions to ensure they match
the generalized version for tensors. In the following subsequent proofs and lemma, we don’t keep
track of it all, but we give appropriate dimensions wherever necessary.

Lemma 9 (Tensor Gradient Form for Logsoftmax) For a reversible network with weight tensor
Wl at layer l, under the K-way logsoftmax loss with small logits, the gradient has the form:

Gl = (Jl ×1 P
⊥
1 y − γK−1J⊤

l ×1 P
⊥
1 ×2 Jl ×1 (Wl ×1 fl−1))⊗ fl−1

Proof 4 Starting with the differential form above:

1. For reversible network, dN (x) = Jl ×1 (dWl ×1 fl−1)

2. The zero-mean projection in the tensor form:

df̂ = P⊥
1 dN (x)

= P⊥
1 Jl ×1 (dWl ×1 fl−1)

3. Substituting into the logsoftmax differential:

−dϕ = y⊤P⊥
1 Jl ×1 (dWl ×1 fl−1)

− γK−1f̂⊤P⊥
1 Jl ×1 (dWl ×1 fl−1)

+O(f̂2/K) terms

4. Under small logits assumption, the O(f̂2/K) terms become negligible

5. Express in tensor form:

−dϕ = tr(dW⊤
l ×1 (P

⊥
1 y)⊤Jl ×2 f

⊤
l−1)

− γK−1tr(dW⊤
l ×1 (P

⊥
1 Jl ×1 (Wl ×1 fl−1))

⊤Jl ×2 f
⊤
l−1)

6. Therefore, the gradient is:

Gl = (Jl ×1 P
⊥
1 y − γK−1J⊤

l ×1 P
⊥
1 ×2 Jl ×1 (Wl ×1 fl−1))⊗ fl−1

J THEORETICAL RESULTS OF TENSOR-GALORE FOR NEURAL OPERATORS

Lemma 10 (Tensor Gradient becomes low-rank during training) Suppose the gradient tensor
follows the parametric form:

Gt =
1

N

N∑
i=1

(Ai − Bi ×1Wt ×2 Ci)

with constant Ai ∈ RN1×N2×N3×N4 , PSD tensors Bi and Ci after t ≥ t0. We study vanilla SGD
weight update: Wt =Wt−1 + ηGt−1.

Let Sk := 1
N

∑N
i=1 Ci⊗kBi be the mode-k tensor operator and λ

(k)
1 < λ

(k)
2 its two smallest distinct

eigenvalues for each mode k. Then the mode-wise stable rank satisfies:
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srk(Gt) ≤ srk(G∥t0) +

(
1− ηλ

(k)
2

1− ηλ
(k)
1

)2(t−t0) ∥G0 − G∥t0∥
2
F

∥G∥t0∥
2
2

where:

• srk(Gt) is the mode-k stable rank of gradient tensor at time t

• G∥t0 is the projection of Gt0 onto the minimal eigenspace V(k)
1 of Sk corresponding to λ

(k)
1

for each mode k

• ∥ · ∥F is the tensor Frobenius norm

• ∥ · ∥2 is the spectral norm of the mode-k unfolding

• ×k denotes mode-k tensor product

Furthermore, the multilinear stable rank satisfies:

msr(Gt) ≤ min
k

srk(G∥t0) +

(
1− ηλ

(k)
2

1− ηλ
(k)
1

)2(t−t0) ∥G0 − G∥t0∥
2
F

∥G∥t0∥
2
2


Proof 5 1) First, we derive the recursive update rule for the gradient tensor. We have:

Gt =
1

N

N∑
i=1

(Ai − Bi ×1Wt ×2 Ci)

=
1

N

N∑
i=1

(Ai − Bi ×1 (Wt−1 + ηGt−1)×2 Ci)

=
1

N

N∑
i=1

Ai −
1

N

N∑
i=1

Bi ×1Wt−1 ×2 Ci − η
1

N

N∑
i=1

Bi ×1 Gt−1 ×2 Ci

= Gt−1 − η
1

N

N∑
i=1

Bi ×1 Gt−1 ×2 Ci

2) For each mode k, let’s consider the mode-k unfolding. Define the tensor operator:

Sk :=
1

N

N∑
i=1

Ci ⊗k Bi

Then for the mode-k unfolding (Gt)(k):

(Gt)(k) = (Gt−1)(k) − ηSk(Gt−1)(k) (16)

3) Since Bi and Ci are mode-k PSD, Sk is a PSD operator. Let λ(k)
1 < λ

(k)
2 be its two smallest

distinct eigenvalues. Let V(k)
1 be the eigenspace corresponding to λ

(k)
1 .

4) For any mode k, we can decompose (Gt0)(k) into parallel and perpendicular components:

(Gt0)(k) = (G∥t0)(k) + (G⊥t0)(k)

where (G∥t0)(k) is the projection onto V(k)
1 .

5) The mode-k unfolded gradient follows:

(Gt)(k) = (I − ηSk)t−t0(Gt0)(k)
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6) Using the spectral properties of Sk:

∥(Gt)(k)∥2F ≤ (1− ηλ
(k)
2 )2(t−t0)∥(G⊥t0)(k)∥

2
F + (1− ηλ

(k)
1 )2(t−t0)∥(G∥t0)(k)∥

2
F

7) For the mode-k stable rank:

srk(Gt) =
∥(Gt)(k)∥2F
∥(Gt)(k)∥22

≤ srk(G∥t0) +

(
1− ηλ

(k)
2

1− ηλ
(k)
1

)2(t−t0) ∥G0 − G∥t0∥
2
F

∥G∥t0∥
2
2

8) Finally, for the multilinear stable rank:

msr(Gt) = min
k

srk(Gt)

Therefore, the bound holds for each mode independently.

Remark 9 For FNO specifically:

1. Fourier modes (3,4) may have different stable rank behavior than channel modes (1,2)

2. Natural frequency decay affects eigenvalue structure in Fourier modes

3. Channel modes might maintain higher stable rank due to information preservation needs

4. Overall low-rank structure emerges from combined effect across all modes

Corollary 2 (Low-rank Tensor Gradient) If the gradient takes the parametric form

Gt =
1

N

N∑
i=1

(Ai − Bi ×1Wt ×2 fi)⊗ fi

with all Bi mode-k full-rank, and N ′ := rank({fi}) < n, then for each mode k:

srk(G∥t0) ≤ nk −N ′

and thus srk(Gt) ≤ nk/2 for large t, where nk is the dimension of mode k.

Proof 6 Similar to the Galore paper, it’s easy to analyze mode by mode.

1) Let Ci = fi ⊗ f⊤
i . Since N ′ := rank({fi}Ni=1) < n and fi ∈ Rn, the collections of vectors

{fi}Ni=1 cannot span the entire space Rn.

2) For each mode k:

• Let {uj}n−N ′

j=1 be orthonormal bases for the null space of {fi}Ni=1

• Let {ek}nk

k=1 be orthonormal bases for Rnk

• The product bases {uj ⊗ ek} form a set of bases for the minimal eigenspace V(k)
1 of Sk

with minimal eigenvalue 0

• Since Bi are mode-k full-rank, no extra dimensions exist for V(k)
1

3) For the mode-k projection of Gt0 onto V(k)
1 :

(G∥t0)(k) =
n−N ′∑
j=1

nk∑
l=1

cjluje
⊤
l =

n−N ′∑
j=1

uj

(
nk∑
l=1

cjlel

)⊤

4) Therefore:
srk(G∥t0) ≤ rank((G∥t0)(k)) ≤ nk −N ′
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since stable rank is a lower-bound of the rank in each mode.

5) On the other hand, Gt can be written as a summation of N ′ rank-1 tensors by representing each
fi =

∑N ′

j=1 bijf
′
j as a linear combination of {f ′

j}N
′

j=1:

Gt =
1

N

N∑
i=1

(Ai − Bi ×1Wt ×2 fi)⊗

 N ′∑
j=1

bijf
′
j


=

1

N

N ′∑
j=1

[
N∑
i=1

bij(Ai − Bi ×1Wt ×2 fi)

]
⊗ f ′

j

6) Thus each mode-k unfolding has rank at most N ′. When t is sufficiently large so that the second
term in the mode-k stable rank bound is negligible, by the tensor version of Lemma 3.3:

srk(Gt) ≤ min(nk −N ′, N ′) ≤ nk/2

since N ′ < nk.

Corollary 3 (Tensor Low-rank with Special Structure) If for any mode k, V(k)
1 (Sk) is 1-

dimensional with decomposable eigenvector vk = yk ⊗ zk, then srk(G∥t0) = 1 and thus Gt becomes
rank-1 in mode k.

Proof 7 For any mode k with the given structure:

1) The mode-k unfolding of the projected gradient is:

(G∥t0)(k) = vkv
⊤
k g0 ∝ vk

2) Since vk = yk ⊗ zk is decomposable:

• The resulting (G∥t0)(k) is a rank-1 matrix

• Thus srk(G∥t0) = 1

3) From the main lemma, when t is large:

srk(Gt) ≈ srk(G∥t0) = 1

4) This means Gt becomes effectively rank-1 in mode k.

Theorem 2 (Tensor-GaLore Convergence) For a gradient tensor Gt ∈ RI1×I2×···×Id , let {Pk ∈
RIk×rk}dk=1 be fixed orthonormal projection matrices for each mode k with ranks {rk}dk=1. The
Tensor-GaLore update consists of:

1. Project the gradient:
Rt = Gt ×1 P

⊤
1 ×2 P

⊤
2 ×3 · · · ×d P

⊤
d

2. Update optimizer states usingRt

3. Project back for weight update:

G̃t = Rt ×1 P1 ×2 P2 ×3 · · · ×d Pd

Suppose for each mode k:

• Ai, Bi, Ci have L
(k)
A , L(k)

B , L(k)
C mode-k continuity

• ∥Wt∥(k) ≤ Dk (mode-k spectral norm bound)

• B̂(k)it := P⊤
k B

(k)
i (Wt)Pk
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• Ĉ(k)it := P⊤
k C

(k)
i (Wt)Pk

• κ
(k)
t := 1

N

∑
i λmin(B̂(k)it )λmin(Ĉ(k)it )

Then Tensor-GaLore with ρt ≡ 1 satisfies for each mode k:

∥(Rt)(k)∥F ≤
[
1− η(κ

(k)
t−1 − L

(k)
A − L

(k)
B L

(k)
C D2

k)
]
∥(Rt−1)(k)∥F

As a result, if mint,k κ
(k)
t > L

(k)
A + L

(k)
B L

(k)
C D2

k for all modes k, then Rt → 0 and Tensor-GaLore
converges with the fixed projections {Pk}dk=1.

Proof 8 Since the gradient tensor naturally becomes low-rank during training as shown above,
and the optimization landscape of low-rank tensor problemsFrandsen & Ge (2020)., local search
algorithms can efficiently find approximate global optimal solutions. Specifically, since Reversible
FNO (Appendix I) gradients become low-rank, the optimization landscape contains only high-order
saddle points that can be efficiently escaped, making local minima globally optimal. Now let’s
proceed by analyzing the tensor unfolding:

1) First, we establish the mode-k unfolding of the gradient tensor update. Using the assumption that
gradient follows the parametric form:

Gt =
1

N

N∑
i=1

(Ai − Bi ×1Wt ×2 Ci)

2) For any mode k, the mode-k unfolding gives:

(Gt)(k) =
1

N

N∑
i=1

(
(Ai)(k) − (Bi)(k)Wt(k)(Ci)⊤(k)

)
whereWt(k) is the mode-k unfolding ofWt.

3) The projected gradient in mode-k has unfolding:

(Rt)(k) = P⊤
k (Gt)(k)

=
1

N

N∑
i=1

(
P⊤
k (Ai)(k) − P⊤

k (Bi)(k)Wt(k)(Ci)⊤(k)
)

4) Using the SGD updateWt =Wt−1 + ηG̃t−1, we can write:

Wt(k) =Wt−1(k) + ηPk(Rt−1)(k)

5) Substituting this into the gradient expression:

(Rt)(k) = (Rt−1)(k) − η
1

N

N∑
i=1

P⊤
k (Bi)(k)Pk(Rt−1)(k)(Ci)⊤(k) + E

(k)
t

where E(k)t captures the differences in Ai and Bi, Ci terms.

6) Define the mode-k operator:

S(k)t :=
1

N

N∑
i=1

P⊤
k (Bi)(k)Pk ⊗ P⊤

k (Ci)(k)Pk

7) Then the update can be written compactly as:

(Rt)(k) = (I − ηS(k)t−1)(Rt−1)(k) + E
(k)
t
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8) For the error term, using mode-k continuity:

∥E(k)t ∥F ≤ L
(k)
A ∥Wt −Wt−1∥F

+ L
(k)
B L

(k)
C D2

k∥Wt −Wt−1∥F
= η(L

(k)
A + L

(k)
B L

(k)
C D2

k)∥Rt−1∥F

9) Using properties of projection matrices Pk:

• P⊤
k Pk = Irk (orthonormal)

• ∥Pk∥2 = 1 (projection)

10) The minimal eigenvalue of S(k)t−1 satisfies:

λmin(S(k)t−1) ≥ κ
(k)
t−1

due to mode-k PSD properties of Bi and Ci.
11) Therefore:

∥(Rt)(k)∥F ≤ ∥I − ηS(k)t−1∥2∥(Rt−1)(k)∥F + ∥E(k)t ∥F
≤ [1− η(κ

(k)
t−1 − L

(k)
A − L

(k)
B L

(k)
C D2

k)]∥(Rt−1)(k)∥F

12) When mint,k κ
(k)
t > L

(k)
A + L

(k)
B L

(k)
C D2

k for all modes k:

• Each mode-k unfolding converges: (Rt)(k) → 0

• Thus the full tensor converges: Rt → 0
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